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It has been suggested that cold dark matter (CDM) has difficulties in explaining tentative evidence for
noncuspy halo profiles in small galaxies, and the low velocity dispersions observed in the largest Milky
Way satellites (“too-big-to-fail” problem). Strongly self-interacting dark matter has been noted as a robust
solution to these problems. The elastic cross sections required are much larger than predicted by generic
CDM models, but could naturally be of the right size if dark matter is composite. We explore in a general
way the constraints on models where strongly interacting CDM is in the form of dark “atoms” or
“molecules,” or bound states of a confining gauge interaction (“hadrons”). These constraints include
considerations of relic density, direct detection, big bang nucleosynthesis, the cosmic microwave
background, and LHC data.
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I. INTRODUCTION

Cold dark matter (CDM) has proven in most respects to
be an excellent description of the 22% of the Universe’s
energy density that is not baryonic or dark energy. There
are however a few suggested problems in its ability to
predict some of the observed properties of dark matter
halos. These are the behavior of the density profile near
galactic centers, which comes out too cuspy in N-body
simulations [1–4], as well as the overabundance of
prominent satellite galaxies, relative to observations: the
“too-big-to-fail” (TBTF) problem [5,6]. Long ago it was
pointed out that strong elastic scattering of dark matter with
itself, with cross section per mass σ=m ∼ 0.1–1 cm2=g,1

would ameliorate the first of these problems [7,8]. More
recent work has shown that the TBTF problem can also be
addressed in this way (see Ref. [9] for a review).2

The idea of strongly interacting dark matter (SIDM) fell
out of favor in light of subsequent arguments that σ=m
should be less than 0.02 cm2=g to avoid making observed
elliptical halos become too spherical [11]. A similar but
weaker upper limit of 0.7 cm2=g was found using simu-
lations of the Bullet Cluster [12]. The arguments leading to
the more stringent bound have recently been reexamined
[13] in light of improved simulations, leading the authors to
conclude that the halo ellipticity bound should be relaxed to
the level of 0.1 cm2=g. The same authors argue that this
value is moreover consistent with what is needed to solve

the problems of halo cuspiness and excess substructure
[14]. Subsequently Ref. [15] studied this issue using a
higher resolution simulation and concluded that a larger
value of 0.6 cm2=g¼ 1.1 b=GeV is needed to produce the
cores inferred in dwarf galaxies by Ref. [16].3 We adopt this
figure in the following for the preferred value of the SIDM
cross section.4

To appreciate the challenge of achieving such a large
cross section if dark matter is a fundamental particle,
consider scalar DM with a quartic interaction ðλ=4!ÞS4.
The cross section over mass is given by σ=m ¼ λ2=
ð128πÞðm=GeVÞ−3 × 4 × 10−4 b=GeV. Even at the largest
sensible value of λ ∼ 32π2=3, where the one-loop correc-
tion to σ becomes of the same order as the tree level cross
section, to reach the level of σ=m ¼ 0.1 cm2=g requires a
small dark matter mass, m ∼ 400 MeV, introducing a new
hierarchy problem worse than that of the weak scale. It is
possible to overcome this limitation in a more complicated
model where heavy dark matter interacts with itself via a
light vector boson, with mass mV ≲ 1–100 MeV [18–27].
But here the question of naturalness has just been trans-
ferred to the vector boson mass scale (except in the limit
where it is massless [28]).
On the other hand, normal atoms and nuclei in the visible

sector have σ=m close to or above the values of interest.

1This is related to the alternate unit of cross section per mass
1 b=GeV ¼ 0.56 cm2=g, where b ¼ barn ¼ 10−28 m2. We take
c ¼ 1 throughout.

2A recent paper [10] finds that the TBTF problem is amelio-
rated by updating the values of cosmological parameters that go
into the simulations.

3Reference [17] shows that different assumptions about the
parametrization of the dwarf halos than made in [16] can
significantly reduce the evidence for cores in these systems,
though not disprove their existence.

4This value of σ=m may start to be in marginal conflict from
halo ellipticity bounds, which limits σ=m < 1 cm2=g [13]. More
detailed investigations using numerical simulations of halo
shapes for intermediate values of σ=m will be needed to settle
the question.
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The large cross section of atoms arises because they
themselves are large, due to being weakly bound. For
nuclei the cross section is large because of the residual
strong interactions mediated by relatively light mesonic or
nuclear bound states. It is therefore interesting to consider
dark analogs of these kinds of states in a hidden sector as
candidates for dark matter. Models of atomic dark matter
have been previously considered (although starting from
different motivations) in Refs. [29–37].5 Historically, the
first atomic dark matter model was in the context of mirror
symmetry, in which the dark sector is an exact copy of the
visible one (see Refs. [43,44] for a review). We do not
consider this scenario here, since we will show that the dark
electron is always much heavier than me in the models that
give the desired self-interaction cross sections. The case in
which mirror symmetry is broken [45] might at first seem to
offer a greater possibility to provide a concrete realization
of this scenario, but we will show in Sec. II that it is also
incompatible with our criteria.
Composite (“hadronic”) dark matter models involv-

ing confining gauge forces have been considered in
Refs. [46–68], withmuch of the recentmotivation stemming
from observations of DAMA [69] and other direct detection
experiments, or the idea of linking dark matter genesis to
baryogenesis and thus explaining their similar abundances.
(Indeed a common attribute of atomic and baryonic DM
models is that they are asymmetric, with the relic abundance
arising analogously to the baryon asymmetry rather than by
thermal freeze-out.) Here we add to the previously consid-
ered motivations by emphasizing the natural capacity of
composite dark matter for having strong enough self-
interactions to overcome the halo structure problems.
The main particle physics alternative to SIDM for

addressing the shortcomings of CDM has been warm dark
matter (WDM), with mass in the keV range; see Ref. [70]
for a recent review.6 Reference [9] argues that warm dark
matter of a given mass is not able to solve the halo structure
problems while remaining consistent with Lyman-α deter-
minations of the power of density fluctuations on small
scales [72–74]. The latter place a lower limit of at least
4 keVon the dark matter mass, which is too large to allow
for effective smoothing of central cusps of galactic halos. It
should be noted however that this conclusion depends upon
the assumed value of the Milky Way halo mass Mhalo; if
Mhalo > 1.4 × 1012M⊙, then lower WDM masses can be
tolerated [75].

In Sec. II we outline the requirements of atomic DM
models to have a strong enough self-interaction cross
section. Here we also treat the possibility that the dark
matter is primarily in molecular form, finding a larger
region of viability to be SIDM.We discuss constraints from
direct detection and cosmology on the atomic models. In
Sec. III we turn to the possibility of dark “mesons” in a
strongly coupled dark sector, showing that they can be
SIDM if sufficiently light (30–100 MeV). To get the right
relic density by thermal production, we argue that the
hidden quarks should interact with massless dark photons
that kinetically mix with the normal photon, and we
demonstrate an explicit model, discussing the cosmological
constraints that apply. The case of hidden sector “baryons”
as the dark matter is examined in Sec. IV, and that of
glueballs in Sec. V. We summarize our results in Sec. VI.

II. ATOMIC DARK MATTER

We first examine the simplest example of atomic dark
matter [29], a bound state of elementary particles trans-
forming under a hiddenUð1Þ0 symmetry with charge g0. The
constituentsare thedark“proton”pand“electron”eassumed
to be spin-1/2 particles. The analogs of the fine structure
constantandBohrradiusareα0 ¼ g02=4π anda00 ¼ ðα0μHÞ−1
respectively, where μH ¼ memp=ðme þmpÞ is the reduced
mass. Taking account of the binding energy Eb ≅ α02μH=2,
the mass of the ground state dark atom is
mH ¼ mp þme − Eb. Wewill also introduce the mass ratio
R≡mp=me,whichshouldbe treatedas amodelparameter. It
enters in the scattering cross section through the combination

mH

μH
≅ Rþ 2þ R−1 ≡ fðRÞ ð1Þ

where we have ignored the binding energy contribution to
mH. It has been shown in [29,34] that as long as α0 is
sufficiently large (≳10−2, as we will verify for most of the
relevant parameter space), the ionized fractionof the atoms is
suppressed, and dissipative processes that would lead to
collapseof thehaloand formationofdark stars arenegligible.
Thus dark halos will not differ radically relative to expect-
ations for CDM. Only those more subtle properties that
we want to alter will be affected by the strong elastic self-
interactions.

A. Dark atoms

For simplicity we will initially assume that dark atoms do
not form a significant population of molecules, but we will
come back to this question below. We thus consider the
elastic cross section for dark atom scattering, which we have
studied in detail in a previous paper [37]. In that work we
computed both the elastic and momentum transfer cross
sections as a function of energy, over a large range of R∼
1–3000, noting that the dependence upon R can be very
strong due to divergences of the scattering length in the

5We do not consider the scenario of 4He X−− bound states of
Ref. [38] since exotic stable X−− particles appear to be ruled out
by big bang nucleosynthesis constraints [39], which are far
stronger for charge-2 relics than the usually studied charge-1
relics [40], and by anomalous hydrogen constraints [41]. For
directly detecting such bound state dark matter, see e.g. [42].

