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Many extensions of the standard model postulate the existence of new weakly coupled particles, the top
partners, at or below the TeV scale. The role of the top partners is to cancel the quadratic divergence in the
Higgs mass parameter due to top loops. We point out the generic correlation between naturalness (the
degree of fine-tuning required to obtain the observed electroweak scale), and the size of top partner loop
contributions to Higgs couplings to photons and gluons. If the fine-tuning is required to be at or below a
certain level, a model-independent lower bound on the deviations of these Higgs couplings from the
standard model can be placed (assuming no cancellations between contributions from various sources).
Conversely, if a precise measurement of the Higgs couplings shows no deviation from the standard model,
a certain amount of fine-tuning would be required. We quantify this connection, and argue that a
measurement of the Higgs couplings at the per cent level would provide a serious and robust test of
naturalness.
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I. INTRODUCTION

The recent discovery of a new particle, roughly consistent
with the standard model (SM) Higgs boson, has opened a
new window into physics at the electroweak scale. In the next
decade, the Higgs physics will enter the precision era, in
which the goal will be to measure the properties of this
particle, in particular its couplings, with the highest possible
accuracy. Besides the continuing experiments at the LHC, the
idea of a next-generation electron-positron collider such as
the International Linear Collider (ILC) is currently under
active discussion, with precise measurements of the Higgs
couplings as its prime motivation [1]. Such a facility would
be capable of measuring several couplings at a per cent level.
It is important to understand the implications that these
measurements could have on our ideas about physics beyond
the standard model.
Predictions of many SM extensions for the Higgs cou-

plings have already been extensively studied. In this paper,
we point out a very general, and important, feature of such
predictions. In any model which stabilizes the Higgs mass
against radiative corrections by postulating weakly-coupled
new physics, the amount of fine-tuning required to obtain the
observed electroweak scale is inversely correlated with the
size of certain non-SM contributions to the Higgs couplings
to photons and gluons. In other words, if the fine-tuning is
required to be at or below a certain level, a model-
independent lower bound on the deviations of these
Higgs couplings from the SM can be placed (assuming
no cancellations between contributions from various

sources). Conversely, if a precise measurement of the
Higgs couplings shows no deviation from the SM, a certain
amount of fine-tuning would be required. We will quantify
these statements, and show that per cent level Higgs coupling
measurements, expected to be achievable at the next-
generation experimental facilities, would provide a serious
test of naturalness of the electroweak scale. This gives a clear
and compelling physics motivation for such measurements.1

The paper is organized as follows. In Sec. II, we present
the general argument for the correlation between natural-
ness and loop-induced Higgs couplings to gluons and
photons. The key observation is that the same object,
the Higgs-dependent mass of the top partner (or partners),
determines the dominant radiative corrections to the
Higgs mass parameter, via the Coleman-Weinberg (CW)
potential, and the top partner contributions to the Higgs
couplings to gluons and photons, via the well-known “low-
energy theorems” [5]. In Sec. III, we study the correlation
between fine-tuning and Higgs couplings quantitatively,
using a simple toy model with a single top partner (scalar or
fermion) as the benchmark. In Sec. IV, we explore how the
picture may be affected by the presence of a second top
partner, and find that excepting small regions of parameter
space where accidental cancellations occur, the conclusions
of the benchmark one-partner analysis remain valid. We
discuss our findings and conclude in Sec. V.

II. GENERAL ARGUMENT: TOP PARTNERS,
NATURALNESS, AND THE HIGGS COUPLINGS

The starting point of our analysis is a single Higgs
doublet H with the SM tree-level potential*mf627@cornell.edu

†mp325@cornell.edu
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VðHÞ ¼ −μ2jHj2 þ λjHj4: (1)

This hypothesis is the simplest interpretation of the LHC
discovery consistent with all other experimental data. In
particular, there is no evidence in the data ofH mixing with
other scalar fields, and the constraints on such mixing are
now quite stringent. In the SM, the measurements of the
Higgs vacuum expectation value (vev) and mass provide
precise values for the parameters in the potential:

μ ¼ 90 GeV; λ ¼ 0.13: (2)

How natural are these parameters? To address this question,
we need to consider quantum corrections to the potential
(1). At the one-loop order, these corrections are conven-
iently given by the Coleman-Weinberg (CW) formula

