
SUð5Þ × SUð5Þ0 unification and D2 parity: Model for composite leptons

Zurab Tavartkiladze*

Center for Elementary Particle Physics, ITP, Ilia State University, 0162 Tbilisi, Georgia
(Received 12 March 2014; published 22 July 2014)

We study a grand unified SUð5Þ × SUð5Þ0 model supplemented byD2 parity. TheD2 greatly reduces the
number of parameters and is important for phenomenology. The model, we present, has various novel and
interesting properties. Because of the specific pattern of grand unification symmetry breaking and emerged
strong dynamics at low energies, the Standard Model leptons, along with right-handed/sterile neutrinos,
come out as composite states. The generation of the charged fermion and neutrino masses are studied
within the considered scenario. Moreover, the issues of gauge coupling unification and nucleon stability are
investigated in details. Various phenomenological implications are also discussed.
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I. INTRODUCTION

The Standard Model (SM) of electroweak interactions
has been a very successful theory for decades. The triumph
of this celebrated model occurred thanks to the Higgs boson
discovery [1] at CERN’s Large Hadron Collider. In spite of
this success, several phenomenological and theoretical
issues motivate one to think of some physics beyond the
SM. Because of renormalization running, the self-coupling
of the SM Higgs boson becomes negative at a scale near
∼1010 GeV [2], [3] (with the Higgs mass≃ 126 GeV),
causing vacuum instability (becoming more severe within
the inflationary setup; see the discussion in Sec. VI).
Moreover, the SM fails to accommodate atmospheric
and solar neutrino data [4]. The renormalizable part of
the SM interactions render neutrinos to be massless. Also,
Planck scale suppressed d ¼ 5 lepton number violating
operators do not generate neutrino mass with desirable
magnitude. These are already strong motivations to think
about the existence of some new physics between electro-
weak (EW) and Planck scales.
Among various extensions of the SM, the grand uni-

fication (GUT) [5], [6] is a leading candidate. Unifying all
gauge interactions in a single group, at high energies one
can deal with a single unified gauge coupling. At the same
time, quantization of quark and lepton charges occurs by
embedding all fermionic states in unified GUT multiplets.
The striking prediction of the grand unified theory is the
baryon number violating nucleon decay. This opens the
prospect for probing the nature at very short distances.
GUTs based on SOð10Þ symmetry [7] [which includes
SUð2ÞL × SUð2ÞR × SUð4Þc symmetry [5] as a maximal
subgroup] involve right-handed neutrinos (RHNs), which
provide a simple and elegant way for neutrino mass
generation via the seesaw mechanism [8]. In spite of these
salient futures, GUT model building encounters numerous
problems and phenomenological difficulties. With single

scale breaking, i.e., with no new interactions and/or
intermediate states between EW and GUT scales, grand
unified theories [such as minimal SUð5Þ and SOð10Þ] do
not lead to successful gauge coupling unification. Besides
this, building GUTwith the realistic fermion sector, under-
standing the GUT symmetry breaking pattern, and avoiding
too rapid nucleon decay remain a great challenge.
Motivated by these issues, we consider SUð5Þ ×

SUð5Þ0 GUT augmented with D2 parity (exchange
symmetry). The latter, relating two SUð5Þ gauge groups,
reduces the number of parameters, and at and above the
GUT scale, one deals with single gauge coupling. The
grand unified theories with SUð5Þ × SUð5Þ0 symmetry,
considered in earlier works [9], in which at least one
gauge factor of the SM symmetry emerges as a diagonal
subgroup, have been proven to be very successful for
building models with realistic phenomenology. However,
to our knowledge, in such constructions the D2 parity has
not been applied before.1 The reason could be the
prejudice of remaining with extra unwanted chiral matter
states in the spectrum. However, within our model due to
specific construction, this does not happen, and below the
few-TeV scale, surviving states are just of the Standard
Model. The D2 parity also plays a crucial role for
phenomenology and has interesting implications. By
the specific pattern of the SUð5Þ × SUð5Þ0 symmetry
breaking and spectroscopy, the successful gauge coupling
unification is obtained. Interestingly, within the consid-
ered framework, the SM leptons emerge as a composite
states, while the quarks are fundamental objects. Lepton
mass generation occurs by a new mechanism, finding
natural realization within a presented model. Since
leptons and quarks have different footing, there is no
problem of their mass degeneracy (unlike the minimal
SO(10) and SUð5Þ grand unified thoeries, which require
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1In the second citation of Ref. [9], the exchange symmetry was
considered; however, some terms violating this symmetry have
been included.
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some extensions [10]). Moreover, along with composite
SM leptons, the model involves three families of
composite SM singlet fermionic states, which may be
identified with RHNs or sterile neutrinos. Thus, the
neutrino masses can be generated. In addition, we show
that, due to the specific fermion pattern, d ¼ 6 nucleon
decay can be adequately suppressed within the consid-
ered model. The model also has various interesting
properties and implications, which we also discuss.
Since two SUð5Þ groups will be related by D2 parity,
initial states will be doubled, i.e., will be introduced in
twins. Because of this, we refer to the proposed SUð5Þ ×
SUð5Þ0 ×D2 model as twinification.
The paper is organized as follows. In the next section,

first we introduce the SUð5Þ × SUð5Þ0 ×D2 GUT and
discuss the symmetry breaking pattern. Then, we present
the spectrum of bosonic states. In Sec. III, considering
the fermion sector, we give transformation properties
of the GUT matter multiplets under D2 parity and build
the Yukawa interaction Lagrangian. The latter is respon-
sible for the generation of quark masses and Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements. Because of
the specific pattern of the symmetry breaking and strong
SUð3Þ0 [originating from SUð5Þ0 gauge symmetry]
dynamics, the SM leptons emerge as composite objects.
We present a novel mechanism for composite lepton mass
generation. Together with the SM leptons, three families
of right-handed/sterile neutrinos are composite. We also
discuss the neutrino mass generation within our scenario.
In Sec. IV we give details of gauge coupling unification.
The issue of nucleon stability is addressed in Sec. V.
Although the GUT scale, within our model, comes out to
be relatively low (≃5 × 1011 GeV), we show that the d ¼
6 baryon number violating operators can be adequately
suppressed. This happens to be possible due to the
specific pattern of the fermion sector we are suggesting.
In Sec. VI we summarize and discuss various phenom-
enological constraints and possible implications of the
considered scenario. We also emphasize the model’s
peculiarities and novelties, which open broad prospects
for further investigations. Appendix A discusses details
related to the compositeness and anomaly matching
conditions. In Appendix B we give details of the gauge
coupling unification. In particular, the renormalization
group (RG) equations and b factors at various energy
intervals are presented. The short-range renormalization
of baryon number violating d ¼ 6 operators is also
performed.

II. SUð5Þ × SUð5Þ0 × D2 TWINIFICATION

Let us consider the theory based on SUð5Þ × SUð5Þ0
gauge symmetry. Besides this symmetry, we postulate
discrete parity D2, which exchanges two SUð5Þ’s. There-
fore, the symmetry of the model is

GGUT ¼ SUð5Þ × SUð5Þ0 ×D2: ð1Þ

As noted, the action of D2 interchanges the gauge fields (in
adjoint representations) of SUð5Þ and SUð5Þ0,

D2∶ ðAμÞab → ðA0
μÞa0b0 ; ðA0

μÞa0b0 → ðAμÞab; ð2Þ

with ðAμÞab¼ 1
2

P
24
i¼1A

i
μðλiÞab and ðA0

μÞa0b0 ¼ 1
2

P
24
i0¼1

A0i0
μ ðλi0 Þa0b0 ,

where a; b and a0; b0 denote indices of SUð5Þ and SUð5Þ0,
respectively. The λi; λi

0
are corresponding Gell-Mann

matrices. Thanks to the D2, at and above the GUT scale
MG, we have single gauge coupling

α5 ¼ α50 : ð3Þ

Grand unified theories based on product groups allow us to
build simple models with realistic phenomenology [9],
[11]. In our case, as we show below, the EW part [i.e.,
SUð2Þw × Uð1ÞY] of the SM gauge symmetry will belong
to the diagonal subgroup of SUð5Þ × SUð5Þ0.

A. Potential and symmetry breaking

For GGUT symmetry breaking and building realistic
phenomenology, we introduce the states

H ∼ ð5; 1Þ; Σ ∼ ð24; 1Þ; H0 ∼ ð1; 5Þ;
Σ0 ∼ ð1; 24Þ; Φ ∼ ð5; 5̄Þ; ð4Þ

where in brackets transformation properties under SUð5Þ ×
SUð5Þ0 symmetry are indicated. H includes SM Higgs
doublet h. The introduction of H0 is required by D2

symmetry. By the same reason, two adjoints Σ and Σ0
(needed for GUT symmetry breaking) are introduced. The
bifundamental state Φ will also serve for desirable sym-
metry breaking.
The action of D2 parity on these fields is

D2∶ Ha ⇆H0
a0 ; Σa

b ⇆ Σ0a0
b0 ; Φb0

a ⇆ ðΦ†Þba0 ; ð5Þ

where we have made explicit the indices of SUð5Þ and
SUð5Þ0. With Eqs. (5), (2), and (3), one can easily make
sure that the kinetic part jDμHj2 þ jDμH0j2 þ 1

2
trðDμΣÞ2 þ

1
2
trðDμΣ0Þ2 þ jDμΦj2 of the scalar field Lagrangian is

invariant.
The scalar potential, invariant under GGUT symmetry [of

Eq. (1)] is

V ¼ VHΣ þ VH0Σ0 þ Vð1Þ
mix þ VΦ þ Vð2Þ

mix; ð6Þ

with
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VHΣ ¼ −M2
ΣtrΣ2 þ λ1ðtrΣ2Þ2 þ λ2trΣ4 þH†ðM2

H − h1Σ2 þ h2trΣ2ÞH þ λHðH†HÞ2;
VH0Σ0 ¼ −M2

ΣtrΣ02 þ λ1ðtrΣ02Þ2 þ λ2trΣ04 þH0†ðM2
H − h1Σ02 þ h2trΣ02ÞH0 þ λHðH0†H0Þ2;

Vð1Þ
mix ¼ λðtrΣ2ÞðtrΣ02Þ þ ~hðH†HtrΣ02 þH0†H0trΣ2Þ þ ĥðH†HÞðH0†H0Þ;
VΦ ¼ −M2

ΦΦ
†Φþ λ1ΦðΦ†ΦÞ2 þ λ2ΦΦ†ΦΦ†Φ;

Vð2Þ
mix ¼ μðH†ΦH0 þHΦ†H0†Þ þ λ1HΦffiffiffiffiffi

25
p ðΦ†ΦÞ½ðH†HÞ þ ðH0†H0Þ� þ λ2HΦffiffiffiffiffi

10
p ðH†ΦΦ†H þH0†Φ†ΦH0Þ

þ λ1ΣΦðΦ†ΦÞðtrΣ2 þ trΣ02Þ − λ2ΣΦðΦ†Σ2Φþ ΦΣ02Φ†Þ: ð7Þ

To make analysis simpler, we have omitted terms with first
powers of Σ and Σ0 (such as H†ΣH, H0†Σ0H0, etc.) and also
cubic terms of Σ and Σ0. This simplification can be achieved
by Z2 discrete symmetry and will not harm anything.
The potential terms and couplings in Eqs. (6) and (7)

allow us to have a desirable and self-consistent pattern of
symmetry breaking. First, we will sketch the symmetry
breaking pattern. Then, we will analyze the potential and
discuss the spectrum of bosonic states. We will stick to
several stages of the GUT symmetry breaking. At the first
step, the Σ develops the vacuum expectation value
ðVEVÞ ∼MG with

hΣi ¼ vΣDiagð2; 2; 2;−3;−3Þ; vΣ ∼MG: ð8Þ

This causes the symmetry breaking:

SUð5Þ→hΣiSUð3Þ × SUð2Þ ×Uð1Þ≡ G321: ð9Þ

We select VEVs of Σ0 and Φ much smaller than MG. As it
will turn out, the phenomenologically preferred scenario is
hΣ0i ∼ 4 × 106 GeV and hΦi ∼ 8 × 104 GeV. With

hΣ0i ¼ vΣ0Diagð2; 2; 2;−3;−3Þ; ð10Þ

the breaking

SUð5Þ0→hΣ
0i
SUð3Þ0 × SUð2Þ0 ×Uð1Þ0 ≡G321

0 ð11Þ

is achieved. The last stage of the GUT breaking is done by
hΦi with a direction

hΦi ¼ vΦ · Diagð0; 0; 0; 1; 1Þ: ð12Þ

This configuration of hΦi breaks symmetries SUð2Þ ×
Uð1Þ [subgroup of SUð5Þ] and SUð2Þ0 ×Uð1Þ0 [subgroup
of SUð5Þ0] to the diagonal symmetry group:

SUð2Þ × Uð1Þ × SUð2Þ0 ×Uð1Þ0→hΦi½SUð2Þ ×Uð1Þ�diag:
ð13Þ

As we see, all VEVs preserve SUð3Þ and SUð3Þ0 groups
arising from SUð5Þ and SUð5Þ0, respectively. However,
unbroken SUð2Þdiag is coming (as superposition) partly
from SUð2Þ ⊂ SUð5Þ and partly from SUð2Þ0 ⊂ SUð5Þ0.
Similarly, Uð1Þdiag is superposition of two Abelian factors:
Uð1Þ ⊂ SUð5Þ and Uð1Þ0 ⊂ SUð5Þ0.
Now, making the identifications

