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Pseudoscalar couplings between Standard-Model quarks and dark matter are normally not considered
relevant for dark-matter direct-detection experiments because they lead to velocity-suppressed scattering
cross sections in the nonrelativistic limit. However, at the nucleon level, such couplings are effectively
enhanced by factors of order OðmN=mqÞ ∼ 103, where mN and mq are appropriate nucleon and quark
masses, respectively. This enhancement can thus be sufficient to overcome the corresponding velocity
suppression, implying—contrary to common lore—that direct-detection experiments can indeed be
sensitive to pseudoscalar couplings. In this work, we explain how this enhancement arises, and present
a model-independent analysis of pseudoscalar interactions at direct-detection experiments. We also identify
those portions of the corresponding dark-matter parameter space which can be probed at current and future
experiments of this type, and discuss the role of isospin violation in enhancing the corresponding
experimental reach.
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I. INTRODUCTION

Among the many different experimental approaches
towards understanding the particle nature of dark matter,
direct-detection experiments are the only ones which
directly probe the actual scattering of dark matter against
ordinary Standard-Model (SM) matter. In general, such
experiments seek to observe the infrequent scatterings of
galactic-halo dark matter with atomic nuclei by searching
for unambiguous evidence of the resulting nuclear recoils
[1–4]. The discovery of such scattering events would
arguably provide the most compelling possible evidence
for the existence of dark matter, and would represent a
major step towards the all-important goal of discerning the
nature of the underlying dynamics that connects dark
matter to the visible world.
That direct-detection experiments are capable of such

powers of discernment is a direct consequence of the fact
that different coupling structures between dark matter and
ordinary Standard-Model matter yield significantly differ-
ent scattering phenomenologies. As a result, any analysis
of the experimental prospects for a given direct-detection
experiment will inevitably rely on certain assumptions
concerning the types of couplings that lead to this scatter-
ing. Since the interactions between the dark and visible
sectors are by definition suppressed, one well-motivated

possibility is that these two sectors are coupled by high-
scale dynamics which gives rise to effective contact inter-
actions at the energy scales relevant for direct detection.
Although the consequences of couplings between dark
matter and Standard-Model leptons have certainly been
studied in the prior literature (see, e.g., Ref. [5]), it is farmore
common to consider elastic contact interactions between
dark matter and SM quarks or gluons [2,3]. This preference
is ultimately motivated by the recognition that direct-
detection experiments are designed to capitalize on scatter-
ing between dark matter and atomic nuclei. In this paper
we shall focus on couplings to quarks. Indeed, for a (Dirac)
fermionic dark-matter particle χ, such contact interactions
typically involve bilinear coupling structures of the form

ðχ̄ΓχÞðq̄Γ0qÞ; ð1:1Þ

whereq denotes a Standard-Model quark andwhereΓ andΓ0
represent different possible choices of Dirac gamma-matrix
combinations f1; iγ5; γμ; γμγ5; σμνg. Different choices
for Γ and Γ0 correspond to different Lorentz and parity
properties for the underlying interactions, and can thus lead
to drastically different dark-matter phenomenologies (and
therefore different predictions for associated event rates)
at direct-detection experiments. For this reason, coupling
structures which lead to attractive phenomenologies and
greater event rates tend to be studied ubiquitously in the
dark-matter literature, while those leading to suppressed
event rates are typically neglected.
Unfortunately, by neglecting certain operators within this

class, we are leaving many “stones unturned” in the hunt
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for dark matter. In particular, it may turn out that certain
coupling structures which are seemingly suppressed (and
thus are not considered) are actually enhanced by other
factors. Such enhancements could conceivably overcome
the apparent suppressions associated with these operators,
implying that the contributions from such operators are not
negligible after all.
In this work, we show that this is indeed the case for

pseudoscalar coupling structures between dark matter and
SM particles. The standard lore is that such coupling
structures lead to direct-detection event rates which are
suppressed relative to those associated with similar axial-
vector coupling structures by factors of the χ=nucleus
relative velocity v ∼Oð10−3Þ. However, one of the main
points of this paper is to emphasize that there is a
corresponding mitigating factor that can potentially over-
come this velocity suppression: the process of transitioning
from a fundamental pseudoscalar quark coupling to an
effective pseudoscalar nucleon coupling introduces into the
corresponding dark-matter scattering rate additional factors
of order OðmN=mqÞ ∼ 103, where mq;N are the masses of
the corresponding quarks and nucleons. Such enhancements,
for example, are not present for axial-vector interactions,
which are in some ways the closest cousins to the pseudo-
scalar interactions. In addition, we find that both axial-vector
and pseudoscalar couplings are further enhanced in cases
in which the dark-matter couplings are ultimately isospin-
violating, with these enhancements becoming particularly
striking in the case of pseudoscalar interactions. Thus,
contrary to popular lore, we conclude that pseudoscalar
couplings between dark matter and Standard-Model matter
can indeed be probed at dark-matter direct-detection
experiments.
This paper is organized as follows. First, we discuss the

origins of the quark-to-nucleon enhancement factor that
emerges for pseudoscalar interactions, and provide a care-
ful analysis of the corresponding uncertainties that are
inherent in such calculations. We also demonstrate that the
possibility of isospin-violating pseudoscalar interactions
only enhances these couplings further. We then proceed
to present a model-independent analysis of pseudoscalar
interactions at direct-detection experiments. In so doing,
we also identify those portions of the corresponding dark-
matter parameter space which can be probed at current and
future experiments of this type.

II. FROM QUARKS TO NUCLEONS: VELOCITY
SUPPRESSION AND NUCLEON ENHANCEMENT

FOR PSEUDOSCALAR COUPLINGS

We begin by discussing the matrix elements and cou-
plings that describe the contact interactions between
fermionic dark matter and ordinary Standard-Model matter.
This will also serve to introduce our notation and provide a
point of comparison between interactions involving differ-
ent Lorentz and parity structures. Ultimately, we shall focus

on the cases of axial-vector and pseudoscalar interactions.
It turns out that these two cases are closely related, yet have
different resulting phenomenologies.

A. General preliminaries: Quark- and
nucleon-level matrix elements and pseudoscalar

velocity suppression

In general, we shall assume that our dark matter is a
Dirac fermion χ whose dominant couplings to the visible
sector are to Standard-Model quarks through dimension-six
four-Fermi contact interactions described by Lagrangian
operators of the bilinear form

OðXYÞ
χq ¼ cðXYÞq

Λ2
ðχ̄ΓXχÞðq̄ΓYqÞ: ð2:1Þ

Here q ¼ u; d; s;… specifies a particular species of quark,
cq is the corresponding χ=q coupling, and Λ corresponds
to the mass scale of the new (presumably flavor-diagonal)
physics which might generate such an effective interaction.
The ΓX;Y factors are appropriate combinations of Dirac
gamma matrices, with the X and Y indices ranging over the
values fS; P;V;A;Tg corresponding to ΓðSÞ ≡ 1 (scalar
interaction), ΓðPÞ ≡ iγ5 (pseudoscalar), ΓðVÞ ≡ γμ (vector),
ΓðAÞ ≡ γμγ5 (axial vector), and ΓðTÞ ≡ σμν (tensor), respec-
tively. The form inEq. (2.1) respectsUð1ÞEM andSUð3Þcolor,
as required, although SUð2Þweak is broken. This is appro-
priate for energy and momentum scales below the electro-
weak scale. The operator in Eq. (2.1) is also Lorentz
invariant provided that X and Y are both chosen from the
set fS; Pg, the set fV;Ag, or fTg; note that in this last
case, there are actually two ways in which the spacetime
indices on each tensor can be contracted (either σμνσμν or
ϵμνλρσ