VCWðhÞ ¼
1

2

X
k

gkð−1ÞFk

Z
d4l
ð2πÞ4 log ðl

2 þm2
kðhÞÞ; (3)

where the sum runs over all particles in the model, and gk
and Fk is the multiplicity and fermion number of each
particle, respectively. For example, for a gauge-singlet
complex scalar, g ¼ 2 and F ¼ 0; for a gauge-singlet
Dirac fermion, g ¼ 4 and F ¼ 1. Here h=

ffiffiffi
2

p
is the real

part of the Uð1Þem-neutral component of H; in the SM
vacuum, hhi ¼ 246 GeV. The one-loop correction to the
Higgs mass parameter is given by

δμ2 ≡ δ2VCW

δh2

����
h¼0

: (4)

In the SM, the largest contribution to the CW potential
comes from the top quark, since the top Yukawa is the
strongest coupling of the Higgs:

δμ2 ¼ −
3y2t
8π2

Λ2 þ…; (5)

where Λ is the scale at which all loop integrals in VCW are
cut off. Since we expect Λ ≫ MEW, the quantum correction
to μ from the top loop is unreasonably large, and would
require fine-tuning if no new physics is present. If the
theory is weakly coupled at the TeV scale, the only way to
avoid fine-tuning is to introduce a new particle, the top
partner, with mass at or below the TeV scale. (Multiple top
partners may be involved in the divergence cancellation.)
Such partners can be spin-0 scalars, as in supersymmetric
(SUSY) models,2 or vectorlike spin-1=2 fermions, as in
little Higgs [9,10] or 5-dimensional composite Higgs

models [11].3 In either case, the top partner mass has
the form

m2ðTiÞ ¼ m2
0;i þ cih2 þ � � � ; (6)

where we allow for the possibility of multiple top partners
labeled by Ti, and drop the terms of higher order in h. By
dimensional analysis, such higher-order terms need to be
suppressed by powers of a mass scale; our approximation is
valid if this mass scale is≫ v. The absence of a term linear
in h in the mass is a consequence of the top partners’
vectorlike SUð2Þ charges. The combined top sector con-
tribution to the quadratic terms in the Higgs potential is

δμ2 ¼ 1

16π2

��X
i

gið−1ÞFici − 6y2t

�
Λ2

þ
X
i

gið−1ÞFicim2
0;i log

Λ2

m2
0;i

− 6y2t m2
t log

Λ2

m2
t
þ…

�
:

(7)

Cancellation of the quadratic divergence yields the sum rule

6y2t ¼
X
i

gið−1ÞFici: (8)

This sum rule is imposed by the symmetry of the theory in
both SUSYand little Higgs. The remaining fine-tuning can
be quantified by taking the ratio of the quantum correction
to μ2 to its measured value:4

Δ ¼ δμ2

μ2
≈ 0.78

�X
i

gið−1ÞFici

�
m0;i

1 TeV

�
2

log
Λ2

m2
0;i

− 6y2t

�
mt

1 TeV

�
2

log
Λ2

m2
t

�
: (9)

If Δ ≫ 1, the theory must be fine-tuned to accommodate
the observed electroweak symmetry breaking. Note that Δ
only measures fine-tuning in the Higgs mass parameter; we

2The special role played by the stops, the partners of the top
quarks, in determining the degree of naturalness of the electro-
weak scale in SUSY models was emphasized in Refs. [6], and
more recently in Refs. [7,8].

3In principle, a spin-1 top partner is also a possibility [12]; we
will not consider this case here.

4Our fine-tuning measure is essentially equivalent to taking a
logarithmic derivative of the Higgs mass parameter prediction at
the weak scale with respect to the value of this parameter at scale
Λ:Δ ≈ d log μ2ðmweakÞ

d log μ2ðΛÞ , up to corrections of order 1=Δ. In this sense, it
is close to the familiar “Barbieri-Giudice” (BG) fine-tuning
measure [13] used in many SUSY analyses. In the BG approach,
sensitivity with respect to all parameters of the UV theory is taken
into account; in our framework, we aim for a high degree of
model-independence, and do not specify a complete UV theory.
Nevertheless, our approach applied to SUSY theories would
produce results similar to BG, except in the special situation
where nongeneric “focusing” behavior of RG evolution of μ2 is
taking place [14]. In that case, the fine-tuning indicated by our
measure would exceed the BG tuning.
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assume that the observed quartic coupling can be generated
with no additional fine-tuning. In general, this assumption
is justified by the absence of quadratic divergences in the
renormalization of λ: the SM top loop contribution is δλ ∼
ðy4=16π2Þ logΛ=mtλ even for a Planck-scale cutoff. In
certain models, λ may need to be fine-tuned for specific
model-dependent reasons: for example, in λ-SUSY models,
there are two tree-level contributions to λ of different
physical origin, which are individually too large and need
to cancel to reproduce the observed Higgs mass. In such
models, fine-tuning in λ needs to be considered [15], and
the discussion becomes highly model dependent. However,
since the required cancellation in μ and λ have very
different physical origins, one should regard them as
uncorrelated, additive effects, so that the Δ defined in this
paper effectively provides at least a lower bound on the
fine-tuning in all situations that we are aware of.
The effects of the top partners on the Higgs couplings