6Reference [71] recently proposed that ultralight axions
comprising 85% of the total dark matter could provide an
alternative solution to the problems of CDM.
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channel where the electrons are in the spin-singlet state. The
origin of these divergences can be understood from the form
of the Schrödinger equation when rewritten using atomic
units of distance (a00 ¼ 1) and energy (ϵ0 ≡ α02μH ¼ 1):

�
∂2
r −

lðlþ 1Þ
r2

þ fðRÞðE − Vs;tÞ
�
us;tl ðrÞ ¼ 0: ð2Þ

Here u ¼ rψ and the subscripts s; t label the spin-singlet and
-triplet contributions to the scattering. The singlet potential
Vs is much deeper than the triplet one Vt, and it rapidly
acquires more bound states as R is increased since the

potential is multiplied by fðRÞ ∼ R. Each time a bound state
energy approaches zero, the scattering length diverges. From
Fig. 2 of Ref. [37], it can be seen that at low velocities, the
singlet channel typically dominates the scattering, except at
values of R (such as in the real world) where the singlet
scattering length happens to be close to zero.
Using the methods described in Ref. [37], we have

identified the regions of atomic dark matter parameter
space for which the momentum transfer cross section has
the fiducial value σ=mH ¼ 0.6 cm2=g. The results are
displayed as a function of mH and R for several values
of α0 (0.03,0.1,0.3) in the left-hand plots of Fig. 1. We do
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FIG. 1 (color online). Left: contours of constant σ=mH ¼ 0.6 cm2=g in the plane of mH and R ¼ mp=me (using the atom-atom
momentum transfer cross section) at center-of-mass energies E ¼ mHv2, for v ¼ 30, 100 and 1000 km=s. Top to bottom plots are for
α0 ¼ 0.03, 0.1 and 0.3 respectively. Right: analogous contours for molecular H2 scattering, with σ=ð2mHÞ ¼ 0.6 cm2=g and
E ¼ ð2mHÞv2, but still using mH for the vertical axis.
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not consider smaller α0 since, as noted in [37], then the
ionization fraction starts to become large in parts of the
parameter space and the atomic description is no longer
appropriate. We display contours of constant σ=mH for
several DM velocities, v ¼ 30; 100; 1000 km=s, appropri-
ate for dwarfs, Milky-Way-like galaxies and galactic
clusters, respectively. Because the cross sections can have
significant velocity dependence, these curves do not gen-
erally coincide, although there are ranges of parameters
where they do so, namely for R not too large and α0 not
too small.
To better understand the results of Fig. 1, we recall

from Ref. [37] that a typical scattering cross section
for dark atoms is of order 100a002; therefore σ=mH∼
100α0−2f2ðRÞm−3

H , implying that

mH

GeV
≅
�

R
5.3α0

�
2=3

ð3Þ

for R ≫ 1. At fixed values of R and α0, the higher curves in
Fig. 1 require larger mH to have the same cross section;
therefore if mH was also held fixed the lower curves would
represent smaller values of σ. DM distributions at the
largest scales—clusters of galaxies—which have the high-
est velocity dispersion, thus have the smallest σ, except in
the regions of large α0 and small R where the curves
overlap. Where the curves do not overlap, the cross section
is generally largest for the smallest velocities, but there are
exceptions corresponding to resonances, which give rise to
the spiky structure as a function of R. In particular, we find
that the bumps at R ≅ 5.6 are due to a p-wave resonance in
the singlet channel (and thus do not appear in the scattering
length), similar examples of which are prominent in Fig. 4
of [37].
Mirror symmetry, in which the dark sector is an exact

copy of the standard model, provides an explicit realization
of atomic dark matter, but one that is not compatible with
the SIDM constraint (3), which requires that mH ¼
1.3 TeV for the standard model (SM) values R ¼ 1836,
α0 ¼ 1=137. Extra freedom is possible in the version of the
model in which mirror symmetry is spontaneously broken.
In this case the values mH ≅ 5 GeV and me ≅ 50 MeV
have been promoted in a scenario where the visible and
dark baryon asymmetries are linked [45]. However (3) then
requires α0 ∼ 1, far from the value of 1=137 that is still
predicted despite mirror symmetry breaking.

B. Molecular dark matter

In the interstellar medium, hydrogen gas exists not only
in atomic form, but also inH2 molecules, whose abundance
is significant especially in cold or dusty regions where
ionizing radiation is less present. Although H2 is subject to
destruction by ionizing radiation due to its relatively weak
binding energy of 4.5 eV, it nevertheless requires ionized
constituents such as p or H− for its formation, since the

processes involving charged particles, such as pþ H →
Hþ

2 followed by Hþ
2 þ H → H2 þ p, are much more effi-

cient for producing H2 than the direct (but much slower)
process H þH → H2 þ γ. Therefore the relative abun-
dance of molecules and atoms is not simple to predict.
Nevertheless (as we argued in [37]) it seems plausible that
molecules could be prevalent in a dark sector where there
are no stars, hence no ionizing radiation, since there is still a
small ionized fraction of the dark atomic constituents, of
order fi ∼ 10−10α0−4R−1ðmH=GeVÞ2, that can give rise to
the catalyzed production ofH2. A quantitative prediction of
theH2 abundance is beyond the scope of this paper. Instead
we consider the prospects for dark molecules to have the
desired self-interaction cross section, assuming they con-
stitute the dominant dark matter component.
The scattering cross sections of dark molecules were

computed in Ref. [37]. Using the methodology described
there, we determined the analogous constraints, from
imposing that σ=m ¼ 0.6 cm2=g, to those of dark atoms
and display them in the right-hand plots of Fig. 1. The
general behavior of the curves is similar to their atomic
counterparts in Fig. 1, but the molecular ones are smoother
as a function of R, due to the shallow potential for
molecule-molecule scattering, which does not develop
any bound state until R ∼ 700.

C. Direct detection constraints

The model as presented so far does not give rise to any
signal in DM detectors, but by the simple addition of a
kinetic mixing term 1

2
ϵFμνF0

μν between the photon and the
dark U(1) gauge boson, it does so, as was pointed out in
Ref. [32]. In that case the dark electron e and proton p
acquire millicharges ∓ϵe under Uð1Þem, and so can scatter
on protons by exchange of a photon. Even though the dark
atom is electrically neutral, as long as R ≫ 1 the charge
cloud of e does not overlap strongly with that of p and soH
will scatter on protons electromagnetically, just like a
normal H atom except for the reduced charge of the dark
constituents. In the case of R ¼ 1, there is strong cancel-
lation between the two charge clouds and the Coulomb
scattering amplitude vanishes in the first Born approxima-
tion. We will consider this special case separately.
For R ≫ 1, Ref. [32] showed that the cross section for

atomic DM scattering on protons is σp ¼ 4πðαϵμpHÞ2a004
where μpH is the reduced mass of the p-H system.
In the present context, we can fix the value of a0 for a
given mH by assuming that the relationship between mH
and R shown in Fig. 1 is satisfied, for given choices of α0
and DM velocity. Then a0 ¼ fðRÞ=ðα0mHÞ. We choose
v ¼ 30 km=s since this tends to give the largest self-
interaction cross section. The maximum value of ϵ allowed
by LUX [76] can be found by setting the predicted σp equal
to the LUX limit, relaxed by the factor ðA=ZÞ2 ¼
ð131.3=54Þ2 due to the coupling only to protons. In fact,
the relation betweenmH and R can be double-valued due to
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the resonant peaks in σ, so we scan in R to produce
parametrized limit curves in the plane of ϵ and mH. These
are shown in Fig. 2 (left). Except for the positions of the
resonances, the α0 dependence in these curves is weak. For
comparison we show the result of the rough approximation
for the self-interaction cross section of σ ¼ 100a20, which

results in the relation a0 ¼ 5.3m1=2
H GeV−3=2, which works

well at low mH (apart from resonances), but gives some-
what too low a prediction of σ at higher mH.
In Sec. II D we will show that a small interval of ϵ

ffiffiffiffi
α0

p
is excluded over some range of dark electron masses
(depending upon assumptions about initial conditions after
reheating) to avoid overpopulating the dark photons during
big bang nucleosynthesis (BBN). The excluded regions
(shaded) in the mH-ϵ plane are shown in Fig. 2 (left),
assuming that me is determined by mH and α0 so as to give
the desired self-interaction cross section. For large values of
α0 ≳ 0.3, this intersects part of the parameter space of
interest for direct detection, but for smaller α0 there is no
overlap between the BBN-excluded regions and those
which can be probed by direct searches.
In the case of R ¼ 1, the leading interactions of dark

atoms are, for sufficiently small α0, the magnetic inelastic
scatterings that change the total spin of the atom. These
were studied in detail in Ref. [33], with attention to the
region mH ∼ 9–12 GeV as suggested by excess events
from the CoGeNTexperiment [77]. For strongly interacting
atomic DM satisfying σ=mH ¼ 0.6 cm2=g, we find thatmH
and α0 are related by

mH ¼ 0.8α0−2=3 GeV ð4Þ
so that mH ranges between 1.8 and 8.3 GeV for
α0 ¼ 0.3–0.03. The rate of nuclear scatterings is sensitive
to the mass difference δmH between the lowest DM state

and the hyperfine excitation where the relative spins of the
proton and electron are reversed, δmH ¼ α04mH=6, from
which we can eliminate α0 in favor of mH using (4), for the
case of self-interacting DM.
In Fig. 2 (right) we show the constraints on the kinetic

mixing for the R ¼ 1 model from CDMSLite [78],
XENON100 [79] and LUX [76], for models that satisfy
(4) and therefore have the required self-interaction cross
section.7 The mass splitting δmH ranges from 14 to 1 keV
for mH ¼ ð5 − 8Þ GeV. The constraints on ϵ are much
weaker than in the case of R ≫ 1 due to the inelastic
magnetic dipole versus elastic Coulomb nature of the
interaction. We do not show the CoGeNT-allowed region
on Fig. 2 because we find that the assumption (4) needed to
have strongly interacting DM is contrary to getting a good
fit to the CoGeNT excess events. If we nevertheless impose
(4), the best fit region is at higher masses than allowed for
strongly interacting atomic dark matter with small ioniza-
tion fraction, with the edge of the 99.7% C.L. region just
reaching the right-hand side of the plot. There is essentially
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FIG. 2 (color online). Left: upper limits on kinetic mixing in millicharged DM model from LUX [76] bounds, assuming the relation
between mH and R for atomic DM with v ¼ 30 km=s in Fig. 1 is satisfied, for each value of α0 ¼ 0.03; 0.1; 0.3. Also shown is the limit
obtained from approximating the self-interaction cross section as σ ¼ 100a20. The shaded regions for indicated values of α

0 are ruled out
by big bang nucleosynthesis constraints, as described in Sec. II D. Right: constraints on ϵ for the special case R ¼ 1, in which the
interaction of atomic DM with visible matter is through an inelastic magnetic moment transition. The DM mass splitting is determined
by the relationship (4) that produces the target value of the self-interaction cross section.