μνσλρ) when forming the Lorentz-invariant operator. In

general, the operator OðXYÞ
χq will be CP even in all Lorentz-

invariant cases except when XY ¼ SP, PS, or TT with a
contraction through the ϵ tensor.
In direct-detection experiments, these operators induce

scattering between the dark-matter fermion χ and the
individual nucleons N of the detector substrate. The
tree-level matrix element describing this χ=N scattering
is therefore given by

MðXYÞ
χN ¼

X
q

cðXYÞq

Λ2
hχfjχ̄ΓXχjχiihNfjq̄ΓYqjNii; ð2:2Þ

where N denotes the particular nucleon species in question
(either proton p or neutron n). Note that because the dark
matter is a Uð1ÞEM singlet, Ni and Nf are both of the same
species N and possibly differ only in their momenta and/or
spins as the result of the scattering. The samewill be assumed
true for χi and χf, even in cases such as those in Refs. [6,7] in
which the dark sector has multiple components.
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In general, the nucleonic matrix element of the quark
current q̄ΓYq cannot be evaluated analytically within a
nucleonic background defined by Ni and Nf. Indeed, to do
so would require a complete understanding of the manner
in which the quark degrees of freedom are directly mapped
onto those of the nucleon through the nonperturbative
process of confinement. However, it is conventional to
make the assumption that the nucleonic matrix element of
the quark current is proportional to that of the correspond-
ing nucleon current in the limit of vanishing momentum
transfer [8–11]:

hNfjq̄ΓYqjNii≡ ΔqðNÞhNfjN̄ΓYNjNii; ð2:3Þ

where ΔqðNÞ represents a fixed constant of proportionality
that encapsulates the nonperturbative physics inherent in
low-energy QCD. Indeed, this constant of proportionality is
assumed to depend on the quark and nucleon in question,
and also the specific choice of the Dirac-matrix structure ΓY

involved, but is otherwise assumed to be independent of
all other relevant variables (such as the particular spin and
velocity configurations of the initial and final Ni and Nf
states). In practice, the values of ΔqðNÞ for the different
relevant cases are calculated numerically through lattice
gauge-theory techniques and/or extracted experimentally.
We should emphasize, however, that the relation in Eq. (2.3)
holds only as an approximate phenomenological “rule of
thumb” and comes with several correction terms which can
be taken to be small or even vanishing in various limits.
Further details can be found in Ref. [9].
Given the numerical values of ΔqðNÞ in Eq. (2.3), the rest

of the matrix element (2.2) is now in a form which can be
evaluated analytically. We then find

MðXYÞ
χN ¼ gχN

Λ2
hχfjχ̄ΓXχjχiihNfjN̄ΓYNjNii; ð2:4Þ

where the final dark-matter/nucleon coupling gχN is
given by

gχN ≡X
q

cðXYÞq ΔqðNÞ: ð2:5Þ

In this paper, we shall be concerned with three particular
Dirac-matrix bilinears: the scalar (S), the pseudoscalar (P),
and the axial vector (A). In the nonrelativistic limit, the
scalar bilinear matrix element behaves to leading order as

S∶ hψfjψ̄ψ jψ ii ∼ 2mψ ðξs0ψ Þ†ξsψ ; ð2:6Þ

where ξsψ represents the two-component spinor correspond-
ing to the fermion ψ with spin s, and where s and s0
represent the spins of ψ i and ψf respectively. By contrast,
the corresponding pseudoscalar and axial-vector bilinear
matrix elements behave to leading order as

P∶ hψfjψ̄γ5ψ jψ ii ∼ ðξs0ψ Þ†½ð~pf − ~piÞ · ~σ�ξsψ ;

A∶

( hψfjψ̄γ0γ5ψ jψ ii ∼ 0

hψfjψ̄ ~γ γ5ψ jψ ii ∼ 2mψðξs0ψ Þ†~σξsψ ;
ð2:7Þ

where ~σ are the Pauli spin matrices. Taking ψ to correspond
to our nucleon fieldN, we thus see that both the pseudoscalar
and axial-vector cases lead to a spin-dependent scattering
amplitude to leading order. It is for this reason that the
coefficients ΔqðNÞ for these cases can be interpreted as
characterizing the fraction of the spin of the nucleonN that is
carried by the quark q. Indeed, in the case of pseudoscalar
couplings, it is easy to show that all terms—and not just
those at leading order—are spin dependent; this follows
directly from the symmetry-based observation that any
CP-odd Lorentz-scalar quantity which depends on only
the properties of the nucleon must involve the nucleon spin
[12–15]. On the other hand, we see that the pseudoscalar
case also leads to a velocity suppression: the corresponding
matrix element in Eq. (2.7) is proportional to the velocity
transfer Δ~v≡ ~vf − ~vi, which is Oð10−3Þ for most regions
of interest involving dark-matter particles originating in the
galactic halo. It is this velocity suppression which lies at the
root of the relative disregard for pseudoscalar interactions in
the dark-matter literature.

B. An enhancement factor for pseudoscalar
matrix elements

Given these observations, our next task is to determine
the numerical values of the ΔqðNÞ coefficients for the
different cases of interest. In this paper, our interest in the
scalar coupling structure will be restricted to the dark-
matter bilinear rather than the quark bilinear—i.e., in the
language of Eq. (2.1) we will wish to consider the case
with X ¼ S, but never Y ¼ S. Consequently, we shall only
require the values of the coefficients ΔqðNÞ for the axial-
vector (Y ¼ A) and pseudoscalar (Y ¼ P) cases. We also
emphasize that we are not merely interested in the “central
values” of these coefficients; we are also interested in
understanding their associated statistical and experimental
uncertainties. As we shall see, it is only by keeping track
of these uncertainties that we can make solid statements
about the phenomenological consequences of the different
couplings in each case.
Historically, the numerical values of the ΔqðNÞ coeffi-

cients for the axial-vector case have been extracted through
nucleon-structure scattering experiments [16–18] and
through lattice gauge-theory calculations [19]. The results
that we shall use in this paper are quoted in Table I, and
represent themost current values taken from experiment and
theory. In this context, it is important to note that there are
rather significant uncertainties associated with the values of
the ΔqðNÞ. While the measured values for ΔuðNÞ and ΔdðNÞ
tend to agree reasonably well with results from lattice
calculations, the values for ΔsðNÞ obtained using these
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two methods can differ quite significantly. In this paper,
we shall therefore adopt the ΔuðNÞ and ΔdðNÞ values quoted
in Ref. [19], but choose values for the ΔsðNÞ such that they
lie between these lattice results and the experimentally
measured values in Ref. [18], roughly two standard devia-
tions away from the central value obtained in each analysis.
We also observe that the results quoted in Table I respect

quark-level isospin invariance—i.e., they satisfy

Δuðp;nÞ ¼ Δdðn;pÞ; ΔsðpÞ ¼ ΔsðnÞ: ð2:8Þ

This makes sense, as the results in Table I are derived in
the limit in which the three light quarks are considered to
be effectively massless. Likewise, in this approximation,
the remaining quarks are considered to be too heavy to
contribute significantly to proton-level and neutron-level
couplings. Thus, in the axial-vector case, we shall addi-
tionally take

Δcðp;nÞ ¼ Δbðp;nÞ ¼ Δtðp;nÞ ¼ 0: ð2:9Þ

We now turn to consider the corresponding coefficients
in the pseudoscalar case. In order to distinguish these
coefficients from the axial-vector coefficients above, we
shall denote the pseudoscalar coefficients as Δ ~qðNÞ.
Rather than representing an independent degree of free-

dom, it turns out [20,21] that the pseudoscalar coefficients
Δ ~qðNÞ can actually be determined theoretically in terms
of the axial-vector coefficients ΔqðNÞ. This is ultimately
because a general axial-vector current jμ5 ≡ ψ̄γμγ5ψ is
not conserved in a theory in which mψ ≠ 0, but is instead
related to the pseudoscalar current j5 ≡ ψ̄iγ5ψ through a
divergence relation of the form