first appear at the one-loop level. The best place to look for
such effects is in the couplings which vanish in the SM at
the tree level. We focus on the couplings of the Higgs to
gluons and photons. At the one-loop order, the contribu-
tions of particles with masses ≫ mh to these couplings are
described by effective operators,

Lhγγ ¼
2α

9πv
CγhFμνFμν; Lhgg ¼

αs
12πv

CghGμνGμν:

(10)

The Wilson coefficients can be found using the well-known
“low-energy theorems” [5]:

Cγ ¼ 1þ 3

8

XDirac fermions

f

Nc;fQ2
f

∂ lnm2
fðvÞ

∂ ln v

þ 3

32

Xscalars
s

Nc;sQ2
s
∂ lnm2

sðvÞ
∂ ln v ;

Cg ¼ 1þ
XDirac fermions

f

CðrfÞ
∂ lnm2

fðvÞ
∂ ln v

þ 1

4

Xscalars
s

CðrsÞ
∂ lnm2

sðvÞ
∂ ln v ; (11)

where the first term is the contribution of the SM top loops,
the sum runs over the top partners, and Nc;i and Qi are the
dimension of the SUð3Þc representation and the electric
charge (in units of electron charge) of the particle i. Note
that the exact same objects, the Higgs-dependent masses of
top partners miðhÞ, enter the CW potential and the Higgs
couplings, providing a very general and robust connection
between these quantities. In the approximation of Eq. (6),
we obtain

Cγ ≈ 1þ 3

4

X
f

Nc;fQ2
fcfv

2

m2
0;f þ cfv2

þ 3

16

X
s

Nc;sQ2
scsv2

m2
0;s þ csv2

;

Cg ≈ 1þ 2
X
f

CðrfÞcfv2
m2

0;f þ cfv2
þ 1

2

X
s

CðrsÞcsv2
m2

0;s þ csv2
: (12)

The set of coefficients fm0;i; cig determines both the fine-
tuningΔ and theWilson coefficients, generically resulting in
a correlation between these quantities. Assuming that there
are no other non-SM contributions to the Higgs couplings to
photons and gluons, the deviations of these couplings from
the SM in the presence of top partners are given by

Rg ≡ gðhggÞ
gðhggÞjSM

¼ Cg;

Rγ ≡ gðhγγÞ
gðhγγÞjSM

≈ 1 − 0.27ðCγ − 1Þ; (13)

where the contribution of the W loop has been taken into
account in the photon coupling.
It should be noted that in the above discussion, we

assumed that the top loop contribution to the Higgs
couplings is exactly equal to its value in the SM. This
assumption may break down due to deviations of the top
Yukawa from its SM value: this situation is generic in
models with extended Higgs sectors, such as the minimal
supersymmetric standard model (MSSM) away from the
decoupling limit, many composite Higgs and little Higgs
models, etc. In such models, the deviation of the hgg=hγγ
couplings from the SMwould be due to a combination of the
top-partner loops that we focus on, and the effect of top
Yukawa shift in the SM diagram. It should be emphasized
that the second effect is highly model dependent, and cannot
be quantitatively correlated with naturalness in a broad
framework. However, the top Yukawa coupling can be
independently measured, for example in the tt̄h final state
at the ILC running at

ffiffiffi
s

p ¼ 1 TeV, where an accuracy of
about 2–3% is projected for this coupling [16]. If a deviation
of the top Yukawa from the SM is observed, it should be
taken into account in the computation of the top loop to
hgg=hγγ. Once that correction is implemented, our analysis
would apply equally well in the situation with SM and non-
SM top Yukawa. Of course, our ability to probe top partners
up to a certain mass scale would then be limited by the
accuracy of the direct top Yukawa measurement as well as
the measurements of hgg=hγγ couplings. This should be
kept in mind when evaluating the potential of future Higgs
precision program to probe naturalness.
Even if no direct measurement of the top Yukawa is