SUð3Þ≡SUð3Þc; SUð2Þdiag≡SUð2Þw; Uð1Þdiag≡Uð1ÞY
ð14Þ

and taking into account Eqs. (9), (11), and (13), we can see
that GUT symmetry is broken as

GGUT → SUð3Þc×SUð2Þw × Uð1ÞY × SUð3Þ0
¼ GSM × SUð3Þ0; ð15Þ

where GSM ¼ SUð3Þc × SUð2Þw ×Uð1ÞY denotes the SM
gauge symmetry. Because of these, at the intermediate scale
μ ¼ MIð∼hΦiÞ, we will have the matching conditions for
the gauge couplings,

at μ ¼ MI∶
1

g2w
¼ 1

g22
þ 1

g2
20
;

1

g2Y
¼ 1

g21
þ 1

g2
10
; ð16Þ

where subscripts indicate to which gauge interaction the
appropriate coupling corresponds [e.g., g10 is the coupling
of Uð1Þ0 symmetry, etc.].
The extra SUð3Þ0 factor has important and interesting

implications, which we discuss below.
As was mentioned, while hΣi ∼MG, the VEVs hΦi and

Σ0 are at intermediate scales MI and MI
0, respectively,

vΦ ∼MI; vΣ0 ∼MI
0; ð17Þ

with the hierarchical pattern

MI ≪ MI
0 ≪ MG: ð18Þ

Detailed analysis of the whole potential shows that
there is true minimum along directions (8), (10), and (12)
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with hHi ¼ hH0i ¼ 0. With hΣi ≠ hΣ0i, the D2 is broken
spontaneously. The residual SUð3Þ0 symmetry
will play an important role, and the hierarchical
pattern of Eq. (18) will turn out to be crucial for
successful gauge coupling unification (discussed
below).

The hierarchical pattern (18), of the GUT symmetry
breaking, makes it simple to minimize the potential and
analyze the spectrum.
Three extremum conditions, determining vΣ; vΣ0 , and vΦ

along the directions (8), (10), and (12) and obtained from
whole potential, are

10ð30λ1 þ 7λ2Þv2Σ þ 150λv2Σ0 þ ð10λ1ΣΦ − 3λ2ΣΦÞv2Φ ¼ 5M2
Σ;

150λv2Σ þ 10ð30λ1 þ 7λ2Þv2Σ0 þ ð10λ1ΣΦ − 3λ2ΣΦÞv2Φ ¼ 5M2
Σ;

3ð10λ1ΣΦ − 3λ2ΣΦÞðv2Σ þ v2Σ0 Þ þ ð4λ1Φ þ 2λ2ΦÞv2Φ ¼ M2
Φ: ð19Þ

Because of hierarchies (17) and (18), from the first equation
of Eq. (19), with a good approximation we obtain

vΣ ≃ MΣffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð30λ1 þ 7λ2Þ

p : ð20Þ

Thus, with 2ð30λ1 þ 7λ2Þ ∼ 1, we should have MΣ ≈MG.
On the other hand, from the last two equations of Eq. (19),
we derive

v2Σ0 ≃ M2
Σ − 30λv2Σ

2ð30λ1 þ 7λ2Þ
;

v2Φ ¼ M2
Φ − 3ð10λ1ΣΦ − 3λ2ΣΦÞðv2Σ þ v2Σ0 Þ

4λ1Φ þ 2λ2Φ
: ð21Þ

To obtain the scales MI and MI
0, according to Eqs. (17)

and (18), we have to arrange (by price of tunings) M2
Σ −

30λv2Σ ≈ ðMI
0Þ2 and M2

Φ − 3ð10λ1ΣΦ − 3λ2ΣΦÞðv2Σ þ v2Σ0 Þ ≈
M2

I [with ð4λ1Φ þ 2λ2ΦÞ ∼ 1].

B. The spectrum

At the first stage of symmetry breaking, the ðX; YÞ gauge
bosons [of SUð5Þ] obtain GUT scale masses. They absorb
appropriate states (with quantum numbers of leptoquarks)
from the adjoint scalar Σ. The remaining physical frag-
ments ðΣ8;Σ3;Σ1Þ [the SUð3Þ octet, SUð2Þ triplet, and a
singlet, respectively] receive GUT scale masses. These
states are heaviest, and their mixings with other ones can be
neglected. From Eq. (7), with Eq. (19) we get

M2
Σ8
≃ 20λ2v2Σ; M2

Σ3
≃ 80λ2v2Σ; M2

Σ1
≃ 4M2

Σ:

ð22Þ

Further, we will not give masses of states that are singlets
under all symmetry groups. The mass square of the SUð3Þ0
octet (from Σ0) is

M2
Σ0

80
¼ 20λ2v2Σ0 þ 6

5
λ2ΣΦv2Φ: ð23Þ

The triplet Σ0
30 mixes with a real (CP even) SUð2Þw triplet

Φ3 (from Φ). [Both these states are real adjoints of
SUð2Þw.] The appropriate mass squared couplings are

1

2
ðΣ0i

30 ;Φi
3Þ
 
4M2

Σ0
80
−28

5
λ2ΣΦv2Φ 6

ffiffiffi
2

p
λ2ΣΦvΦvΣ0

6
ffiffiffi
2

p
λ2ΣΦvΦvΣ0 4λ2Φv2Φ

! 
Σ0i

30

Φi
3

!
;

ð24Þ

where i ¼ 1; 2; 3 labels the components of the SUð2Þw
adjoint. The CP-odd real SUð2Þw triplet fromΦ is absorbed
by appropriate gauge fields after SUð2Þ × SUð2Þ0 →
SUð2Þw breaking and becomes genuine Goldstone modes.
By the VEVs vΣ and vΣ0 , the symmetry SUð5Þ ×

SUð5Þ0 ×D2 is broken down to G321 × G321
0 [see

Eqs. (9) and (11)]. Thus, between the scales MI and
MI

0, we have this symmetry, and the Φð5; 5̄Þ splits into
fragments

Φð5; 5̄Þ ¼ ΦDD0⊕ΦDT 0⊕ΦTT 0⊕ΦTD0 ð25Þ

with transformation properties under G321 ×G321
0 given by

G321 ×G321
0∶ ΦDD0 ∼

�
1; 2;− 3ffiffiffiffiffi

60
p ; 1; 20;

3ffiffiffiffiffi
60

p
�
; ΦDT 0 ∼

�
1; 2;− 3ffiffiffiffiffi

60
p ; 3̄0; 1;− 2ffiffiffiffiffi

60
p

�
;

ΦTT 0 ∼
�
3; 1;

2ffiffiffiffiffi
60

p ; 3̄0; 1;− 2ffiffiffiffiffi
60

p
�
; ΦTD0 ∼

�
3; 1;

2ffiffiffiffiffi
60

p ; 1; 20;
3ffiffiffiffiffi
60

p
�
: ð26Þ
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The masses of these fragments will be denoted by
MDD0 ;MDT 0 ;MTT 0 , andMTD0 , respectively. Since the break-
ing G321 ×G321

0 → GSM × SUð3Þ0 is realized by the VEV
of the fragment ΦDD0 at scaleMI , we takeMDD0 ≃MI . The
state Φ3, participating in Eq. (24), emerges from this ΦDD0

fragment. The remaining three states under G321 × SUð3Þ0
transform as

G321×SUð3Þ0∶ΦDT 0 ∼
�
1;2;− 5ffiffiffiffiffi

60
p ; 3̄0

�
;

ΦTT 0 ∼ð3;1;0; 3̄0Þ; ΦTD0 ∼
�
3;2;

5ffiffiffiffiffi
60

p ;1

�
:

ð27Þ

The mass squares of these fields are given by

M2
DT 0 ¼ 5λ2ΣΦv2Σ0 ; M2

TT 0 ¼ 5λ2ΣΦðv2Σ þ v2Σ0 Þ − 2λ2Φv2Φ;

M2
TD0 ¼ 5λ2ΣΦv2Σ: ð28Þ

With the VEVs toward the directions given in Eqs. (8),
(10), and (12), and with the extremum conditions of
Eq. (19), the potential’s minimum is achieved with

30λ1 þ 7λ2 > 0; λ2 > 0; λ > 0;

10λ1ΣΦ − 3λ2ΣΦ > 0; λ2ΣΦ > 0;

2λ1Φ þ λ2Φ > 0; λ2Φ > 0: ð29Þ

As far as the states H and H0 are concerned, they are
split as H → ðDH; THÞ and H0 → ðDH0 ; TH0 Þ, where
DH;DH0 are doublets, while TH and TH0 are SUð3Þc
and SUð3Þ0 triplets, respectively. Mass squares of these
triplets are

M2
TH

¼ M2
H − 4h1v2Σ þ 30ðh2v2Σ þ ~hv2Σ0 Þ

þ 2λ1HΦv2Φ=
ffiffiffiffiffi
25

p
;

M2
TH0 ¼ M2

H − 4h1v2Σ0 þ 30ðh2v2Σ0 þ ~hv2ΣÞ
þ 2λ1HΦv2Φ=

ffiffiffiffiffi
25

p
: ð30Þ

The states DH and DH0 , under GSM, both have quantum
numbers of the SM Higgs doublet. They mix by the VEV
hΦi, and the mass squared matrix is given by

ðD†
H;D

†
H0 Þ
 
M2

TH
− 5h1v2Σ þ λ2HΦv2Φ=

ffiffiffiffiffi
10

p
μvΦ

μvΦ M2
TH0 − 5h1v2Σ0 þ λ2HΦv2Φ=

ffiffiffiffiffi
10

p
! 

DH

DH0

!
: ð31Þ

By diagonalization of Eq. (31), we get two physical states
h and D0:

h ¼ cos θhDH þ sin θhDH0 ;

D0 ¼ − sin θhDH þ cos θhDH0 ;

tan 2θh ¼
2μvΦ

M2
TH

−M2
TH0 − 5h1ðv2Σ − v2Σ0 Þ : ð32Þ

We identify h with the SM Higgs doublet and set its
mass square (by fine-tuning) M2

h∼100GeV2. We assume
the second doublet D0 to be heavy M2

D0 ≫ jMhj2. For the
mixing angle θh, we also assume θh ≪ 1. Therefore,
according to Eq. (32), the SM Higgs mainly resides in
DH (of the H-plet), while DH0 (i.e., H0) includes a light
SM doublet with very suppressed weight.
The radiative corrections will affect obtained expressions

for the masses and VEVs. However, there are enough
parameters involved, and one can always get presented
symmetry breaking pattern and spectrum (given in Table I).
Achieving these will require some fine-tunings. Without

addressing here the hierarchy problem and naturalness
issues, we will proceed to study various properties and
the phenomenology of the considered scenario.

III. FERMION SECTOR

A. D2 symmetry à la P parity

We introduce three families of ðΨ; FÞ and three families
of ðΨ0; F0Þ,

3 × ½Ψð10; 1Þ þ Fð5̄; 1Þ�; 3 × ½Ψ0ð1; 10Þ þ F0ð1; 5Þ�;
ð33Þ

where in brackets the transformation properties under
SUð5Þ × SUð5Þ0 gauge symmetry are indicated. Here, each
fermionic state is a two-component Weyl spinor, in ð1

2
; 0Þ

representation of the Lorentz group. The action ofD2 parity
on these fields is determined as

D2∶ Ψ⇆Ψ̄0 ≡ ðΨ0Þ†; F⇆F̄0 ≡ ðF0Þ†: ð34Þ
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It is easy to verify that, with transformations in Eqs. (34) and (2), the kinetic part of the Lagrangian LkinðΨ; F;Ψ0; F0Þ is
invariant.2

We can easily write down invariant Yukawa Lagrangian

LY þ LY 0 þ Lmix
Y ð35Þ

with

LY ¼
X
n¼0

CðnÞ
ΨΨ

�
Σ
M�

�
n
ΨΨH þ

X
n¼0

CðnÞ
ΨF

�
Σ
M�

�
n
ΨFH† þ H:c: ð36Þ

LY 0 ¼
X
n¼0

CðnÞ�
ΨΨ

�
Σ0

M�

�
n
Ψ0Ψ0H0† þ

X
n¼0

CðnÞ�
ΨF

�
Σ0

M�

�
n
Ψ0F0H0 þ H:c: ð37Þ

Lmix
Y ¼ λFF0FΦF0 þ λFF0F0Φ†F̄ þ λΨΨ0

M
ΨðΦ†Þ2Ψ0 þ λΨΨ0

M
Ψ0Φ2Ψ̄; ð38Þ

whereM�;M are some cutoff scales. The coupling matrices
λFF0 and λΨΨ0 are Hermitian due to the D2 symmetry. The
last two higher-order operators in Eq. (38), important for
phenomenology, can be generated by integrating out some
heavy states with mass at or above the GUT scale. For
instance, with the scalar state Ω in ð10; 10Þ representation
of SUð5Þ × SUð5Þ0 and D2 parity, Ω⇆Ω†, the relevant
terms (of fundamental Lagrangian) will be λΨΨ0ΩΨΨ0
þλΨΨ0Ω†Ψ0 · Ψ̄þ M̄ΩðΩΦ2 þ Ω†ðΦ†Þ2Þ þM2