∂μjμ5 ¼ 2mψj5 þ
αs
4π

Gμν
~Gμν; ð2:10Þ

where the final term reflects the possible additional con-
tribution to the nonconservation of jμ5 coming from a chiral
anomaly (such as the chiral anomaly of QCD). Indeed,
amongst all the fermion bilinears ψ̄ΓYψ with which we
started, it is only the axial-vector and pseudoscalar bilinears

which can be connected to each other through such a direct
relation.
It should be noted that in principle Eq. (2.10) also

contains additional contributions resulting from integrating
out light hadron states such as the pion. As discussed in
Ref. [22], such a pion-induced additional contribution
would appear as a pion pole term. However, this contri-
bution is relatively small because the relevant momentum
transfers for our analysis are in fact well below the pion
mass. Indeed, since we are studying spin-dependent
scattering, we will be focusing on experiments (such as
COUPP [23]) which involve fluorine rather than xenon
targets; the corresponding momentum transfers are then
smaller because fluorine is lighter than xenon. Moreover,
it is often the case within such experiments that events
with large recoil energies are rejected due to the calibration
difficulties that exist in this regime [24]. Thus, for all events
of interest, the resulting momentum transfers are much
smaller than in leading spin-independent direct-detection
experiments, and we may disregard such pion-induced pole
terms in what follows.
Exploiting Eq. (2.10) and following Ref. [20], we can

now proceed to derive an expression for the pseudoscalar
coefficients Δ ~qðNÞ in terms of the axial-vector coefficients
ΔqðNÞ. We begin by noting that

mNΔqðNÞhNfjN̄iγ5NjNii

¼ 1

2
ΔqðNÞ∂μhNfjN̄γμγ5NjNii

¼ 1

2
∂μ½ΔqðNÞhNfjN̄γμγ5NjNii�

¼ 1

2
∂μhNfjq̄γμγ5qjNii

¼ mqhNfjq̄iγ5qjNii þ
αs
8π

hNfjG ~GjNii: ð2:11Þ

In Eq. (2.11), the first equality follows from the current
relation (2.10) in the nucleon-level theory, where (since all
nucleons are color-neutral) no QCD chiral anomaly exists.
The second equality, by contrast, follows from the fact that
the ΔqðNÞ coefficients are presumed to be constants without
spacetime dependence, while the third equality follows
from the definition of ΔqðNÞ as relating the nucleon-level
and quark-level axial-vector matrix elements. The final
equality then again follows from Eq. (2.10), now evaluated
in the quark-level theory for which the QCD chiral anomaly
is nonzero.
For each nucleon N, the relation in Eq. (2.11) furnishes

three constraint equations (one for each of the light quarks
q ¼ u, d, s). However, recognizing that our three desired
coefficients Δ ~qðNÞ are nothing but the ratios between the
hNfjq̄iγ5qjNii and hNfjN̄iγ5NjNii matrix elements, we
see that we still have one unknown remaining, namely the
matrix element involving the QCD anomaly. An additional
constraint equation is therefore called for. Towards this end,

TABLE I. Values used in this paper for the axial-vector
coefficients ΔqðNÞ. The values for the ΔuðNÞ and ΔdðNÞ are taken
from the recent lattice results reported in Ref. [19], while the
values for the ΔsðNÞ have been chosen such that they lie between
these lattice results and the experimentally measured values in
Ref. [18], roughly two standard deviations away from the central
value obtained in each analysis.

N ¼ p N ¼ n

ΔuðNÞ 0.787� 0.158 −0.319� 0.066
ΔdðNÞ −0.319� 0.066 0.787� 0.158
ΔsðNÞ −0.040� 0.03 −0.040� 0.03
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it is traditional (see, e.g., Ref. [20]) to assume that the large-
Nc chiral limit is a valid approximation. This then implies
the additional constraint [25]

hNfjūγ5ujNii þ hNfjd̄γ5djNii þ hNfjs̄γ5sjNii ¼ 0:

ð2:12Þ

In principle, we could then proceed with this as our
remaining constraint equation. However, the appeal to the
large-Nc limit introduces a rather significant new source of
uncertainties of order Oð1=NcÞ into our calculation. Since
we wish to keep track of these uncertainties in this paper,
we will ultimately need to find a way to parametrize the
uncertainties inherent in the relation (2.12). We shall
therefore write Eq. (2.12) in the modified form

hNfjūγ5ujNii þ hNfjd̄γ5djNii þ hNfjs̄γ5sjNii
¼ ηhNfjN̄γ5NjNii; ð2:13Þ

where the right side of this equation is designed to reflect
this uncertainty, with the numerical coefficient η assumed
to have a vanishing central value but a relatively large
uncertainty δη ∼Oð1=NcÞ.
This system of equations (2.11) and (2.13) may now

be solved for the coefficients Δ ~qðNÞ ≡ hNfjq̄iγ5qjNii=
hNfjN̄iγ5NjNii as well as an analogous anomaly coefficient

Δ ~GðNÞ ≡ αs
8π

hNfjG ~GjNii
hNfjN̄iγ5NjNii

: ð2:14Þ

The results are then given by

Δ ~qðNÞ ¼ mN

mq
½ΔqðNÞ − XðNÞ�;

Δ ~GðNÞ ¼ mNXðNÞ; ð2:15Þ

where we have defined

XðNÞ ≡
� X

q¼u;d;s

1

mq

�
−1
�� X

q¼u;d;s

ΔqðNÞ

mq

�
−

η

mN

�
: ð2:16Þ

As we see in Eq. (2.15), the natural scale of the pseudoscalar
Δ ~qðNÞ coefficients is greater than the natural scale of the
axial-vector ΔqðNÞ coefficients by a factor of mN=mq. This
effect thus tends to enhance the pseudoscalar couplings
relative to the axial-vector couplings, thereby giving us hope
that we might eventually be able to overcome the velocity
suppression that afflicts the case of pseudoscalar scattering.
It is perhaps worth pausing to discuss the theoretical

origin of this enhancement factor. In general, the definition
of the ΔqðNÞ coefficients in Eq. (2.3) suggests that these
coefficients are fractional quantities which describe “how
much” of some physical quantity associated with the

nucleon N can be attributed to a constituent quark q.
For example, in the case of the axial-vector coefficients,
this physical quantity is spin, and the corresponding ΔqðNÞ
coefficient is known as a spin fraction. Naïvely, this would
lead one to expect that the quantities ΔqðNÞ should be
relatively small, and certainly less than one. However, there
is also another feature whose effects are reflected in the
magnitudes of these coefficients: this is the difference in the
intrinsic overall normalizations associated with the quark
and nucleon fields q and N respectively. Indeed, as is
conventional, each field q or N is normalized to its mass so
that the corresponding state kets will satisfy relations such
as hqjqi ¼ 2mq and hNjNi ¼ 2mN [or, equivalently, rela-
tions such as those in Eq. (2.6)]. Thus, quantities such as
the ΔqðNÞ coefficients which convert from quark currents to
nucleon currents will also intrinsically include factors that
reflect this change in normalization.
Given this, it might be tempting to identify the pseudo-

scalar enhancement factor mN=mq appearing in Eq. (2.15)
as reflecting this second contribution, namely a change
in normalization. However, we can easily see that this is
not the case: the axial-vector coefficients ΔqðNÞ and the
pseudoscalar coefficients Δ ~qðNÞ each already intrinsically
incorporate such normalization factors, yet our enhance-
ment factor in Eq. (2.15) is one which rescales our pseudo-
scalar coefficients relative to the axial-vector coefficients.
Indeed, this is an extra enhancement which emerges beyond
the mere effects of normalization, and which ultimately
reflects the fact that the pseudoscalar and axial-vector
coefficients are locked together as a single degree of freedom
through a relation such as that in Eq. (2.10). Or, phrased
somewhat differently, the factor of 2mψ which appears
in Eq. (2.10)—and which ultimately leads directly to our
enhancement factor in Eq. (2.15), thereby driving theΔ ~qðNÞ

