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We study a grand unified SU(5) x SU(5)" model supplemented by D, parity. The D, greatly reduces the
number of parameters and is important for phenomenology. The model, we present, has various novel and
interesting properties. Because of the specific pattern of grand unification symmetry breaking and emerged
strong dynamics at low energies, the Standard Model leptons, along with right-handed/sterile neutrinos,
come out as composite states. The generation of the charged fermion and neutrino masses are studied
within the considered scenario. Moreover, the issues of gauge coupling unification and nucleon stability are

investigated in details. Various phenomenological implications are also discussed.
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I. INTRODUCTION

The Standard Model (SM) of electroweak interactions
has been a very successful theory for decades. The triumph
of this celebrated model occurred thanks to the Higgs boson
discovery [1] at CERN’s Large Hadron Collider. In spite of
this success, several phenomenological and theoretical
issues motivate one to think of some physics beyond the
SM. Because of renormalization running, the self-coupling
of the SM Higgs boson becomes negative at a scale near
~10' GeV [2], [3] (with the Higgs mass = 126 GeV),
causing vacuum instability (becoming more severe within
the inflationary setup; see the discussion in Sec. VI).
Moreover, the SM fails to accommodate atmospheric
and solar neutrino data [4]. The renormalizable part of
the SM interactions render neutrinos to be massless. Also,
Planck scale suppressed d =5 lepton number violating
operators do not generate neutrino mass with desirable
magnitude. These are already strong motivations to think
about the existence of some new physics between electro-
weak (EW) and Planck scales.

Among various extensions of the SM, the grand uni-
fication (GUT) [5], [6] is a leading candidate. Unifying all
gauge interactions in a single group, at high energies one
can deal with a single unified gauge coupling. At the same
time, quantization of quark and lepton charges occurs by
embedding all fermionic states in unified GUT multiplets.
The striking prediction of the grand unified theory is the
baryon number violating nucleon decay. This opens the
prospect for probing the nature at very short distances.
GUTSs based on SO(10) symmetry [7] [which includes
SU(2), x SU(2)g x SU(4),. symmetry [5] as a maximal
subgroup] involve right-handed neutrinos (RHNs), which
provide a simple and elegant way for neutrino mass
generation via the seesaw mechanism [8]. In spite of these
salient futures, GUT model building encounters numerous
problems and phenomenological difficulties. With single
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scale breaking, i.e., with no new interactions and/or
intermediate states between EW and GUT scales, grand
unified theories [such as minimal SU(5) and SO(10)] do
not lead to successful gauge coupling unification. Besides
this, building GUT with the realistic fermion sector, under-
standing the GUT symmetry breaking pattern, and avoiding
too rapid nucleon decay remain a great challenge.
Motivated by these issues, we consider SU(5) x
SU(5) GUT augmented with D, parity (exchange
symmetry). The latter, relating two SU(5) gauge groups,
reduces the number of parameters, and at and above the
GUT scale, one deals with single gauge coupling. The
grand unified theories with SU(5) x SU(5)" symmetry,
considered in earlier works [9], in which at least one
gauge factor of the SM symmetry emerges as a diagonal
subgroup, have been proven to be very successful for
building models with realistic phenomenology. However,
to our knowledge, in such constructions the D, parity has
not been applied before.! The reason could be the
prejudice of remaining with extra unwanted chiral matter
states in the spectrum. However, within our model due to
specific construction, this does not happen, and below the
few-TeV scale, surviving states are just of the Standard
Model. The D, parity also plays a crucial role for
phenomenology and has interesting implications. By
the specific pattern of the SU(5) x SU(5)" symmetry
breaking and spectroscopy, the successful gauge coupling
unification is obtained. Interestingly, within the consid-
ered framework, the SM leptons emerge as a composite
states, while the quarks are fundamental objects. Lepton
mass generation occurs by a new mechanism, finding
natural realization within a presented model. Since
leptons and quarks have different footing, there is no
problem of their mass degeneracy (unlike the minimal
SO(10) and SU(5) grand unified thoeries, which require

'In the second citation of Ref. [9], the exchange symmetry was
considered; however, some terms violating this symmetry have
been included.
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some extensions [10]). Moreover, along with composite
SM leptons, the model involves three families of
composite SM singlet fermionic states, which may be
identified with RHNs or sterile neutrinos. Thus, the
neutrino masses can be generated. In addition, we show
that, due to the specific fermion pattern, d = 6 nucleon
decay can be adequately suppressed within the consid-
ered model. The model also has various interesting
properties and implications, which we also discuss.
Since two SU(5) groups will be related by D, parity,
initial states will be doubled, i.e., will be introduced in
twins. Because of this, we refer to the proposed SU(5) x
SU(5) x D, model as twinification.

The paper is organized as follows. In the next section,
first we introduce the SU(5) x SU(5)' x D, GUT and
discuss the symmetry breaking pattern. Then, we present
the spectrum of bosonic states. In Sec. III, considering
the fermion sector, we give transformation properties
of the GUT matter multiplets under D, parity and build
the Yukawa interaction Lagrangian. The latter is respon-
sible for the generation of quark masses and Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements. Because of
the specific pattern of the symmetry breaking and strong
SU(3)" [originating from SU(5) gauge symmetry]
dynamics, the SM leptons emerge as composite objects.
We present a novel mechanism for composite lepton mass
generation. Together with the SM leptons, three families
of right-handed/sterile neutrinos are composite. We also
discuss the neutrino mass generation within our scenario.
In Sec. IV we give details of gauge coupling unification.
The issue of nucleon stability is addressed in Sec. V.
Although the GUT scale, within our model, comes out to
be relatively low (=5 x 10! GeV), we show that the d =
6 baryon number violating operators can be adequately
suppressed. This happens to be possible due to the
specific pattern of the fermion sector we are suggesting.
In Sec. VI we summarize and discuss various phenom-
enological constraints and possible implications of the
considered scenario. We also emphasize the model’s
peculiarities and novelties, which open broad prospects
for further investigations. Appendix A discusses details
related to the compositeness and anomaly matching
conditions. In Appendix B we give details of the gauge
coupling unification. In particular, the renormalization
group (RG) equations and b factors at various energy
intervals are presented. The short-range renormalization
of baryon number violating d = 6 operators is also
performed.

IL SU(5) x SU(5)" x D, TWINIFICATION

Let us consider the theory based on SU(S) x SU(5)’
gauge symmetry. Besides this symmetry, we postulate
discrete parity D,, which exchanges two SU(5)’s. There-
fore, the symmetry of the model is
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Ggur = SU(5) x SU(5)" x D,. (1)

As noted, the action of D, interchanges the gauge fields (in
adjoint representations) of SU(5) and SU(5)/,

Dy: (A5~ (A5 (A)y ~ (A5 ()

with (A,)§ =33774, A} ()5 and (A4})) = 35734 AL (A1),
where a, b and d’, b’ denote indices of SU(5) and SU(5),
respectively. The A’, A" are corresponding Gell-Mann
matrices. Thanks to the D,, at and above the GUT scale

M, we have single gauge coupling
Qa5 = Q5. (3)

Grand unified theories based on product groups allow us to
build simple models with realistic phenomenology [9],
[I1]. In our case, as we show below, the EW part [i.e.,
SU(2),, x U(1)y] of the SM gauge symmetry will belong
to the diagonal subgroup of SU(5) x SU(5)'.

A. Potential and symmetry breaking

For Ggyr symmetry breaking and building realistic
phenomenology, we introduce the states

H~(5,1),
¥~ (1,24),

T~ (24,1), H' ~(1,5),
P~ (5,5), (4)

where in brackets transformation properties under SU(5) x
SU(5)" symmetry are indicated. H includes SM Higgs
doublet A. The introduction of H' is required by D,
symmetry. By the same reason, two adjoints ¥ and X'
(needed for GUT symmetry breaking) are introduced. The
bifundamental state ® will also serve for desirable sym-
metry breaking.
The action of D, parity on these fields is

D, H,sH, DY E=DW ) s (2N, (5)

where we have made explicit the indices of SU(5) and
SU(5)'. With Egs. (5), (2), and (3), one can easily make
sure that the kinetic part |D,H|* + |D,H'|* + (D, X)* +
1w(D,X)? + |D,®* of the scalar field Lagrangian is
invariant.
The scalar potential, invariant under Ggyt symmetry [of
Eq. (1)] is
_ 1) ©)
V=Vus+Vyy +Vi +Ve+V (6)

mix mix’

with
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Vs = —MA0E? + 1, (E2)? + LuZ* + HT (M3, — h 2% + hytZ2)H + Ay (H H)?,
Vs = —MatrZ? + 4, (a2'?)? + L, uX* + H' (M3, — 2% + hytt2?)H' + Ay (H'TH')?,
v = A=) (022 + h(HHuS? + HTH'«S2) + h(H H)(H'T H),

mix

Vo = —M2OT® + 414(DTD)? + Ay ®T DD,

mix

p . A .
V2 = W(HIOH' + HOTH'T) + i% (OTD)[(HTH) + (H'H')] + 222 (HT®DTH + H' OTOH')

V10

+ Aixa(PTR) (2% + rE?) — dpyg (PTX2D + OX2T). (7)

To make analysis simpler, we have omitted terms with first
powers of X and ¥’ (such as H'XH, H''Y'H', etc.) and also
cubic terms of X and X'. This simplification can be achieved
by Z, discrete symmetry and will not harm anything.