ΩΩ†Ω. With
these couplings, one can easily verify that integration of
Ω generates the last two operators of Eq. (38) (with
M ≈M2

Ω=M̄Ω). Since the Ω is rather heavy, its only low-
energy implication can be the emergence of these effective
operators. Thus, in our further studies, we will proceed
with the consideration of Yukawa couplings given in
Eqs. (36)–(38).
With obvious identifications, let us adopt the following

notations for the components from Ψ; F and Ψ0; F0 states:

Ψ ¼ fq; uc; ecg; F ¼ fl; dcg;
Ψ0 ¼ fq̂; ûc; êcg; F0 ¼ fl̂; d̂cg: ð39Þ

Substituting in Eqs. (36)–(38) the VEVs hΣi; hΣ0i, and hΦi,
the relevant couplings we obtain are

LY → qTYUuchþ qTYDdch† þ ecTYecllh†

þ ðCqqqqþ CucecucecÞTH

þ ðCqlqlþ CucdcucdcÞT†
H þ H:c: ð40Þ

LY 0 → Cð0Þ�
ΨΨ

�
1

2
q̂ q̂þûcêc

�
T†
H0

þ Cð0Þ�
ΨF ðq̂ l̂þûcd̂cÞTH0 þ H:c:þ � � � ð41Þ

Lmix
Y → l̂TMl̂llþ ecTMecêc êc þ H:c: ð42Þ

In Eq. (41) we have dropped out the couplings with the
Higgs doublet because, as we have assumed, DH0 includes
the SM Higgs doublet with very suppressed weight. Also,
we have ignored powers of hΣ0i=M� in comparison with
hΣi=M�’s exponents. As we will see, the couplings of h in
Eq. (40) and terms shown in Eqs. (41) and (42) are
responsible for fermion masses and mixings and lead to
realistic phenomenology.

B. Fermion masses and mixings: Composite leptons

Let us first indicate transformation properties of all
matter states, given in Eq. (39), under the unbroken GSM×
SUð3Þ0 ¼SUð3Þc×SUð2Þw×Uð1ÞY×SUð3Þ0 gauge sym-
metry. Fragments from Ψ; F transform as

q ∼
�
3; 2;− 1ffiffiffiffiffi

60
p ; 1

�
; uc ∼

�
3̄; 1;

4ffiffiffiffiffi
60

p ; 1

�
;

ec ∼
�
1; 1;− 6ffiffiffiffiffi

60
p ; 1

�
; l ∼

�
1; 2;

3ffiffiffiffiffi
60

p ; 1

�
;

dc ∼
�
3̄; 1;− 2ffiffiffiffiffi

60
p ; 1

�
; ð43Þ

while the states from Ψ0; F0 have the following trans-
formation properties:

2The D2 transformation of Eq. (34) resembles usual P parity,
acting between the electron and positron, within QED. Unlike the
QED, the states ðΨ; FÞ and ðΨ0; F0Þ transform under different
gauge groups.
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q̂ ∼
�
1; 2;

1ffiffiffiffiffi
60

p ; 3̄0
�
; ûc ∼

�
1; 1;− 4ffiffiffiffiffi

60
p ; 30

�
;

êc ∼
�
1; 1;

6ffiffiffiffiffi
60

p ; 1

�
; l̂ ∼

�
1; 2;− 3ffiffiffiffiffi

60
p ; 1

�
;

d̂c ∼
�
1; 1;

2ffiffiffiffiffi
60

p ; 30
�
: ð44Þ

In transformation properties of Eq. (44), by primes we have
indicated triplets and antitriplets of SUð3Þ0. As we see,
transformation properties of quark states in Eq. (43)
coincide with those of the SM. Therefore, for quark masses
and CKM mixings, the first two couplings of Eq. (40) are
relevant. Since in YU;D and Yecl contribute also higher-
dimensional operators, the YU is not symmetric and
YD ≠ Yecl. Thus, quark Yukawa matrices can be diagon-
alized by biunitary transformations

L†
uYURu ¼ YDiag

U ; L†
dYDRd ¼ YDiag

D : ð45Þ

With these, the CKM matrix (in standard parametrization)
is

VCKM ¼ P1LT
uL�

dP2 with P1 ¼ Diagðeiω1 ; eiω2 ; eiω3Þ;
P2 ¼ Diagðeiρ1 ; eiρ2 ;1Þ: ð46Þ

1. Composite leptons

Turning to the lepton sector, we note that l̂ and êc have
opposite/conjugate transformation properties with respect
to l and ec, respectively. From couplings in Eq. (42), we see
that these vectorlike states acquire masses Ml̂l and Mecêc

and decouple. However, within this scenario, composite
leptons emerge. The SUð3Þ0 becomes strongly coupled and
confines at scale Λ0 ∼ TeV (for details, see Sec. IV).
Because of confinement, SUð3Þ0 singlet composite

states—baryons (B0) and/or mesons (M0)—can emerge.
The elegant idea of fermion emergence through the strong
dynamics as bound states of more fundamental constituents
was suggested and developed in Refs. [12–22]. Within our
scenario, this idea finds an interesting realization for the
lepton states. Formation of composite fermions should
satisfy ’t Hooft anomaly matching conditions3 [14]. These
give a severe constraint on building models with composite
fermions [16–18], [20–22].
Let us focus on the sector of (three-family) q̂; ûc and d̂c

states, which have SUð3Þ0 strong interactions. Ignoring
local EWand Yukawa interactions, the Lagrangian of these
states possesses global Gð6Þ

f ¼ SUð6ÞL × SUð6ÞR ×Uð1ÞB0

chiral symmetry. Under the SUð6ÞL, three families of q̂ ¼
ðû; d̂Þ transform as sextet 6L, while three families of
ðûc; d̂cÞ≡ q̂c form sextet 6R of SUð6ÞR. The Uð1ÞB0 (B0)
charges of q̂ and q̂c are, respectively, 1=3 and −1=3. Thus,
transformation properties of these states under

Gð6Þ
f ¼ SUð6ÞL × SUð6ÞR ×Uð1ÞB0 ð47Þ

chiral symmetry are

q̂α ¼ ðû; d̂Þα ∼
�
6L; 1;

1

3

�
;

q̂cα ¼ ðûc; d̂cÞα ∼
�
1; 6R;− 1

3

�
; ð48Þ

where α ¼ 1; 2; 3 is the family index. Because of the strong

SUð3Þ0 attractive force, condensates that will break theGð6Þ
f

chiral symmetry can form. The breaking can occur by
several steps, and at each step the formed composite states
should satisfy anomaly matching conditions.
In Appedix A, we give a detailed account of these issues

and demonstrate that within our scenario three families of
l0; ec0; ν

c
0 composite states,

ðq̂ q̂Þq̂ ∼ l0α ¼
 
ν0

e0

!
α

; ðq̂cq̂cÞq̂c ¼ ððûcd̂cÞd̂c; ðûcd̂cÞûcÞ ∼ lc0α ≡ ðνc0; ec0Þα; α ¼ 1; 2; 3; ð49Þ

emerge. In Eq. (49), for combinations ðq̂ q̂Þq̂ and ðq̂cq̂cÞq̂c,
the spin-1=2 states are assumed with suppressed gauge and/
or flavor indices. For instance, under ðq̂ q̂Þq̂ we mean

ϵa
0b0c0ϵijðq̂a0iq̂b0jÞq̂c0k, where a0; b0; c0 ¼ 1; 2; 3 are SUð3Þ0

indices and i; j; k ¼ 1; 2 stand for SUð2Þw (or SUð2ÞL)

indices. Thus, ðq̂ q̂Þq̂ and ðq̂cq̂cÞq̂c are singlets of SUð3Þ0.
From these, taking into account Eqs. (44) and (49), it is
easy to verify that the quantum numbers of composite states
under SM gauge group GSM ¼ SUð3Þc × SUð2Þw ×Uð1ÞY
are

GSM∶ l0 ∼
�
1; 2;

3ffiffiffiffiffi
60

p
�
; ec0 ∼

�
1; 1;− 6ffiffiffiffiffi

60
p

�
;

νc0 ∼ ð1; 1; 0Þ: ð50Þ
3In case the chiral symmetry remains unbroken (at least

partially) at the composite level. The models avoiding anomaly
conditions were suggested in Ref. [19].
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As we see, along with SM leptons (l0 and ec0), we get three
families of composite SM singlets fermions-νc0. The latter
can be treated as composite right-handed/sterile neutrinos
in the spirit of Ref. [23]. Note that, with this composition,
as was expected, the gauge anomalies also vanish (together
with the chiral anomaly matching; for details, see Appen-
dix A). Interestingly, the SUð3Þ0 [originating from SUð5Þ0]
triplet and antitriplets ûc; d̂c, and q̂ play the role of “preon"
constituents for the bound-state leptons and right-handed/
sterile neutrinos. Moreover, in our scheme the lepton
number L is related to the Uð1ÞB0 charge as L ¼ 3B0.
Therefore, “primed baryon number" B0 [of the SUð5Þ0] is
the origin of the lepton number.

2. Charged lepton masses

Now, we turn to the masses of the charged leptons, which
are composite within our scenario. As it turns out, their
mass generation does not require additional extension. It
happens via integration of the states that are present in the
model. As we see from Eq. (41), the SUð5Þ0 matter couples
with the SUð3Þ0 triplet scalar TH0 with massMTH0 . Relevant
4-fermion operators, emerging from the couplings of
Eq. (41) and by integration of TH0 , are

Leff
Y 0 ¼ Cð0Þ�

ΨΨ Cð0Þ�
ΨF

M2
TH0

�
1

2
ðq̂ q̂Þðq̂ l̂Þ þ ðûcêcÞðûcd̂cÞ

�
þ H:c:

ð51Þ

As we see, here appear the combinations ðq̂ q̂Þq̂ and
ðûcd̂cÞûc, which according to Eq. (49) form composite
charged lepton states. We will use the parametrizations

1

2
ðq̂αq̂βÞq̂γ ¼ Λ03cαβγδl0δ; ðûcαd̂cβÞûcγ ¼ Λ03c̄αβγδec0δ;

ð52Þ

where Greek indices denote family indices and c; c̄ are
dimensionless couplings—four index tensors in a family
space. The ðl0; ec0Þδ denote three families of composite
leptons. Using Eq. (52) in Eq. (51), we obtain

Leff
Y 0 → l̂ μ̂ l0 þ ec0 ~μê

c þ H:c:

with μ̂δ0δ ≡ Λ03

M2
TH0

ðCð0Þ�
ΨΨ ÞαβðCð0Þ�

ΨF Þγδ0cαβγδ;

~μδδ0 ≡ Λ03

M2
TH0

ðCð0Þ�
ΨΨ Þγδ0 ðCð0Þ�

ΨF Þαβc̄αβγδ: ð53Þ

At the next stage, we integrate out the vectorlike states l̂; l
and ec; êc, which, respectively, receive masses Ml̂l and
Mecêc through the coupling in Eq. (42). Integrating out
these heavy states, from Eqs. (42) and (53), we get

l≃− 1

Ml̂l
μ̂l0; ecT ≃−ecT0 ~μ

1

Mecêc
: ð54Þ

Substituting these in the ecTYecllh† coupling of Eq. (40),
we see that the effective Yukawa couplings for the leptons
are generated:

lT0YEec0h
† þ H:c: with YT

E ≃ ~μ
1

Mecêc
Yecl

1

Ml̂l
μ̂: ð55Þ

The diagram corresponding to the generation of this
effective Yukawa operator is shown in Fig. 1. This
mechanism is novel and differs from those suggested
earlier for the mass generation of composite fermions
[22]. From the observed values of the Yukawa couplings,
we have jDetYEj ¼ λeλμλτ ≈ 1.8 × 10−11. On the other
hand, natural values of the eigenvalues of Yecl can be
∼0.1. Thus, jDetYeclj ∼ 10−3. From these and the expres-
sion given in Eq. (55), we obtain����Det

�
~μ

1

Mecêc

�����·
����Det

�
1

Ml̂l
μ̂

����� ∼ 10−8; ð56Þ

the constraint that should be satisfied by two matrices
~μ 1
Mecêc

and 1
Ml̂l

μ̂.