available, our framework would still be relevant, in the
following sense. If the hgg=hγγ couplings are measured to
be consistent with the SM to a certain precision, our
analysis would provide a lower bound on the top partner
mass, and therefore on fine-tuning. This bound could be
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relaxed if there is a cancellation (full or partial) between the
top-partner loop and the shift in the top loop from the SM.
However, in most models, these two effects are controlled
by independent parameters: for example, in SUSY, stop-
sector and Higgs-sector soft SUSY-breaking terms, respec-
tively. If this is the case, any cancellation between the two
must be regarded as accidental, and, if precise, fine-tuned.
So, a fine-tuning bound obtained without including the
top Yukawa shifts is still applicable, at least qualitatively.
The only exception that we are aware of occurs in some

composite Higgs models. In these models, the shift in the
top loop contribution to hgg and hγγ couplings is of the
same order as the top partner loop contributions to these
couplings [17]. The effect of the additional shift is model
dependent. In some simple models, a cancellation between
the top-Yukawa and top partner loop effects may occur, due
to the specific structure of the top mass matrix [18,19]
(although it should be emphasized that this cancellation is
not a direct consequence of the shift symmetry responsible
for keeping the Higgs light in these models). In this case,
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FIG. 1 (color online). Fractional deviation of the Higgs coupling to gluons (left panel) and photons (right panel) from the SM value, as
a function of the top partner mass. Top row: Spin-0 top partner. Bottom row: Spin-1=2 top partner. Regions currently allowed by the
LHC and Tevatron data are shown in dark-gray/green (68% c.l.) and light-gray/yellow (95% c.l.).
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our analysis would not apply. Note, however, that in all
theoretically motivated examples that we are aware of, the
shift in the top Yukawa is due to Higgs compositeness, at a
scale not far above the electroweak scale. Such models also
predict large, tree-level deviations of the Higgs couplings to
W and Z bosons, which will be probed with high precision
by any experiment capable of precise measurements of
gluon and photon couplings.

III. BENCHMARK MODEL: A SINGLE
TOP PARTNER

The simplest possibility is that there is a single top
partner, in fundamental rep of SUð3Þ and with electric
charge 2=3, just like the SM top. (The single partner model
is applicable to models with multiple top partners if they
have the same m0;i parameters: for example, the MSSM
with two degenerate stops.) This simple model can be used
as a benchmark for evaluating the potential of precision
Higgs couplings to probe naturalness. In this case, c1 is
fixed by the sum rule (8), and m0;1 is the only free
parameter in the predictions:

Cγ ¼ Cg ¼ 1þ 1

4

y2t v2

m2
0;1 þ y2t v2

ðspin 0 partnerÞ;

Cγ ¼ Cg ¼ 1 −
y2t v2

2m2
0;1 − y2t v2

ðspin 1=2 partnerÞ: (14)

The correlation between the Higgs coupling deviations from
the SM and the mass of the top partner is shown in Fig. 1.
For reference, we also show constraints obtained from a fit to
the current LHC-7, LHC-8 [20,30], and Tevatron [31] data,
assuming that top-partner loops are the only non-SM
contribution to Higgs couplings. To obtain these constraints,
we fit to the published Higgs event rates observed in various
channels, assuming no correlation between any of the data
points, and include the theoretical uncertainties provided by
the Higgs cross section working group [32]. (For details of
the fit, see the Appendix.) Our results are roughly consistent
with the more detailed fits performed by the LHC collab-
orations [33,34]: for example, our one-sigma error bar on Rg
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FIG. 3 (color online). Regions allowed by the LHC and Tevatron data in the Δ − logΛ plane, at the 68% c.l. (dark-gray/green) and
95% c.l. (light-gray/yellow). Here, Λ is the scale (in GeV) where the logarithmic divergence in the Higgs mass renormalization is cut off.
Left panel: Spin-0 top partner. Right panel: Spin-1=2 top partner.
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FIG. 2 (color online). Regions allowed by the LHC and
Tevatron measurements of the Higgs rates in the Rγ − Rg plane,
at the 68% c.l. (dark-gray/green) and 95% c.l. (light-gray/yellow).
The spin-0 top partner model predicts deviations along the solid/
blue line, while the spin-1=2 top partner induces deviations along
the dashed/red line. The points on both lines correspond to the
partner masses of 350, 500, 650, and 800 GeV. For comparison,
projected constraints from the LHC-14 [1] are shown by dashed/
purple ellipses.
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is about �0.1, compared to 0.14 reported by the ATLAS
collaboration [33] in a two-parameter fit where Rg and Rγ