The potential terms and couplings in Eqs. (6) and (7)
allow us to have a desirable and self-consistent pattern of
symmetry breaking. First, we will sketch the symmetry
breaking pattern. Then, we will analyze the potential and
discuss the spectrum of bosonic states. We will stick to
several stages of the GUT symmetry breaking. At the first
step, the X develops the vacuum expectation value
(VEV) ~ M with

(%) = vyDiag(2,2,2,-3,-3), vy ~Mg. (8)
This causes the symmetry breaking:
) —
SU(5)=>SU3) x SU12) x U(1) = G3y;. 9)

We select VEVs of X' and ® much smaller than M. As it
will turn out, the phenomenologically preferred scenario is
(XY ~4 x 10° GeV and (®) ~ 8 x 10* GeV. With

(¥') = vyDiag(2,2,2,-3,-3), (10)
the breaking

SUGYESUGY x SUQ)Y x U(1) =Gy (11)

is achieved. The last stage of the GUT breaking is done by
(®) with a direction

(®) = vg - Diag(0,0,0,1,1). (12)

This configuration of (®) breaks symmetries SU(2) x
U(1) [subgroup of SU(5)] and SU(2)" x U(1)’ [subgroup
of SU(5)'] to the diagonal symmetry group:

(@)

SU(2) x U(1) x SU(2)" x U(1)'=[SU(2) x U(1)]ag-

(13)

As we see, all VEVs preserve SU(3) and SU(3)" groups
arising from SU(5) and SU(5)’, respectively. However,
unbroken SU(2)g;,, is coming (as superposition) partly
from SU(2) c SU(S) and partly from SU(2) c SU(5)'.
Similarly, U(1)g,, is superposition of two Abelian factors:
U(1) c SU(5) and U(1) c SU(5)'.
Now, making the identifications
SU3)=SU(3)., SU(2)

=SU(2),,, U(1)gine=U(1)y

(14)

diag diag

and taking into account Egs. (9), (11), and (13), we can see
that GUT symmetry is broken as

Ggur = SU(3),xSU(2),, x U(1)y, x SU(3)
= GSM X SU(3)/, (15)
where Ggy = SU(3), x SU(2),, x U(1), denotes the SM
gauge symmetry. Because of these, at the intermediate scale

u = M;(~(P)), we will have the matching conditions for
the gauge couplings,

at M ! ! + ! ! ! + ! (16)
M: DR G EE] 5 = )
“"e B B B g

where subscripts indicate to which gauge interaction the
appropriate coupling corresponds [e.g., gy is the coupling
of U(1)" symmetry, etc.].

The extra SU(3)" factor has important and interesting
implications, which we discuss below.

As was mentioned, while (£) ~ M, the VEVs (®) and
¥ are at intermediate scales M; and M,’, respectively,

U‘IJNMD UE’NM/? (17)
with the hierarchical pattern
MI <<M1/ <<MG. (18)

Detailed analysis of the whole potential shows that
there is true minimum along directions (8), (10), and (12)
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with (H) = (H') = 0. With (Z) # (¥'), the D, is broken
spontaneously.  The residual SU(3)" symmetry
will play an important role, and the hierarchical
pattern of Eq. (18) will turn out to be crucial for
successful gauge coupling unification (discussed
below).

10(304; + 74,)v2 + 15040% + (104159 — 3Aosq)v3,
1504v% + 10(304; + 7A4;)v2 + (10459 — 3A25p)v3 =
3(104159 — 3da50) (V: + v3) + (4h1p + 242903

Because of hierarchies (17) and (18), from the first equation
of Eq. (19), with a good approximation we obtain

Ve = My (20)

Y2004, + Th)

Thus, with 2(304; 4+ 74,) ~ 1, we should have My ~ M;.
On the other hand, from the last two equations of Eq. (19),
we derive

W2~ Mz — 30402
¥ T 20300, 1 74
M3 —3(10415p — 34p58) (V5 + v3)

v = . (21
@ 42 + 2000 (21)

To obtain the scales M; and M,, according to Egs. (17)
and (18), we have to arrange (by price of tunings) M2 —
30/11]% ~ (MI/)Z and MZ(I) — 3(10}«12(1) — 3122(1))(11% + Ué,) ~
M? [with (421 + 24y5) ~ 1].

B. The spectrum

At the first stage of symmetry breaking, the (X, Y) gauge
bosons [of SU(5)] obtain GUT scale masses. They absorb
appropriate states (with quantum numbers of leptoquarks)
from the adjoint scalar X. The remaining physical frag-
ments (Xg, %3, %) [the SU(3) octet, SU(2) triplet, and a
singlet, respectively] receive GUT scale masses. These
states are heaviest, and their mixings with other ones can be
neglected. From Eq. (7), with Eq. (19) we get

3 3
Gy X Gyt Opp~ 1,2, ——=,1,2/,——
321 321 DD ( /60
2 = 2
S~ (3,1, —,3,1,——=
TT ( 50

V60
V60
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The hierarchical pattern (18), of the GUT symmetry
breaking, makes it simple to minimize the potential and
analyze the spectrum.

Three extremum conditions, determining vs, vy, and vg
along the directions (8), (10), and (12) and obtained from
whole potential, are

= M3, (19)

|
Mz, =20M,03, M3, =4M3.

(22)

M%3 = 804,02,

Further, we will not give masses of states that are singlets
under all symmetry groups. The mass square of the SU(3)’
octet (from X') is

6
Mégl =204,v% + 5/122(1)1;2@. (23)

The triplet X3 mixes with a real (CP even) SU(2),, triplet
®; (from P). [Both these states are real adjoints of
SU(2),,.] The appropriate mass squared couplings are

4M§lé, _%)“22‘.@ U%I, 6\/2/122<I> Vo 1}2/> (Z/iy )
6\/5/122‘@ Vyp Uy (I)é

1, .

4/12@’1}%,
(24)

where i =1,2,3 labels the components of the SU(2),
adjoint. The CP-odd real SU(2),, triplet from & is absorbed
by appropriate gauge fields after SU(2) x SU(2) —
SU(2),, breaking and becomes genuine Goldstone modes.

By the VEVs vy and vy, the symmetry SU(S) x
SU(5) x D, is broken down to Gz X Gz’ [see
Egs. (9) and (11)]. Thus, between the scales M; and
M/, we have this symmetry, and the @(5,5) splits into
fragments

(5,5) = Oppy ®@Ppr O &Py (25)

with transformation properties under Gz,; X Gs,,’ given by

3 - 2
) (I) r 152a_773/a17_7 B
) o ( V60 \/60>
2 3
, Orpy ~(3,1,—.1,2',—— . 26
) o (3 (26)
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The masses of these fragments will be denoted by
Mpp, Mpr, My, and M7y, respectively. Since the break-
ing G3; X G3p' = Ggy x SU(3)’ is realized by the VEV
of the fragment @,y at scale M;, we take M ,;y = M;. The
state @5, participating in Eq. (24), emerges from this @5y
fragment. The remaining three states under Gs,; x SU(3)’
transform as

Gy X SUBY: @i~ (1,2,_\/%,3/)

Drp~(3.1.03). <I>TD/~<3,2,\/%,1>.
(27)

The mass squares of these fields are given by

M3, = 5kose (03 + v3) — 220905,

(28)

MZDT/ = 5222@0%/,
M%"D’ = 5),22(1,1)%.
With the VEVs toward the directions given in Egs. (8),

(10), and (12), and with the extremum conditions of
Eq. (19), the potential’s minimum is achieved with

M7, —5hiv3 + Aopovg/ V10

HVp

(D};.Djy) (

By diagonalization of Eq. (31), we get two physical states
h and D"

h =cos8,Dy +sin6,Dyy,
D' = —sin8,Dy + cos 6,Dy,

2/11)(1,

tan 20, = .
M3, — M7, —5h(vz — v3,)

(32)

We identify i with the SM Higgs doublet and set its
mass square (by fine-tuning) M3 ~100GeV?. We assume
the second doublet D’ to be heavy M3, > |[M | For the
mixing angle 6,, we also assume @), < 1. Therefore,
according to Eq. (32), the SM Higgs mainly resides in
Dy (of the H-plet), while Dy (i.e., H') includes a light
SM doublet with very suppressed weight.

The radiative corrections will affect obtained expressions
for the masses and VEVs. However, there are enough
parameters involved, and one can always get presented
symmetry breaking pattern and spectrum (given in Table I).
Achieving these will require some fine-tunings. Without

Dy
M3 = 5hyv2, + Jopevd/V10 ) \ D )

PHYSICAL REVIEW D 90, 015022 (2014)

304 47 >0, J>0, A>0,
104159 — 34939 > 0, Arse > 0,
Yo +0p >0, og > O, (29)

As far as the states H and H’' are concerned, they are
split as H — (Dy,Ty) and H' — (Dy, Ty ), where
Dy, Dy are doublets, while Ty and Ty are SU(3).
and SU(3)’ triplets, respectively. Mass squares of these
triplets are

M3, = M} — 4hy v} + 30(hyvd + hvl,)
+ 2/111.]@1}(21,/ V 25,
M%H/ = M3, — 4hy v} + 30(hyv3, + hvl)

+ 2215003 /V25. (30)

The states Dy and Dy, under Ggyy, both have quantum
numbers of the SM Higgs doublet. They mix by the VEV
(®), and the mass squared matrix is given by

HUs

addressing here the hierarchy problem and naturalness
issues, we will proceed to study various properties and
the phenomenology of the considered scenario.

III. FERMION SECTOR
A. D, symmetry a la P parity

We introduce three families of (¥, F) and three families
of (W', F"),

3x [U(10,1) + F(5,1)], 3 x [W'(1,10) + F'(1,5)],

(33)

where in brackets the transformation properties under
SU(5) x SU(5)" gauge symmetry are indicated. Here, each
fermionic state is a two-component Weyl spinor, in (% ,0)
representation of the Lorentz group. The action of D, parity
on these fields is determined as
D,: sV = (V)1

FsF = (F)f.  (34)
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It is easy to verify that, with transformations in Eqs. (34) and (2), the kinetic part of the Lagrangian Ly;, (¥, F, W', F’) is

invariant.