3. Neutrino masses

Now, we discuss the neutrino mass generation. To
accommodate the neutrino data [4], one can use SM singlet
fermionic states in order to generate either Majorana- or
Dirac-type masses for the neutrinos. Within our model,
among the composite fermions, we have SM singlets νc0
[see Eqs. (49) and (50)]. Here, we stick to the possibility of
the Dirac-type neutrino masses, which can be naturally
suppressed [23]. Because of compositeness, there is no
direct Dirac couplings Yν of νc0 ’s with lepton doublets l0.
Similar to the charged lepton Yukawa couplings, we need
to generate Yν. For this purpose, we introduce the SUð5Þ ×
SUð5Þ0 singlet (two-component) fermionic states N.4

Assigning the D2 parity transformations N⇆N̄ and taking
into account Eqs. (5) and (34), relevant couplings, allowed
by SUð5Þ × SUð5Þ0 ×D2 symmetry, will be

LN ¼ CFNFNHþC�
FNF

0NH0† − 1

2
NTMNN þH:c:

with MN ¼M�
N: ð57Þ

These give the following interaction terms:

LN → CFNlNhþ C�
FNd̂

cNT†
H0 − 1

2
NTMNN þ H:c: ð58Þ

4The number of N states is not limited, but for simplicity we
can assume that they are not more than 3.
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From these and Eq. (41), integration of TH0 state gives the
additional affective four-fermion operator

Cð0Þ�
ΨF C�

FN

M2
TH0

ðûcd̂cÞðd̂cNÞ þ H:c: ð59Þ

By the parametrization

ðûcαd̂cβÞd̂cγ ¼ Λ03 ~cαβγδνc0δ; ð60Þ

operators in Eq. (59) are given by

Leff
Nνc ¼ Nμνν

c
0 þ H:c:

with ðμνÞδ0δ ≡ Λ03

M2
TH0

ðCð0Þ�
ΨF ÞαβðC�

FNÞγδ0 ~cαβγδ: ð61Þ

Subsequent integration of N states, from Eq. (61) and the
last term of Eq. (58) gives

N ≃ 1

MN
μνν

c
0: ð62Þ

Substituting this, and the expression of l from Eq. (54),
in the first term of Eq. (58), we arrive at

lT0Yνν
c
0hþ H:c: with Yν ≃−μ̂T 1

MT
l̂l

CFN
1

MN
μν: ð63Þ

The relevant diagram generating this effective Dirac
Yukawa couplings is given in Fig. 2. With 1

Ml̂l
μ̂ ∼ 10−2 and

CFN ∼MN ∼ 1
MN

μν ∼ 10−5, we can get the Dirac neutrino

mass MD
ν ¼ Yνhhð0Þi ∼ 0.1 eV, which is the right scale to

explain neutrino anomalies. Note that using Eq. (62) in the

last term of Eq. (58) we also obtain the term − 1
2
νc0

TMνcν
c
0

with Mνc ≃ μTν
1

MN
μν. By proper selection of the couplings

CFN and eigenvalues of MN , the Mνc can be strongly
suppressed. In this case, the neutrinos will be (quasi) Dirac.
However, it is possible that some of the species of light
neutrinos to be (quasi) Dirac and some of them Majoranas.
Detailed studies of such scenarios and their compatibilities
with current experiments [24] are beyond the scope of
this paper.

IV. GAUGE COUPLING UNIFICATION

In this section we will study the gauge coupling uni-
fication within our model. We show that the symmetry
breaking pattern gives the possibility for successful uni-
fication.5 As it turns out, the SUð3Þ0 gauge interaction
becomes strongly coupled at scale Λ0ð∼fewTeVÞ. Thus,
below this scale, SUð3Þ0 confines, and all states (including
composite ones) are SUð3Þ0 singlets. Therefore, with the

masses MðαÞ
l̂l

and MðαÞ
ecêc (α ¼ 1; 2; 3) of vectorlike states l; l̂

and ec; êc being above the scale Λ0, in the energy interval
μ ¼ MZ − Λ0, the states are just those of SM (plus possibly
right-handed/sterile neutrinos having no impact on gauge
coupling running), and corresponding one-loop β-function
coefficients are ðbY; bw; bcÞ ¼ ð41

10
;− 19

6
;−7Þ. Since Λ0 is

the characteristic scale of the strong dynamics, it is clear
that pseudo-Goldstone and composite states (besides SM
leptons) emerging through chiral symmetry breaking and
strong dynamics can have masses below Λ0 (in a certain
range). Instead, investigating their spectrum and dealing
with corresponding threshold effects, we parametrize all

FIG. 1. Diagram responsible for the generation of the charged lepton effective Yukawa matrix.

FIG. 2. Diagram responsible for the generation of the effective Dirac Yukawa matrix for the neutrinos.

5Possibilities of gauge coupling unification, with the inter-
mediate symmetry breaking pattern and without invoking low-
scale supersymmetry, have been studied in Ref. [25].
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these as a single effective Λ0 scale, below which theory is
the SM. This phenomenological simplification allows us to
proceed with RG analysis. Note, however, that even with
taking those kinds of thresholds into account should not
harm the success of coupling unification with the price of
proper adjustment of the mass scales (given in Table I and
discussed later on).
In the energy interval Λ0 −MI , we have the symmetry

SUð3Þc × SUð2Þw × Uð1ÞY × SUð3Þ0, and SUð3Þ0 non-
singlet states (i.e., q̂; ûc; d̂c, TH0 , etc.) must be taken into
account. As was noted in Sec. II, we consider hierarchical
breaking: MI ≪ MI

0 ≪ MG [see Eqs. (17) and (18)]. This
choice allows us to have successful unification with
confining scale Λ0 ∼ fewTeV.6 Thus, between the scales
MI andMI

0, the symmetry isG321 ×G321
0 [see Eqs. (9) and

(11)], and states should be decomposed under these groups
[see, for instance, Eqs. (25) and (26)]. Since the breaking
G321 × G321

0 → GSM × SUð3Þ0 is realized by the VEV of
the fragment ΦDD0 at scale MI , we take MDD0 ≃MI . The
remaining three masses, of the fragments coming from Φ,
can be in a range Λ0 −MG. Giving more detailed account
to these issues in Appendix B, below we sketch the main
details.
Above the scale MI, all matter states should be included

in the RG. Above the scale MI
0, we have the SUð5Þ0

symmetry, and the fragments ΦDD0 ;ΦDT0 form the
unified ð2; 5̄Þ-plet of G321×SUð5Þ0: ðΦDD0 ;ΦDT 0 Þ⊂ΦD5̄0 ,
while ΦTT 0 and ΦTD0 states unify in ð3; 5̄Þ-plet:
ðΦTT 0 ;ΦTD0 Þ ⊂ ΦT5̄0 . These states, together with the Σ0-
plet, should be included in the RG above the scale MI

0.
According to Eq. (16), at scale MI, for the EW gauge

couplings, we have the boundary conditions

α−1Y ðMIÞ ¼ α−11 ðMIÞ þ α−1
10 ðMIÞ;

α−1w ðMIÞ ¼ α−12 ðMIÞ þ α−1
20 ðMIÞ: ð64Þ

The couplings of G321
0 gauge interactions unify and form

single SUð5Þ0 coupling at scale MI
0:

α10 ðMI
0Þ ¼ α20 ðMI

0Þ ¼ α30 ðMI
0Þ ¼ α50 ðMI

0Þ: ð65Þ

Finally, at the GUT scale MG, the coupling of G321 and
SUð5Þ0 unifies:

α1ðMGÞ ¼ α2ðMGÞ ¼ α3ðMGÞ ¼ α50 ðMGÞ≡ αG: ð66Þ

With solutions (B5) and (B6) of RG equations at
corresponding energy scales, and taking into account the
boundary conditions (64)–(66), we derive

0
BBBBBB@

ðbIG1 − bZIY þ bΛ
0I

30 Þ; −bIG1 ; ðbII0
30 − bII

0
10 Þ; −2π

ðbIG2 − bZIw þ bΛ
0I

30 Þ; −bIG2 ; ðbII0
30 − bII

0
20 Þ; −2π

ðbIG3 − bZIc Þ; −bIG3 ; 0; −2π
ðbI0G

50 − bΛ
0I

30 Þ; −bI0G
50 ; ðbI0G

50 − bII
0

30 Þ; −2π

1
CCCCCCA

0
BBBBBB@

ln MI
MZ

lnMG
MZ

lnMI
0

MI

α−1G

1
CCCCCCA

¼

0
BBBBBB@

2πðα−1
30 ðΛ0Þ − α−1Y Þ þ bΛ

0I
30 ln Λ0

MZ

2πðα−1
30 ðΛ0Þ − α−1w Þ þ bΛ

0I
30 ln Λ0

MZ

−2πα−1c
−2πα−1

30 ðΛ0Þ − bΛ
0I

30 ln Λ0
MZ

1
CCCCCCA
; ð67Þ

where on the right-hand side of this equation the couplings αY;w;c are taken at scaleMZ. The factors b
μaμb
i (like bIG1 , bΛ

0I
30 , etc.)

stand for effective b factors corresponding to the energy interval μa − μb and can also include two-loop effects. All expressions
and details are given in Appendix B.

TABLE I. Particle spectroscopy.

Ma GeV Ma GeV Ma GeV Ma GeV Ma GeV

Mð1Þ
l̂l

7.54 × 104 Mð2Þ
ecêc

7.54 × 104 MD0 4.16 × 106 MTD0 3.92 × 106 MX0 2.08 × 106

Mð2Þ
l̂l

7.54 × 104 Mð3Þ
ecêc

1.2 × 105 MTT 0 1874.7 MΣ0
80

9277 MTH
5 × 1011

Mð3Þ
l̂l

1.2 × 105 Λ0 1851 MDD0 8.25 × 104 MΣ0
30

2MΣ0
80

MX 4.95 × 1011

Mð1Þ
ecêc

7.54 × 104 MTH0 1851 MDT 0 8250 MΣ0
10

4.16 × 106 MΣ 5 × 1011

6One can have unification with hΣ0i ¼ 0, (i.e.,MI ¼ MI
0) and with a modified spectrum. However, with such a choice, the value of Λ0

comes out rather large (≳105 GeV). This would also imply the breaking of EW symmetry at a high scale and thus should be discarded
from the phenomenological viewpoint. More discussion about this issue is given in Sec. VI.
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From Eq. (67) we can calculate fMI;MG;MI
0; αGg in

terms of the remaining inputs. For instance, a phenom-
enologically viable scenario is obtained when SUð3Þ0
confines at scale Λ0 ∼ 1 TeV. Thus, we will take Λ0 ∼
1 TeV and α−1

30 ðΛ0Þ ≪ 1. In Table I we give selected input
mass scales, leading to successful unification with

fMI;MI
0;MGg≃f8.25×104;4.16×106;4.95×1011gGeV;

αG≃1=31: ð68Þ
The corresponding picture of gauge coupling running is
given in Fig. 3. This result is obtained by solving RGs in
the two-loop approximation. More details, including one-
and two-loop RG factors at each relevant mass scale, are
given in Appendix B.

V. NUCLEON STABILITY

In this section we show that, although the GUT scaleMG
is relatively low (close to 5 × 1011 GeV), the nucleon’s
lifetime can be compatible with current experimental
bounds. In achieving this, a crucial role is played by lepton
compositeness, because leptons have no direct couplings
with X; Y gauge bosons of SUð5Þ. The baryon number
violating d ¼ 6 operators, induced by integrating out of the
X; Y bosons, are

g2X
M2

X
ðucaγμqibÞðdccγμljÞϵabcϵij;

g2X
M2

X
ðucaγμqibÞðecγμqjcÞϵabcϵij; ð69Þ

where gX is the SUð5Þ gauge coupling at scale MX (the
mass of the X; Y states). According to Eq. (54), the states
l; ec contain light leptons l0; ec0. Using this and going to the
mass eigenstate basis [with Eqs. (45) and (46)], from
Eq. (69), we get operators

OðecÞ
d6 ¼ g2X

M2
X
Cðe

cÞ
αβ ðucγμuÞðecαγμdβÞ;

OðeÞ
d6 ¼ g2X

M2
X
CðeÞαβ ðucγμuÞðdcβγμeαÞ;

OðνÞ
d6 ¼ g2X

M2
X
CðνÞαβγðucγμdαÞðdcβγμνγÞ; ð70Þ

with

Cðe
cÞ

αβ ¼ ðR†
uL�

uÞ11
�
R†
e ~μ�

1

M�
ecêc

L�
uP�

1VCKM

�
αβ

þ ðR†
uL�

uP�
1VCKMÞ1β

�
R†
e ~μ�

1

M�
ecêc

L�
u

�
α1

;

CðeÞαβ ¼ ðR†
uL�

uÞ11
�
R†
d

1

Ml̂l
μ̂L�

e

�
βα

;

CðνÞαβγ ¼ ðR†
uL�

uP�
1VCKMÞ1α

�
R†
d

1

Ml̂l
μ̂L�

e

�
βγ

; ð71Þ

where in Eq. (70) we have suppressed the color indices.
Similar to quark Yukawa matrices, the charged lepton
Yukawa matrix has been diagonalized by transformation
L†
eYERe ¼ YDiag

E . All fields in Eq. (70), are assumed to
denote mass eigenstates. We have ignored the neutrino
masses (having no relevance for the nucleon decay) and
rotated the neutrino flavors ν0 ¼ L�

eν similar to the left-
handed charged leptons e0 ¼ L�

ee.
As we will show now, with proper selection of appropriate

parameters (such as ~μ 1
Mecêc

, 1
Ml̂l

μ̂ and/or corresponding
entries in some of unitary matrices), appearing in
Eq. (71), we can adequately suppress nucleon decays within
our model.7 Upon the selection of parameters, the constraint

Log10
GeV

1

FIG. 3 (color online). Gauge coupling unification. fΛ0;MI;MI
0;MGg≃ f1800; 8.25 × 104; 4.16 × 106; 4.95 × 1011g GeV and

αGðMGÞ≃ 1=31.