were assumed to be the only non-SM contributions to the
Higgs rates. A broad range of top partner masses in the
region motivated by naturalness are currently allowed by
data: the 95% c.l. limit on the top partner mass is about
320 GeV for a spin-0 top partner, and 400 GeV for a spin-
1=2 partner. (Note that our best-fit value for Rg is about 0.7σ
below the SM expectation of 1.0, resulting in a slightly
stronger bound on the spin-0 partners and a slightly weaker
bound on the spin-1=2 case.) However, future precise
measurements of the Higgs coupling at the LHC-14 and a

future eþe− facility would probe much of the interesting
parameter space. For example, a 1% measurement of the
gluon coupling will probe the top partner masses in excess of
1 TeV, for both spin-0 and spin-1=2 top partners.
Since the one-partner model has only one free parameter,

the deviations in gluon and photon couplings are correlated.
This is shown in Fig. 2, along with the current and future
LHC constraints on the two couplings. (We used the
information provided in Ref. [1] to estimate the LHC-14
contours.) It is clear that the constraints are strongly
dominated by the gluon coupling measurement, due to
both the slope of the trajectory and the stronger
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FIG. 4 (color online). Fine-tuning as a function of the fractional deviation of the Higgs coupling to gluons (left panel) and photons
(right panel) from the SM value, and the energy scale Λ (in GeV) where the logarithmic divergence in the Higgs mass renormalization is
cut off. Top row: Spin-0 top partner. Bottom row: Spin-1=2 top partner. Regions currently allowed by the LHC and Tevatron data are
shown in dark-gray/green (68% c.l.) and light-gray/yellow (95% c.l.).
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experimental bound on Rg. If a deviation from the SM is
observed, it would be straightforward to check whether it
can be interpreted within the one-partner framework by
simply checking whether the trajectories shown here
intersect with the experimentally determined region. If
the answer is positive, these measurements will also allow
us to unambiguously determine the top partner spin.
The connection between Higgs couplings and fine-tuning

is illustrated more directly in Figs. 3 and 4. Since the top
partners only cut off the quadratic divergence in the top loop,
leaving the logarithmic divergence uncanceled, the value of
the fine-tuning measure Δ depends logarithmically on the

scale Λ where the logarithmic divergence is cut off. The
value of Λ is very model dependent. To demonstrate its
effect, we vary Λ between the “low” 10 TeV scale,
representing a rough lower bound on this scale in realistic
models, and the “high” 1016 GeV, motivated by grand
unification. In the case of a spin-0 partner, the 95% c.l.
lower bound on the fine-tuning from the current Higgs data
varies between ∼1=2 for a low-scale model and ∼1=20 for a
high-scale model. The bounds for the spin-1=2 partner are
slightly stronger, between∼1=3 and∼1=30. Of course, these
bounds can be dramatically improved by the future precise
measurements of Higgs couplings. For example, if the gluon
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coupling is found to agree with the SM at a 1% level, the
minimal amount of fine-tuning required would be ∼1=25 for
the low-scale model, and ∼1=400 for a high-scale model.
We emphasize that the probe of naturalness advocated

here is complementary to direct searches for top partners.
Sensitivity of the direct searches, especially at hadron
colliders such as the LHC, depends on details of the
spectrum and the decay patterns of the produced top
partners. For example, while the LHC “headline" direct
bounds on stops are already about 600–700 GeV [35], these
bounds can be evaded in a variety of ways, e.g. “stealthy”
[36] or compressed stop spectra, or R-parity violation. In
contrast, the nature of the Higgs coupling deviations
discussed here is very tightly connected to the restoration
of naturalness, and the connection is essentially model
independent. Of course, the simple correlation exhibited in
the benchmark one-partner models may be violated in more
complicated setups, where for example cancellation among
various loop contributions is in principle possible. We will
investigate an example of this in the next section. Still, it is
worth emphasizing that the “loopholes" inherent in the
test of naturalness proposed here are completely different
from the ones plaguing direct searches. Together, these
techniques should provide an extremely powerful and
robust test of naturalness.