coefficients above unity—follows not from a normalization
but rather from an equation of motion. Thus, our enhance-
ment factor reflects far more than mere normalization
conversion; it is instead deeply rooted in the dynamics
of the quark and nucleon fields and the fact that their
corresponding pseudoscalar and axial-vector currents are
tied together through Eq. (2.10).
Using the algebraic results in Eq. (2.15) and the numerical

results in Table I, we can evaluate the Δ ~qðNÞ coefficients
explicitly. Our results, along with associated uncertainties,
are shown in Table II. As we see, the pseudoscalar Δ ~qðNÞ
coefficients are indeed larger than the corresponding
axial-vector ΔqðNÞ coefficients in Table I by a factor of
Oð102–103Þ in each case, as promised. Indeed, as we shall
demonstrate below, it is precisely the relatively large size of
the pseudoscalar coefficients Δ ~qðNÞ which compensates for
the velocity suppression. For these numerical calculations,
we have taken η ¼ 0.0� 0.33, as discussed above, and
we have taken the masses of the light quarks (and their
associated uncertainties) from Ref. [26]. In particular, we
have taken mu ¼ 2.3� 0.7 MeV, md ¼ 4.8� 0.5 MeV,
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and ms ¼ 95� 5 MeV, corresponding to the quark masses
at the renormalization scale μ ¼ 2 GeV in the MS renorm-
alization scheme, and then rescaled each mass and uncer-
tainty by a factor of 1.35 in order to account for the effect of
renormalization-group running down to the scale μ ≈ 1 GeV
appropriate for dark-matter/nucleon scattering [26]. All
uncertainties were then added together in quadrature in order
to produce the final uncertainties quoted in Table II.
As evident from Table II, the results for the pseudoscalar

Δ ~qðNÞ coefficients no longer respect quark-level isospin
invariance, as defined in Eq. (2.8). [In this connection
we observe that quark-level isospin invariance would also
require Δ ~GðpÞ ¼ Δ ~GðnÞ.] This is a clear distinction relative
to the axial-vector case in Table I, but there are several
ways in which to understand this result. At an algebraic
level, the breaking of quark-level isospin invariance arises
because the transition from the axial-vector coefficients to
the pseudoscalar coefficients explicitly involves the quark
masses; by contrast, the axial-vector coefficients were
derived under approximations in which the light quarks
are effectively treated as massless. Or, phrased somewhat
differently, the leading terms in the axial-vector matrix
elements are independent of the quark masses; it is only the
subleading terms which depend on these masses explicitly.
This is different from the situation one faces in dealing with
the pseudoscalar matrix elements, for which the leading
terms are already mass dependent. On a more physical
level, this difference can alternatively be understood as
arising from the fact that the axial-vector current is some-
what special in that its matrix element essentially counts
the number of fermions minus antifermions, weighted by
chirality and normalized to the mass of the nucleon bound
state. [This is analogous to the vector-current matrix
element, which also counts the normalized number of
fermions minus antifermions but without a chirality weight-
ing.] As a result, the leading-order results in the axial-
vector case depend on the number and charges of the parton

constituents, but not their masses. This is to be contrasted
with the pseudoscalar matrix elements, for which an
additional quark mass dependence can arise.
It should also be noted that while the uncertainties

quoted in Table II are reliable in terms of their approximate
overall magnitudes, there are certain effects which we have
not taken into account which might alter these results
slightly. Such effects will be discussed more fully as part
of an exhaustive uncertainty analysis in Ref. [27]. For
example, we have treated the uncertainties in Table I for the
axial-vector ΔqðNÞ coefficients as independent of each
other (i.e., uncorrelated), but in truth (see, e.g., Ref. [8]) the
ΔuðNÞ andΔdðNÞ coefficients are actually extracted as linear
combinations of two more fundamental variables aðNÞ

3 and
aðNÞ
8 . It is actually the uncertainties on these latter variables

which are independent, not those on the ΔqðNÞ coefficients.
Likewise, the uncertainties on the quark masses are also
not independent, as these masses are typically extracted in
terms of a single reference quark mass (typically that of
the down quark) and the ratios of the other quark masses
relative to this reference mass. The truly independent
uncertainties are therefore those for the down-quark mass
and the corresponding ratios. Moreover, the uncertainties
on the quark masses are not necessarily Gaussian, since
they typically have both systematic and random contribu-
tions. Combining these into a single uncertainty, as we have
done here, and then treating this single uncertainty as
Gaussian when performing a quadrature-based analysis
represents yet another approximation. Indeed, η is an
example of a variable whose uncertainty is completely
systematic rather than experimental, yet its uncertainty is
being treated as if it were Gaussian as well. Finally, there
is even some leeway concerning how one treats isospin
symmetry in a rigorous uncertainty analysis. Isospin
symmetry, as mentioned above, is usually invoked in order
to relate quantities such as ΔuðpÞ and ΔdðnÞ—indeed, it is
typically the case that these quantities are not measured
independently. As a result of this presumed isospin sym-
metry, these quantities are necessarily quoted as having
the same central values and same quoted uncertainties, as
indicated in Table I. However, it is not clear whether these
uncertainties should be treated as independent or correlated
when performing a quadrature-based uncertainty analysis
of the sort we are performing here. While isospin symmetry
would dictate that these uncertainties be treated as com-
pletely correlated, we know that isospin symmetry is only
approximate in nature. Indeed, as mentioned above, the
results in Table II for the central values of our pseudoscalar
Δ ~qðNÞ coefficients already fail to respect isospin symmetry
because of their explicit dependence on the light-quark
masses. We have therefore opted to treat the uncertainties in
Table I as completely independent and uncorrelated.
Despite these observations, the uncertainties quoted in

Table II are correct in terms of their overall magnitudes. It is
also evident that the pseudoscalar uncertainties quoted in

TABLE II. Numerical values for the pseudoscalar coefficients
Δ ~qðNÞ, as obtained from Eq. (2.15). Details concerning the
calculation of these quantities and their associated uncertainties
are discussed in the text. It is readily observed that these
pseudoscalar coefficients Δ ~qðNÞ are larger than the corresponding
axial-vector coefficients ΔqðNÞ in Table I by a factor of
Oð102–103Þ. This can enhance the dark-matter/nucleon scatter-
ing amplitudes associated with pseudoscalar interactions, and
thereby potentially overcome the velocity suppression that would
otherwise render such cases unobservable in direct-detection
experiments.

N ¼ p N ¼ n

Δ ~uðNÞ 110.55� 21.87 −108.03� 21.33
Δ ~dðNÞ −107.17� 21.14 108.60� 21.29
Δ~sðNÞ −3.37� 1.01 −0.57� 0.78
Δ ~GðNÞ ð395.2� 124.4Þ MeV ð35.7� 95.4Þ MeV
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Table II are somewhat larger, in relative terms, than the
corresponding axial-vector uncertainties quoted in Table I.
This is partially due to the dependence of the pseudoscalar
results on a constraint which stems from a large-Nc appro-
ximation. As a result of these larger uncertainties, we see
that certain quantities in Table II, such as Δ~sðnÞ and Δ ~GðnÞ,
are actually consistent with zero. As we shall see, these
results will lead to considerably larger uncertainties for our
eventual pseudoscalar dark-matter/nucleon couplings.
Finally, we now turn to the pseudoscalar Δ ~qðNÞ coef-

ficients for the heavy quarks q ¼ Q≡ c, b, t. As we shall
see, these quantities will be relevant if our dark matter
couples to such quarks. In the axial-vector case, the ana-
logous coefficients were taken to be zero, reflecting the
fact that such quarks are heavy and make only negligible
contributions to axial-vector couplings. For pseudoscalar
couplings, by contrast, the situation is different. Because
of the current-algebra relation in Eq. (2.10), we see that
the pseudoscalar current is related to the derivative of a
different current involving the same heavy fermions.
However, if the fermions in question are sufficiently heavy,
they will have no dynamics and this derivative must vanish.
We thus obtain the relation