7The importance of flavor dependence in d ¼ 6 nucleon decay
was discussed in Refs. [26] and [27]. As was shown [27], in
specific circumstances, within GUTs one can suppress or even
completely rotate away the d ¼ 6 nucleon decays.
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(56) must be satisfied in order to obtain observed values of
charged fermion masses. Introducing the notations

R†
uL�

u ≡ U; R†
d

1

Ml̂l
μ̂L�

e ≡ L; R†
e ~μ�

1

M�
ecêc

L�
u ≡R;

ð72Þ

the couplings in Eq. (71) can be rewritten as

Cðe
cÞ

αβ ¼ U11ðRP�
1VCKMÞαβ þ ðUP�

1VCKMÞ1βðRÞα1;
CðeÞαβ ¼ U11Lβα; CðνÞαβγ ¼ ðUP�

1VCKMÞ1αLβγ: ð73Þ

Since the matrices U, L, and R are not fixed yet, for their
structures we will make the selection

U11 ¼ 0; L¼

0
B@

ϵ1 ϵ2 ϵ3

× × ×

× × ×

1
CA; R¼

0
B@

0 × ×

0 × ×

× × ×

1
CA;

ð74Þ

where × stands for some nonzero entry. With this structure

we see that for α; β ¼ 1; 2 we have Cðe
cÞ

αβ ¼ CðeÞαβ ¼ 0, and
therefore nucleon decays with emission of the charged
leptons do not take place. With one more selection, we
will be able to eliminate some nucleon decay modes (but
not all) with neutrino emissions. We can impose one more
condition, involving U12 and U13 entries of U, in such a
way as to have ðUP�

1VCKMÞ11 ¼ 0. The latter, in expanded
form, reads

ðUP�
1VCKMÞ11 ¼ U12e−iω2Vcd þ U13e−iω3Vtd ¼ 0;

⇒ U12e−iω2 ¼ − Vtd

Vcd
U13e−iω3 ð75Þ

and leads to CðνÞ12γ ¼ CðνÞ11γ ¼ 0. Thus, the decays p →

ν̄πþ; n → ν̄π0; n → ν̄η do not take place. Nonvanishing

relevant CðνÞ couplings are CðνÞ21γ , which, taking into account
Eqs. (74) and (75), are

CðνÞ21γ ¼ ðUP�
1VCKMÞ12ϵγ ¼ ϵγU13e−iω3

VtsVcd − VtdVcs

Vcd
≃ ϵγU13e−iω3

s13eiδ

Vcd
; ð76Þ

where in last step we have used standard parametrization of
the CKM matrix. Since the matrix U is unitary, due to
selection U11 ¼ 0 and the unitarity condition, we will have
jU12j2 þ jU13j2 ¼ 1. With this, by Eq. (75) and using
central values [28] of CKM matrix elements, we obtain

jU12j≃ 0.038; jU13j≃ 1 and j s13Vcd
j ¼ j Vub

Vcd
j≃ 1.56 × 10−2.

These give jCðνÞ21γj≃ 1.56 × 10−2jϵγj. Taking into account all
this, for expressions of p → ν̄Kþ and n → ν̄K0 decay
widths, we obtain [29]

Γðp → ν̄KþÞ≃ Γðn → ν̄K0Þ ¼ ðm2
p −m2

KÞ2
32πf2πm3

p

�
1þ mp

3mB
ðDþ 3FÞ

�
2
�
gX
M2

X
ARjαHj

�
2

· 2.43 × 10−4
X3
γ¼1

jϵγj2; ð77Þ

where jαHj ¼ 0.012 GeV3 is a hadronic matrix element and
AR ¼ ALAl

S ≃ 1.48 takes into account long- (AL ≃ 1.25)
and short-distance (Al

S ≃ 1.18) renormalization effects (see
Refs. [30] and [31], respectively. Some details of the
calculation of Al

S, within our model, are given in Appen-
dix 1). To satisfy current experimental bound τexpp ðp →
ν̄KþÞ≲ 5.9 × 1033 years [32], forMX ≃ 5 × 1011 GeV and
αX ≃ 1=31, we need to have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jϵ1j2 þ jϵ3j2 þ jϵ3j2

p ≲
4.8 × 10−6. This selection of parameters is fully consistent
with the charged fermion masses. Note, that with Eq. (74)
there is no conflict with the constraint of Eq. (56). We can
lower values of jϵγj; however, there is a low bound dictated
from this constraint. With jDetð~μ 1

Mecêc
Þj · jDetð 1

Ml̂l
μ̂Þj ¼

jDetðLÞj · jDetðRÞj ∼ 10−8, the lowest value can be
jϵγj ∼ 10−8, obtained with jDetðRÞj ∼ 1. More natural
would be to have jDetðRÞj ≲ 10−2, which suggests
jDetðLÞj≲ 10−6, and therefore

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jϵ1j2 þ jϵ3j2 þ jϵ3j2

p ≳

ffiffiffi
3

p
× 10−6. This dictates an upper bound for the proton

lifetime τp ¼ τðp → ν̄KþÞ≲ 5 × 1034 years and will allow
us to test the model in the future [32].
Besides X; Y gauge boson mediated operators, there are

d ¼ 6 operators generated by the exchange of colored
triplet scalar TH. From the couplings of Eq. (40), we can see
that the integration of TH induces baryon number violating
1

M2
TH

ðqTCqqqÞðqTCqllÞ and 1
M2

TH

ðucCucececÞðucCucdcdcÞ op-
erators, which lead to the couplings 1

M2
TH

ðqTCqqqÞ
ðqTCql

1
Ml̂l

μ̂l0Þ and 1
M2

TH

ðucCucec
1

MT
ecêc

~μTec0ÞðucCucdcdcÞ.
Couplings Cab appearing in these operators are indepen-
dent from Yukawa matrices, and proper suppression of
relevant terms is possible [similar to the case of couplings
in Eq. (73)], leaving fermion masses and a mixing pattern
consistent with experiments. To make a more definite
statement about the nucleon lifetime, one has to study in
detail the structure of Yukawa matrices. In this respect,
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extension with flavor symmetries is a motivated framework
and can play a crucial role in generating the desirable
Yukawa textures [guaranteeing the forms given in
Eq. (74)]. Preserving these issues for being addressed
elsewhere, let us move to the next section.

VI. VARIOUS PHENOMENOLOGICAL
CONSTRAINTS AND IMPLICATIONS

In this section we discuss and summarize some
peculiarities, phenomenological implications of our
model, and constraints needed to be satisfied in order
to be consistent with experiments. Also, we list issues
opening prospects for further investigations within pre-
sented scenario:

(i) The discovery of the Higgs boson [1], with mass
≈126 GeV, revealed that the Standard Model suffers
from vacuum instability. Detailed analysis has
shown [2] that, due to RG, the Higgs self-coupling
becomes negative near the scale ∼1010 GeV. If the
Higgs field is sure to remain in the EW vacuum, the
problem perhaps is not as severe. However, with
an inflationary universe with the Hubble parameter
≫ 1010 GeV (preferred by the recent BICEP2
measurement [33]), the EW vacuum can be easily
destabilized by the Higgs’s move/tunneling to the

“true” anti-de Sitter (AdS) vacuum [34]. Whether
AdS domains take over or crunch depends on the
details of inflation, the reheating process, nonmini-
mal Higgs/inflaton couplings, etc. (a detailed over-
view of these questions can be found in Refs. [35]
and [34]). While these and related issues need more
investigation, to be on the safe side, it is desirable to
have a model with positive λh at all energy scales (up
to the MPl).
Since within our model above the Λ0 scale new states
appear, this problem can be avoided. As was
mentioned in Sec. II, in our model a light SM
doublet h dominantly comes from the H-plet. The
coupling λHðH†HÞ2 gives the self-interaction term
λhðh†hÞ2 (with λh ≈ λH at the GUT scale). The
running of λh will be given by

16π2
d
dt

λh ¼ βSMλh þ Δβλh ;

where βSMλh corresponds to the SM part, while Δβλh
accounts for new contributions. Since theH-plet in the
potential (7) has additional interaction terms, some of
those couplings can help to increase λh. For instance,
the couplings λ1HΦ, λ2HΦ, ĥ, etc., contribute as

Δβλh ≈
ðλ1HΦÞ2

25
½9θðμ −MTT 0 Þ þ 6θðμ −MDT 0 Þ þ 6θðμ −MTD0 Þ þ 4θðμ −MDD0 Þ�

×
ðλ2HΦÞ2

10
½3θðμ −MDT 0 Þ þ 2θðμ −MDD0 Þ� þ 3ĥ2θðμ −MTH0 Þ þ � � � ð78Þ

Detailed analysis requires numerical studies by solving
the system of coupled RG equations (involving multiple
couplings8). While this is beyond the scope of this work,
we see that, due to positive contributions (see above) into
the β function, there is potential to prevent λh becoming
negative all the way up to the Planck scale.
(ii) Since in our model leptons are composite, there will

be additional contributions to their anomalous mag-
netic moment, given by [15]

δaα ∼
�
meα

Λ0

�
2

: ð79Þ

Current experimental measurements [28] of the muon
anomalous magnetic moment give Δaexpμ ≈ 6 × 10−10.
This, having in mind a possible range ∼ð1=5 − 1Þ of
an undetermined prefactor in the expression of
Eq. (79), constrains the scale Λ0 from below:
Λ0 ≳ ð1.8 − 4.3Þ TeV. The selected value of Λ0,
within our model (Λ0 ¼ 1851 GeV), fits well with

this bound.9 The value of δae is more suppressed (for
Λ0 ≃ 1.8 TeV, we get δae ∼ 10−13) and is compatible
with experiments (Δaexpe ≈ 2.7 × 10−13). Planned
measurements [38] with reduced uncertainties will
provide severe constraints and test the viability of the
proposed scenario.
Similarly, having flavor violating couplings at the
level of constituents (i.e., in the sector of SUð3Þ0
fermions q̂; ûc; d̂c), the new contribution in eα → eβγ
rare decay processes will emerge. For instance, the
contribution in the μ → eγ transition amplitude will be
∼λ12

mμ

ðΛ0Þ2, where λ12 is the (unknown) flavor violating

coupling coming from the Yukawa sector of q̂; ûc; d̂c.
This gives Brðμ → eγÞ ∼ λ212ðMW

Λ0 Þ4, and for Λ0 ≃
1.8 TeV the constraint λ12 ≲ 4 × 10−4 should be
satisfied in order to be consistent with the latest
experimental limit Brexpðμ → eγÞ < 5.7 × 10−13 [39].

8For methods studying the stability of multifield potentials, see
Refs. [3] and [36] and references therein.

9In fact, this new contribution to aμ has the potential of
resolving a 3–4σ discrepancy [28] (if it will persist in the future)
between the theory and experiment [37].
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(iii) As was mentioned in Sec. III B (and will be dis-
cussed also in Appendix A), the matter sector of
SUð3Þ0 symmetry (ignoring EW and Yukawa inter-

actions) possesses Gð6Þ
f chiral symmetry with sextets

6L ∼ q̂α and 6R ∼ q̂cα [see Eqs. (47) and (48)]. The
breaking of this chiral symmetry proceeds by several
steps. At the first stage, at scale Λ0≈1.8TeV, the
condensates h6L6LT†

H0 i∼h6R6RTH0 i∼Λ0 break the

Gð6Þ
f . However, these condensates preserve SM

gauge symmetry. At the next stage (of chiral sym-
metry breaking), the condensate h6L6Ri≡Fπ0 , to-
gether with the Higgs VEV hhi≡vh, contributes to
the EW symmetry breaking. The Fπ0 denotes the
decay constant of the (techni) π0 meson and should
satisfy v2h þ F2

π0 ¼ ð246.2 GeVÞ2. With the light
(very SM-like) Higgs boson mainly residing in h
and with Fπ0 ≲ 0.2vh, the h’s signal will be very
compatible with LHC data [40]. Since the low-energy
potential would involve VEVs h6L6LT†

H0 i,
h6R6RTH0 i, Fπ0 , and vh, obtaining mild hierarchy
Fπ0
Λ0 ≲ 1=40 will be possible by proper selection (not
by severe fine-tunings) of parameters from perturba-
tive and nonperturbative (effective) potentials. The
situation here (i.e., the symmetry breaking pattern,
potential (being quite involved because of these
VEVs), etc.) will differ from case obtained within
QCD with SUðnÞL × SUðnÞR chiral symmetry and
with the hnL × nRi condensate only [41]. Moreover,
the hierarchy between the confinement scale and the
decay constant can have some dynamical origin (see,
e.g., Refs. 10[43]). Without addressing these details,
our approach is rather phenomenological, with the
assumption Fπ0=vh ≲ 0.2 and h being the Higgs
boson (with mass ≈126 GeV), such that there is
allowed a window for a heavier π0 state and the model
is compatible with current experiments [44]. Models
with partially composite Higgs, in which the light
Higgs doublet (dominantly coming fromH) has some
ed-mixture of a composite (technipion π0) state (i.e.,
h ¼ hH þ cπ0π0, with cπ0 ≪ 1) with various interest-
ing implications (including necessary constraints,
limits, and compatibility with LHC data), were
studied in Ref. [40]. As mentioned in Sec. IV, it is
possible to have unification with the symmetry
breaking pattern and the spectrum of intermediate
states that give larger values of Λ0 (even with
Λ0 ∼ 105 GeV). However, in such a case, the value
ofFπ0 would be also large, and it would be impossible
to bring Fπ0 to the low value even with fine-tuning.
This would mean that the EW symmetry breaking

scale would be also large. That is why such a
possibility has not been considered.
In addition, it is rather generic that the model with
composite leptons will be accompanied with excited
massive leptons (lepton resonances). Current experi-
ments have placed low bounds on masses of the
excited electron and muon to be heavier than
∼1.8 TeV. This scale is close to the value of Λ0
we have chosen within our model and will allow us to
test the lepton substructure [45] hopefully in the not-
far future. Details, related to these issues, deserve
separate investigations.