IV. TWO TOP PARTNERS

Cancellation of the top loop divergence does not have to
be achieved with a single new particle. For example, in the
MSSM, there are twospin-0 toppartners, ~t1 and ~t2, generically
with different masses, both ofwhich participate in divergence
cancellation. Models with multiple top partners are charac-
terized by multidimensional parameter spaces, even after the
divergence cancellation sum rule is imposed. We expect that
throughout most of the parameter space of a given model, the
correlation between Higgs couplings and fine-tuning studied
in Sec. III continues to hold. However, there could be special
regions of parameter space where it can fail, due to cancella-
tions between contributions of the two top partners, either to
theCWpotential or to theHiggscouplings.To illustrate this, in
this section we will consider a toy model with two spin-0
partners, both in fundamental rep of SUð3Þ and with electric
charge 2=3. (These are the quantum number assignments of
the MSSM stops, so the results of this section will approx-
imately apply in that model; the correspondence becomes
exact in the limit of soft masses large compared to v.5) The
model has four free parameters, fm0;i; cig, i ¼ 1, 2; after the
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FIG. 6 (color online). Fine tuning (thick lines) as a function of θ for fixed values of μ and Rg, with Λ ¼ 20 TeV. The regions shaded in
black indicate values of θ where jciv2=m2

0;ij > 1; the regions shaded in red/dark-gray are unphysical due to m2
1 < 0. Light-gray/green

regions indicate values of θ for which the fine-tuning is less than what is predicted for a one scalar partner model with Rg ¼ 0.01.

5Many authors examined the stop loop contributions to Higgs
couplings in the MSSM; see, for example, Refs. [37].
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sumrule (8) is imposed, thenumber is reduced to3.Wechoose
to work in terms of

m1; μ ¼ m2

m1

; θ ¼ tan−1
c2
c1

; (15)

wheremi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0;i þ civ2
q

are the physical masses of the top
partners, andm1 < m2. Note that in the limits (μ → 1, any θ)
and (θ → 0, any μ), the model reduces to the one-partner
model with the same m0;1, considered in Sec. III above.
The main conclusion of our analysis of this model is that

the correlation of the Higgs coupling deviations and fine-
tuning, observed in the benchmark one-partner models of
Sec. III, is rather robust. This is illustrated in Fig. 5. For
example, suppose that the gluon coupling is found exper-
imentally to agree with the SM prediction at a level of 1%.
Interpreting this bound within a one-partner model places
a lower bound on fine-tuning of about 1=35 assuming
Λ ¼ 20TeV. The two-partner model can produce the gluon
coupling within 1% of the SM value with smaller fine-
tuning; however, the regions of parameter space where this
occurs (shaded in green in Fig. 5) are rather small, so an
accidental cancellation is clearly involved. Note also that
such accidental reduction in fine-tuning can only occur
when c1 and c2 have opposite signs (θ < 0). The accidental
nature of the fine-tuning reduction is further illustrated in
Fig. 6: once the masses are fixed, fine-tuning drops
significantly below the value inferred from the one-partner
model only for a narrow range of the couplings.
In principle, cancellation of the top quadratic divergence

may involve > 2 new particles, although we are not aware
of any explicit model in which this is the case. It seems
reasonable to conjecture that if this were the case, the
correlation of Higgs coupling deviation and fine-tunings
would persist, modulo possible accidental cancellations.

V. CONCLUSIONS

In this paper, we pointed out and quantified a correlation
between the level of fine-tuning of electroweak symmetry
breaking and the deviations of theHiggs couplings to photons
and gluons from their SM values. The connection holds in a
very large class of well-motivated models: the basic assump-
tions are that the physics at the weak/TeV scale is weakly
coupled, and that the quadratic divergence in the Higgs mass
from the SM top loop is canceled by loops of new particles,
the top partners. The top partners’ contributions to the Higgs
mass parameter and to the Higgs couplings to photons and
gluons are determined by the same objects, their Higgs-
dependent masses, resulting in a simple relationship between
them. Thus, measuring Higgs couplings precisely provides a
robust, model-independent test of naturalness. We showed
that ameasurement ofHiggs couplings to gluons and photons
at a per cent level will either result in a discovery of a
deviation from the SM, or imply that electroweak symmetry
breaking is significantly tuned. This test of naturalness should