2mQhNfjQ̄iγ5QjNii ¼ −
αs
4π

hNfjG ~GjNii; ð2:17Þ

from which we see that

hNfjQ̄iγ5QjNii ¼ −
1

mQ

αs
8π

hNfjG ~GjNii

¼ −
1

mQ
Δ ~GðNÞhNfjN̄iγ5NjNii; ð2:18Þ

where the values of Δ ~GðNÞ are given algebraically in
Eq. (2.15). We thus find that

Δ ~QðNÞ ¼ −
1

mQ
Δ ~GðNÞ: ð2:19Þ

C. Pseudoscalar dark-matter/nucleon couplings
and the effects of isospin violation

We now turn to the actual quantities gχN which para-
metrize how the dark-matter fermion χ couples to nucleons
N in the case of pseudoscalar interactions. As evident
in Eq. (2.5), these effective couplings gχN are directly
determined in terms of the Δ ~qðNÞ coefficients for both light
and heavy quarks:

gχN ¼
X

q¼u;d;s

cqΔ ~qðNÞ −
X

Q¼c;b;t

cQ
mQ

Δ ~GðNÞ; ð2:20Þ

where the numerical values of the Δ ~qðNÞ and Δ ~GðNÞ

coefficients are listed in Table II.
The only task remaining, then, is to determine the values

for the quark couplings cq (henceforth taken to collectively

denote the couplings for both light and heavy quarks). Of
course, the expression in Eq. (2.20) for the gχN is com-
pletely general and applicable for any choice of operator
coefficients cq in the fundamental theory. In principle, any
assignment of the cq consistent with phenomenological
constraints is therefore permitted. However, for concrete-
ness, in this paper we shall focus primarily on three
particular benchmark scenarios:

• Scenario I.—The case in which the cq for all up-type
quarks take a common value cu ¼ cc ¼ ct and the cq
for all down-type quarks likewise take a (potentially
different) common value cd ¼ cs ¼ cb. For this sce-
nario, we parametrize these two independent operator
coefficients in terms of a mass scaleMI and an angle θ
such that cu=Λ2 ¼ cos θ=M2

I and cd=Λ2 ¼ sin θ=M2
I .

It then follows that tan θ ¼ cd=cu and

M2
I ¼ Λ2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2u þ c2d

q
. Note that for θ ¼ π=4, this

coupling structure respects quark-level isospin invari-
ance. Varying θ will thus allow us to study the effects
of isospin violation in a continuous fashion.

• Scenario II.—Ageneralization of the oft-studied case in
which the cq are proportional to the Yukawa couplings
yq between the quarks and the SM Higgs boson, and
thus to mq. This scenario is motivated
by the minimal-flavor-violation assumption that
the quark Yukawa couplings are wholly responsible
for flavor violations. The generalization we consider
here is one in which the cq for the up-type quarks
may also be scaled by an overall multiplicative factor
relative to the cq for the down-type quarks. Specifically,
for this scenario, we define a mass scale MII and an
angle θ such that cq=Λ2 ¼ mq cos θ=M3

II for up-type
quarks and cq=Λ2 ¼ mq sin θ=M3

II for down-type
quarks. It then follows that tan θ ¼ ðcdmuÞ=ðcumdÞ
and M3

II¼Λ2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcu=muÞ2þðcd=mdÞ2

p
, where cu=mu¼

cc=mc¼ct=mt and cd=md ¼ cs=ms ¼ cb=mb.
• Scenario III.—The related case in which the cq
are nonvanishing only for the first-generation
quarks—i.e., in which cu and cd are arbitrary, but
in which cs ¼ cc ¼ cb ¼ ct ¼ 0. For this scenario, we
likewise define MIII and θ such that cu=Λ2 ¼
mu cos θ=M3

III and cd=Λ2 ¼ md sin θ=M3
III. This

coupling structure is of particular interest from a
direct-detection perspective, implying that cu and cd
uniquely determine the effective dark-matter/nucleon
couplings gχp and gχn in Eq. (2.21), and vice versa.
Moreover, with the couplings for the second- and
third-generation quarks set to zero, this scenario is the
only one which does not involve couplings which are
essentially irrelevant for direct detection. Since non-
zero couplings for second- and third-generation
quarks could potentially have a significant effect on
the rates for dark-matter production at colliders [28],
this scenario is therefore in some sense the most
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“conservative” in that it does not assume any channels
which might enhance collider signatures without
affecting direct-detection signals. Study of this sce-
nario will therefore lead to the most conservative set of
limits consistent with collider data.

We emphasize that these three scenarios represent
physically distinct coupling structures between χ and the
SM quarks. It is for this reason that each scenario has been
associated with its own independent mass scale above.
Given these three scenarios, we can now proceed to

examine the behavior of our pseudoscalar dark-matter/
nucleon couplings as functions of θ in each scenario.
For Scenario I, the results in Table II yield the effective
pseudoscalar couplings

gχp ¼ 110.2 cos θ − 110.6 sin θ;

gχn ¼ −108.1 cos θ þ 108.0 sin θ: ð2:21Þ

Likewise, given the uncertainties in Table II, we find that
the associated uncertainties in these couplings are given by
rather complicated expressions which can be extremely
well approximated as

δgχp ≈ j21.79 cos θ − 21.88 sin θj;
δgχn ≈ j21.32 cos θ − 21.33 sin θj: ð2:22Þ

We immediately note that both the couplings and their
associated uncertainties are nearly vanishing at the quark-
level isospin-preserving point θ ¼ π=4. Alternatively, given
the couplings in Eq. (2.21), we can solve for the value θ� at
which nucleon-level isospin preservation takes place—i.e.,
the value θ� at which gχp ¼ gχn.We find that in this scenario,
the nucleon-level isospin-preserving point is extremely close
to the quark-level isospin-preserving point, with only a very
small net displacement θ� − π=4 ≈ −8.45 × 10−4 radians.
At the nucleon-level isospin-preserving point, we find

that gχp ¼ gχn ≈ −0.155� 0.25—a value consistent with
zero. This is remarkable, representing a situation in which
dark matter couples to quarks, but not to nucleons!
Moreover, this is to be compared with the couplings that
emerge for other, isospin-violating values of θ. For exam-
ple, we find that the proton coupling takes the value
jgχpj ≈ 110.6� 21.9 at θ ¼ π=2, and reaches a maximum
value jgχpj ≈ 156.2� 30.9 at θ ≈ 3π=4. The behavior of
the neutron coupling jgχnj is similar. Thus, relative to the
central values of these couplings at the isospin-preserving
point θ ¼ θ�, we see that these couplings experience a huge
enhancement which can grow as large as a factor of 103!
It is important to understand the physical origin of the

cancellation of this coupling in the isospin-preserving case.
Ultimately, this cancellation is the direct result of the fact
that we (like most researchers in this field) are working
in the large-Nc chiral limit in which relations such as that
in Eq. (2.12) apply. Indeed, since the strange-quark

contribution in Eq. (2.12) is small, this relation immediately
implies that the isospin-conserving case will experience
a cancellation. At a physical level, this can equivalently
be understood as follows. In general, one can consider
an approximation in which dark-matter/nucleon scattering
is considered to be mediated by neutral-meson exchange.
In this approximation, the dominant contribution is from
pion exchange, and the pion couples to the first-generation
quarks in a way which is maximally isospin-violating. (By
contrast, the isospin-conserving case would involve
the η and η0 states as mediators, but these states are much
heavier than the pion.) Indeed, Eq. (2.12) emerges in the
large-Nc chiral limit precisely because this is the limit in
which the η0 decouples. Nevertheless, we have also
explicitly taken into account possible small departures
from the large-Nc limit when we introduce our η-dependent
“error” term in Eq. (2.13). The fact that the proton and
neutron couplings continue to vanish—even within the
resulting uncertainties—demonstrates that this cancellation
is robust against small departures from the large-Nc
limit.
We therefore conclude that isospin violation in Scenario I