(iv) Since the condensate h6L6Ri ¼ Fπ0 , by some
amount, can contribute to the chiral [of the
SUð3Þ0 strong sector] and EW symmetry breaking,
the scenario shares some properties of hybrid tech-
nicolor models with fundamental Higgs states.
Moreover, together with technipion π0, near the Λ0
scale, there will be technimeson states ρT , ωT , etc.,
with peculiar signatures [46], [47], which can be
probed by collider experiments.

(v) Because of the new states around and above the Λ0 ≈
1.8 TeV scale, there will be additional corrections to
the EW precision parameters T, S, U, etc. While
because of strong dynamics near the Λ0 scale, the
accurate calculations require some effort, the sym-
metry arguments provide a good estimate of the
additional corrections—ΔT, ΔS, etc. One can easily
notice that the isospin breaking effects are sup-
pressed in the sector of additional states. Therefore,
the mass splittings between doublet components of
the additional states will be suppressed (i.e.,
ΔM ≪ M), and pieces ΔTf;ΔTs of ΔT ¼ ΔTf þ
ΔTs will be given as [48]

ΔTf≃ Nf

12πs2W

�
ΔMf

mW

�
2

; ΔTs≃ Ns

24πs2W

�
ΔMs

mW

�
2

;

ð80Þ

where subscripts f and s stand for fermions and
scalars, respectively, and Nf; Ns account for the
multiplicity [or dimension with respect to the group
different from SUð2Þw] of the corresponding doublet
state. One can easily verify that within our model in
the sector of extra vectorlike ðl̂þ lÞα states the mass
splitting between doublet components is suppressed as

ΔMðαÞ
l̂l

≲ v2h
MðαÞ

l̂l

. This, according to Eq. (80) and Table I,

gives the negligible contribution: ΔTl̂l ≲ 2·2
12πs2W

v4h=

ðmWM
ð1Þ
l̂l
Þ2 ∼ 10−5. Within the fragments of the scalar

Φ, the lightest is ΦDT 0 with mass MDT 0 ≃ 8.3 TeV.
Splitting between the doublet components comes
from the potential term λ2HΦffiffiffiffi

10
p H†ΦΦ†H, givingΔMDT 0≃

λ2HΦv2h=ð4
ffiffiffiffiffi
10

p
MDT 0 Þ. This, according to Eq. (80),

10If a conformal window is realized, the value of Fπ0 can be
more reduced [42].
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causes enough suppression: ΔTDT 0≃ 3
24πs2W

×

λ24HΦv
4
h=ð2

ffiffiffiffiffi
10

p
MDT0mWÞ2≲2×10−5 (for λ2HΦ≲1.5).

As pointed out above, besides the
fundamental Higgs doublet (h), which dominantly
includes SM Higgs, there is a composite doublet
(π0—similar to technicolor models) with suppressed
VEV—Fπ0 . Contribution of this extra doublet, into the
T parameter, is estimated to be

ΔTπ0 ≈
1

24πs2W

�
ΔMπ0

mW

�
2 − c2W

4π
c2π0 ln

M2
π0

m2
Z
; ð81Þ

where the first term is due to the mass splitting
ΔMπ0 ð∼v2h=ð4Mπ0 Þ) between doublet components of
π0, while second term emerges due to the VEV hπ0i ¼
Fπ0 with cπ0 ≈ 2m2

ZFπ0=ðM2
π0vhÞ (where Fπ0 ≲ 0.2vh).

This contribution is also small (ΔTπ0 ≈ 2 × 10−3) for
Mπ0 ∼ 1 TeV. Since π0 is a composite state, due to the
strong dynamics, special care is needed to derive a
more accurate result (as was done in Ref. [49] for
models with a single composite Higgs performing
proper matching at different energy scales). However,
since ΔTπ0 is protected by isospin symmetry, we limit
ourselves to the estimates performed here. Moreover,
the source of the isospin breaking in the strong SUð3Þ0
sector is Fπ0 ≲ 0.2vh, causing the mass splitting
between composite “technihadrons” (denoted collec-
tively as fρ0g) of ΔMρ0 ∼ F2

π0=Mρ0 . This, forMρ0 ∼ Λ0,
would give the correction ΔTρ0 ∼ 1

12πs2W
×

F4
π0=ðmWMρ0 Þ2 ≲ 10−5. Note that the direct isospin

(custodial symmetry) breaking within q̂α states is
much more suppressed (we have no direct EW
symmetry breaking in the Yukawa sector of q̂, ûc,
and d̂c states) and thus conclude that within the
considered scenario extra corrections to the T param-
eter are under control.

Let us now give the estimate of the additional
contributions into the S parameter. Contributions to
this parameter from the additional vectorlike ðl̂þ lÞα,
ðêc þ ecÞα states decouple [50] and are estimated

to be ΔSl̂l ∼ ΔSêcec ≲ 1
4π

v2h
ðMð1Þ

l̂l
Þ2 ln

Mð1Þ
l̂l

mτ
∼ 10−5. The

contribution from the scalar ΦDT 0 is ΔSDT0≃
3
6πΔMDT 0=MDT0 ≃ λ2HΦv2h=ð8π

ffiffiffiffiffi
10

p
M2

DT 0 Þ≲ 2× 10−5,
also suppressed, as expected. The contribution of extra
(heavy π0) composite doublet is

ΔSπ0 ≈
1

6π

ΔMπ0

Mπ0
þ 1

6π
c2π0 ln

Mπ0

mh
; ð82Þ

where first term is due to the splitting of the doublet
components, while second term comes from the VEV
hπ0i¼Fπ0 . With ΔMπ0∼v2h=ð4Mπ0 Þ and Mπ0 ≳ 1 TeV,
Eq. (82) gives ΔSπ0 ≲ 10−3. Similarly suppressed

contributions would arise from the techni-ρ0 hadrons:
ΔSρ0 ∼ 1

6πΔMρ0=Mρ0 ∼ 1
6πF

2
π0=M

2
ρ0 ≲ 4 × 10−5 (for

Mρ0 ∼ Λ0).
As far as the contribution from the matter states
q̂; ûc; d̂c are concerned, since their masses are too
suppressed, in the chiral limit mf

mZ
→ 0, we can use the

expression [48]

ΔSf →
NfYf

6π

�
−2 ln x1

x2
þ Gðx1Þ −Gðx2Þ

�
;

with GðxÞ ¼ −4arc tanh 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x

p ; xi ¼
m2

fi

m2
Z
;

ð83Þ

where mf1;2 are masses of the components of the f
fermion with hypercharge Yf. Verifying that in the
limit x→0 the functionGðxÞ goes to 2 ln x, we see that
expression for ΔSf in Eq. (83) vanishes. Moreover,
new contributions to the U parameter are more sup-
pressed. For instance, the contribution due to the π0 is

ΔUπ0 ≈
1

15π

�
ΔMπ0

Mπ0

�
2 − 1

12π
c2π

ΔMπ0

Mπ0
; ð84Þ

which for Mπ0 ∼ 1 TeV, Fπ0 ≲ 0.2vh becomes
ΔUπ0 ≲ 5 × 10−6. All other new contributions to the
U are also more suppressed than the correspondingΔS
and ΔT. This is understandable since U is related to
the effective operator with a dimension higher than
those of S and T. All these allow us to conclude that
new contributions to the EW precision parameters are
well below the current experimental bounds [51].

(vi) Within the proposed model, spontaneous breaking of
two non-Abelian groups SUð5Þ × SUð5Þ0 and dis-
crete D2 parity will give monopole and domain wall
solutions, respectively. Since the symmetry breaking
scales are relatively low (≲5 × 1011 GeV), the in-
flation would not dilute number densities of these
topological defects in a straightforward way. Thus,
one can think of alternative solutions. For instance, as
it was shown in Refs. [52], within models with a
certain field content and couplings, it is possible that
symmetry restoration cannot happen for arbitrary
high temperatures. This would avoid the phase
transitions (which usually cause the formation of
topological defects). Moreover, by proper selection of
the model parameters, it is possible to suppress the
thermal production rates of the topological defects
(for detailed discussions, see the last two works of
Ref. [52]). From this viewpoint, our model with a
multiscalar sector and various couplings has potential
to avoid domain wall and monopole problems. Thus,
it is inviting to investigate the parameter space and see
how desirable ranges are compatible with those
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needed values appearing in Eq. (78) (for “improving”
the running of λh).

To cure problems related with topological defects, also
other different noninflationary solutions have been pro-
posed [53], and one (if not all) of them could be invoked
as well.
Certainly, these and other cosmological implications, of

the presented scenario, deserve separate investigations.
At the end let us note that it would be interesting to build

a supersymmetric extension of the considered SUð5Þ ×
SUð5Þ0 ×D2 GUT and study related phenomenology.
These and related issues will be addressed elsewhere.
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APPENDIX A: COMPOSITE LEPTONS
AND ANOMALY MATCHING

Here we demonstrate how the composite leptons emerge
within our scenario and also discuss anomaly matching
conditions. As was noted in Sec. III B, the sector of q̂, ûc,
and d̂c states have Gð6Þ

f chiral symmetry [see Eq. (47)] with
the transformation properties of these states given in
Eq. (48). At scale SUð3Þ0 interaction becomes strong,
and the Gð6Þ

f symmetry breaking condensates can be
formed. The chiral symmetry breaking can proceed through
several steps, and at each level the formed composite states
should satisfy anomaly matching conditions [14].
The bilinear [SUð3Þ0-invariant] condensate can be

h6L × 6Ri ¼ Fπ0 , with corresponding breaking scale Fπ0 .
As was shown in Ref. [41], with only fundamental states,
the chiral symmetry SUðnÞL × SUðnÞR will be broken
down to the diagonal SUðnÞLþR symmetry. Since in our
case Fπ0 also contributes to EW symmetry breaking, we
have a bound Fπ0∼

<
100 GeV. This scale, in comparison

with Λ0 ∼ few × TeV, can be ignored at the first stage.
Moreover, in our case, light SUð3Þ0 nonsinglet field content
is reacher (including light scalars), and the chiral symmetry
breaking pattern is also different. Other SUð3Þ0 invariant
condensates, including matter bilinears, are

h6L6LT†
H0 i and h6R6RTH0 i: ðA1Þ

Note, that the product of SUð6Þ sextets gives either sym-
metric or antisymmetric representations (6×6¼15Aþ21S),
but due to SUð3Þ0 contractions, in Eq. (A1) the antisym-
metric 15-plets (i.e., 15L and 15R) participate. The con-
densates (A1) transform as 15L and 15R under SUð6ÞL and
SUð6ÞR, respectively, and therefore break these sym-
metries. A possible breaking channel is

SUð6ÞL → SUð4ÞL × SUð2Þ0L ≡Gð4;2Þ
L ;

SUð6ÞR → SUð4ÞR × SUð2Þ0R ≡Gð4;2Þ
R : ðA2Þ

Indeed, with respect to Gð4;2Þ
L and Gð4;2Þ

R , the 15L and 15R
decompose as

SUð6ÞL → Gð4;2Þ
L ∶ 15L ¼ ð1; 1ÞL þ ð6; 1ÞL þ ð4; 2ÞL;

SUð6ÞR → Gð4;2Þ
R ∶ 15R ¼ ð1; 1ÞR þ ð6; 1ÞR þ ð4; 2ÞR;

ðA3Þ

and the VEVs hð1; 1ÞLi and hð1; 1ÞRi leave Gð4;2Þ
L × Gð4;2Þ

R
chiral symmetry unbroken. The singlet components
(hð1; 1ÞLi and hð1; 1ÞRi) from Eq. (A1) are 1

2
hq̂ q̂ T†

H0 i ¼
hû d̂ T†

H0 i and hûcd̂cTH0 i combinations, which leave GSM

gauge symmetry unbroken. Therefore, the values of these
condensates can be ∼few TeVð∼Λ0Þ without causing any
phenomenological difficulties. Thus, as the first stage of
the chiral symmetry breaking, we stick to the channel