bewithin the power of the proposed next-generation electron-
positron collider such as the ILC.
A potential “loophole” in our argument is that the top

partner contributions to the hgg and hγγ couplings may be
canceled by other non-SM contributions to these vertices.
In the case of multiple top partners, there is also the
possibility of cancellations of the top partners’ contribu-
tions to hgg and hγγ couplings among themselves.
Typically, such cancellations should be regarded as acci-
dental, and therefore unlikely. This was illustrated with an
example of a two top partner model in Sec. IV. The only
example that we are aware of where the cancellation of
the top partner contributions to hgg and hγγ happens for a
reason that seems inherent to the structure of the theory and
not accidental is the model studied in Ref. [18]. However,
the composite nature of the Higgs in that model implies
large tree-level deviations of the Higgs couplings to W and
Z bosons, and therefore it will still not escape detection via
measurements of Higgs couplings.
So far, naturalness of the electroweak scale has been

mainly probed through direct searches for the top partners,
which will of course continue in the next decade. We
emphasize the complementarity between this program and
the test of naturalness proposed here. The Higgs couplings
test does not suffer from the well-known loopholes which
plague direct searches (e.g. special spectra or R-parity
violation). At the same time, there seems to be no reason for
models where the deviations of hgg and hγγ are suppressed,
for whatever reason, to pose unusual difficulties for direct
searches. Taken together, the two programs will provide a
powerful and robust test of naturalness.
In summary, we believe that the test of naturalness pro-

posed here provides a compelling motivation for the future
programofprecisionHiggs couplingmeasurements.Wehope
that this program will be realized in the coming years.
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APPENDIX: FIT PROCEDURE

The fit to the experimental results has been performed
by employing the 2013 Moriond data released by ATLAS,
CMS, and the Tevatron experiments, summarized in
Tables I–III. The data is presented in the form of the ratios

HIGGS COUPLINGS AND NATURALNESS PHYSICAL REVIEW D 90, 015014 (2014)

015014-9



TABLE I. ATLAS data used in fits. We list best fits to signal strength μ and relative errors, as well as weights ζ (when provided)
corresponding to gluon-gluon fusion (G), vector initiated (V), and top associated (T) production. In the γγ channels first U (C)
corresponds to mostly unconverted (converted) photons, c (t) if detected centrally (or not), and H or L if at high or low pT. The label
“comb” indicates that the result is a combination of 7 and 8 TeV data sets.

Channel μ̂ (7 TeV) ζðG;V;TÞ (%) μ̂ (8 TeV) ζðG;V;TÞ (%) Refs.

bb̄ −2.7� 1.55 (0, 100, 0) 1.0� 1.4 (0, 100, 0) [20]

ττ Comb. — 0.7� 0.7 (20, 80, 0) [21]

WWð0jÞ 0.06� 0.60 Inclusive 0.92þ0.63
−0.49 Inclusive [22]

WWð1jÞ 2.04þ1.88
−1.30 Inclusive 1.11þ1.20

−0.82
Inclusive

WWð2jÞ — — 1.79þ0.94
−0.75 (20, 80, 0)

ZZ Comb. — 1.7þ0.5
−0.4 Inclusive [23]

γγ (U-c-L) 0.53þ1.37
−1.44 (93, 7, 0) 0.87þ0.73

−0.7 (93.7,6.2,0.2)

γγ (U-c-H) 0.22þ1.97
−1.91 (67, 31, 2) 0.96þ1.07

−0.95 (79.3, 19.2, 1.4)

γγ (U-r-L) 2.53þ1.69
−1.69 (93, 7, 0) 2.50þ0.92

−0.77 (93.2, 6.6, 0.1)

γγ (U-r-H) 10.45þ3.65
−3.73 (65, 33, 2) 2.69þ1.35

−1.17 (78.1, 20.8, 1.1)

γγ (C-c-L) 6.1þ2.6
−2.66 (93, 7, 0) 1.39þ1.01

−0.95 (93.6, 6.2, 0.2)

γγ (C-c-H) −4.38þ1.82
−1.74 (67, 31, 2) 1.98þ1.54

−1.26 (78.9, 19.6, 1.5)

γγ (C-r-L) 2.72þ1.99
−2.02 (93, 7, 0) 2.23þ1.14

−0.95 (93.2, 6.7, 0.1)

γγ (C-r-H) −1.7þ2.99
−2.81 (65, 33, 2) 1.27þ1.32

−1.23 (77.7, 21.2, 1.1) [24,25]