7The XENON100 limit is computed as described in Appendix
D of [33]. For the LUX limit, the number of events is computed
using the acceptance function given in Fig. 9 of [76] (black “þ”
symbols). The 90% upper limit on the events due to DM,N < 2.4
events, is used for low mass DM. Following LUX, the events
below 3 keVnr (nuclear recoil equivalent energy) are not
included. For CDMSlite, which has not made its data publicly
available, we randomly distributed events within histogram bins
in the energy range 841 eVnr (nuclear recoil threshold) to 4 keVnr
(avoiding the activation line near 5.3 keVnr). For low mass DM
the exclusion limit is essentially controlled by the low recoil
energy spectrum, so the 90% limits are computed using the pMax
method [80] in the nuclear recoil energy range [0.841, 4] keVnr.
Although for elastic DM, the CDMSlite limits extend to much
lower DM mass range, the limits for millicharged atomic dark
matter terminate near mH ¼ 5 GeV due to inelasticity.
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no overlap between the CoGeNT events and the SIDM
parameter space within this model.

D. Big bang nucleosynthesis constraints

The atomic DM model can potentially provide an excess
of radiation during the epoch of BBN. This provides
stringent constraints on mirror dark matter [81,82] since
both the dark photons and dark electrons/neutrinos can
contribute to the excess. In our case, me is always greater
than 100 MeV so that only the dark photons can contribute
(and we do not consider dark neutrinos). Taking the
95% C.L. limit on the effective number of extra neutrino
species δNν < 1.44 [83], the dark photon temperature Td at
the time of BBN is constrained to be Td=T ¼ ð7

8
δNνÞ1=4 <

1.06 relative to that of the visible photons. If there is no
interaction between the dark and visible sectors, then the
excess in dark radiation depends upon initial conditions,
and can be compatible with the constraints if reheating into
the dark sector after inflation is less efficient than into the
visible one.
An interesting scenario is thatwhere gauge kineticmixing

between the dark and visible photons provides an interaction
between the twosectors, causing thedarkprotonandelectron
to have millicharges ϵe under electromagnetism. This can
lead to equilibration between the dark and visible photons
through scattering on dark electrons, γ0e↔γe. At low
temperatures, the interaction rate is governed by the
Thomson cross section σ ¼ ð8π=3Þαα0ðϵ=meÞ2, but for T >
me one must perform the thermal average of the Compton
cross section as described in Appendix A. This interaction
can come into equilibrium at temperatures above ∼me ifffiffiffiffi
α0

p
ϵ does not fall below a critical value that we find to be

given by ð
ffiffiffiffi
α0

p
ϵÞc ∼ 10−10.6ðme=MeVÞ0.57, assuming that

Td ¼ T. It goes back out of equilibrium at lower temper-
atures as the dark electrons disappear from the bath.
Although it is beyond the scope of this paper to make a

detailed study of the thermal history of the dark sector, it
seems reasonable to suppose that Td ¼ T at some early
time, if ϵ is not too small. For example, even if the dark
sector was initially much colder than the visible one, say at
the moment of reheating, the interaction γγ → eþe− comes
into equilibrium by T ∼me if αϵ≳ ðme=MpÞ. We will be
interested in me ∼ 100 MeV, for which this implies
ϵ≳ 10−8, compatible with the magnitude for which we
will find BBN constraints. For the following discussion, we
assume that Td ¼ T at temperatures of a few GeV as an
initial condition.
Under these assumptions, if γ0e↔γe goes back out of

equilibrium at the wrong time, there is a risk that the
entropy dumped into the dark photon bath from ee → γ0γ0
will conflict with BBN constraints on the total radiation
density. There is a competition between the heating of the γ0
bath versus the heating of the visible photons during the
QCD phase transition. If ϵ is very small, the freeze-out of

γ0e↔γe occurs at such a high temperature Tf that the dark
sector decouples before the QCD transition heats the visible
sector, and so the dark photon temperature Td is suppressed
relative to the visible T. If ϵ is very large, the two baths
remain coupled down to low temperatures, so that dark
electron annihilations heat all lighter degrees of freedom
equally. In this case Td also does not exceed the visible T.
Therefore we expect only a limited range of ϵ to be
excluded by BBN.
We will determine the BBN constraint on ϵ in two

different ways, one simpler and the other more quantitative.
In the first estimate, using entropy conservation, the ratio of
the dark-to-visible photon temperatures at the time of
γ0e↔γe freeze-out is

Td

T
¼

��
2þ geðxfÞ

2

��
10.75
g�ðTfÞ

��
1=3

< 1.06 ð5Þ

where xf ¼ me=Tf and geðxfÞ ≤ 3.5 is the effective
number of dark electron degrees of freedom in the plasma
at the freeze-out temperature Tf,

geðxÞ ¼
45

ðπTÞ4
Z

∞

0

dp
p2ðEþ p2=3EÞ

eE=T þ 1
ð6Þ

while g� is the effective number of entropy degrees of
freedom in the standard model at Tf. We use the results of
recent lattice studies of the QCD phase transition [84] for
g�ðTÞ. In Fig. 3 we show how Eq. (5) depends upon Tf for a
range ofme, and the resulting excluded values of Tf versus
me. Notably, for me ≳ 285 MeV, there is no constraint in
this approximation, since the dark electrons annihilate early
enough for their effects to be counteracted by the QCD
phase transition.
By equating the γ0e↔γe scattering rate Γ ¼ nehσvi to

the Hubble rate, we find the freeze-out temperature Tf as a
function of me and α0ϵ2. Combining this with the excluded
values of Tf versus me, we obtain a corresponding
constraint on ϵ

ffiffiffiffi
α0

p
to avoid the nucleosynthesis bound.

The result is shown in Fig. 4.
For a more quantitative determination of the BBN

constraint, we solve the coupled Boltzmann equations
for the energy densities of the dark and visible photons,

dργ0

dt
¼ −4Hργ0 þ qann þ qscatt;

dργ
dt

¼ −4Hργ þ qSM − qscatt; ð7Þ

where the source terms qi are due to ee → γ0γ0 annihilation,
γ0e↔γe scattering, and f̄f → γγ annihilation of standard
model particles f, respectively. Details are given in
Appendix A. We obtain Td=T ¼ ðργ0=ργÞ1=4 as a function
of T in this way, and evaluate it at T ¼ 1 MeV appropriate
for BBN, demanding that Td=T not exceed 1.06. The
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results are qualitatively similar to those of the simpler
estimate, but slightly more constraining in ϵwhile less so in
me. Figure 4 shows that constraints exist for me up to
200 MeV, in contrast to the value 285 obtained previously.
This limit is used, along with the relation between me and
mH from fixing the self-interaction cross section, to
construct the BBN-excluded regions shown in Fig. 2 (left).
We find that in general, direct detection provides a stronger
constraint than BBN for this model.

E. Structure formation and CMB constraints

References [34,85] studied various cosmological con-
straints on atomic dark matter. There it is shown that the
power spectrum of matter fluctuations is suppressed at
small scales because of the analog of baryon acoustic
oscillations, unless recombination in the dark sector occurs
sufficiently early. This puts an upper bound on the

interaction strength α0, but one that is easily satisfied by
our models of interest for SIDM.
The main observational constraint is that the matter

power spectrum should not differ from the ΛCDM pre-
diction at scales k < 2h Mpc−1 based on Lyman-α mea-
surements. This must be compared to the scale at which
dark atom acoustic oscillations start to occur, given by the
dark sector sound horizon rd at the time of its kinetic
coupling: rd ¼

R adec
0 cd=ðHa2Þ≅ ðT0=TdecÞ=ð

ffiffiffi
3

p
H0Þ, where

cd is the dark sector sound speed, which we roughly
approximate as 1=

ffiffiffi
3

p
until the time of decoupling, and zero

afterwards. The kinetic decoupling temperature Td is
determined in terms of the atomic DM model parameters
in [34], resulting in the lower bound

Td

Eb
>

6 × 10−13

α06ζ4

�
Eb

keV

��
mH

GeV

�
ð8Þ
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FIG. 3 (color online). Left: dark-to-visible temperature ratio divided by the limiting value 1.06, as determined by Eq. (5), as a function
of the freeze-out temperature Tf for the process γ0e↔γe. Relation is shown for several values ofme. Right: the resulting excluded region
in the me-Tf plane.
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FIG. 4 (color online). Left: dark-to-visible photon temperature ratio Td=T at T ¼ 1 MeV versus ϵ
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versus me for both the simple estimate based on Eq. (5) and the Boltzmann code.
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where Eb is the binding energy and ζ is the ratio of
temperatures in the dark and visible sectors. We thus find
that a sufficient condition to satisfy the Lyman-α bound is

α0 <
34

ζ2

�
mHμ

2
H

GeV3

�
1=2

ð9Þ

where μH ¼ mH=fðRÞ is the dark electron reduced mass.
This is satisfied for all models obeying the SIDM constraint
in Fig. 1.
Cosmic microwave background constraints on atomic

dark matter models were summarized in Ref. [32]. The
main requirement is that the dark atoms be out of kinetic
equilibrium with the baryon-photon plasma before recom-
bination. This would lead to stringent constraints on the
kinetic mixing parameter ϵ from Rutherford scattering if the
dark atoms were ionized [86], but if the ionization fraction
is negligible (as we demand) then the relevant process is
Rayleigh scattering of visible photons into dark photons,
which is much weaker. (The scattering of visible photons
into themselves is weaker still, suppressed by a further
factor of ϵ2α=α0.) The cross section is given by

σR ¼ ϵ2
α

α0
σTðEγ=EbÞ4 ð10Þ

where σT ¼ 8πα02=ð3m2
eÞ is the dark Thomson cross

section and Eb is the binding energy. The rate of pho-
ton-atom interactions is Γ ∼ nγσR with nγ ¼ 0.24T3 at the
recombination temperature Tr ¼ 0.26 eV. Demanding that
ΓðTrÞ < ð3.8 × 105 yÞ−1, and taking Eγ ≅ 2.7Tr, we find
that the constraint is satisfied by orders of magnitude
even if ϵ ∼ 1. The same conclusion is true for the new
CMB bounds on photon–dark-matter scattering found by
Ref. [87].
We find that ϵ < ðα0=0.01Þ7=2ðme=MeVÞ7=2, but me is

≳0.1 GeV for the SIDMmodels shown in fig. 1. Such large
values of me imply that dark photons freeze out (via dark
electron annihilation) at sufficiently high temperatures so
that there is no danger of producing a too-large density of
dark radiation.
Recently Ref. [36] refined the constraints from dark

acoustic oscillations, which could reveal the effects of dark
atoms on large-scale structure even in the absence of any
nongravitational interaction between the two sectors. There
the constraint

ΣDAO ¼ 2 × 10−9α0−1fðRÞ
�

mH

1 GeV

�
−7=6

< 10−4 ð11Þ

is derived [in which we have made explicit the dependence
of the binding energy on α0 and the reduced mass μH, and
used (1)]. Using (3) to eliminate α0−1fðRÞ, we find that (11)
is satisfied as long as mH < 1012 GeV, which has no effect
on our preferred parameter space.