Gð6Þ
f ⟶

Λ0
Gð4;2Þ

L ×Gð4;2Þ
R ×Uð1ÞB0 ; ðA4Þ

with

h6L6LT†
H0 i ¼ hû d̂ T†

H0 i ∼ Λ0;

h6R6RTH0 i ¼ hûcd̂cTH0 i ∼ Λ0: ðA5Þ

The SUð6ÞL;R sextets under Gð4;2Þ
L;R are decomposed as

6L ¼ ð4; 1ÞL þ ð1; 2ÞL and 6R ¼ ð4; 1ÞR þ ð1; 2ÞR, respec-
tively. If composite objects are picked up as ð40; 1ÞL;R ⊂
½ð4; 1ÞL;R�3 and ð1; 20ÞL;R ⊂ ½ð1; 2ÞL;R�3, then one can
easily check out that the anomalies (of initial and
composite states) indeed match and ð40; 1ÞL;R and
ð1; 20ÞL;R can be identified with three families of leptons
plus three states of right-handed/sterile neutrinos. For
demonstrating all these, it is more convenient to work in
a different basis. That would also make it simpler to
identify composite states.
As it is well known (and in our case turns out more

useful), one can describe the SUð6Þ symmetry (and its
representations as well) by its special subgroup (“S sub-
group” [54]) SUð3Þf ⊗ SUð2Þ ⊂ SUð6Þ. In our case,
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SUð6ÞL ⊃ SUð3ÞfL ⊗ SUð2ÞL;
SUð6ÞR ⊃ SUð3ÞfR ⊗ SUð2ÞR: ðA6Þ

Under these S subgroups, the sextets decompose as11

q̂ð6LÞ ¼ q̂ð3; 2ÞL; q̂cð6RÞ ¼ q̂cð3; 2ÞR: ðA7Þ

In these decompositions, q̂ and q̂c can be written as
matrices,

←SUð3ÞfL →

q̂¼
�
û ĉ t̂

d̂ ŝ b̂

� ↑

SUð2ÞL
↓

;

←SUð3ÞfR →

q̂c ¼
�
ûc ĉc t̂c

d̂c ŝc b̂c

� ↑

SUð2ÞR
↓

;

ðA8Þ

where schematically actions of SUð3Þ and SUð2Þ rotations
are depicted. Therefore, transformation properties under the
chiral group

Gð3;2Þ
f ¼ SUð3ÞfL ⊗SUð2ÞL×SUð3ÞfR ⊗ SUð2ÞR×Uð1ÞB0

ðA9Þ

are

Gð3;2Þ
f ∶ q̂ ∼

�
3fL; 2L; 1; 1;

1

3

�
;

q̂c ∼
�
1; 1; 3fR; 2R;− 1

3

�
: ðA10Þ

Relevant anomalies that do not vanish are

Að½SUð3ÞfL�2 ·Uð1ÞB0 Þ ¼ −Að½SUð3ÞfR�2 ·Uð1ÞB0 Þ ¼ 1;

Að½SUð2ÞL�2 ·Uð1ÞB0 Þ ¼ −Að½SUð2ÞR�2 ·Uð1ÞB0 Þ ¼ 3

2
:

ðA11Þ

The anomaly matching condition can be satisfied with the
spontaneous breaking of the symmetries SUð3ÞfL and
SUð3ÞfR down to SUð2ÞfL and SUð2ÞfR, respectively.
[This happens by condensates (A5) discussed above.]
Thus, the chiral symmetry Gð3;2Þ

f is broken down to
Gð2;2Þ

f , where

Gð2;2Þ
f ¼SUð2ÞfL⊗SUð2ÞL×SUð2ÞfR⊗SUð2ÞR×Uð1ÞB0 :

ðA12Þ

This breaking is realized, for instance, by the condensates
hû3d̂3T†

H0 i and hûc3d̂c3TH0 i. Note that with SUð3ÞfL →
SUð2ÞfL and SUð3ÞfR → SUð2ÞfR we will have decom-
positions 3fL ¼ 2fL þ 1fL and 3fR ¼ 2fR þ 1fR. At the
composite level, the spin-1/2 and SUð3Þ0 singlet combina-
tions ðq̂ q̂Þq̂ and ðq̂cq̂cÞq̂c picked up as ½20fL þ 10fL� from
½2fL þ 1fL�3 and ½20fR þ 10fR� from ½2fR þ 1fR�3. Thus,
transformations of ðq̂ q̂Þq̂ and ðq̂cq̂cÞq̂c composites under

Gð2;2Þ
f are12

Gð2;2Þ
f ∶ ðq̂ q̂Þq̂ ∼ ð½2fL þ 1fL�; 2L; 1; 1; 1Þ;

ðq̂cq̂cÞq̂c ∼ ð1; 1; ½2fR þ 1fR�; 2R;−1Þ: ðA13Þ

These representations will have anomalies that precisely
match with those given in Eq. (A11). Thus, we have three
families of l0; ec0; ν

c
0 composite states represented in

Eq. (49), with transformation properties under GSM given
in Eq. (50).

APPENDIX B: RG EQUATIONS AND b FACTORS

In this appendix we discuss details of gauge coupling
unification and present one- and two-loop RG coefficients
at each relevant energy scale. At the end we calculate short-
range renormalization factors Al

S and Aec
S for baryon

number violating d ¼ 6 operators.
The two-loop RG equation, for gauge coupling αi, has

the form [55]

d
d ln μ

α−1i ¼ − bi
2π

− 1

8π2
X
j

bijαj þ
1

32π3
X
f

afi λ
2
f; ðB1Þ

where bi and bij account for one- and two-loop gauge
contributions, respectively, and cfi represents the two-loop
correction via Yukawa coupling λf. For consistency, it is
enough to consider the Yukawa coupling RG at the one-
loop approximation:

16π2
d

d ln μ
λf ¼ cfλ3f þ λf

�X
f0
df

0
f λ

2
f0 − 4π

X
i

cifαi

�
:

ðB2Þ
RG factors can be calculated using general formulas [55].
Since at different energy scales different states appear, these

11Similar to the description of three-flavor QCD with ðu; d; sÞ
spin-1/2 states, either by the sextet of SUð6Þ or by (3,2) of
SUð3Þf × SUð2Þs—the Wigner–Weyl realization of the SUð6Þ
chiral symmetry. Here, however, SUð2Þs stands for the spin group
and SUð3Þf for the flavor. In our case of Eq. (A6), SUð2Þ factors
act like isospin rotations relating ûα and d̂α and ûcα with d̂cα,
respectively (α ¼ 1; 2; 3).

12Under combination ðq̂ q̂Þq̂ (suppressed gauge/chiral indices),
we mean ϵa

0b0c0ϵijðq̂a0iq̂b0jÞq̂c0k, where a0; b0; c0 ¼ 1; 2; 3 are
SUð3Þ0 indices and i; j; k ¼ 1; 2 stand for SUð2ÞL=SUð2Þw
indices.
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factors also change with energy. For instance, at scale μ, the bi and bij can be written as biðμÞ ¼
P

aθðμ −MaÞbai and
bijðμÞ ¼

P
aθðμ −MaÞbaij, where a stands for the state with mass Ma and step function θðxÞ ¼ 0 for x ≤ 0, and θðxÞ ¼ 1

for x > 0.
Integration of Eq. (B1), in energy interval μ1 − μ2, gives

α−1i ðμ2Þ ¼ α−1i ðμ1Þ − bμ1μ2i

2π
ln

μ2
μ1

; ðB3Þ

where an effective bμ1μ2i factor is given by

bμ1μ2i ¼
�X

a

θðμ2 −MaÞbai ln
μ2
Ma

þ 1

4π

X
a

Z
μ2

μ1

θðμ −MaÞbaijαjd ln μ − 1

8π2

Z
μ2

μ1

cfi λ
2
fd ln μ

�
1

ln μ2
μ1

: ðB4Þ

The second and third terms in Eq. (B4) can be evaluated iteratively [56]. Although Eq. (B1) can be solved numerically
(which we do perform for obtaining final results), expressions (B3) and (B4) are useful for understanding how
unification works.
In the energy interval MZ − Λ0, we have just SM, while between Λ0 and MI scales, we have GSM × SUð3Þ0 gauge

interactions plus additional states. Applying Eq. (B3) for the couplings αY , αw, αc, and α30 , we will have

α−1i ðMIÞ ¼ α−1i ðMZÞ − bZIi
2π

ln
MI

MZ
; i ¼ Y; w; c; α−1

30 ðMIÞ ¼ α−1
30 ðΛ0Þ − bΛ

0I
30

2π
ln

MI

Λ0 ; ðB5Þ

where bZIi ; bΛ
0I

30 can be calculated via Eq. (B4) having appropriate RG factors.
Above the scaleMI , we have gauge interactions G321 going all the way up to the GUT scale. The G321

0 gauge symmetry
appears between scales MI and MI

0, while SUð5Þ0 appears above the MI
0 scale. Therefore, we will have

α−1i ðMGÞ ¼ α−1i ðMIÞ − bIGi
2π

ln
MG

MI
; i ¼ 1; 2; 3;

α−1i0 ðMI
0Þ ¼ α−1i0 ðMIÞ − bII

0
i0

2π
ln

MI
0

MI
; i0 ¼ 10; 20; 30;

α−1
50 ðMGÞ ¼ α−1

50 ðMI
0Þ − bI

0G
50

2π
ln

MG

MI
0 : ðB6Þ

From Eqs. (B5) and (B6) and taking into account the boundary conditions (64)–(66), we arrive at relations given in Eq. (67).
The four equations in Eq. (67) allow us to determine MI , MI

0, MG, and αG in terms of other input mass scales. The latter
must be selected in such a way as to get successful unification. This has been done numerically, and results are given in
Table I, Eq. (68), and Fig. 3.
Now, we present all RG b factors needed for writing down RG equations. In the energy interval μ ¼ MZ − Λ0, the RG

factors are just those of the SM:

μ ¼ MZ − Λ0 ∶ bi ¼
�
41

10
;− 19

6
;−7

�
; bij ¼

0
BB@

199
50

27
10

44
5

9
10

35
6

12

11
10

9
2

−26

1
CCA; ði ¼ Y; w; cÞ: ðB7Þ

In the energy interval Λ0 −MI, we have the symmetry SUð3Þc × SUð2Þw ×Uð1ÞY × SUð3Þ0. Also, instead of composite
leptons, we have three families of SUð3Þ0 triplets q̂, ûc, d̂c, and vectorlike states ðl; l̂Þα and ðec; êcÞα (α ¼ 1; 2; 3) with
massesMðαÞ

l̂l
and MðαÞ

ecêc , respectively. Moreover, some fragments of Φð5; 5̄Þ [see Eq. (25)] and Σ0
80 (of Σ

0) can appear below
MI . Thus, the corresponding b factors in this energy interval are given by

ZURAB TAVARTKILADZE PHYSICAL REVIEW D 90, 015022 (2014)

015022-18



μ ¼ Λ0 −MI ∶

bY ¼ 9

2
þ 1

15
θðμ −MTH0 Þ þ

2

5

X3
α¼1

θðμ −MðαÞ
l̂l
Þ þ 4

5

X3
α¼1

θðμ −MðαÞ
ecêcÞ þ

5

6
θðμ −MDT0 Þ þ 5

6
θðμ −MTD0 Þ

bw ¼ − 7

6
þ 2

3

X3
α¼1

θðμ −MðαÞ
l̂l
Þ þ 1

2
θðμ −MDT 0 Þ þ 1

2
θðμ −MTD0 Þ;

bc ¼ −7þ 1

3
θðμ −MTD0 Þ þ 1

2
θðμ −MTT 0 Þ;

b30 ¼ −7þ 1

6
θðμ −MTH0 Þ þ

1

3
θðμ −MDT 0 Þ þ 1

2
θðμ −MTT 0 Þ þ 1

2
θðμ −M80 Þ; ðB8Þ

μ ¼ Λ0 −MI ∶bij ¼

0
BBBBB@

13709
50

9
5

44
5

44
5

3
5

91
3

12 12

11
10

9
2

−26 0

11
10

9
2

0 −26

1
CCCCCAþ

X
a

θðμ−MaÞbaij; ði; j ¼ Y;w; c;30Þ with :

bTH0
ij ¼

0
BBBBB@

4
75

0 0 16
15

0 0 0 0

0 0 0 0

2
15

0 0 11
3

1
CCCCCA; bDT 0

ij ¼

0
BBBBB@

25
6

15
2

0 40
3

5
2

13
2

0 8

0 0 0 0

5
3

3 0 22
3

1
CCCCCA; bTT

0
ij ¼

0
BBBBB@

0 0 0 0

0 0 0 0

0 0 11 8

0 0 8 11

1
CCCCCA; bTD

0
ij ¼

0
BBBBB@

25
6

15
2

40
3

0

5
2

13
2

8 0

5
2

3 22
3

0

0 0 0 0

1
CCCCCA;

bðl;l̂Þαij ¼

0
BBBBB@

9
50

9
10

0 0

3
10

49
6

0 0

0 0 0 0

0 0 0 0

1
CCCCCA; bðe

c;êcÞα
ij ¼ Diag

�
36

25
;0;0;0

�
; b

Σ0
80

ij ¼ Diagð0;0;0;21Þ: ðB9Þ

Between the scales MI and MI
0, the symmetry is G321 ×G321

0, and all matter states are massless. Also, above the
scale MI , we should include the states TH0 and ΦDD0 as massless and remaining fragments above their mass thresholds.
Since G321 goes all the way up to the MG, its one-loop b factors can be determined in the interval MI −MG and are
given by