γγ (C-trans) 0.37þ3.6
−3.63 (89, 11, 0) 2.78þ1.72

−1.57 (90.7, 9.0, 0.2)

γγ (dijet) 2.72þ1.9
−1.88 (23, 77, 0) — —

γγ (loose high mass jj) — — 2.75þ1.78
−1.38 (45, 54.9, 0.1)

γγ (tight high mass jj) — — 1.61þ0.83
−0.67 (23.8, 76.2, 0)

γγ (low mass jj) — — 0.32þ1.72
−1.44 (48.1, 49.9, 1.9)

γγ (Emiss
T significance) — — 2.97þ2.71

−2.15 (4.1, 83.8, 12.1)

γγ (One-lepton) — — 2.69þ1.97
−1.66 (2.2, 79.2, 18.6)

TABLE II. CMS data used in fits. The diphoton channels notation matches that of [30].

Channel μ̂ (7 TeV) ζi
ðG;V;TÞ (%) μ̂ (8 TeV) ζi

ðG;V;TÞ (%) Refs.

bb̄ 0.59� 1.17 (0, 100, 0) 0.41� 0.94 (0, 100, 0) [26]

ττ (0=1j) Comb. — 0.74þ0.49
−0.52 Inclusive

ττ (VBF) Comb. — 1.39� 0.59 (0, 100, 0) [27]

ττ (VH) Comb. — 0.76� 1.48 (0, 100, 0)

WWð0=1jÞ Comb. — 0.76� 0.21 Inclusive [28]

WW (VH) Comb. — 0.3� 1.5 (0, 100, 0)

ZZ (untagged) Comb. — 0.84þ0.32
−0.26 (95, 5, 0) [29]

ZZ (dijet tag) — — 1.22þ0.84
−0.57 (80, 20, 0)

γγ (untagged 0) 3.85þ2.01
−1.66 (61.4, 35.5, 3.1) 2.19þ0.95

−0.79 (72.9, 24.6, 2.6)

γγ (untagged 1) 0.19þ1.01
−0.95 (87.6, 11.8, 0.5) 0.05þ0.68

−0.67 (83.5, 15.5, 1.0)

γγ (untagged 2) 0.05þ1.26
−1.15 (91.3, 8.3, 0.3) 0.32þ0.51

−0.50 (91.7, 7.9, 0.4)

γγ (untagged 3) 1.48þ1.66
−1.6 (91.3, 8.5, 0.2) −0.36þ0.89

−0.85 (92.5, 7.2, 0.2)

γγ (dijet) 4.19þ2.35
−1.76 (26.8, 73.1, 0.0) — — [30]

γγ (dijet loose) — — 0.8þ1.12
−0.99 (46.8, 52.8, 0.5)

γγ (dijet tight) — — 0.29þ0.68
−0.58 (20.7, 79.2, 0.1)

γγ (MET) — — 1.92þ2.61
−2.31 (0.0, 79.3, 20.8)

γγ (Electron) — — −0.63þ2.75
−1.97 (1.1, 79.3, 19.7)

γγ (Muon) — — 0.42þ1.8
−1.39 (21.1, 67.0, 11.8)
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between the observed signal strength in a certain channel
and the standard model prediction:

μ ¼ ðσprod × BRÞobs
ðσprod × BRÞSM : (A1)

The production cross section is defined as

σprod ¼
X
α

ξασα; (A2)

where σα represents the cross section for a particular
production mechanism, while ξα are the corresponding

efficiencies (which vary depending on the production
channel, due to different kinematics of the Higgs boson,
trigger efficiencies, etc.) The three production channels
included in this analysis are: gluon gluon fusion (G),
vector associated production and vector boson fusion
(V), top associated production (T). We reconstruct the
efficiencies ξα from the weights ζα provided by the
experiments.
The fit is obtained with the minimum χ2 procedure, with

the χ2 function defined as

χ2ðRjÞ ¼
X
i

ðμ̂i − μiðRjÞÞ2
δμ2i

; (A3)

where μ̂i is the experimental central value, μiðRjÞ is the
model prediction as function of the parameters Ri, and δμi
is the total error. The theoretical error is estimated by
propagating the single production cross sections errors as
given in Ref. [32]. It is then summed in quadrature with the
experimental errors listed in Tables I–III. We assume that
all measurements are uncorrelated.
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