III. “MESONIC” DARK MATTER

Composite dark matter could be analogous to hadronic
states of QCD if it is bound by a confining force associated
with a non-Abelian gauge symmetry. The most natural
choice would be the baryonic states of such a theory, since
it is the baryons of QCD that are stable in the visible sector.
However, this is not the only possibility. If there is no
analog of weak or electromagnetic interactions in the dark
sector, then mesonic bound states could be stable, and if
lighter than the baryons, could constitute the dark matter.
Glueballs of the dark sector might alternatively be the dark
matter, in the case where the constituent particles are
heavier than the confinement scale, or absent altogether.
We consider the mesonic case in this section, and the
baryonic/glueball cases in successive ones.

A. Elastic scattering cross section

If there are “quarks” transforming in the fundamental
representation of a dark sector SUðNÞd, they will form
mesonic qq̄ bound states that could be stable or metastable
bosonic dark matter candidates. Below the confinement
scale, one expects that the elastic scattering interaction for
such mesons will be strong, possibly fulfilling the criteria
for SIDM. The 2 → 2 low-energy elastic scattering ampli-
tude can be estimated using chiral perturbation theory (for a
review, see Ref. [88]), with the Lagrangian

F2
π

4
trð∂μΣ†∂μΣÞ þ ξ

4
F3
πtrðMΣþ H:c:Þ ð12Þ

where Σ ¼ e2iΠ=Fπ , Fπ is the analog of the pion decay
constant (Fπ ¼ 93 MeV for QCD), ξ is Oð1Þ, andM is the
dark quark mass matrix. For simplicity we take M ¼ mq1,
proportional to the unit matrix. If there are Nf flavors of
dark quarks, then Π is an Nf × Nf matrix given by
Π ¼ πaTa, where Ta are the generators of SUðNfÞ,
normalized such that trTaTb ¼ 1

2
δab. The pion mass is

given by m2
π ¼ ξFπmq.

From the ππ → ππ elastic scattering amplitude, we
obtain the cross section (see Appendix B for details)

σ ¼ m2
π

32πF4
π
CðNfÞ ð13Þ

where CðNÞ ¼ ð2N4 − 25N2 þ 90 − 65=N2Þ=ðN2 − 1Þ.
Taking for example mπ ≅ 1.5Fπ as in QCD, this gives
σ ≅ 0.05CðNfÞ=m2

π . To achieve the desired SIDM cross
section of σ=m ¼ 0.6 cm2=g then requires mπ ¼
ð33; 36; 61; 83; 100Þ MeV for Nf ¼ ð2;…; 6Þ, respec-
tively. For general choices of the ratio ζ ¼ mπ=Fπ , which
depends upon the dark quark mass as m1=2

q , these values
should be rescaled by ðζ=1.5Þ4=3. Unlike an elementary
boson of such a small mass, there is no naturalness problem
in principle because the mass scale is not fundamental here,
but is determined by the running of the dark SUðNÞ gauge
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coupling through the confinement scale Λd ∼ 4πFπ , and the
quark mass mq whose smallness is protected by chiral
symmetry.

B. Relic density constraints

An example providing stable “pionic” dark matter was
recently proposed [67], in which the presence of two quark
flavors with isospin symmetry assures the stability of the
pions. In that model, nonrenormalizable interactions
between the pions and the standard model were invoked
so that ππ annihilations to SM states result in the observed
relic density. These were assumed to be mediated by
exchange of the Higgs or the linear combination of γ
and Z corresponding to weak hypercharge, through the
interactions λhjHj2trð∂μΣ†∂μΣÞ and λvBμνtrðΣ†Σ∂μΣ∂νΣ†Þ
respectively. It was shown that by fixing λh or λv to give the
right relic density, and imposing constraints from the
invisible decays H → ππ and Z → πππ, the decay constant
Fπ should be greater than several times 10 GeV, which is
much larger than needed for the SIDM cross section as we
estimated in the previous section.
One is therefore led to question: do there exist any

possible forms of interactions between the dark pions and
the standard model that would allow for standard thermal
production through annihilation of ππ into known particles,
while respecting stability of the π and not conflicting with
particle physics constraints? A few examples suffice to
show that any mediator interactions between π and standard
model fermions f, expressed as higher dimension operators
such as

m2
πF2

M4
trðΣþ Σ†Þ½f̄hf; f̄∂f;…� ð14Þ

whose strength is consistent with the desired relic density
of dark pions, are suppressed by a very low scale in the
denominator, M ≲ 1 GeV. (If there are additional small
couplings due to approximate symmetries then M must be
even smaller.) Hence a thermal origin of pionic DM of such
low masses requires new physics below the GeV scale
coupling the dark sector to the standard model. Such
models have been explored in connection with SIDM in
Refs. [23,27]. Once such light mediators are admitted, the
motivation to invoke compositeness to explain the strong
self-interactions might be diminished, since light mediators
are already sufficient for that purpose. However if the
particles in the dark sector that interact with the light
mediators are composite, the situation is qualitatively
different from those that were previously considered. We
outline such a model for light pionic DM in the next
subsection.
Another possibility that admits much weaker interactions

between π and the visible sector is for π to be metastable
with respect to the age of the Universe. For example, π
could decay into light SM fermions analogously to the

weak interactions, by mixing with a superheavy Z0, giving
a lifetime of order m4

Z0=m5
π. For mπ ∼ 100 MeV, observa-

tions of the isotropic diffuse γ-ray background constrain
the lifetime to be τ > 5 × 1024 s for π → eþe− [89].
Distortions of the cosmic microwave background give a
stronger limit, τ>5×1025 s [90], requiringMZ0≳1011GeV.
Even if π decays only into neutrinos, the limit on MZ0 is
relaxed by a factor of just 2.6.
Given such feeble interactions, one could try to use the

“freeze-in” mechanism of Ref. [91] as an alternative means
of thermally producing its relic abundance. By this mecha-
nism, the relic abundance of π is predicted to be of order

Yπ ∼
m3

πMp

M4
Z0

ð15Þ

while the required value for the relic abundance is given
by Yπ ¼ 4 × 10−9ðmπ=100 MeVÞ−1. Combining this
with Eq. (15) gives MZ0 ≅ 106 GeV × ðmπ=100 MeVÞ,
in strong conflict with the diffuse γ-ray or neutrino
constraints. In the following we construct a model with
light mediators that circumvents these constraints.

C. Model of light pionic DM

We can devise a model of light, strongly interacting
pionic dark matter that has the desired thermal relic
abundance, if the dark sector contains a broken Uð1Þ0
gauge symmetry with a sufficiently light Z0 gauge boson,
that mixes kinetically with the photon. The model is similar
to that of Ref. [67], but instead of coupling the pions to the
Z boson, we couple them to the Z0. If all the dark quarks
have the same Uð1Þ0 charge (as well as equal masses) then
the diagonal (vector) SUðNfÞ flavor symmetry remains
unbroken. The lowest dimension operator consistent with
this symmetry, that couples the pions to the Z0, is

λ0mq

Fπ
Z0
μνtrðΣ∂μΣ†∂νΣÞ þ H:c: ð16Þ

This can lead to freeze-out of the pions through the
coannihilation process ππ → πZ0. However we find that
the matrix element is highly velocity suppressed (d wave,
details in Appendix C). The relic density is thus more likely
to be determined by the higher dimension operators

λ1
4F2

π
Z0
μνZ0μνtrð∂αΣ†∂αΣÞ þ λ2

4F2
π
Z0
αμZ0ναtrð∂μΣ†∂νΣÞ

ð17Þ

that give rise to ππ → Z0Z0. Ignoring for simplicity the
interference between these two operators, we find that the
corresponding cross sections are given by
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σv ¼ m6
π

πF8
π

�
8λ21;

3

2
λ22

�
ð18Þ

as v → 0. Taking Fπ ≅ 0.67mπ ≅ 24 MeV (using the
relation between Fπ and mπ for QCD and the value of
mπ needed for SIDM in the case Nf ¼ 3), and using the
relic density cross section σv ¼ 4.5 × 10−26 cm3=s [92]
appropriate for 33 MeV DM, we find that λ1 ¼ 3 × 10−7 or
λ2 ¼ 7 × 10−7 to get the correct relic density.
In principle, these couplings are calculable in terms of

the Uð1Þ0 charge g0 and masses of the dark quarks, and the
confinement scale Λ of the dark SUðNÞ gauge group.
Such a calculation is difficult since it requires running
down from the fundamental theory to scales below Λ.
It would be interesting to know if such small values of λ1;2
are consistent with reasonable choices of the parameters of
the fundamental theory. In chiral perturbation theory, these
couplings vanish at leading order since the pions (according
to our assumption of same-charge quarks) are neutral
under the Uð1Þ0. Naively one expects couplings of the
order λi ∼ g02=ð16π2Þ (in analogy with the anomalous
vertex of π0 to two photons in the visible sector),
implying a rather small value for the coupling
strength α0 ¼ g02=ð4πÞ ∼ 10−5.
The preceding calculation implicitly assumes thermal

equilibrium between the dark and visible sectors, but this
need not be the case. In general one expects that the dark
photons (which wewill argue presently should be massless)
have a lower temperature Td than the visible ones charac-
terized by a parameter ζ ¼ Td=Tγ. In that case, hσvi must
be decreased by a factor ∼ζ in order to maintain the correct
relic density. The modification to the Boltzmann equation
in this case has been worked out in Ref. [93] (see also [94]).
Solving it numerically we find the dependence of the relic
density on ζ shown in Fig. 5. The CMB and BBN give
bounds on ζ in terms of the number of effective neutrino
species, ΔNeff ∼ ð8=7Þζ4. Current bounds are roughly
consistent withΔNeff ≲ 1 [95,96], hence ζ ≲ 1. This bound

is quoted in terms of the value of ζ at the time of BBN.
Since photons get heated relative to dark photons after-
wards, the bound on the current value of ζ is ζ0 <
0.75 [34].