μ ¼ MI −MG ∶ b1 ¼
43

10
þ 3

10
θðμ −MDT 0 Þ þ 1

5
θðμ −MTT 0 Þ þ 2

15
θðμ −MTD0 Þ;

b2 ¼ − 17

6
þ 1

2
θðμ −MDT 0 Þ;

b3 ¼ −7þ 1

2
θðμ −MTT 0 Þ þ 1

3
θðμ −MTD0 Þ: ðB10Þ

The gauge group G321
0 appears in the interval MI −MI

0, and corresponding one-loop b factors are

μ ¼ MI −MI
0 ∶ b10 ¼

64

15
þ 1

10
θðμ −MD0 Þ þ 2

15
θðμ −MDT 0 Þ þ 1

5
θðμ −MTT 0 Þ

þ 3

10
θðμ −MTD0 Þ − 55

3
θðμ −MX0 Þ;

b20 ¼ −3þ 1

6
θðμ −MD0 Þ þ 1

2
θðμ −MTD0 Þ − 11θðμ −MX0 Þ;

b30 ¼ − 41

6
þ 1

2
θðμ −MTT 0 Þ þ 1

3
θðμ −MDT 0 Þ; ðB11Þ
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where terms with θðμ −MX0 Þ account for the threshold of ðX0; Y 0Þ gauge bosons of SUð5Þ0, in case their masses MX0 lie
slightly below the MI

0 scale. We will take this effect into account at the one-loop level. The two-loop bij factors of
G321 × G321

0 form 6 × 6 matrices and are determined in the interval MI −MI
0:

μ ¼ MI −MI
0 ∶ bij ¼

�
bf þ bh þ bg þ bTH0 þ bDD0 Þij þ

X
a

θðμ −Ma

�
baij; ði; j ¼ 1; 2; 3; 10; 20; 30Þ

with : bfij ¼ 3

0
BBBBBBBBBB@

19
15

3
5

44
15

0 0 0

1
5

49
3

4 0 0 0

11
30

3
2

76
3

0 0 0

0 0 0 19
15

3
5

44
15

0 0 0 1
5

49
3

4

0 0 0 11
30

3
2

76
3

1
CCCCCCCCCCA
; bhij ¼

0
BBBBBBBBBB@

9
50

9
10

0 0 0 0

3
10

13
6

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCA
;

bTH0
ij ¼

0
BBBBBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 4
75

0 16
15

0 0 0 0 0 0

0 0 0 2
15

0 11
3

1
CCCCCCCCCCA
; bDD0

ij ¼

0
BBBBBBBBBB@

9
25

9
5

0 9
25

9
5

0

3
5

13
3

0 3
5

3 0

0 0 0 0 0 0

9
25

9
5

0 9
25

9
5

0

3
5

3 0 3
5

13
3

0

0 0 0 0 0 0

1
CCCCCCCCCCA
;

bDT0
ij ¼

0
BBBBBBBBBB@

27
50

27
10

0 6
25

0 24
5

9
10

13
2

0 2
5

0 8

0 0 0 0 0 0

6
25

6
5

0 8
75

0 32
15

0 0 0 0 0 0

9
15

3 0 4
15

0 22
3

1
CCCCCCCCCCA
; bTT

0
ij ¼

0
BBBBBBBBBB@

4
25

0 16
5

4
25

0 16
5

0 0 0 0 0 0
2
5

0 11 2
5

0 8

4
25

0 16
5

4
25

0 16
5

0 0 0 0 0 0
2
5

0 8 2
5

0 11

1
CCCCCCCCCCA
;

bTD
0

ij ¼

0
BBBBBBBBBB@

8
75

0 32
15

6
25

6
5

0

0 0 0 0 0 0

4
15

0 22
3

3
5

3 0

6
25

0 24
5

27
50

27
10

0

2
5

0 8 9
10

13
2

0

0 0 0 0 0 0

1
CCCCCCCCCCA
; bD

0
ij ¼

0
BBBBBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 9
50

9
10

0

0 0 0 3
10

13
6

0

0 0 0 0 0 0

1
CCCCCCCCCCA
;

bgij ¼ Diag

�
0;− 136

3
;−102; 0;− 136

3
;−102

�
; b

Σ0
80

ij ¼ Diagð0; 0; 0; 0; 0; 21Þ: ðB12Þ

In this MI −MI
0 energy interval, we have two Abelian factors Uð1Þ and Uð1Þ0 and states Φi (the fragments of Φ) charged

under both gauge symmetries. Because of this, the gauge kinetic mixing will be induced [57], [58]. Parametrizing the
latter as − sin χ

2
Fμν
1 F10μν, and bringing whole gauge kinetic part to the canonical form, one can obtain Φi’s covariant

derivative as [58] ½∂μ þ i
2
g1QiA

μ
1 þ i

2
ðḡ10Qi

0 þ g110QiÞAμ
10 �Φi. In this basis Qi charges are unshifted, and g1 and its RG are

unchanged. On the other hand, ḡ10 ¼ g10= cos χ and g110 ¼ −g1 tan χ. Introducing the ratio δ ¼ g110=ḡ10 , the RGs for ᾱ10 and
δ will be [58]
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d
d ln μ

ðᾱ10 Þ−1 ¼ � � � − b1
2π

δ2 − B110

π
δ;

d
d ln μ

δ ¼ b1
2π

α1δþ
B110

8π2
; ðB13Þ

where “…” denote standard one- and two-loop contributions
[with form of Eq. (B1)] and B110 ¼

P
iQiQi

0 is given by

B110 ¼
1

5
½θðμ −MDT0 Þ − θðμ −MDD0 Þ

− θðμ −MTT 0 Þ þ θðμ −MTD0 Þ�: ðB14Þ

Because of the mass splitting between Φ’s fragments, B110 ≠
0 in the interval MI −MTD0 , and therefore δ ≠ 0; i.e., the
kinetic mixing is generated. This causes the shift
α−1
10 → α−1

10 þOðδÞ. However, as it turns out, within our
model this effect is negligible. We have taken these into
account upon numerical studies and got δðMIÞ≃ 9.5 · 10−3,
sin χðMIÞ≃−2 · 10−2, causing the change of α−1

10 ðMIÞ by
0.01%. This has no practical impact on the matching

conditions of Eq. (64) and does not affect the picture of
gauge coupling unification and therefore can be safely
ignored.
Since at and above the scaleMI

0 theG321
0 is embedded in

SUð5Þ0, we will deal with b factors of G321 × SUð5Þ0
symmetry, and one-loop b factors of G321 are given in
Eq. (B10). At energies corresponding to unbroken SUð5Þ0,
the fragments ðΦDD0 ;ΦDT 0 Þ form the unified ð2; 5̄Þ≡ ΦD5̄0 -
plet of G321 × SUð5Þ0. Similarly, ðTH0 ; D0Þ ⊂ H0. Above
the scale MI

0, these states (together with all fragments of
the Σ0-plet) should be included as massless states. Thus, the
one-loop b factor of SUð5Þ0 is given as

μ ¼ MI
0 −MG ∶ b50 ¼ −13þ 1

2
θðμ −MT5̄0 Þ; ðB15Þ

where MT5̄0 ¼ maxðMTT 0 ;MTD0 Þ denotes the mass of the
ð3; 5̄Þ-plet, which includes ΦTT 0 and ΦTD0 states:
ðΦTT 0 ;ΦTD0 Þ ⊂ ΦT5̄0 . The two-loop bij factors, above the
scale MI

0, form 4 × 4 matrices and are

μ ¼ MI
0 −MG ∶ bij ¼ ðbf þ bh þ bg þ bH

0 þ bΣ
0 þ bD5̄0 Þij þ θðμ −MT5̄0 ÞbT5̄0ij ; ði; j ¼ 1; 2; 3; 50Þwith∶

bfij ¼ 3

0
BBBBB@

19
15

3
5

44
15

0

1
5

49
3

4 0

11
30

3
2

76
3

0

0 0 0 698
15

1
CCCCCA; bhij ¼

0
BBB@

9
50

9
10

0 0

3
10

13
6

0 0

0 0 0 0

0 0 0 0

1
CCCA;

bgij ¼ Diag

�
0;− 136

3
;−102;− 850

3

�
; bH

0
ij ¼ 97

15
δi50δj50 ; bΣ

0
ij ¼

175

3
δi50δj50 ;

bD5̄0
ij ¼

0
BBBBB@

9
10

9
2

0 72
5

3
2

65
6

0 24

0 0 0 0

3
5

3 0 194
15

1
CCCCCA; bT5̄

0
ij ¼

0
BBBBB@

4
15

0 16
3

48
5

0 0 0 0
2
3

0 55
3

24

2
5

0 8 97
5

1
CCCCCA: ðB16Þ

As far as the Yukawa coupling involving RG factors, afi ,

cf; d
f0
f , and cif [see Eqs. (B1) and (B2)], are concerned,

within our model only top and “mirror-top” Yukawa
couplings are large. All other Yukawa interactions
are small and can be ignored. Thus, the Yukawa terms

λtq3tch, ðλt̂ b̂ t̂ b̂þλt̂c τ̂c t̂cτ̂cÞTH0 , and λt̂q̂3 t̂cD0 are
relevant. All these four couplings unify at MG due to
gauge symmetry and D2 parity. For the top Yukawa
involved RG factors, in the energy interval MZ −MI ,
we have

ati ¼
�
17

10
;
3

2
; 2

�
; cit ¼

�
17

20
;
9

4
; 8

�
; ði ¼ Y; w; cÞ; ct ¼

9

2
; df

0
t ¼ 0: ðB17Þ

In energy interval MI −MG, with replacement of the
indices ðY; w; cÞ → ð1; 2; 3Þ, the corresponding RG factors
will be the same. Since the mass of the stateD0 is ∼MI

0, the
RG with λt̂ will be relevant above the scaleMI

0. Within our

model, MTH0 ∼ Λ0, and in the RG, the couplings λt̂ b̂
and λt̂c τ̂c will be relevant above the scale Λ0. Between
the scales Λ0 andMI , the mirror matter has EWand SUð3Þ0
interactions. Therefore, we have
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μ ¼ Λ0 −MI ∶ ðaY; aw; a30 Þt̂ b̂ ¼
�
1

15
; 2;

4

3

�
; ðaY; aw; a30 Þt̂c τ̂c ¼ θðμ −Mð3Þ

ecêcÞ
�
13

15
; 0;

1

3

�
;

ðcY; cw; c30 Þt̂ b̂ ¼
�
1

10
;
9

2
; 8

�
; ðcY; cw; c30 Þt̂c τ̂c ¼ θðμ −Mð3Þ

ecêcÞ
�
13

5
; 0; 4

�
; ct̂ b̂ ¼ 4;

dt̂
c τ̂c

t̂ b̂
¼ θðμ −Mð3Þ

ecêcÞ; ct̂c τ̂c ¼ 3θðμ −Mð3Þ
ecêcÞ; dt̂ b̂t̂c τ̂c ¼ 2θðμ −Mð3Þ

ecêcÞ: ðB18Þ

BetweenMI andMI
0 scales, with replacements ðY; wÞ → ð10; 20Þ, the corresponding factors will be the same. At and above

the scale MI , the G321
0 is unified in the SUð5Þ0 group, D0 should be included in the RG, and three Yukawas unify

λt̂ b̂ ¼ λt̂c τ̂c ¼ λt̂. Thus, dealing with λt̂, we will have

μ ¼ MI
0 −MG ∶ at̂

50 ¼
9

2
; ct̂ ¼ 9; c5

0
t̂ ¼ 108

5
; df

0

t̂ ¼ 0: ðB19Þ

1. Short-range RG factors for d ¼ 6 operators

The baryon number violating d ¼ 6 operators of Eq. (70) involve couplings CðecÞ and CðlÞ, respectively. These couplings
run, and in nucleon decay amplitudes, the short-range RG factors

Al
S ¼

CðlÞðMZÞ
CðlÞðMXÞ

; Aec
S ¼ CðecÞðMZÞ

CðecÞðMXÞ
ðB20Þ

emerge. These factors, having SM gauge interactions and states below the GUT scale, were calculated in Ref. [31]. Within
our model, calculation can be done similarly. The RG equations for CðlÞ and CðecÞ, in one-loop approximation, are given by

4π
d
dt

CðlÞ ¼ −CðlÞ
�
θðMI − μÞ

�
23

20
αY þ 9

4
αw

�
þ 2αc þ θðμ −MIÞ

�
23

20
α1 þ

9

4
α2

��
;

4π
d
dt

CðecÞ ¼ −CðecÞ
�
θðMI − μÞ

�
11

20
αY þ 9

4
αw

�
þ 2αc þ θðμ −MIÞ

�
11

20
α1 þ

9

4
α2

��
: ðB21Þ

Having numerical solutions for the gauge couplings, Eqs. (B21) can be integrated. Doing so and taking into account
Eqs. (B20), within our model we obtain Al

S ¼ 1.18 and Aec
S ¼ 1.17.
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