We can easily write down invariant Yukawa Lagrangian

Ly + Ly + LPX (35)
with
N\
Ly= ZCW( ) UUH + ZCW (M ) UFH' + H.c. (36)
DAY
Ly = ch ( ) VWHT Y o) (M > U'F'H +H.c. (37)
n=0 *
7 Apy N2y ’1\11\1/_/ 2
L™ = dpp FOF' + App F'OTF + =75 Y (7)20 + Tl (38)

where M., M are some cutoff scales. The coupling matrices
App and Ayys are Hermitian due to the D, symmetry. The
last two higher-order operators in Eq. (38), important for
phenomenology, can be generated by integrating out some
heavy states with mass at or above the GUT scale. For
instance, with the scalar state Q in (E, 10) representation
of SU(5) x SU(5)" and D, parity, Q5QF, the relevant
terms (of fundamental Lagrangian) will be Ayy QU
gy QI - U + Mo (QP? + QF(D7)2) + MZQTQ. With
these couplings, one can easily verify that integration of
Q generates the last two operators of Eq. (38) (with
M~ Mé /Mg,). Since the Q is rather heavy, its only low-
energy implication can be the emergence of these effective
operators. Thus, in our further studies, we will proceed
with the consideration of Yukawa couplings given in
Egs. (36)—(38).

With obvious identifications, let us adopt the following
notations for the components from ¥, F and ¥’, F’ states:

U ={q.u e}
\I// — {é, ﬁc, éc}’

F={l.d,
={1.d°}. (39)

Substituting in Egs. (36)—(38) the VEVs (%), (¥'), and (P),
the relevant couplings we obtain are

Ly = q'Yyuh+q'Ypdh' + eTY o lh"
+ (quqq + Cu”ecuceC)TH
+ (Cpuql + Cpegeucd®)Thy + Hee. (40)

The D, transformation of Eq. (34) resembles usual P parity,
acting between the electron and positron, within QED. Unlike the
QED, the states (¥, F) and (V', F’) transform under different
gauge groups.

1
Ly — O <c}q+a'@ )TT

2
+ OO (@140 Ty +Heo 4+ (41)
L% = 7'Myl + eTM e + Hee. (42)

In Eq. (41) we have dropped out the couplings with the
Higgs doublet because, as we have assumed, Dy includes
the SM Higgs doublet with very suppressed weight. Also,
we have ignored powers of (X')/M, in comparison with
(X)/M,’s exponents. As we will see, the couplings of 4 in
Eq. (40) and terms shown in Egs. (41) and (42) are
responsible for fermion masses and mixings and lead to
realistic phenomenology.

B. Fermion masses and mixings: Composite leptons
Let us first indicate transformation properties of all
matter states, given in Eq. (39), under the unbroken Ggy; X

SU3)=SU(3),xSU(2),,xU(1),xSU(3)" gauge sym-
metry. Fragments from W, F' transform as

1 oy
(32— 1), e~ (1),
1 ( /60 ) ( /60 )
6 3
e“~(1,1,——,1], I~(1,2,—,1],
( /60 ) ( /60 )
_ 2
d~(3,1,———,1|, 43
( > ) (43)

while the states from ¥’, F' have the following trans-
formation properties:
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g~ (1,2,%,3’/), 0 ~ (1,1,—%,3/),

o ~ (1,1,\/%,1) 1~ <1,2,—\/%,1),

dc ~ (1,1,%,3/). (44)

In transformation properties of Eq. (44), by primes we have
indicated triplets and antitriplets of SU(3)". As we see,
transformation properties of quark states in Eq. (43)
coincide with those of the SM. Therefore, for quark masses
and CKM mixings, the first two couplings of Eq. (40) are
relevant. Since in Yy p and Y, contribute also higher-
dimensional operators, the Y, is not symmetric and
Yp # Y. Thus, quark Yukawa matrices can be diagon-
alized by biunitary transformations

LiYyR, =Y, LiY,R,=YD™.  (45)
With these, the CKM matrix (in standard parametrization)
is

VCKM = PngL;PZ with Pl = Diag(ei“" y ei“’z, ei“’3),
P, = Diag (e, e, 1). (46)

1. Composite leptons

Turning to the lepton sector, we note that 1 and &¢ have
opposite/conjugate transformation properties with respect
to [ and e€, respectively. From couplings in Eq. (42), we see
that these vectorlike states acquire masses Mj and M ,c;c
and decouple. However, within this scenario, composite
leptons emerge. The SU(3)’ becomes strongly coupled and
confines at scale A’ ~TeV (for details, see Sec. IV).
Because of confinement, SU(3)" singlet composite

A AN A Lo ACAC)AC ~CIC\JC (A~ e\ e ¢ = (1€ ¢
(4)q ~ log = ( ) , (G°G°)q° = ((aca)d”, (acd) i) ~ 1§, = (15, €§) o

emerge. In Eq. (49), for combinations (g §)g and (§°§°)g°,
the spin-1/2 states are assumed with suppressed gauge and/
or flavor indices. For instance, under (§§)g we mean
€Y ¢; (441G ;)or, Where ' b, ¢’ =1,2,3 are SU(3)'
indices and i, j,k = 1,2 stand for SU(2), (or SU(2),)

*In case the chiral symmetry remains unbroken (at least
partially) at the composite level. The models avoiding anomaly
conditions were suggested in Ref. [19].
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states—baryons (B’) and/or mesons (M')—can emerge.
The elegant idea of fermion emergence through the strong
dynamics as bound states of more fundamental constituents
was suggested and developed in Refs. [12-22]. Within our
scenario, this idea finds an interesting realization for the
lepton states. Formation of composite fermions should
satisfy ’t Hooft anomaly matching conditions® [14]. These
give a severe constraint on building models with composite
fermions [16-18], [20-22].

Let us focus on the sector of (three-family) g, #t“ and d°
states, which have SU(3)" strong interactions. Ignoring
local EW and Yukawa interactions, the Lagrangian of these
states possesses global Gj(f) =SU(6), xSU(6)g x U(1)
chiral symmetry. Under the SU(6),, three families of § =
(1, El) transform as sextet 6;, while three families of
(a°,d°) = q° form sextet 6z of SU(6)g. The U(1)y (B')
charges of g and §¢ are, respectively, 1/3 and —1/3. Thus,
transformation properties of these states under

GY) = 5U(6), x SU(6)g x U(1)y (47)

chiral symmetry are
. ~ A 1
qlx = (u9 d)(IN 6L7 175 )

A 1
G- 00~ (L6e-3) @)

where a = 1, 2, 3 is the family index. Because of the strong

SU(3)' attractive force, condensates that will break the G](f)

chiral symmetry can form. The breaking can occur by
several steps, and at each step the formed composite states
should satisfy anomaly matching conditions.

In Appedix A, we give a detailed account of these issues
and demonstrate that within our scenario three families of
ly, eg, v composite states,

a=1,23, (49)

indices. Thus, (§ §)g and (§°g°)g° are singlets of SU(3)'.
From these, taking into account Eqs. (44) and (49), it is
easy to verify that the quantum numbers of composite states
under SM gauge group Gy = SU(3), x SU(2),, x U(1)y
are

3 6
GSM: ZON(I,Z,\/6_O), €6N<],],—\/6_0),
V5~ (1,1,0). (50)
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As we see, along with SM leptons ([, and ef)), we get three
families of composite SM singlets fermions-v. The latter
can be treated as composite right-handed/sterile neutrinos
in the spirit of Ref. [23]. Note that, with this composition,
as was expected, the gauge anomalies also vanish (together
with the chiral anomaly matching; for details, see Appen-
dix A). Interestingly, the SU(3)’ [originating from SU(5)’]
triplet and antitriplets i1, d°, and § play the role of “preon”
constituents for the bound-state leptons and right-handed/
sterile neutrinos. Moreover, in our scheme the lepton
number L is related to the U(1)y charge as L = 3B'.
Therefore, “primed baryon number" B’ [of the SU(5)'] is
the origin of the lepton number.

2. Charged lepton masses

Now, we turn to the masses of the charged leptons, which
are composite within our scenario. As it turns out, their
mass generation does not require additional extension. It
happens via integration of the states that are present in the
model. As we see from Eq. (41), the SU(5)" matter couples
with the SU(3)" triplet scalar 7' with mass M7 ,. Relevant
4-fermion operators, emerging from the couplings of
Eq. (41) and by integration of T, are

v _ CorCur 10 0 ;
L5 = SRR | (40) (@) + (o) (@) | + He,
Ty
(51)

As we see, here appear the combinations (§§g)g and
(a°d®)ar°, which according to Eq. (49) form composite
charged lepton states. We will use the parametrizations

(228p), = N capyslos. = N3C,p,5€55

N[ =

(52)

where Greek indices denote family indices and c, ¢ are
dimensionless couplings—four index tensors in a family
space. The ([, ef); denote three families of composite
leptons. Using Eq. (52) in Eq. (51), we obtain

L = Tply + egfiec + H.c.

. ~ A/3 0)x* 0)x*
with Hos =75 (CEI'\)IJ )(l/i(CEIJI)T )yﬁ’c(l/)’y(‘}’
Ty
~ A/3 0)x* 0)x _
Hss = Vel (CEIJ\>I/ )y&'(dm)r )aﬂcu/iy(s- (53)
Ty

At the next stage, we integrate out the vectorlike states 2, [
and e, e, which, respectively, receive masses Mj and
M ;e through the coupling in Eq. (42). Integrating out
these heavy states, from Eqgs. (42) and (53), we get

PHYSICAL REVIEW D 90, 015022 (2014)

1
| = — 0l , cT ~ _ Ty . 54
Hig € €o MMe‘_é[ (54)

Substituting these in the 7Y ;lh" coupling of Eq. (40),
we see that the effective Yukawa couplings for the leptons
are generated:

-1 1
ece 1l

The diagram corresponding to the generation of this
effective Yukawa operator is shown in Fig. 1. This
mechanism is novel and differs from those suggested
earlier for the mass generation of composite fermions
[22]. From the observed values of the Yukawa couplings,
we have |DetYy|=1,4,4, ~1.8x107'". On the other
hand, natural values of the eigenvalues of Y,; can be
~0.1. Thus, |DetY,,| ~ 10~3. From these and the expres-
sion given in Eq. (55), we obtain

1 1
Det| p )HDet(—ﬂ)
< Mecér le

the constraint that should be satisfied by two matrices
~ 1
MM

~1078,  (56)

A

1
and — [i.
M?z’u

3. Neutrino masses

Now, we discuss the neutrino mass generation. To
accommodate the neutrino data [4], one can use SM singlet
fermionic states in order to generate either Majorana- or
Dirac-type masses for the neutrinos. Within our model,
among the composite fermions, we have SM singlets 1
[see Egs. (49) and (50)]. Here, we stick to the possibility of
the Dirac-type neutrino masses, which can be naturally
suppressed [23]. Because of compositeness, there is no
direct Dirac couplings Y, of vf’s with lepton doublets /.
Similar to the charged lepton Yukawa couplings, we need
to generate Y, . For this purpose, we introduce the SU(5) x
SU(5) singlet (two-component) fermionic states N.*
Assigning the D, parity transformations NS N and taking
into account Egs. (5) and (34), relevant couplings, allowed
by SU(5) x SU(5)" x D, symmetry, will be

.1
Ly = CpyFNH + CiyF'NH'" =2 NMyN +Hec.
with My = M5, (57)

These give the following interaction terms:

a1
Ly = CpyINh + Cpyd*NT, — ENTMNN +Hec. (58)

“The number of N states is not limited, but for simplicity we
can assume that they are not more than 3.
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q
ZU Q> [ l

FIG. 1.