D. CMB and charged relic constraints

In the preceding computation of the dark pion relic
density, we also implicitly assumed that the dark photon
temperature is not significantly increased by the dark matter
annihilations themselves. If the dark sector consists only
of the pions and the dark photons having no interactions
with the standard model, this will not be a valid assumption
and the freeze-out calculation must be revisited to take into
account the heating of the dark photons. However inter-
actions with the standard model will generically be induced
via kinetic mixing ~ϵFμνZ0

μν between the Z0 and weak
hypercharge. This would help to maintain thermal equi-
librium of the dark sector particles, but it also introduces a
new problem by allowing the light Z0 to decay into leptons
and charged (visible sector) pions. This is strongly ruled out
by CMB bounds since the DM is so light [97,98].
To avoid this problem, one can take the Z0 to be massless.

In this case, there is no unique way of diagonalizing the
gauge boson kinetic term to remove the mixing. A
convenient choice is that where the field identified as
the dark photon remains uncoupled to the visible sector, but
the dark particles with Uð1Þ0 charge g0 acquire an electric
millicharge given by ϵ ¼ ~ϵg0=e [32]. In this case there is no
constraint from injecting electrons into the CMB; however
a fraction ϵ2α=α0 of annihilations will produce a visible
photon. The cross section for this process is constrained
as hσvi < 1 × 10−27ðmπ=GeVÞ cm3=s [99], taking into
account a factor of 2 for producing only a single photon.
Comparing to ϵ2α=α0 times the required thermal relic cross
section, we obtain the bound

ϵ < 1.7 × 10−3
�

α0

10−5

�
1=2

�
mπ

100 MeV

�
1=2

: ð19Þ

In addition there are constraints arising from the pres-
ence of stable millicharged relics, the baryons of the dark
sector. Unless these have a large relic abundance due to an
asymmetry between particles and antiparticles, their abun-
dance will be highly suppressed by their strong annihilation
cross section. The abundance of normal baryons would be
of order 10−19 in the absence of the baryon asymmetry
[100], and even smaller in the present theory where the pion
mass scale is lower and the nucleon annihilation cross
section is thus larger.
The cosmological constraints on the kinetic mixing

parameter of such a small population of millicharged dark
baryons are weaker than the CMB bound (19). These are
summarized in Ref. [101], and depend upon the mass of the
baryon, which in analogy to QCD we expect to be of order
7mπ ∼ 200–700 MeV. In this mass region, Ref. [101]

10 1 1 1010 3
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Numerical
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FIG. 5 (color online). Dependence of the relic density of pionic
dark matter on the ratio of hidden to visible sector temperatures,
ζ ¼ Td=Tγ . Dashed line shows approximate linear dependence.
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shows that the strongest limit ϵ < 0.01 comes from accel-
erator experiments. Stronger constraints based upon getting
too large a relic density do not apply to this model, since it
has a large hadronic annihilation cross section not assumed
in [101].

IV. DARK BARYONS

We turn to our next example of composite strongly
interacting dark matter, in which the candidate is analogous
to nucleons of the visible sector: bound states of hidden
quarks confined by an unbrokenSUðNÞ gauge symmetry. For
simplicity wewill assume a common quarkmassmq and take
the number of colors and light flavors each to be three as in
QCD. The quark mass and confinement scale Λ are consid-
ered as the relevant free parameters. Equivalently, one can
take the pion mass mπ ∼

ffiffiffiffiffiffiffiffiffi
mqΛ

p
and Λ as the two free

parameters. Also for simplicity, we will at first neglect any
additional U(1) interactions (dark photons) of the hidden
quarks.

A. SIDM constraints

As a starting point to understand the elastic scattering of
dark baryons, we consider the example of real neutron-
proton scattering, whose cross section as a function of
center-of-mass energy is shown in Fig. 6. To focus on the
contribution from the strong force, we are interested in
the flat region starting at energies above E0 ∼ 0.1 eV, since
the rising cross section below this value is due to electro-
magnetic charge-dipole scattering. In the plateau, σ ≅ 20 b,
so that σ=m ≅ 10 cm2=g, which is 17 times larger than
needed for SIDM. We are interested to know how the
parameters of QCD would need to be rescaled in a dark
analog theory to bring this down to the desired value.
There are two parameters that primarily control the

nucleon-nucleon elastic cross section. One is the confine-
ment scale Λ of the strong SUðNÞ interactions. Naively, one
would estimate on dimensional grounds that the nucleon
mass is NcΛ (assuming current quark masses mq ≤ Λ),

while the cross section is σ ∼ 4πΛ−2. Therefore σ=m ∼ 4π=
ðNcΛ3Þ. Using this estimate and the parameters of real-
world QCD, Λ ∼ 250 MeV andNc ¼ 3, we would estimate
σ=m ∼ 0.2 cm2=g. The naive estimate is too low by a factor
of 50. The origin of the discrepancy is well known: there is
a resonant enhancement of the cross section due to the
weakly bound deuteron. A better estimate for σ=m is given
by 2π=ðNcΛ2EbÞ, where Eb ¼ 2.2 MeV is the binding
energy of the deuteron, which could be considered as the
other parameter controlling σ.
Of course Eb is not a fundamental parameter of the

theory, but it gives a clear picture of the physics controlling
σ. It turns out that Eb depends sensitively on the mass of the
pion (hence the quark masses). The effective range param-
eters for nucleon-nucleon scattering have been studied as a
function of mπ in lattice gauge theory [103]. They are the
scattering length a and effective range r0 in terms of which
the scattering amplitude is given by

A ¼ 4π

mNð−ip − a−1 þ 1
2
r0p2 þOðp4ÞÞ ð20Þ

where mN is the nucleon mass and p is the center-of-mass
momentum.
Fitting to the results of Fig. 1 of [103], we can

express the scattering lengths in the singlet and triplet spin
channels as

as ¼
0.58Λ−1

mπ=Λ − 0.57
; at ¼

0.39Λ−1

mπ=Λ − 0.49
ð21Þ

wherewe have takenΛ ¼ 250 MeVforQCD.Here 0.49 and
0.57 are the pion-to-Λ ratios where the deuteron and the
dineutron become bound; they are unbound for lighter pions
andbound for heavier pions. In the analysis of [103], onlymπ

was varied while Λ was held fixed, but on dimensional
grounds, Eq. (21) should encode the right dependence if Λ
were to be varied. We can therefore predict the average
scattering cross section for low-velocity nucleons in a dark
sector similar to QCD, but with different confinement scale
and light quark masses,

σ ¼ πða2s þ 3a2t Þ ð22Þ
and find values of Λ and mπ in a dark analog of QCD that
would give the desired value of σ=mN , usingmN ¼ 3.8Λ to
agree with the visible nucleon mass.
The results are plotted in Fig. 7, which shows contours of

log10ð½σ=m�=½0.6 cm2=g�Þ as a function of Λ and mπ=Λ.
The values mπ=Λ ¼ 0.49 and 0.57 are where the triplet and
singlet scattering lengths diverge, respectively. For
Λ≳ 1 GeV, mπ=Λ needs to be close to these special values
to have a large enough cross section, but for Λ≲ 1 GeV,
this tuning is not necessary. For Λ < 100 MeV, large
values of the pion mass mπ > Λ would be required to
keep the cross section sufficiently low.
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FIG. 6. Isospin-averaged elastic cross section for neutron-
proton scattering versus energy, using data from the ENDF
library [102].
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We must still verify that the energies of interest for dark
matter scattering coincide with the flat region of the cross
section. Since we do not require dark photons in this
scenario, the rising part below 0.1 eV in Fig. 6 is not present
in the dark analog. The falloff after the plateau occurs when
the inverse momentum of the nucleons starts to exceed the
length scale

ffiffiffi
σ

p
∼ 3.5a, where in the plateau region,

a ¼ ffiffiffiffiffiffiffiffiffiffi
σ=4π

p ¼ 13 fm. This corresponds to a center-of-
mass energy p2=mN ¼ ð4πa2mNÞ−1 ¼ 0.02 MeV, which
agrees with Fig. 6. For the dark baryons to be SIDM, we
thus require that ðσmNÞ−1 > mNv2 up to velocities
v ∼ 100 km=s. This can be written as the constraint
mN < ðv2σ=mNÞ−1=3 ¼ 15 GeV, hence Λ < 4 GeV which
is consistent with the parameter space plotted in Fig. 7.
It has been pointed out that, if asymmetric fermionic dark

matter has strong attractive interactions, their accumulation
in neutron stars leads to a compact bound state that can
cause gravitational collapse of the star [104,105], yielding
tighter constraints than from halo ellipticity or the Bullet
Cluster. These considerations however do not apply to
composite models such as the present one. Like the
neutrons and protons making up neutron stars, dark
nucleons are expected to exhibit short-range hard-core
repulsion due to the degeneracy pressure of the underlying
dark quarks, leading to an equation of state qualitatively
similar to that for neutron star matter. So while attractive
interactions could form a dark nucleus, the mass of dark
matter required to achieve gravitational collapse should be
comparable to the mass of the neutron star itself, safely
more than the amount that is expected to accrete in a
neutron star.