produces a huge enhancement in the corresponding pseu-
doscalar proton and neutron couplings. This is the direct
result of the relatively large pseudoscalar coefficientsΔ ~qðNÞ

in Table II, operating within the framework of the particular
quark coupling structure associated with Scenario I.
However, it is important to stress that there is nothing
intrinsic to the coupling structure of Scenario I by itself
which causes such large proton and nucleon couplings to
emerge. For example, as an algebraic exercise, we can
calculate the proton and neutron couplings that would
emerge under Scenario I in the axial-vector case—i.e.,
using the axial-vector coefficients ΔqðNÞ in Table I rather
than the pseudoscalar coefficients Δ ~qðNÞ in Table II. In this
case, because of the fact that isospin symmetry is exactly
preserved for the ΔqðNÞ coefficients, both quark-level
and nucleon-level isospin preservation coincide exactly
at θ ¼ π=4. Indeed, at this point we find gχp ¼ gχn≈
0.303� 0.12, while the maximum value taken by these
couplings for any isospin-violating value of θ is jgχpj ≈
0.865� 0.15 at θ ≈ 2.714 and gχn ≈ 0.812� 0.15 at
θ ≈ 1.974. Thus, for the axial-vector case, we see that
isospin violation is capable of increasing the proton and
neutron couplings only by mere factors of 2.85 and 2.68
respectively.
We also note, of course, that the overall scale of the

axial-vector couplings is significantly smaller than that
for the pseudoscalar couplings. While it is perhaps inap-
propriate to compare the magnitudes of these different
couplings against each other (because they correspond to
different operators with gamma-matrix bilinears exhibiting
entirely different tensorial properties), at a purely algebraic
level this difference can once again be attributed to the
larger values of the Δ ~qðNÞ coefficients that enter the
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calculation of the pseudoscalar proton and neutron cou-
plings as compared with the values of the ΔqðNÞ coef-
ficients that enter the calculation of their axial-vector
counterparts.
In Fig. 1, we have plotted the pseudoscalar proton and

neutron couplings gχp and gχn, along with their correspond-
ing uncertainties, as functions of θ for all three of our
coupling scenarios. For comparison purposes, we have also
plotted the corresponding axial-vector couplings as func-
tions of the same variable θ. Moreover, in each case we
have normalized the proton and neutron couplings to the
maximum value that the proton coupling ever attains as a
function of θ.
Many features of these plots are worthy of note.

Focusing first on the pseudoscalar couplings, we have
already remarked that a significant degree of cancellation
occurs within Scenario I when isospin is conserved at the
nucleon level: both the proton and neutron pseudoscalar
couplings, along with their associated uncertainties,
become extremely small as a result of a near-perfect
cancellation between their individual up-quark and down-
quark contributions. As remarked earlier, this is then a

situation in which our dark matter couples to quarks, but
not to nucleons! What is now apparent from Fig. 1,
however, is that this cancellation is a relatively sharp one,
and that any movement away from this isospin-conserving
value of θ in either direction results in a significant
enhancement of these pseudoscalar nucleon couplings.
As indicated above, this results in anOð103Þ enhancement
in the pseudoscalar couplings for isospin-violating sce-
narios relative to the naïve isospin-conserving case, and
thus to anOð106Þ enhancement in the cross section for the
scattering of χ off atomic nuclei. Thus, we see that even a
relatively small amount of isospin violation can have a
dramatic effect on direct-detection rates!
The above behavior occurs for Scenario I. However,

we now see from Fig. 1 that similar behavior also occurs
for Scenario III, albeit at a somewhat shifted value of θ.
This feature is also easy to understand. In Scenario I, the
cancellation that occurs at θ� truly reflects an approximate
isospin symmetry. Indeed, while the term in Eq. (2.20)
proportional to Δ ~GðNÞ is manifestly isospin-violating, this
contribution is suppressed by several orders of magnitude
compared to the contributions from the light quarks in this

FIG. 1 (color online). The effective proton and neutron dark-matter couplings gχp (red) and gχn (blue), plotted as functions of θ for
each of the three coupling scenarios discussed in the text. Panels in the upper row show the behavior of the pseudoscalar couplings in
each scenario, while the panels in the lower row show the behavior of the corresponding axial-vector couplings. The dashed lines in each
panel correspond to the central values for these couplings, while the shaded regions indicate the 1σ uncertainty bands around these
central values. Note that in each panel, both gχp and gχn have been normalized to the maximum possible central value of jgχpj attainable
in each scenario.
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scenario. Moreover, since the cq are independent of the
quark masses in Scenario I and since the Δ ~qðNÞ are
approximately isospin-conserving (particularly for the two
lightest quarks), this cancellation occurs for a value of θ�
very close to θ ≈ π=4. Of course, in Scenario III, the Δ ~GðNÞ

contribution to the couplings vanishes outright because the
dark-matter particle does not couple to the heavy quarks.
However, the above cancellation now occurs at the value
θ� ¼ tan−1ðmu=mdÞ ≈ 0.45 rather than at θ� ≈ π=4, for
within Scenario III it is only at this shifted angle that
cu ¼ cd. Furthermore, within Scenario III, we see that the
uncertainties are no smaller at θ� than they are at any other
angle—another distinction relative to Scenario I.
Finally, we observe that the pseudoscalar couplings

shown for Scenario II differ quite significantly from those
shown for Scenario III, both in terms of the locations of
the nucleon-level isospin-preserving points as well as the
overall magnitudes of the associated uncertainties. These
differences ultimately reflect the contributions from the
second- and third-generation quarks. One notable feature
in Scenario II, for example, is the fact that the sort of
cancellation which occurs for Scenarios I and III does not
occur for Scenario II. The reason for this is also easy to
understand. In Scenario II, we have cq ∝ mq for all quark
species. For such a coupling structure, it turns out that the
magnitudes of the two terms on the right side of Eq. (2.20)
are roughly commensurate. Thus, even if θ were set at a
value for which the light-quark contributions roughly can-
celed, the heavy-quark contributions would still be signifi-
cant. Indeed, for this scenario, we find that nucleon-level
isospin preservation arises at θ� ≈ 3.12—a value much
closer toπ than toπ=4—but the protonandneutron couplings
at this point are clearly nonzero.
In Fig. 1 we have also illustrated what occurs for the

corresponding axial-vector couplings in each scenario.
For example, as already discussed above, we see that the
isospin-preserving points no longer correspond to vanishing
proton and neutron couplings—even for Scenarios I and III.
Thus isospin violation will no longer produce as dramatic
an enhancement for the axial-vector proton and neutron
couplings as it does for the corresponding pseudoscalar
couplings, even in these scenarios. Moreover, we observe
that unlike the situation for the pseudoscalar couplings, there
are no values of θ in Scenarios I or III for which both gχp and
gχn vanish simultaneously. Thus, for axial-vector couplings,
dark-matter couplings to quarks always imply a dark-matter
coupling to at least one nucleon. Furthermore, we see that
the uncertainties are so large for the axial-vector neutron
coupling in Scenario II that the value of this coupling is
consistent with zero for almost all values of θ. Finally,
although it is not visible from the plots in Fig. 1, we again
stress that the overall magnitude of the axial-vector cou-
plings is a factor ofOð102–103Þ smaller than the magnitude
of the pseudoscalar couplings. This is perhaps the most
important difference of all.