FIG. 2. Diagram responsible for the generation of the effective Dirac Yukawa matrix for the neutrinos.

From these and Eq. (41), integration of 7'y state gives the
additional affective four-fermion operator

(0)%
Cyr C Aen he
—LEZEN (7°d)(d°N) + H.c. (59)

Mz,
By the parametrization

(a5df)dy = N Cp5055. (60)
operators in Eq. (59) are given by

L = Nu,vg+ Hee.

. A/3 0)x* * ~
with ()55 = ME (C&} )a/}(CFN)y(S’Caﬁyﬁ- (61)
TH/

Subsequent integration of N states, from Eq. (61) and the
last term of Eq. (58) gives

1
N = M—Nﬂyl/(c)- (62)

Substituting this, and the expression of / from Eq. (54),
in the first term of Eq. (58), we arrive at

. . o 1 1
ngbU(L)h =+ H.c. with YU = —'MT m CFN M—N”D (63)

The relevant diagram generating this effective Dirac
Yukawa couplings is given in Fig. 2. With ML” i ~1072 and
Cpny ~Mpy ~ MLN u, ~ 107>, we can get the Dirac neutrino
mass MP = Y,(h(?) ~ 0.1 eV, which is the right scale to
explain neutrino anomalies. Note that using Eq. (62) in the

last term of Eq. (58) we also obtain the term — 315" M .1,
with M e = ul MLN u,. By proper selection of the couplings

Cry and eigenvalues of My, the M, can be strongly
suppressed. In this case, the neutrinos will be (quasi) Dirac.
However, it is possible that some of the species of light
neutrinos to be (quasi) Dirac and some of them Majoranas.
Detailed studies of such scenarios and their compatibilities
with current experiments [24] are beyond the scope of
this paper.

IV. GAUGE COUPLING UNIFICATION

In this section we will study the gauge coupling uni-
fication within our model. We show that the symmetry
breaking pattern gives the possibility for successful uni-
fication.” As it turns out, the SU(3)" gauge interaction
becomes strongly coupled at scale A’(~few TeV). Thus,
below this scale, SU(3)’ confines, and all states (including
composite ones) are SU(3)’ singlets. Therefore, with the
masses M Eza) and M ial (a = 1,2, 3) of vectorlike states I, ]
and e, & being above the scale A/, in the energy interval
u= M, — N, the states are just those of SM (plus possibly
right-handed/sterile neutrinos having no impact on gauge
coupling running), and corresponding one-loop S-function
coefficients are (by,b,,.b,) = (f5.—%.—7). Since A’ is
the characteristic scale of the strong dynamics, it is clear
that pseudo-Goldstone and composite states (besides SM
leptons) emerging through chiral symmetry breaking and
strong dynamics can have masses below A’ (in a certain
range). Instead, investigating their spectrum and dealing
with corresponding threshold effects, we parametrize all

*Possibilities of gauge coupling unification, with the inter-
mediate symmetry breaking pattern and without invoking low-
scale supersymmetry, have been studied in Ref. [25].
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TABLE I. Particle spectroscopy.

M, GeV M, GeV M, GeV M, GeV M, GeV
Mglw 7.54 x 10* M2, 7.54 x 10* Mp 4.16 x 10° My 3.92 x 10° My 2.08 x 109
M 754x 100 y0) 12x105  Mgp 1874.7 Ms, 9277 My, 5x 10"
M} 12 x 10° N 1851 Mpy — 825x10° My 2My;, My 495x 10"
M<1> 7.54 x 10* My, 1851 Mpp 8250 My, 4.16 x 10° My 5x 10"
these as a single effective A’ scale, below which theory is ~ symmetry, and the fragments ®pp, Ppp form the

the SM. This phenomenological simplification allows us to
proceed with RG analysis. Note, however, that even with
taking those kinds of thresholds into account should not
harm the success of coupling unification with the price of
proper adjustment of the mass scales (given in Table I and
discussed later on).

In the energy interval A’ — M;, we have the symmetry
SU3).xSU(2),, xU(1)y x SU(3)’, and SU(3)" non-
singlet states (i.e., g, i€, Zlc, Ty, etc.) must be taken into
account. As was noted in Sec. II, we consider hierarchical
breaking: M; < M, < M [see Egs. (17) and (18)]. This
choice allows us to have successful unification with
confining scale A’ ~ few TeV.0 Thus, between the scales
M; and M/, the symmetry is Gz, X Gz, [see Egs. (9) and
(11)], and states should be decomposed under these groups
[see, for instance, Egs. (25) and (26)]. Since the breaking
Gz X Gz’ = Ggy x SU(3) is realized by the VEV of
the fragment @, at scale M;, we take M = M;. The
remaining three masses, of the fragments coming from @,
can be in a range A’ — M. Giving more detailed account
to these issues in Appendix B, below we sketch the main
details.

Above the scale M/, all matter states should be included
in the RG. Above the scale M,’, we have the SU(5)

(bIO — B + A1), b,

(b3 =T +by"),  —biC,  (BY = bI),
(bgG _ bZI) —bgG 0
(bLG —p41),  —bLC, (LG —bll),

where on the right-hand side of this equation the couplings ay ,, . are taken at scale M. The factors b/“** (like b}

(b3 = b, -2z
—2r
—2r
—2r

unified (2,5)-plet of Gs xSU(5): (®pp,Ppr)CPpz,
while ®;7» and ®;, states unify in (3,5)-plet:
(Prp, Prp) C Prz. These states, together with the X'-
plet, should be included in the RG above the scale M/’

According to Eq. (16), at scale M;, for the EW gauge
couplings, we have the boundary conditions

ay' (M)

ar (M) + o' (M),
oy (M) + oyt (M)). (64)

c
=L
=

I

The couplings of G3,," gauge interactions unify and form
single SU(5)" coupling at scale M,":

ar (M) = ay(M;') = ay (M) = as (M) (65)

Finally, at the GUT scale Mg, the coupling of G3,; and
SU(5) unifies:

a1 (Mg) = ;;(Mg) = a3(Mg) = ay(Mg) = ag.  (66)
With solutions (B5) and (B6) of RG equations at

corresponding energy scales, and taking into account the
boundary conditions (64)—(66), we derive

In 2 2r(ay (N) — a5') + b4 In

M o w : :
g | _ | 2n(as! (N) =) + by I (67)
ln%—’/ —2ra;!

1 —2ma;' (A) — b3 lnMAZ

!
16, b3, etc.)

stand for effective b factors corresponding to the energy interval y, — p;, and can also include two-loop effects. All expressions

and details are given in Appendix B.

®0One can have unification with (Z') =0, (i.e., M; = M/') and with a modified spectrum. However, with such a choice, the value of A’
comes out rather large (>10° GeV). This would also imply the breaking of EW symmetry at a high scale and thus should be discarded
from the phenomenological viewpoint. More discussion about this issue is given in Sec. VI.
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FIG. 3 (color online).
aG(MG) = 1/31

From Eq. (67) we can calculate {M;, Mg, M/, a;} in
terms of the remaining inputs. For instance, a phenom-
enologically viable scenario is obtained when SU(3)
confines at scale A’ ~1 TeV. Thus, we will take A’ ~
1 TeV and a3'(A') < 1. In Table I we give selected input
mass scales, leading to successful unification with

{M; M, Mg} ={825x10*4.16x10°4.95x 10"} GeV,
ag=1/31. (68)

The corresponding picture of gauge coupling running is
given in Fig. 3. This result is obtained by solving RGs in
the two-loop approximation. More details, including one-
and two-loop RG factors at each relevant mass scale, are
given in Appendix B.

V. NUCLEON STABILITY

In this section we show that, although the GUT scale M
is relatively low (close to 5 x 10'' GeV), the nucleon’s
lifetime can be compatible with current experimental
bounds. In achieving this, a crucial role is played by lepton
compositeness, because leptons have no direct couplings
with X,Y gauge bosons of SU(5). The baryon number
violating d = 6 operators, induced by integrating out of the
X, Y bosons, are

2
9 -,c i c

—M’§ (U 47, qL) (d° "V ) e e
X

92

M2 ( ay,th)(e yﬂq )eabc j (69)

where gy is the SU(5) gauge coupling at scale My (the
mass of the X, Y states). According to Eq. (54), the states
[, e contain light leptons [, e§. Using this and going to the
mass eigenstate basis [with Egs. (45) and (46)], from
Eq. (69), we get operators

8 10 12

)

Gauge coupling unification. {A’, M;, M,', M5} = {1800, 8.25 x 10* 4.16 x 10%,4.95 x 10''} GeV and

2
) _ 9 -z -
0le) = I D ey u) (e5pdy),

My
>
e 9 = e
Olig = 3 Cop (W7,0) (@ gre,),
X
o4 = ch d,) (& g 70
a6 = aﬁy(u Yu W) (d° el (70)
with
Cfl/;) (RTLLt)l<RZﬁ*M* LZPTVCKM>
e‘e” af
F 1% ps i Lo
+(RuLuP1VCKM)1/3 Rep™ ——1L,, ,
Me"é" al
1
¢ = (RiLY),, <R ,uL) ,
/ dM?l pa
cY) = (RiL:PIV, R ar: 71
afy — ( u CKM) dM e ’ ( )
) Pr

where in Eq. (70) we have suppressed the color indices.
Similar to quark Yukawa matrices, the charged lepton
Yukawa matrix has been diagonalized by transformation
LiY,R, =Y Elag All fields in Eq. (70), are assumed to
denote mass eigenstates. We have ignored the neutrino
masses (having no relevance for the nucleon decay) and
rotated the neutrino flavors vy = Ljv similar to the left-
handed charged leptons ey = Lje.