B. Dark baryon relic density

Like their visible counterparts, the dark nucleons have a
conserved number, and so must be asymmetric dark matter.
We do not attempt to explain the origin of the asymmetry

here (indeed that of the visible baryons is still unknown); it
presumably arises from physics at much higher scales than
that of the dark matter, which we have determined to be of
order ð0.1 − 1 GeVÞ. However one may wonder why in
this case the dark pions that are necessarily present have a
small enough relic density. A simple possibility is that the
quarks are massless so that the pions are true Goldstone
bosons, and contribute only to the dark radiation density of
the Universe. Figure 7 shows that mπ ¼ 0 is compatible
with Λ ≅ 100 MeV.
If the pions are massive, the existence of massless dark

photons coupling to the hidden quarks would allow for
them to efficiently annihilate, but this also provides a new
long-range interaction between the dark nucleons, which
could complicate its viability as a dark matter candidate,
and require additional species to maintain the Uð1Þ0 charge
neutrality of the Universe. A less problematic alternative
would be to give the dark photons (Z0) masses greater than
2me, such that ππ → Z0Z0 annihilation would still be
efficient, while Z0 → eþe− through kinetic mixing of Z0
to the photon would allow the Z0’s to decay. We consider
the possibility of unstable dark pions below.

C. Interactions with the standard model

An interesting consequence of coupling the dark quarks
to a massive Z0 is that kinetic mixing of the Z0 and the
photon would allow for scattering of dark baryons on
protons, hence a channel for direct detection. After diag-
onalizing the gauge boson kinetic matrix, the proton
acquires a dark millicharge ϵe; see for example [106].
Assuming the dark baryon has Uð1Þ0 charge 3g0 (taking the
charge to be g0 for each of three hidden sector quarks), the
cross section for proton-baryon scattering is

σpb ¼ 144παα0ϵ2
μ2

m4
Z0

ð23Þ

where μ ¼ mbmp=ðmb þmpÞ is the dark baryon-proton
reduced mass. The resulting constraints on the kinetic
mixing parameter ϵ from the LUX [76], XENON100 [79]
and CDMS-lite [78] experiments are shown in Fig. 8.
Another possibility is to imagine heavy mediators

producing isospin-violating dimension-six couplings
between the dark quarks qi (where i is the flavor index)
and light standard model particles such as the electron:

cijΛ−2
h ðq̄iγ5γμqjÞðēγ5γμeÞ ð24Þ

with cij being coefficients of order one. We choose γ5
couplings to match the parity of the pion; this operator
allows for the decays π → eþe−. By estimating the decay
rate of the pion as Γπ ¼ nσv where σ is the qiq̄j → eþe−
cross section from (24), n ∼ Λ3 is the density of quarks in
the pion, and v ∼ 1, we obtain
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FIG. 7 (color online). Contours of log10ð½σ=m�=½0.6 cm2=g�Þ in
the plane of confinement scale Λ and pion mass mπ=Λ. The solid
line (labeled “0”) corresponds to the desired value.
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Γπ ∼
m2

πΛ3

12πΛ4
h

: ð25Þ

To avoid overclosing the Universe around the time of
BBN, Γπ should be greater than ∼1 s−1. This gives an
upper bound on the heavy physics scale

Λh < 8 TeV

�
mπ

10 MeV

�
1=2

�
Λ

100 MeV

�
3=4

: ð26Þ

Interestingly, the same operator allows for scattering of
the dark baryons from electrons. Recently the first exper-
imental constraints on dark matter scattering from electrons
were published [107], giving limits from 3 × 10−38 cm2 to
2 × 10−37 cm2 for dark matter of mass 0.1 to 1 GeV.
The cross section for electron scattering with baryons
containing N quarks is σeb ¼ ð3N=πÞμ2=Λ4

h, where μ ≅
me is the electron-baryon reduced mass. With N ¼ 3 we
find the limit Λh > 10 TeV. This bound starts to conflict
with the need for pions to decay before big bang nucleo-
synthesis if mπ and Λ are near the lowest values indicated
on Fig. 7, as the example ofmπ ¼ 10 MeV, Λ ¼ 100 MeV
shows in Eq. (26).

V. DARK GLUEBALLS

If the quarks of the hidden SUðNÞ are sufficiently heavy,
then the lightest stable particle is the glueball ϕ, whose self-
interaction cross section and mass can be estimated as
σ ∼ 4π=Λ2,mϕ ∼ 5.5Λ. (We use the example of QCDwhere
a likely glueball candidate has mass 1370 MeV [108] to get
the factor of 5.5.) For SIDM, this leads to the requirement
Λ ≅ 90 MeV, mϕ ≅ 500 MeV, hence the dark quark mass
should obey mq ≳ 250 MeV in this scenario. Like for
baryons, we expect the cross section to be velocity

independent for c.m. energies E < ðσmϕÞ−1. This requires
mϕ < 15 GeV,which thus imposes no additional constraint.
It is challenging (perhaps impossible) to design a media-

tor that allows for thermal freeze-out of dark glueballs by
annihilation into lighter particles. Unlike pions or nucleons,
whose stability could be ensured by unbroken isospin or
baryon number, nothing forbids glueballs from decaying
into the lighter particles once anymediator is introduced.We
do not try to explain the relic density of glueballs here. It
could arise from initial conditions—the relative efficiency of
inflationary reheating of the visible and hidden sectors—as
long as the reheating temperature was too low to bring the
two sectors into equilibrium at early times.

A. CMB constraint versus direct detection

Nevertheless there are somegeneric statements that can be
made about the nature of mediators between dark glueballs
and the standard model. Suppose that new particles at the
high scale Λh induce an effective interaction between the
dark gluon (with field strength Gμν) and standard model
gauge singlet operators O sm of dimension n:

1

Λn
h
GμνGμνOsm: ð27Þ

We assume that the gluon operatorG2 interpolates betweenϕ
and the vacuum as h0jG2jϕi ∼ ðmϕΛÞ3=2; this parametriza-
tionagreeswith theΓ ∼ nσv estimateusedpreviously for pion
decays, with n ∼ Λ3. Thus (27) leads to decays of ϕ if Osm
consists of states that are lighter thanmϕ, such as γ, e, μ. Such
decays are subject to stringent CMB constraints; for example
the lifetime for ϕ → eþe− for 500 MeV dark matter must
satisfy τ > 4 × 1024 s ≅ 1049 GeV−1 [90]. Assuming that
heējOsmj0i ∼memn−3

ϕ (since the operator is chirality sup-
pressedandtheelectronshaveenergyofordermϕ),we find the
decay rate Γϕ ∼ ðmϕ=16πÞðΛ=mϕÞ3ðme=mϕÞ2ðmϕ=ΛhÞ2n,
hence the constraint

�
Λh

mϕ

�
n ≳ 1019 ð28Þ

taking mϕ ¼ 5.5Λ ¼ 0.5 GeV. For a four-body decay
such as ϕ → eþe−eþe− this would be increased by
ðmϕ=meÞ=ð4π2Þ ∼ 103=2 since it need no longer be chirality
suppressed, but does suffer from a phase space reduc-
tion ∼ð4π2Þ.8
The same interactions that cause two-body glueball

decays give rise to elastic scattering with visible matter,
because the GG operator also interpolates between the
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FIG. 8 (color online). Constraints on kinetic mixing of massive
Z0 and photon from scattering of dark baryons on protons, as a
function of dark baryon mass, from the LUX [76], XENON100
[79] and CDMSlite [78] experiments, assuming g0 ¼ 1 and
mZ0 ¼ 1 GeV. The bound on ϵ scales as m2

Z0=g0 for other values
of g0 and mZ0 .

8The ratio of phase spaces for the four-body and two-body
rates is of order ðm2

ϕ=4π
2Þ2. We have extracted the factors of mϕ

to make the dimensionless ratio in (28) and taken the square root
since (28) is a bound on the amplitude.
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vacuum and the two-glueball state, with h0jGGjϕϕi ∼m2
ϕ.

(For this part of the argument, the distinction between mϕ

and Λ is not important.) The cross section for ϕe → ϕe
from (27) is therefore of order

σϕe ∼m−2
ϕ

�
mϕ

Λh

�
2n ≲ 10−66 cm2 ð29Þ

using (28). This is many orders of magnitude below the
current limit discussed below Eq. (26). We see that the
CMB bound on ϕ decays is so strong that crossing
symmetry implies that its scattering interactions are nec-
essarily negligible.
In passing we observe that a similar argument shows that

one cannot get a large enough annihilation cross section of
glueballs for them to have the right thermal relic density if
their lifetime is greater than that of the Universe. Consider
for example the coupling of glueballs to light Z0 gauge
bosons through the operator Λ−4

h trðGμνGμνÞZαβ
0Z0αβ, which

gives rise to both decays ϕ → Z0Z0 and annihilations
ϕϕ → Z0Z0. Demanding that the lifetime exceed 1018 s
gives a cross section less than 10−66 cm2.