Despite the rather compelling nature of these differences,
it is important to bear in mind that the pseudoscalar and
axial-vector couplings correspond to entirely different
operators. Thus, a direct comparison between these coup-
lings is fraught with a number of theoretical subtleties. For
example, Scenarios II and III are rather unnatural within
an axial-vector framework, and it is difficult to imagine a
high-scale model which might yield such an axial-vector
effective operator with the quark-level couplings of
Scenarios II or III at lower energies. This is completely
different from what happens within the pseudoscalar
framework, where the coupling structures of Scenarios II
and III are particularly well motivated. Nevertheless, we
have undertaken such a direct coupling-to-coupling com-
parison in order to expose the primary numerical
differences that emerge when the axial-vector ΔqðNÞ

coefficients of Table I are replaced with the pseudoscalar
Δ ~qðNÞ coefficients of Table II. Indeed, from a purely
bottom-up perspective, the coupling structures of all three
scenarios can be taken to represent interesting benchmarks
which are introduced purely for the purpose of studying
varying resulting phenomenologies in a model-independent
framework. We have therefore chosen to study the resulting
couplings free of any theoretical prejudice stemming from
considerations of high-scale physics.
Of course, what ultimately matters in each case are

not the couplings themselves, but rather the implications
of these couplings for the reach of actual direct-detection
experiments. For example, we have seen that even a
small amount of isospin violation can dramatically
enhance our pseudoscalar couplings, but it remains to
be seen whether this effect is large enough to compensate
for the velocity suppression which is also associated
with pseudoscalar interactions, and thereby render such
interactions potentially relevant for detection at the
next generation of spin-dependent dark-matter direct-
detection experiments. This is therefore the topic to
which we now turn.

III. CP OR NOT CP, THAT IS THE QUESTION:
AN INTERLUDE ON THE CHOICE OF

LAGRANGIAN OPERATORS

In this paper, our analysis has focused on those
interactions between dark matter and Standard-Model
matter which take the form of effective four-Fermi contact
interactions whose operators exhibit the double-bilinear
form in Eq. (2.1). Thus far, our interest has focused on the
unique physics that emerges from assuming a pseudosca-
lar structure for the quark bilinear in Eq. (2.1), and indeed
all of our results thus far have relied on this choice.
However, we have yet to select a tensor structure for the
corresponding dark-matter bilinear, and Lorentz invari-
ance dictates that there are only two possible choices open
to us:
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OðSPÞ
χq ≡ cq

Λ2
ðχ̄χÞðq̄iγ5qÞ;

OðPPÞ
χq ≡ cq

Λ2
ðχ̄iγ5χÞðq̄iγ5qÞ: ð3:1Þ

The first of these operators breaks CP symmetry, while
the second preserves it. Unfortunately, we can proceed
no further in our discussion of actual direct-detection
experimental prospects without making a specific choice
between these two operators.

The CP-violating operator OðSPÞ
χq is often neglected in

direct-detection studies, even in comparisonwithOðPPÞ
χq . One

reason for this is thatOðPPÞ
χq isCP invariant and can therefore

be generated at a nontrivial level in many top-down
theoretical constructions which yield a stable dark-matter
candidate, such as the constrained minimal supersymmetric
model (CMSSM) in which there is no additional source of
CP violation. However, in a bottom-up effective-theory
approach such as the one we adopt here, the aim is to
examine and constrain the properties of all possible inter-
actionswhich could arise between the dark-matter candidate
and the particles of the SM in as model-independent a
framework as possible, without theoretical prejudice.

Indeed, while the operator OðPPÞ
χq is typically assumed to

be irrelevant for direct detection, it is instructive to revisit
why this is the case—and also why this is not the case for

OðSPÞ
χq , despite the fact that the structure of the quark bilinear

is the same in both cases.
Let us first consider the situation in which χ couples

to SM particles primarily via OðPPÞ
χq . We assume for the

purposes of this discussion that this operator provides the
dominant contribution both to the cross section for nuclear
scattering events at direct-detection experiments and to the
annihilation rate of χ and χ̄ in the early universe. For
purposes of illustration, we also restrict our attention to the
case in which χ couples to only one quark flavor; thus only
one of the cq is nonvanishing. We have already seen for
OðPPÞ

χq that both the dark-matter bilinear and the quark
bilinear give rise to a velocity suppression in the dark-
matter/nucleon cross section for direct detection. Thus, for
OðPPÞ

χq , the resulting (spin-dependent) cross section can be
expected to scale like

PP∶ σðχNÞ
SD ∼

c2q½Δ ~qðNÞ�2μ6χNv4
m2

χm2
NΛ

4
; ð3:2Þ

where μχN ≡mχmN=ðmχ þmNÞ denotes the reduced mass
of the χ=nucleon system.
There are clearly many unknown parameters in Eq. (3.2),

making it difficult to provide an actual numerical estimate of
this cross section. However, we may appeal to a somewhat
orthogonal constraint which applies to any thermal dark-
matter candidate: that through which the annihilation rate
of χ and χ̄ sets an overall dark-matter abundance in the

early universe. For OðPPÞ
χq , the annihilation of χ and χ̄ in

the early universe has no chirality suppression since the
initial state isCP odd, with quantumnumbers S ¼ 0,L ¼ 0,
and J ¼ 0 [15]. In an s-wave annihilation scenario of this
sort, the thermal annihilation cross section hσjvji scales like

PP∶ hσjvji ∼ c2qm2
χ

Λ4
ð3:3Þ

at around the time of freeze-out. Moreover, in order for
the relic-abundance contribution from freeze-out to agree
with observation (i.e., Ωχ ≈ ΩDM), this cross section must
be roughly hσjvji ∼ 1 pb at such times.
Given this constraint, we can substitute back into

Eq. (3.2) in order to find that

PP∶ σðχNÞ
SD ∼ ð1 pbÞ × ½Δ ~qðNÞ�2μ6χNv4

m4
χm2

N
: ð3:4Þ

Since v4 ∼Oð10−12Þ, we see that extremely large values of
Δ ~qðNÞ would be required to overcome this velocity sup-
pression and yield a χ=nucleon cross section of sufficient
magnitude to be probed at any foreseeable direct-detection
experiment, even for low-mass dark matter. Indeed, since
both hσjvji and σðχNÞ

SD depend on Λ in the same manner for a
thermal relic, this unhappy consequence exists regardless
of the scale Λ at which Ωχ is generated via thermal freeze-
out for a dark-matter particle with this coupling structure.
Unfortunately, we have already seen that our pseudoscalar
Δ ~qðNÞ coefficients, although significantly enhanced relative
to their axial-vector counterparts, are not large enough to
overcome this degree of velocity suppression. Thus we do
not expect the operator OðPPÞ

χq to have much relevance for
direct-detection experiments.
Let us now turn to the situation in which χ primarily

couples to SM particles through the operatorOðSPÞ
χq . In sharp

contrast to theOðPPÞ
χq case discussed above, in this case only

the quark bilinear gives rise to a velocity suppression in the
cross section for nonrelativistic χ=nucleon scattering. This
cross section therefore scales like

SP∶ σðχNÞ
SD ∼

c2q½Δ ~qðNÞ�2μ4χNv2
m2

NΛ
4

: ð3:5Þ

Moreover, in this case we see that dark-matter annihilation
in the early universe is p-wave suppressed, since the initial
state is CP even, with quantum numbers S ¼ 1, L ¼ 1, and
J ¼ 0. The annihilation cross section in this case scales like

SP∶ hσjvji ∼ v2χ;fr
c2qm2

χ

Λ4
; ð3:6Þ

where vχ;fr denotes the average speed of χ and χ̄ at freeze-
out. Typically, v2χ;fr ∼ 0.1. Imposing, as before, the con-
dition hσjvji ∼ 1 pb in order to ensure that Ωχ ≈ΩDM, we
find that
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SP∶ σðχNÞ
SD ∼ ð1 pbÞ × 10½Δ ~qðNÞ�2μ4χNv2

m2
χm2

N
: ð3:7Þ

Since the velocity suppression v2 ∼Oð10−6Þ obtained in
this case is far less severe than that obtained in Eq. (3.4), we
see that only moderately large values for the Δ ~qðNÞ
coefficients are required in order to compensate for this
velocity suppression and render the operator OðSPÞ

χq relevant
for direct detection. Moreover, as we have seen in Sec. II,
these coefficients are indeed enhanced by the required
amount.
We thus conclude that OðSPÞ

χq , rather than OðPPÞ
χq , has

greater prospects for being relevant to future direct-
detection experiments. As a result, we shall concentrate
on OðSPÞ

χq in the remainder of this paper.