As we will show now, with proper selection of appropriate
parameters (such as M{ o M ——f and/or corresponding
entries in some of unitary "matrices), appearing in
Eq. (71), we can adequately suppress nucleon decays within
our model.” Upon the selection of parameters, the constraint

"The importance of flavor dependence in d = 6 nucleon decay
was discussed in Refs. [26] and [27]. As was shown [27], in
specific circumstances, within GUTs one can suppress or even
completely rotate away the d = 6 nucleon decays.
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(56) must be satisfied in order to obtain observed values of
charged fermion masses. Introducing the notations

RiL;=U, R,—pL:=L, Rl L;=R,
u u deZ e Iu M:[@f u
(72)
the couplings in Eq. (71) can be rewritten as
Cy| = Un(RP{Ve)gp + UP}Vera)ip (R
C(l/} u“‘cﬁa’ C(l/}y (Z/{P VCKM)la‘Cﬂy (73)

Since the matrices U, L, and R are not fixed yet, for their
structures we will make the selection

€1 € € 0 x X

U, =0, L=|x x x|, R=|0 x x|,
X X X X X X

(74)

CZI}/ (Z/{P VCKM) 26' —€Z/[ 671(1)3

where in last step we have used standard parametrization of
the CKM matrix. Since the matrix U/ is unitary, due to
selection U/;; = 0 and the unitarity condition, we will have
U > + [U31* = 1. With this, by Eq. (75) and using
central values [28] of CKM matrix elements, we obtain

J

I'(p - vKY)=T(n— vK°) =

Vts Vcd B thV

where |ay| = 0.012 GeV? is a hadronic matrix element and
Ar = ALAZS = 1.48 takes into account long- (A; = 1.25)
and short-distance (Afg = 1.18) renormalization effects (see
Refs. [30] and [31], respectively. Some details of the
calculation of A’S, within our model, are given in Appen-
dix 1). To satisfy current experimental bound 7,"(p —
DK*) <5.9 x 103 years [32], for My =5 x 10" GeV and
ay =1/31, we need to have /|e||” + |es> + |es]* <
4.8 x 107, This selection of parameters is fully consistent
with the charged fermion masses. Note, that with Eq. (74)
there is no conflict with the constraint of Eq. (56). We can
lower values of |e, [; however, there is a low bound dictated
from this constraint. With |Det(jiy—)| - |Det(Min Q)| =
|Det(L)| - |Det(R)| ~ 1078, the lowest value can be
le,| ~ 1078, obtained with [Det(R)|~ 1. More natural
would be to have |Det(R)| <1072, which suggests
|Det(£)] <107°, and therefore +/|e;|> + |es]> + |es]> =

(m? — m%)? m g 2
> me3 1+3mp (D +3F) MX Aglay|
B

PHYSICAL REVIEW D 90, 015022 (2014)

where x stands for some nonzero entry. With this structure
we see that for o, f = 1,2 we have Cﬁle/;) = Cffﬁ) =0, and
therefore nucleon decays with emission of the charged
leptons do not take place. With one more selection, we
will be able to eliminate some nucleon decay modes (but
not all) with neutrino emissions. We can impose one more
condition, involving U, and U5 entries of U/, in such a
way as to have (UP;Vexm);, = 0. The latter, in expanded
form, reads

(UPVexm) 11 = Une 2V oy +Uz3e7 3V, = 0,
Via

= Z/llze’ia’z = —
Vcd

U13e”'“’3 (75)

and leads to ngz)y :C% =0. Thus, the decays p —

vnt.n — vn’ n — oy do not take place. Nonvanishing
relevant C*¥) couplings are Cé”l)},, which, taking into account

Egs. (74) and (75), are

S — e Ui e~ S13ei6 76
Vv - €y 13€ : % ’ ( )
cd cd

|
|Z/{|2| ~0038 |U|;| =1 and | SH
These give |Cm| =156 x 10~ 2|ey|. Taking into account all

VY~ -2
—|V—“‘;|—1.56x10 .

this, for expressions of p — 7K™ and n — pK° decay
widths, we obtain [29]

3
243107 e, (77)

X y=1

v/3 x 107°. This dictates an upper bound for the proton
lifetime 7, = 7(p — K™) <5 x 10* years and will allow
us to test the model in the future [32].

Besides X, Y gauge boson mediated operators, there are
d = 6 operators generated by the exchange of colored
triplet scalar T'y;. From the couplings of Eq. (40), we can see
that the integration of 7' induces baryon number violating

M;%.H(chqqq><chqll) CCuz'ecec><MCCucdz'dc) op-
erators, M£ (C]chqQ)

“Coeee M: —jile C)( “Coeged”).

which lead to the couplings
(qTqu ML”/:\‘IO) and

Couplings C,;, appeanng in these operators are indepen-
dent from Yukawa matrices, and proper suppression of
relevant terms is possible [similar to the case of couplings
in Eq. (73)], leaving fermion masses and a mixing pattern
consistent with experiments. To make a more definite
statement about the nucleon lifetime, one has to study in
detail the structure of Yukawa matrices. In this respect,
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extension with flavor symmetries is a motivated framework
and can play a crucial role in generating the desirable
Yukawa textures [guaranteeing the forms given in
Eq. (74)]. Preserving these issues for being addressed
elsewhere, let us move to the next section.

VI. VARIOUS PHENOMENOLOGICAL
CONSTRAINTS AND IMPLICATIONS

In this section we discuss and summarize some
peculiarities, phenomenological implications of our
model, and constraints needed to be satisfied in order
to be consistent with experiments. Also, we list issues
opening prospects for further investigations within pre-
sented scenario:

(1) The discovery of the Higgs boson [1], with mass
~126 GeV, revealed that the Standard Model suffers
from vacuum instability. Detailed analysis has
shown [2] that, due to RG, the Higgs self-coupling
becomes negative near the scale ~10'° GeV. If the
Higgs field is sure to remain in the EW vacuum, the
problem perhaps is not as severe. However, with
an inflationary universe with the Hubble parameter
> 10'° GeV (preferred by the recent BICEP2
measurement [33]), the EW vacuum can be easily
destabilized by the Higgs’s move/tunneling to the

|

PHYSICAL REVIEW D 90, 015022 (2014)

“true” anti-de Sitter (AdS) vacuum [34]. Whether
AdS domains take over or crunch depends on the
details of inflation, the reheating process, nonmini-
mal Higgs/inflaton couplings, etc. (a detailed over-
view of these questions can be found in Refs. [35]
and [34]). While these and related issues need more
investigation, to be on the safe side, it is desirable to
have a model with positive 4, at all energy scales (up
to the M Pl)'

Since within our model above the A’ scale new states
appear, this problem can be avoided. As was
mentioned in Sec. II, in our model a light SM
doublet & dominantly comes from the H-plet. The
coupling Ay (HTH)? gives the self-interaction term
An(hTh)* (with A, ~ Ay at the GUT scale). The
running of 4, will be given by

d
16n2a/1h =BV + A,

where 3™ corresponds to the SM part, while Af
accounts for new contributions. Since the H-plet in the
potential (7) has additional interaction terms, some of
those couplings can help to increase 4,,. For instance,
the couplings 4154, Arpe, h, etc., contribute as

A 2
Ap,, ~ ( 155(1)) 90(u — Mppr) +60(u — Mpy) +60(u — Mypy) +460(u — Mpp )]
Tora)? A
< B8 3 M) + 20— M )]+ 3020 —My,) - s)

Detailed analysis requires numerical studies by solving
the system of coupled RG equations (involving multiple
couplingsg). While this is beyond the scope of this work,
we see that, due to positive contributions (see above) into
the f function, there is potential to prevent 4, becoming
negative all the way up to the Planck scale.
(i1) Since in our model leptons are composite, there will
be additional contributions to their anomalous mag-
netic moment, given by [15]

m,,\?
da, ~ (A’) : (79)

Current experimental measurements [28] of the muon
anomalous magnetic moment give Aay, ¥ ~ 6 x 10717,
This, having in mind a possible range ~(1/5 — 1) of
an undetermined prefactor in the expression of
Eq. (79), constrains the scale A’ from below:
N = (1.8 —4.3) TeV. The selected value of A,
within our model (A’ = 1851 GeV), fits well with

¥For methods studying the stability of multifield potentials, see
Refs. [3] and [36] and references therein.

[

this bound.” The value of Sa, is more suppressed (for
A = 1.8 TeV, we get 6a, ~ 10713) and is compatible
with experiments (Aag’ ~2.7 x 10713). Planned
measurements [38] with reduced uncertainties will
provide severe constraints and test the viability of the
proposed scenario.

Similarly, having flavor violating couplings at the
level of constituents (i.e., in the sector of SU(3)’
fermions g, i°, 21"), the new contribution in e, — ezy
rare decay processes will emerge. For instance, the
contribution in the ¢ — ey transition amplitude will be

~A1p s where 1, is the (unknown) flavor violating

(>
coupling coming from the Yukawa sector of g, i, d°.
This gives Br(u — ey) ~ 13, (%¥)% and for A’ =
1.8 TeV the constraint 1, <4 x 10™* should be
satisfied in order to be consistent with the latest

experimental limit Br**P(u — ey) < 5.7 x 10713 [39].