B. Heavy Z0 mediator between glueball and SM

As a concrete example, we consider as mediator a heavy
Z0 gauge boson that couples to the hidden quarks and to
leptons with strength α0. Integrating out the hidden quarks
and Z0s leads to several possible operators giving glueball
decay, including O1 ¼ ðēγμeÞ2 and O2 ¼ μ̄μ. (We will
presently see that the operator ēe gives rise to a much
smaller contribution to the decay width, hence we focus on
muons forO2.) Figure 9 shows the corresponding diagrams
for decays into eþe−eþe− and μþμ−. The first one has
heavy scale given by Λ−6

1 ∼ 64παNα
02m2

ϕ=ð360m4
qm4

Z0 Þ
where αN ¼ g2N=4π is the hidden SUðNÞ gauge coupling.9
The second operator is chirality and loop suppressed and
has Λ−3

2 ∼mμαNα
02=ð16πm4

Z0 Þ. Taking into account the
phase space ratio ∼ðm2

ϕ=4π
2Þ2, the two-body and four-

body decay rates become comparable for mq ≅ 0.7 GeV.
This is somewhat larger than the minimum dark quark mass

of mϕ=2 ∼ 0.25 GeV needed to ensure that the glueball is
lighter than the meson. The CMB constraint (28) then leads
to the bound

mZ0 ≳ 2.3 TeV

�
αNα

02

10−5

�
1=4

�
x−1; x < 1

1; x > 1
ð30Þ

where x ¼ mq=ð0.7 GeVÞ. The strong coupling αN should
be evaluated at the scale mq, hence αN ∼ 1 if mq is near the
confinement scale, but smaller otherwise.
This shows that the new physics can be at a relatively low

scale accessible at the LHC, despite the large ratio in (28).
For a Z0 with couplings α0 ∼ 0.003 to ordinary quarks (the
“sequential standard model”), ATLAS obtains the limit
mZ0 ≳ 3 TeV [109] from resonant dilepton searches. Thus
it is possible that a mediator between the standard model
and metastable glueball dark matter, consistent with CMB
constraints on the glueball decays, could be discovered at
the LHC.
To extract limits from the ATLAS results, we computed

the expected number of dilepton events in the model with
coupling

ffiffiffiffiffiffiffiffiffi
4πα0

p
Z0
μf̄γμf to all SM fermions and dark

quarks, but ignoring the contribution of Z0 decays into
dark quarks to compute the branching ratio B to leptons.
(This is justified if the number of dark quarks is small
compared to the number of SM fermions). Comparing to
the limit on σB of Ref. [109], we obtain the constraint as a
function of Z0 mass

log10α0 < −5.71þ 0.410yþ 0.267y2 ð31Þ
where y ¼ mZ0 in TeV. To compare this with the CMB
bound we treat (31) as an equality to eliminate α0 in (30),
and assume αN ∼ 1, resulting in a lower bound on mq as a
function of mZ0 shown in Fig. 10. This is the CMB bound
on models that are discoverable in the next run of the LHC.
The range of allowed quark masses is mostly consistent
with our requirement that glueballs be lighter than mesons
in the dark sector for this scenario (indicated by the dashed
line), while still being relatively small. The implication is
that models on the verge of discovery through Z0
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FIG. 9. Upper left: decay of dark glueball into eþe−eþe− by
virtual Z0 emission through dark quark loop. Lower left: related
decays into eþe−, or μþμ−, which is subdominant if
mq < 8 GeV. Right: leading contribution to dark glueball-elec-
tron scattering, which is shown to be negligible.

9The quark loop in the four-body decay diagram generates
an Euler-Heisenberg-like effective interaction between the
gluons and the Z0 field strength, αNα

0=ð360m4
qÞ½trðG2ÞZ02þ

7trðG ~GÞZ ~Z�. The factor of 64π comes from g02 ¼ 4πα0, the
coefficients 1þ 7 ¼ 8, each Z0 field strength containing two
vector fields, and the Z0 momenta going as p1 · p2 ∼m2

ϕ=2. To
estimate the second decay diagram, it is easiest to first do the
loop containing the Z0 ’s, which is dominated by momenta of
order mZ0 and requires mass insertions of the SM fermion and
the dark quark. This loop is of order g04mμmq=ð16π2m4

Z0 Þ.
The quark loop dominated by momenta of order mq, now has
only three propagators requiring one more mass insertion, and
so contributes ∼g2Nmq=ð4 × 16π2m2

qÞ to the GμνGμν effective
operator.

JAMES M. et al. PHYSICAL REVIEW D 90, 015023 (2014)

015023-14



production at the LHC could also be close to having an
impact on the CMB for reasonable choices of parameters.
Such a Z0 might also reveal the number of dark quark
species through the measurement of its invisible width.

C. Higgs portal mediation

As a second example, we imagine that the heavy
particles are scalars S in the fundamental representation
of the hidden SUðNÞ, that communicate with the standard
model through the Higgs portal interaction λjSj2jHj2.
Integrating out the scalar gives the SM operator O ¼
jHj2 with Λ−2

h ¼ λαN=m2
S. The Higgs boson mediates the

decay ϕ → μ̄μ, with rate

Γϕ ∼
m2

μðmϕΛÞ3mϕ

16πΛ4
hm

4
h

: ð32Þ

Demanding that Γ < 10−49 GeV as before, we obtain the
bound

mS > 107 GeV

�
λαN
0.01

�
1=2

ð33Þ

which is inaccessible to the LHC. The bound is much
stronger in this case than for the Z0 mediator because the
matrix element is suppressed by only 1=m2

S; compare to
1=m4

Z0 in the previous model.

D. Neutrino portal mediation

Since the CMB constraints are so severe, one might ask
whether dark glueballs could have larger interactions with
the SM if they decayed only into neutrinos rather than
charged leptons. However the constraints from Super-
Kamiokande on DM decay into neutrinos are still quite

strong [89]: for decay of a 500 MeV glueball, the lifetime
must exceed 2 × 1022 s, which is only 100 times weaker
than the CMB bound on leptonic decays. To illustrate, we
consider an example in which the SM operator coupling to
GμνGμν is the neutrino portal [110] ðLHÞ2 where L is a
charged lepton doublet. Then the effective operator is

O ¼ Λ−5
h ðLHÞ2G2 ¼ Λ0

h
−3ν̄νGG: ð34Þ

In the second form, we absorb the Higgs VEVs v2 into
Λ−5
h to display the relevant form of the operator at

energies below the weak scale. The decay rate is then
Γ ∼ ðΛmϕÞ3mϕ=16πΛ06

h and we obtain the bound
Λ0
h > 5600 TeV.
As a concrete example, a model that can generate

the desired interaction was presented in Ref. [61], where
the dark sector contains a scalar S and fermion ψ in the
fundamental representation (here however we take their
electric charges to vanish) and a singlet fermion χ,
with Yukawa interactions yχ χ̄S�ψ and yνχ̄HL. The
ðLHÞ2GμνGμν effective operator is generated by the
diagram shown in Fig. 11, with coefficient Λ−5

h ¼
ðy2χy2ν=16π2Þm−2

χ m−3
S=ψ where we take mS ∼mψ ¼ mS=ψ .

There is also a seesaw contribution to the neutrino masses
of order ðyνvÞ2=mχ, which must be ≲0.2 eV. Regardless
of that or other details of the theory however, the main
point is that scattering of the glueballs with visible matter,
mediated by the same diagram as in Fig. 11 (but with
gluon lines associated to different glueballs as in Fig. 9,
right), is suppressed by the same large factor of Λ06

h as in
the decay rate. The neutrino portal thus offers no sub-
stantial relaxation of the scale by which interactions of the
glueballs with the visible sector must be suppressed.

VI. Summary and conclusions

The possibility that dark matter self-scatters elastically
with a velocity-independent cross section σ ∼ 1 b ×
ðm=GeVÞ is motivated by the cusp/core and too-big-to-
fail problems of structure formation with cold dark
matter. These problems may find alternative solutions,
as we mentioned in Sec. I; in that case the quoted cross
section is at least still allowed by current constraints. In
previous literature, the possibility to get such a large cross
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FIG. 10 (color online). Lower bound from CMB on dark quark
mass mq as a function of mZ0 , for couplings α0 that saturate the
ATLAS constraint from dileptonic decays of Z0 [109]. Below the
dashed line is theoretically disfavored since glueballs would be
heavier than mesons in that region.
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FIG. 11. Diagram to generate neutrino portal interaction ðLHÞ2
coupling to the dark glueball operator GμνGμν.
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section from light mediators was explored. Here we have
investigated for this purpose various forms of composite
dark matter, that can naturally have strong self-inter-
actions. We examined the cases where dark matter is
analogous to atoms, molecules, mesons, baryons, or
glueballs.
Atomic dark matter bound by a new Uð1Þ0 interaction

was found to be viable as a SIDM candidate for a large
range of values of the ratio R ¼ mp=me (the dark proton to
electron masses), with Uð1Þ0 coupling α0 ≳ 0.03 and mass
mH ∼ 0.3ðR=α0Þ2=3 GeV (this follows from the rough
estimate σ ∼ 100a20 of the cross section). The same estimate
is also valid if the atoms are primarily bound into H2

molecules. In both cases, the dark coupling should satisfy
α0 ≳ 0.03 to avoid a significant fraction of ionized con-
stituents. The question of whether dark atoms will exist
mostly within molecules is interesting but beyond the scope
of the present paper. However the absence of dark stars
(hence ionizing dark radiation) suggests that molecules will
be prevalent. See Ref. [37] for a more detailed discussion.
Another interesting feature of dark atoms is that the cross
section typically has nontrivial velocity dependence at the
low velocities relevant to cosmology, generally being larger
at lower velocities relevant in dwarf galaxies than at higher
velocities relevant in clusters.
In the case of dark mesons bound by an SUðNÞ

interaction with confinement scale Λ, a low mass mπ ∼
30–100 MeV is required for them to be SIDM, depending
upon the number of hidden quark flavors and the ratio
mq=Λ ∼m2