°In fact, this new contribution to a, has the potential of
resolving a 3—4¢ discrepancy [28] (if it will persist in the future)
between the theory and experiment [37].
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(iii) As was mentioned in Sec. III B (and will be dis-

cussed also in Appendix A), the matter sector of
SU(3)" symmetry (ignoring EW and Yukawa inter-

actions) possesses GJ(,6) chiral symmetry with sextets

6; ~ g, and 6 ~ g5 [see Eqgs. (47) and (48)]. The
breaking of this chiral symmetry proceeds by several
steps. At the first stage, at scale A’~1.8TeV, the
condensates <6L6LTL,>~<6R6RTH/>~A’ break the
Gﬁf). However, these condensates preserve SM

gauge symmetry. At the next stage (of chiral sym-
metry breaking), the condensate (6;6z)=F,, to-
gether with the Higgs VEV (h)=uv,, contributes to
the EW symmetry breaking. The F, denotes the
decay constant of the (techni) z’ meson and should
satisfy v}, + F2 = (246.2 GeV)?. With the light
(very SM-like) Higgs boson mainly residing in &
and with F, <0.2v;,, the h’s signal will be very
compatible with LHC data [40]. Since the low-energy
potential would involve VEVs (6L6LTL,),
(6g6T ), Fp, and vy, obtaining mild hierarchy
% < 1/40 will be possible by proper selection (not
by severe fine-tunings) of parameters from perturba-
tive and nonperturbative (effective) potentials. The
situation here (i.e., the symmetry breaking pattern,
potential (being quite involved because of these
VEVs), etc.) will differ from case obtained within
QCD with SU(n), x SU(n)g chiral symmetry and
with the (n; x ng) condensate only [41]. Moreover,
the hierarchy between the confinement scale and the
decay constant can have some dynamical origin (see,
e.g., Refs. 10[43]). Without addressing these details,
our approach is rather phenomenological, with the
assumption F, /v, <0.2 and h being the Higgs
boson (with mass ~126 GeV), such that there is
allowed a window for a heavier 7z’ state and the model
is compatible with current experiments [44]. Models
with partially composite Higgs, in which the light
Higgs doublet (dominantly coming from H) has some
ed-mixture of a composite (technipion z’) state (i.e.,
h = hy + cpyn’, with ¢, < 1) with various interest-
ing implications (including necessary constraints,
limits, and compatibility with LHC data), were
studied in Ref. [40]. As mentioned in Sec. IV, it is
possible to have unification with the symmetry
breaking pattern and the spectrum of intermediate
states that give larger values of A’ (even with
A ~10° GeV). However, in such a case, the value
of F would be also large, and it would be impossible
to bring F to the low value even with fine-tuning.
This would mean that the EW symmetry breaking
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scale would be also large. That is why such a
possibility has not been considered.

In addition, it is rather generic that the model with
composite leptons will be accompanied with excited
massive leptons (lepton resonances). Current experi-
ments have placed low bounds on masses of the
excited electron and muon to be heavier than
~1.8 TeV. This scale is close to the value of A’
we have chosen within our model and will allow us to
test the lepton substructure [45] hopefully in the not-
far future. Details, related to these issues, deserve
separate investigations.

(iv) Since the condensate (6,6z) = F,, by some

amount, can contribute to the chiral [of the
SU(3)’ strong sector] and EW symmetry breaking,
the scenario shares some properties of hybrid tech-
nicolor models with fundamental Higgs states.
Moreover, together with technipion 7/, near the A’
scale, there will be technimeson states pr, wr, etc.,
with peculiar signatures [46], [47], which can be
probed by collider experiments.

(v) Because of the new states around and above the A’ ~

1.8 TeV scale, there will be additional corrections to
the EW precision parameters 7, S, U, etc. While
because of strong dynamics near the A’ scale, the
accurate calculations require some effort, the sym-
metry arguments provide a good estimate of the
additional corrections—AT, AS, etc. One can easily
notice that the isospin breaking effects are sup-
pressed in the sector of additional states. Therefore,
the mass splittings between doublet components of
the additional states will be suppressed (i.e.,
AM < M), and pieces ATy, AT, of AT = AT +
AT, will be given as [48]

N AM 2 N AM\?
AT =—L (==L} AT = ),
X 127TSW myy ' 247TSW myy

(80)

where subscripts f and s stand for fermions and
scalars, respectively, and Ny, N, account for the
multiplicity [or dimension with respect to the group
different from SU(2),,] of the corresponding doublet
state. One can easily verify that within our model in
the sector of extra vectorlike (I + 1), states the mass
splitting between doublet components is suppressed as

AM < ME) This, according to Eq. (80) and Table I,
/i

gives the negligible contribution: ATy <22 v/
w
(myM 5; )2 ~ 1075, Within the fragments of the scalar
®, the lightest is ®pp with mass Mpp = 8.3 TeV.
Splitting between the doublet components comes

from the potential term '12?’;3 HT®®TH, giving AM =

19 a conformal window is realized, the value of F,; can be

more reduced [42]. Jonov3/(4V/10Mpyr). This, according to Eq. (80),
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causes enough suppression' AT pp =5 42‘2 X
As pomted out above bes1des the

fundamental Higgs doublet (#), which dominantly
includes SM Higgs, there is a composite doublet
(#'—similar to technicolor models) with suppressed
VEV—F .. Contribution of this extra doublet, into the
T parameter, is estimated to be

1 [(AM, M2
ATy (AMe) oy, L)
24nsy, \ my 4r

where the first term is due to the mass splitting
AM,,(~v7/(4M,/)) between doublet components of
7', while second term emerges due to the VEV (z') =
Fp with ¢y = 2m%F /(M2 v;) (Where Fpy < 0.20).
This contribution is also small (AT, ~ 2 x 1073) for
M, ~ 1 TeV. Since 7’ is a composite state, due to the
strong dynamics, special care is needed to derive a
more accurate result (as was done in Ref. [49] for
models with a single composite Higgs performing
proper matching at different energy scales). However,
since AT, is protected by isospin symmetry, we limit
ourselves to the estimates performed here. Moreover,
the source of the isospin breaking in the strong SU(3)’
sector is Fp <0.2v,, causing the mass splitting
between composite “technihadrons” (denoted collec-
tively as {p'}) of AM ; ~ F% /M ,. This, for M, ~ \,

would  give the correction AT, ~ 12 — X
iTS

F/(myM,)* <107, Note that the direct isospin
(custodial symmetry) breaking within g, states is
much more suppressed (we have no direct EW
symmetry breaking in the Yukawa sector of g, i€,
and d° states) and thus conclude that within the
considered scenario extra corrections to the 7 param-
eter are under control.

Let us now give the estimate of the additional
contributions into the S parameter. Contributions to
this parameter from the additional vectorlike (1 + 1),

(e¢ + e°), states decouple [50] and are estimated
Y

to be ASj;~ASu. < ~4,z< ”h) ln - ~107. The
un

contribution from the scalar ®pp is ASpp=
%AMDT'/MDT/ /IZHq)Uh/<8ﬂ'\/ MDT’) <2X 10_5,
also suppressed, as expected. The contribution of extra
(heavy 7’) composite doublet is

1 AM, 1 M,
AS, ~— T+l 82
" 6r My +6ch nmh (82)

where first term is due to the splitting of the doublet
components, while second term comes from the VEV
(n')=Fy. With AMy~v?/(4M ) and M 2 1 TeV,
Eq. (82) gives AS, <1073. Similarly suppressed
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contributions would arise from the techni-p’ hadrons:
ASy ~ g AMy /My ~ g FL /M7, <4 %107 (for
M e A')

As far as the contribution from the matter states
q,uc ,d° are concerned, since their masses are too
suppressed, in the chiral 11m1t — 0, we can use the
expression [48]

N:Y
AS; — é‘f (—21nﬁ—|—G(x1)—G(x2)),

T X
: 1 mjzfi
with  G(x) = —4arctanh —, i =3
1 —4x mz
(83)

where my , are masses of the components of the f
fermion with hypercharge Y,. Verifying that in the
limit x — 0 the function G(x) goes to 2 In x, we see that
expression for AS; in Eq. (83) vanishes. Moreover,
new contributions to the U parameter are more sup-
pressed. For instance, the contribution due to the 7’ is

1 [AM_ \? 1 AM
AUy ~— ) —— 2 4
Uﬂ (M”r ) 1277,'6” Mﬂ./ ’ (8 )

which for M, ~1TeV, F,<02v, becomes
AU, <5x107%. All other new contributions to the
U are also more suppressed than the corresponding AS
and AT. This is understandable since U is related to
the effective operator with a dimension higher than
those of S and 7. All these allow us to conclude that
new contributions to the EW precision parameters are
well below the current experimental bounds [51].

(vi) Within the proposed model, spontaneous breaking of

two non-Abelian groups SU(5) x SU(5)" and dis-
crete D, parity will give monopole and domain wall
solutions, respectively. Since the symmetry breaking
scales are relatively low (<5 x 10'! GeV), the in-
flation would not dilute number densities of these
topological defects in a straightforward way. Thus,
one can think of alternative solutions. For instance, as
it was shown in Refs. [52], within models with a
certain field content and couplings, it is possible that
symmetry restoration cannot happen for arbitrary
high temperatures. This would avoid the phase
transitions (which usually cause the formation of
topological defects). Moreover, by proper selection of
the model parameters, it is possible to suppress the
thermal production rates of the topological defects
(for detailed discussions, see the last two works of
Ref. [52]). From this viewpoint, our model with a
multiscalar sector and various couplings has potential
to avoid domain wall and monopole problems. Thus,
itis inviting to investigate the parameter space and see
how desirable ranges are compatible with those
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needed values appearing in Eq. (78) (for “improving”
the running of 4,).

To cure problems related with topological defects, also
other different noninflationary solutions have been pro-
posed [53], and one (if not all) of them could be invoked
as well.

Certainly, these and other cosmological implications, of
the presented scenario, deserve separate investigations.

At the end let us note that it would be interesting to build
a supersymmetric extension of the considered SU(5) x
SU(5) x D, GUT and study related phenomenology.
These and related issues will be addressed elsewhere.
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APPENDIX A: COMPOSITE LEPTONS
AND ANOMALY MATCHING

Here we demonstrate how the composite leptons emerge
within our scenario and also discuss anomaly matching
conditions. As was noted in Sec. III B, the sector of g, i1,
and d° states have G}& chiral symmetry [see Eq. (47)] with
the transformation properties of these states given in
Eq. (48). At scale SU(3)" interaction becomes strong,
and the Gﬁf) symmetry breaking condensates can be
formed. The chiral symmetry breaking can proceed through
several steps, and at each level the formed composite states
should satisfy anomaly matching conditions [14].

The bilinear [SU(3)-invariant] condensate can be
(6 x 6g) = F,, with corresponding breaking scale F.
As was shown in Ref. [41], with only fundamental states,
the chiral symmetry SU(n), x SU(n); will be broken
down to the diagonal SU(n),,, symmetry. Since in our
case F, also contributes to EW symmetry breaking, we
have a bound F,~100 GeV. This scale, in comparison
with A’ ~ few x TeV, can be ignored at the first stage.
Moreover, in our case, light SU(3)’ nonsinglet field content
is reacher (including light scalars), and the chiral symmetry
breaking pattern is also different. Other SU(3)’ invariant
condensates, including matter bilinears, are

<6L6LTL’> and <6R6RTH’>' (Al)
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Note, that the product of SU(6) sextets gives either sym-
metric or antisymmetric representations (6 x6=15,+21y),
but due to SU(3)’ contractions, in Eq. (A1) the antisym-
metric 15-plets (i.e., 15; and 153) participate. The con-
densates (A1) transform as 15; and 153 under SU(6), and
SU(6)g, respectively, and therefore break these sym-
metries. A possible breaking channel is

SU(6), — SU(4), x SU(2), = G2,
SU(6), — SU(4)p x SU(2), = G4

G, (A2)

Indeed, with respect to G<L4'2) and Gg’z), the 15; and 154
decompose as

SU6), — G 115, = (1, 1), + (6, 1), + (4,2),,

SUO)g = G 1 155 = (1. g + (6, 1) + (4. 2).
(A3)
and the VEVs ((1,1),) and ((1, 1),) leave G(L4’2) X Gﬁf’”
chiral symmetry unbroken. The singlet components
(((1,1),) and {(1.1)g)) from Eq. (Al) are $(34T},) =
(adT},) and (4°d“Ty) combinations, which leave Gy
gauge symmetry unbroken. Therefore, the values of these
condensates can be ~few TeV(~A’) without causing any
phenomenological difficulties. Thus, as the first stage of

the chiral symmetry breaking, we stick to the channel

GOLGE 5 G x U(1), (A4)
with
(6,6,T',) = (adT},)~N,
(6g6xT ) = (2d°T ) ~ N (A5)

The SU(6), p sextets under G(L4_‘2) are decomposed as

6, =(4.1), +(1,2), and 6 = (4. 1)g + (1,2)g, respec-
tively. If composite objects are picked up as (4,1); » C
[(4.1) ¢ and (1,2'),x C[(1,2), 4)°, then one can
easily check out that the anomalies (of initial and
composite states) indeed match and (4',1);, and
(1,2") g can be identified with three families of leptons
plus three states of right-handed/sterile neutrinos. For
demonstrating all these, it is more convenient to work in
a different basis. That would also make it simpler to
identify composite states.

As it is well known (and in our case turns out more
useful), one can describe the SU(6) symmetry (and its
representations as well) by its special subgroup (‘S sub-
group” [54]) SU(3), ® SU(2) C SU(6). In our case,
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SU(6), 2 SU3);, ® SU(2),.,

SU(6)z 2 SU(3);z ® SU(2)p. (A6)

Under these S subgroups, the sextets decompose as'!

q(6,) = 4(3.2),.  q°(6p) =4°(3.2)g. (A7)

In these decompositions, ¢ and §° can be written as

matrices,
<—SU(3)fL - <—SU(3)fR - N
¢ 1 , ac o ec o 1c ,
g=1 ~ .| SU(2 c=| . . ) SU2
0= (5 55 v a=(5 L ) sue
)
(A8)

where schematically actions of SU(3) and SU(2) rotations
are depicted. Therefore, transformation properties under the
chiral group

Gj(fm) =SUQB);L®SUQ2), xSUB);r ®@SU2)gx U(1)p

(A9)

. 1
G;3,2) : q~ <3fL’2L’ 1, 1,§>,
1
gc ~ <1, 1,3fR,2R,—§>. (A10)
Relevant anomalies that do not vanish are

A([SUB) .2 - U()g) = —A([SU3) ] -

A([SUQ)LP - U()y) = —A([SU(2)g]

U(l)p) =1,
1)) =3,

(A1)

The anomaly matching condition can be satisfied with the
spontaneous breaking of the symmetries SU(3) s and
SU(3);g down to SU(2),, and SU(2)g, respectively.
[This happens by condensates (ZAS) dlscussed above.]
Thus, the chiral symmetry G is broken down to
G}z 2 where

"Similar to the description of three-flavor QCD with (u, d, s)
spin-1/2 states, either by the sextet of SU(6) or by (3,2) of
SU(3); x SU(2),—the Wigner-Weyl realization of the SU(6)
chiral symmetry. Here, however, SU(2), stands for the spin group
and SU(3) for the flavor. In our case of Eq. (A6), SU ( ) factors
act like isospin rotations relating #, and d and @ with 215,,
respectively (a = 1,2, 3).
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G =5U(2);, ®SU(2), xSU(2) ;g ®SU(2)x x U(1)

(A12)

This breaking is realized, for instance, by the condensates
(izd;T},) and (§d5Ty). Note that with SU(3),, —
SU(2);, and SU(3); — SU(2)z we will have decom-
positions 3, =24 + lg and 35 = 245 + 14z, At the
composite level, the spin-1/2 and SU(3)’ singlet combina-
tions (¢ §)g and (§°G°)¢° picked up as [2}; + 17, ] from

25 + 1y and [2g + 1] from [245 + 15¢]*. Thus,
transformations of (§ §)g and (§°¢°)§° composites under
G;2’2> are'?

(270 +14].2.1,1, 1),

G (49)q~
Vg ~ (1,1, 2% + 17z, 25, —1).

(q°q (A13)

These representations will have anomalies that precisely
match with those given in Eq. (A11). Thus, we have three
families of [y, ef,2{; composite states represented in
Eq. (49), with transformation properties under Gg;, given
in Eq. (50).

APPENDIX B: RG EQUATIONS AND » FACTORS

In this appendix we discuss details of gauge coupling
unification and present one- and two-loop RG coefficients
at each relevant energy scale. At the end we calculate short-
range renormalization factors Ay and A§ for baryon
number violating d = 6 operators.

The two-loop RG equation, for gauge coupling «;, has
the form [55]

d 1 _ f92
1 = Bl
din g 271' snzzb’f f+32 *Z“ A

where b; and b;; account for one and two-loop gauge
contnbutlons respectlvely, and c represents the two-loop
correction via Yukawa coupling /1f For consistency, it is
enough to consider the Yukawa coupling RG at the one-
loop approximation:

d 3 92
T = ok (de 2,
f/

167>

— 4an;ai) .
(B2)

RG factors can be calculated using general formulas [55].
Since at different energy scales different states appear, these

"“Under combination (g §)q (suppressed gauge/chiral indices),
we mean e“"’/c/e,-j(@a/,ﬁb/j)(?crk, where a',b',c’ =1,2,3 are
SU(3) indices and i,j, k= 1,2 stand for SU(2),/SU(2),

indices.
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factors also change with energy. For instance, at scale y, the b; and b;;

PHYSICAL REVIEW D 90, 015022 (2014)

can be written as b;(u) = > ,0(u — M,)b? and

bij(u) = > .0(u — M,)bf;, where a stands for the state with mass M, and step function 8(x) = 0 for x < 0, and O(x) = 1
for x > 0.
Integration of Eq. (B1), in energy interval u; — u,, gives
blflﬂz u
uy) = a7 (uy) — In 22 B3
a; (/’42) a; (ﬂl) 7 n m ( )
where an effective b4'*? factor is given by
1 H 1
Hipy _ a a /22
bi12_<29 b n——|—4ﬂZ/ blja]dlny—@/m ci)tfdln,u>@. (B4)

The second and third terms in Eq. (B4) can be evaluated iteratively [56]. Although Eq. (B1) can be solved numerically
(which we do perform for obtaining final results), expressions (B3) and (B4) are useful for understanding how
unification works.

In the energy interval M, — A/, we have just SM, while between A’ and M; scales, we have Ggy, x SU(3)" gauge
interactions plus additional states. Applying Eq. (B3) for the couplings ay, a,,, a., and a3, we will have

_b_ZIl M;

271' MZ

by!
oyt (M) = oy (N) ==~

M,

a'(M;) = a; ' (M7) e

In (B5)

i=Y,w,c,

where b7/, b3 can be calculated via Eq. (B4) having appropriate RG factors.
Above the scale M, we have gauge interactions G, going all the way up to the GUT scale. The Gs,,” gauge symmetry
appears between scales M; and M/, while SU(5)" appears above the M, scale. Therefore, we will have

_ B IS Mg ,
ail(MG):ail(Ml)—zﬂ an i=1,2,3,
1/1/ M/ )
o (M) = a;' (M) — o In MI, , i'=1,2.3,
_ B bLS Mg
oz (Mg) = a3' (M) — o M, (B6)

From Eqgs. (B5) and (B6) and taking into account the boundary conditions (64)—(66), we arrive at relations given in Eq. (67).
The four equations in Eq. (67) allow us to determine M;, M;', M, and o in terms of other input mass scales. The latter
must be selected in such a way as to get successful unification. This has been done numerically, and results are given in
Table I, Eq. (68), and Fig. 3.