π=Λ2. We found that dark pions in this mass
range can have a thermal origin if there is a very weakly
coupled (α0 ∼ 10−5) massless Uð1Þ0 in the hidden sector
that kinetically mixes with the photon. In this case the
hidden quarks acquire electric millicharges ϵe. As long as
the dark baryons (which are also millicharged) have no
asymmetry, their relic abundance is very small and the
constraint on ϵ from charged relics is weak, ϵ≲ 2 × 10−3.
A comparable and more secure bound ϵ≲ 2 × 10−3 arises
from CMB constraints on annihilations into visible plus
dark photons.
If the dark matter is in the form of nucleonlike bound

states, it can be SIDM with masses typically in the range
mB ∼ 0.1–1 GeV. Larger values are possible if the dark
pion mass happens to be close to where one of the
scattering lengths diverges, mπ ≅ 0.49 or 0.57Λ, suggested
by lattice studies. We determined the relations between Λ
and mπ that give the desired SIDM cross section in QCD-
like dark sectors. To avoid overclosure of the Universe by
the dark pions, they should either be massless or else
unstable. The latter case implies interactions with the
standard model that can lead to direct detection.
Dark glueballs, whose mass should be ∼500 MeV in

order to be SIDM, are generally more problematic than the
other candidates in terms of having the right relic density
and additional direct or indirect detection signatures. Their

couplings to the standard model are tightly constrained by
their effect on the CMB through decays. These interactions
are thus shown to be too weak to mediate direct detection.
However, they can be consistent with mediators at the TeV
scale that could be discovered at the LHC, as we showed in
an explicit example with a Z0 mediator. A low reheat
temperature after inflation would be needed to prevent a
thermal population of glueballs, which would overclose the
Universe.
Apart from glueballs, all of the candidates we have

considered are motivated (through relic density consider-
ations) to have significant interactions with the standard
model, including couplings to a dark photon, either mass-
less or massive, that can mix with the visible photon. This
gives the possibility for direct or indirect signals that could
provide additional observational probes of the models. In
the case of dark atoms, the kinetic mixing parameter ϵ is
already strongly constrained by the XENON100 bound, as
shown in Fig. 2. A prediction of our dark meson model is
the existence of a very small population of millicharged
dark baryons that might be discovered in more sensitive
searches for anomalous isotopes. Conversely if dark bary-
ons dominate, then the same interactions that would deplete
dark mesons through decays can generate scattering of the
baryons on electrons at a level that is already constrained
using XENON10 data.
We expect future simulations of structure formation and

astrophysical studies [111–114] to improve our under-
standing of whether strong self-interactions of dark matter
are really needed, or to what extent they are allowed. If such
interactions arise from the composite nature of dark matter,
our study shows that its mass should be ∼10–100 GeV if it
is in atomic/molecular form, or ∼0.1–1 GeV if it is
mesonic/baryonic. In either case, there are several inde-
pendent observables that could provide complemen-
tary tests.
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APPENDIX A: BBN CONSTRAINT
ON DARK PHOTONS

In this appendix we provide details of our implementa-
tion of the BBN bound on the dark photon temperature. In
both the approximate and more exact methods, we make
use of the thermally averaged cross section for mixed
Compton scattering on dark electrons, γ0e↔γe. In the rest
frame of the initial e, the cross section is given by σðwÞ ¼
σTfðwÞ where w depends upon the initial photon energy Ei
as w≡ Ei=me and [115] [see Eq. (5-116)]
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fðwÞ ¼ 3

4

�
1þ w
w3

�
2wð1þ wÞ
1þ 2w

− lnð1þ 2wÞ
�

þ lnð1þ 2wÞ
2w

−
1þ 3w

ð1þ 2wÞ2
�
: ðA1Þ

The Thomson cross section is given by σT ¼
ð8π=3Þαα0ðϵ=meÞ2. For the thermal average, we take

hσviγ→γ0 ¼
Z

d3pe

ð2πÞ3
Z

d3pγ0

ð2πÞ3 fγfeσðwÞj~vrelj ðA2Þ

where w ¼ 1
2
ðs=m2

e − 1Þ in terms of the Mandelstam
invariant s¼ðEeþEγÞ2−ð~peþ ~pγÞ2 and ~vrel¼ ~pe=Ee−
~pγ=Eγ. For the process γe → γ0e, we allow for different
temperatures in the two sectors, so that the (normalized)
distribution functions have the dependences fγ ¼
fγðpγ; TγÞ, fe ¼ feðpe; TdÞ. In contrast, for γ0e → γe,
we take both initial particles to have temperature
Td ¼ Tγ0 , since we assume that γ0e↔γ0e scattering is
strong enough to keep the dark particles in kinetic equi-
librium for as long as there is a significant e population.
Carrying out the thermal average in (A2) numerically, we
obtain the results shown in Fig. 12 for a range of visible-to-
dark-temperature ratios, ζ ¼ T=Td. We find that hσvi=σT
can be approximated by the analytic form

hσvi
σT

≅
�
1

2
ð1þ tanhðA0log10x − A1ÞÞ

�
A2 ðA3Þ

where x ¼ me=Td and the coefficients Ai depend upon ζ as
shown in Table I. We can thus rapidly interpolate between
the ζ values of interest without having to repeat the
integration in (A2).

For the simplified approach in which we estimate the
freeze-out temperature Tf via Γ ¼ nehσvi ¼ H, we take
ζ ¼ 1. In the more quantitative Boltzmann analysis, the
distinction enters into the source term qscatt which we take
to be

qscatt ¼ neðhσviγ→γ0ργ − hσviγ0→γργ0 Þ ðA4Þ

where ρi are the energy densities. The cross section
hσviγ→γ0 depends upon ζ whereas hσviγ→γ0 depends only
upon the dark photon temperature through me=Td (and
corresponds to the case ζ ¼ 1). When qscatt is large
compared to Hρi, it drives the two photon baths toward
equilibrium with each other.
The other source terms in the Boltzmann equations are

given by

qSM ¼ 4

3
H

ργ
d ln g�
d lnTγ

1þ 1
3
d ln g�
d lnTγ

; ðA5Þ

qann ¼
4

3
H

ργ0
d ln gd
d lnTd

1þ 1
3
d ln gd
d lnTd

; ðA6Þ

where gd ¼ 2þ ge is the effective number of degrees of
freedom in the dark plasma. These are a straightforward
consequence of entropy conservation as the photons get
heated by annihilation of heavier standard model particles,
or the dark photons are heated by dark electron annihila-
tion. For reference we display g�ðTÞ in Fig. 13 (left). It is
found by adding the contributions from photons and
leptons to the QCD degrees of freedom determined by
Ref. [84]. The dependence of d ln gd=d lnTd on x ¼ me=Td
is shown in Fig. 13 (right).

APPENDIX B: PION SCATTERING
AT LOW ENERGY

In this appendix we provide details of the elastic cross
section for dark pion scattering at low energy derived from
the chiral Lagrangian (12). Expanding to fourth order in the
pion field Π, the relevant interaction terms are

TABLE I. Coefficients for the analytic fit (A3) to the thermally
averaged γ0e↔γe scattering cross section.

ζ A0 A1 A2

0.1 2.209 0.041 0.583
0.25 1.420 −0.0056 1.156
0.5 1.099 −0.092 1.843
1 0.934 −0.037 2.265
2 0.854 0.189 2.112
4 0.817 0.496 1.773
10 0.786 0.878 1.496
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FIG. 12 (color online). Thermally averaged cross section for
γe → γ0e at several values of ζ ¼ Tγ=Tγ0 ≡ T=Td, in order of
increasing ζ from top to bottom. The dependence upon ζ only
applies for γe → γ0e, not the reverse process, which corresponds
to ζ ¼ 1.
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L4π ¼
1

3F2
π
tr½ðΠ∂μ

↔
ΠÞðΠ∂μ

↔
ΠÞ þm2

πΠ4�: ðB1Þ

The matrix element of the process πa þ πb → πc þ πd derived from (B1) is

−iM ¼ ðtr½TaTbTcTd� þ ðb↔dÞÞ 2ð2m
2
π − tÞ
F2
π

þ ðtr½TaTcTbTd� þ ðc↔dÞÞ 2ð2m
2
π − sÞ
F2
π

þ ðtr½TaTcTdTb� þ ðb↔cÞÞ 2ð2m
2
π − uÞ
F2
π

: ðB2Þ

In the case of SU(2), tr½TaTbTcTd� ¼ 1
8
ðδabδcd þ δadδbc − δacδbdÞ [116,117]. For general SUðNÞ,

tr½TaTbTcTd� ¼ 1

4N
δabδcd þ

1

8
ðdabe þ ifabeÞðdcde þ ifcdeÞ ðB3Þ

and the isospin-averaged matrix element squared (using MATHEMATICA) is

jMj2 ¼ 1

ðN2 − 1Þ2
X
abcd

jMabcdj2

¼ ½8ð2N4 − 25N2 þ 90 − 65N−2Þm4
π − ð3N4 − 37N2 þ 132 − 96N−2Þðstþ tuþ usÞ�
2F4

πðN2 − 1Þ : ðB4Þ

Therefore, the cross section at center-of-mass momentum p is

σ2π→2π ¼
½ð2N4 − 25N2 þ 90 − 65N−2Þm4

π þ 2ð3N4 − 37N2 þ 132 − 96N−2Þðm2
πp2 − 5

6
p4Þ�

32πF4
πðN2 − 1Þðm2

π þ p2Þ : ðB5Þ
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FIG. 13 (color online). Left: effective number of degrees of freedom g� versus temperature inferred from Ref. [84]. Right: dependence
of d ln gd=d lnTd on x ¼ me=Td appearing in the source term qann.
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APPENDIX C: PION COANNIHILATION TO A
LIGHT GAUGE BOSON

The interaction (16) does not respect the full SUð3ÞL ×
SUð3ÞR chiral flavor symmetry Σ → V†ΣU, but it does
respect the diagonal subgroup Σ → V†ΣV requiring the
quark mass insertion that we have made explicit. (The
quark mass matrix takes the place of the missing Σ† field.)
Expanding (16) to leading order in the pion fields gives

−4
λ0mq

F4
π

Z0
μνfabcπa∂μπb∂νπc: ðC1Þ

Defining ~λ ¼ 4λ0mq=F4
π , the matrix element for the process

πaðp1Þ þ πbðp2Þ → πcðp3Þ þ Z0ðp4Þ is (up to a phase)

2~λðϵμpν
4 − ϵνpμ

4Þfabc½pμ
2p

ν
3 − pμ

1p
ν
3 − pμ

1p
ν
2� ðC2Þ

where ϵμ is the polarization vector of Z0. The isospin-
averaged, squared matrix element is given by

hjMj2i ¼ −
9~λ2Nf

4ðN2
f − 1Þ ðstðsþ tÞ − 3m2

πstþm6
πÞ

≅
135~λ2Nf

4ðN2
f − 1Þm

6
πv4 ðC3Þ

where the second line gives the low-energy limit, with v
being the velocity of the incoming particles in the
c.m. frame.
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