Now, we present all RG b factors needed for writing down RG equations. In the energy interval y = M, — A’, the RG
factors are just those of the SM:
199 27 44
50 10 5
41 19 .
,u_MZ—A’:bi_<E,—€,—7>, b=\ 2 12 |, (i=7Y,w,c). (B7)
19
o 3 —26

In the energy interval A’ — M, we have the symmetry SU(3), x SU(2),, x U(1), x SU(3)". Also, instead of composite
leptons, we have three families of SU(3)’ triplets g, it¢, d°, and vectorlike states (1,1), and (e, ), (@ = 1,2,3) with
masses M.* and M Eff;[, respectively. Moreover, some fragments of ®(5, 5 ) [see Eq. (25)] and X, (of X’) can appear below
M. Thus, the corresponding b factors in this energy interval are given by
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/«l:A/—Ml:
9 1 23 @\ | 4 @ 5 5
by=§+E(9(M—MTW)+§;9(M_M71 )+§;9(/‘_Me"é‘f)+89(ﬂ_MDT’)+69(ﬂ_MTD’)
7028 @ 1 1
bw:—6+§;‘9(ﬂ—M;Z )+§9(H—MDT’)+§9(/¢—MTD’),
1 1
bc:_7+§9(/4_MTD’)+§9(ﬂ_MTT’)’
1 1 1 1
by = -7 +69(ﬂ —Mr,) +§9(ﬂ —Mpr) +§9(ﬂ — Myy) +§9(ﬂ — My). (B8)
13700 9 44 44
50 5 5 5
N—M;:b s o5 121 > 0(u—M,)b ( Y 3') ith
=N - tbyi= + —M,)b?,, i,j=Y,w,c, with :
1 11by L9 6 o > Ol ; J
o2 0 -2
5008 5504 000 0 5540
5 13
Jw_ |0 000 Lor _ 5 Lo g g _ |00 00 o _ |35 80
Y 000 0} Y 000 0| Y 00 11 8 | Y %323_20’
200U 5030 2 00 8 11 00 00
% 15 00
A 3 49 /
We_|i0 % 00 () _ 1yig [ 20 % Doy
byl = . b ) =Diag(=.0,0,0),  b,¥ =Diag(0,0,0,21). B9
| b g5 " = Diag(0.0.0.21) (B9)
0000

Between the scales M; and M,’, the symmetry is G3,; X G3,,’, and all matter states are massless. Also, above the
scale M;, we should include the states Ty and ®p;y as massless and remaining fragments above their mass thresholds.
Since Gs,; goes all the way up to the M, its one-loop b factors can be determined in the interval M; — M; and are
given by

43 3 1 2
=M, — Mg : =— 4+ — — My — — M7 — — My
2 I G b 10+109('u DT)+59(.“ TT)+159(M ™)
17 1
bZZ_F"'_EH(/‘_MDT’),
1 1
by =17 +§‘9(ﬂ —Mrp) +§9(ﬂ —Mrp). (B10)

The gauge group Gs,,” appears in the interval M; — M/, and corresponding one-loop b factors are

64 1 2 1
=M, —M, by =—+—0u—My —O(u— Mpp —O(u— M
u i [ b 15+10 (u D>+15 (u DT)+5 (u rr)
3 55
+m9(ﬂ_MTD’)_?9(/"_MX’),

1 1
by =3 +69(/4 —Mp) +§9(ﬂ —Mrp) —110(u — Mx),

41 1 1
by :—g‘*‘ig(ﬂ—MTT’)+§9(M—MDT'>7 (B11)
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where terms with 8(u — My:) account for the threshold of (X', Y’) gauge bosons of SU(5)', in case their masses My lie
slightly below the M," scale. We will take this effect into account at the one-loop level. The two-loop b;; factors of
G3 X G3y;' form 6 x 6 matrices and are determined in the interval M; — M,

be, (i.,j=1,273,1.2.3)

i’

ﬂ:M]—MI/ . b” == <bf+bh+bg+bTHl +bDDI)l’j+Ze(ﬂ—Ma

N—

%iﬁ—;‘ooo 2000 0 0
1
s 3 4000 23000 0
£33 0 0 0
with:b-l’;:3 30 2 3]9344’ bf'jz 000000’
00 0 & 3 4 000000
00 0 1 £ 4 0 000O0O
0o 0 o 4 3 I 0 00 00O
00000 O »x 2 0 3 20
000O0O0O 2o 230
bTH,ZOOO?OIZ yoo |00 0 0 00
! 000 5 0 4 ' 5 5 05 50
000000 130 2 Lo
000 2 0L 0000 00
6
S 102 0% 5 05 507
289 2 0 38 00 0 00 O
2 2
por_ |0 0 0 000 bTT,:gollgos
3] \’ 17 ’
5 5 035 03 5 0% 50 7%
000 00O 00 0 0 0 0
% 3 0 & 0 % 0 8 2 0 11
302 £ ¢ 0 0000 00O
000 0 00 0000 00
4 22 3
b_T_D,:EoT§3o bP’:OOOSSO
) ’ 1 2 2 ’
%02?4%%0 00050100
3 13
508 5 50 000 % O
000 0 00 0000 00
_ 136 136 =
b{; = Diag (O, —— 1020, —T,—loz), b,} = Diag(0,0,0,0,0,21). (B12)

In this M; — M/ energy interval, we have two Abelian factors U(1) and U(1)" and states ®; (the fragments of ®) charged
under both gauge symmetries. Because of this, the gauge kinetic mixing will be induced [57], [58]. Parametrizing the

latter as —“%F’IWF 1w»> and bringing whole gauge kinetic part to the canonical form, one can obtain ®;’s covariant

derivative as [58] [0* + 4 g; Q,A} + £ (g1 Q) + 91 Q;)A]®;. In this basis Q; charges are unshifted, and g, and its RG are

unchanged. On the other hand, g;; = ¢,// cos ¥ and g, = —g, tan y. Introducing the ratio § = ¢,;// gy, the RGs for @, and
o will be [58]
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d b By
g ) l=... L _2llg
dlnpu (@) 2n T
=— —, B13
dinp’ 227 T g2 (B13)
where “...” denote standard one- and two-loop contributions

[with form of Eq. (B1)] and By = >_,0;0; is given by

1
By = s [0(u — Mpy) — O(u — Mppy)

—O(u—Mrpp) +0(u — Mrppy)). (B14)

Because of the mass splitting between ®’s fragments, B, #
0 in the interval M; — My, and therefore 6 # 0; i.e., the
kinetic mixing is generated. This causes the shift
ay' = ap' + O(8). However, as it turns out, within our
model this effect is negligible. We have taken these into
account upon numerical studies and got §(M;) = 9.5 - 1073,
siny(M;) = —2- 1072, causing the change of a;'(M;) by
0.01%. This has no practical impact on the matching

|

p=M/—Mg: b= (b +b"+bI+b" +b¥ + b)), +0(u — My3)bT
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As far as the Yukawa coupling involving RG factors, a‘if ,
cf,dj;,, and c’f [see Egs. (B1) and (B2)], are concerned,
within our model only top and “mirror-top” Yukawa
couplings are large. All other Yukawa interactions
are small and can be ignored. Thus, the Yukawa terms

|
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In energy interval M; — M, with replacement of the
indices (Y, w, c¢) — (1,2, 3), the corresponding RG factors
will be the same. Since the mass of the state D’ is ~M/, the
RG with 4; will be relevant above the scale M;’. Within our
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conditions of Eq. (64) and does not affect the picture of
gauge coupling unification and therefore can be safely
ignored.

Since at and above the scale M;’ the G,,’ is embedded in
SU(5)', we will deal with b factors of Gz, x SU(5)
symmetry, and one-loop b factors of Gs,; are given in
Eq. (B10). At energies corresponding to unbroken SU(5)’,
the fragments (® 5, @) form the unified (2,5) = ®,)z-
plet of Gz, x SU(5)'. Similarly, (Ty,D') C H'. Above
the scale M/, these states (together with all fragments of
the ¥'-plet) should be included as massless states. Thus, the
one-loop b factor of SU(5)" is given as

1
M:MI/—MG:bsf:—13+§9(/4—M7~§/), (BIS)

where M5 = max(Mrp, M7p) denotes the mass of the
(3, 5)-plet, which includes ®;p and @4 states:
(®rp. ®rp) C Prz. The two-loop b;; factors, above the
scale M,’, form 4 x 4 matrices and are

(i.j =1,2,3,5)with:

ij >

50 0
5o 0 ’
0 0 0
0 0 0
97 . 175
= E5i5’5j5’7 blz, = 751'5’5;5’,
0 % %
0 0 0 B16)
0 2 24
08 ¥
[
Aqsthy,  (hpth+25ept2) Ty, and 451D are

relevant. All these four couplings unify at M; due to
gauge symmetry and D, parity. For the top Yukawa
involved RG factors, in the energy interval M, — M,,
we have

4 =o0. (B17)

model, MTH, ~A', and in the RG, the couplings 1;;
and A will be relevant above the scale A’. Between
the scales A’ and M, the mirror matter has EW and SU(3)’
interactions. Therefore, we have
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Between M, and M/’ scales, with replacements (Y, w) — (1’,2'), the corresponding factors will be the same. At and above
the scale M, the G3,,’ is unified in the SU(5)" group, D' should be included in the RG, and three Yukawas unify
Az, = Azeze = 4. Thus, dealing with 4;, we will have

-9
p=M/ =M dy=2. =9 =1, d =0. (B19)
1. Short-range RG factors for d = 6 operators

The baryon number violating d = 6 operators of Eq. (70) involve couplings C**) and C), respectively. These couplings
run, and in nucleon decay amplitudes, the short-range RG factors

CO(Mz) - C(My)

I _ [—
As = B Ty (520

emerge. These factors, having SM gauge interactions and states below the GUT scale, were calculated in Ref. [31]. Within
our model, calculation can be done similarly. The RG equations for C!¥) and C(¢"), in one-loop approximation, are given by

ax Lo = _ew [Q(M, - )<23ay —|—9a ) +2a.+0(u—M )(;gal +9a2)]

dt 20
d . . 11 9 11 9
4JTEC(E) = —C(e)[H(MI—y)<2OaY—|—4a > +2a,+60(u—M )(20011 +4a2)] (B21)

Having numerical solutions for the gauge couplings, Eqs. (B21) can be integrated. Doing so and taking into account
Eqgs. (B20), within our model we obtain A’S = 1.18 and A§L =1.17.
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