IV. PHENOMENOLOGICAL CONSEQUENCES:
DIRECT DETECTION AND RELATED

BENCHMARKS

We now turn to investigate the direct-detection prospects
for a dark-matter candidate in each of the three benchmark
coupling scenarios defined in Sec. II C. In particular, we
wish to determine the bounds imposed by existing direct-
detection data on the corresponding suppression scale MI,
MII, or MIII in each of these scenarios as a function of
the dark-matter mass mχ and the coupling angle θ, and to
assess the extent to which the next generation of direct-
detection experiments will be able to probe the remaining
parameter space in each scenario.
In interpreting the results of such a direct-detection

analysis, it is also useful to examine the relationship
between the region of parameter space accessible by
direct-detection experiments in each of these coupling
scenarios and regions of parameter space which are relevant
for other aspects of dark-matter phenomenology. For
example, thermal freeze-out offers a natural mechanism
for generating a relic abundance of the observed magnitude
for a massive dark-matter particle which can annihilate to
SM particles. It is therefore interesting to examine whether
successful thermal freeze-out can be realized within the
region of parameter space accessible to the next generation
of direct-detection experiments for a dark-matter particle
which annihilates primarily via OðSPÞ

χq . In addition, new-
physics searches in a variety of channels at the LHC
constrain the parameter space of operators which couple the
dark and visible sectors. It is therefore also interesting to
examine the interplay between these constraints and those
from direct-detection data.
The plan of this section is as follows. We begin by briefly

reviewing the physics of direct detection and assessing the
extent to which the next generation of direct-detection
experiments will be capable of probing the parameter space
of each of our benchmark coupling scenarios. We then
identify the regions of that parameter space which yield a

thermal dark-matter relic abundance of the correct order,
and discuss how LHC data serve to constrain that parameter
space. As we shall see, the magnitudes of the pseudoscalar
Δ ~qðNÞ coefficients have a profound effect on the direct-
detection phenomenology of a dark-matter particle which
interacts with the visible sector primarily via the OðSPÞ

χq

operators.

A. Direct detection

The principal physical quantity probed by direct-detection
experiments is the total event rate R for dark-matter
scattering off the nuclei in the detector target. For a generic
dark-matter model, the expectation value for R at any
particular such experiment is obtained by integrating the
differential rate dR=dER over the range of recoil energies
ER probed by that experiment, convolved with the appro-
priate detector-efficiency function EðERÞ. This differential
event rate (for reviews, see, e.g., Refs. [2,4]) is given by the
general expression

dR
dER

¼ NTρ
loc
χ

mχ

Z
∞

v>vmin

vfð~vÞ
�
dσχT
dER

�
d3v; ð4:1Þ

where NT is the number of nuclei in the detector target,
where ρlocχ is the local density of χ within the galactic
halo, where fð~vÞ is the velocity distribution of dark-matter
particles in the reference frame of the detector, where
v≡ j~vj, and where dσχT=dER is the differential scattering
cross section. The lower limit vmin on the integral over
halo velocities corresponds to the kinematic threshold for
nonrelativistic scattering of a dark-matter particle off one of
the target nuclei.
While substantial uncertainties exist concerning many of

the aforementioned quantities which characterize the prop-
erties of the dark-matter halo, our focus in this paper is on
the pseudoscalar nucleon coefficients Δ ~qðNÞ and their
implications for direct detection. We therefore adopt a
set of standard benchmark assumptions about the dark-
matter halo. In particular, we take ρlocχ ¼ 0.3 GeVcm−3; we
take fð~vÞ to be Maxwellian, but truncated above the
galactic escape velocity vesc ≈ 550 km=s in the halo frame;
and we take ve ¼ 232 km=s as the speed of the Earth with
respect to the dark-matter halo. Moreover, we focus on the
case in which χ=nucleus scattering is purely elastic, for

which vmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ERmT=2μ2χT

q
, where mT denotes the mass

of the target nucleus and where μχT is the reduced mass of
the χ=nucleus system.
The differential cross section for χ=nucleus scattering is

given by the general expression

dσχT
dER

¼ mT

2πv2
hjMχT j2i; ð4:2Þ

where hjMχT j2i is the corresponding squared S-matrix
element, averaged over initial spin states and summed over
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final spin states. For the scalar-pseudoscalar interaction we
are considering here, we recall Eq. (2.7) to find that this
matrix element in the nonrelativistic limit takes the form

MχT ¼
X
N¼n;p

gχN
Λ2

hχfjχ̄χjχiihTfjN̄γ5NjTii

≈
4mχmT

Λ2
ðξs0χ Þ†ξsχ

X
N¼n;p

gχN
mN

hTfj~q · ~SN jTii; ð4:3Þ

where hTfj~SN jTii denotes the matrix element for the
nucleon-spin operator within the target nucleus and where
~q is the momentum transferred to the nucleus. Note that
the mT=mN factor in Eq. (4.3) arises due to the difference
in normalization between the constituent nucleons and the
bound-state nucleus, where we have retained the relativistic
normalization in both cases. Proceeding by analogy with
the axial-vector case [1], we invoke the Wigner-Eckart
theorem in order to make the replacement

hTfj~SN jTii →
hSNi
JT

hTfj~JT jTii ð4:4Þ

in Eq. (4.3), where hSNi=JT ¼ hTfjSN jTii=JT again rep-
resents the fraction of the total nuclear spin carried by the
nucleon N. In the approximation that mp ≈mn, this yields

MχT ¼ 4mχmT

JTΛ2mN
ðgχphSpi þ gχnhSniÞðξs0χ Þ†ξsχ

× hTfj~q · ~JT jTii: ð4:5Þ

The spin-averaged squared matrix element is therefore

hjMχT j2i ¼
16m2

χm2
T

J2Tð2JT þ 1Þm2
NΛ

4
ðgχphSpi þ gχnhSniÞ2

×
X
Ti;Tf

hTfj~q · ~JT jTiihTij~q · ~JT jTfi

¼ 16m2
χm2

T j~qj2
3m2

N

JT þ 1

JT

�
gχp
Λ2

hSpi þ
gχn
Λ2

hSni
�

2

:

ð4:6Þ

Substituting this result into Eq. (4.2) and dividing by
16m2

χm2
T in order to account for the difference between

relativistic and nonrelativistic normalization conventions
for the χ and nucleus states, we arrive at our final
expression for the differential cross section for
χ=nucleus scattering:

∂σðSPÞχT

∂ER
¼ m2

TER

3πv2m2
N

JT þ 1

JT

×

�
gχp
Λ2

hSpi þ
gχn
Λ2

hSni
�

2
~F2ðERÞ; ð4:7Þ

where ~F2ðERÞ is a nuclear form factor. Note that we have
explicitly distinguished this form factor from the usual
form factor F2ðERÞ ¼ SðERÞ=Sð0Þ associated with spin-
dependent scattering via an axial-vector interaction. Indeed,
in the axial-vector case, the scattering cross section depends
on the projection of ~SN along the direction of the spin
vector ~Sχ of the dark-matter particle. By contrast, in the
scalar-pseudoscalar case, the corresponding cross section
depends on the projection of ~SN along the direction of the
momentum transfer [29].
A wealth of data from direct-detection experiments

already significantly constrains the set of possible inter-
actions between dark-matter particles and atomic nuclei,
and several additional experiments are poised to probe even
more deeply over the coming decade into the parameter
space of allowed couplings between the dark and visible
sectors. For each of our three benchmark coupling scenarios
for scalar-pseudoscalar interactions, the relevant parameter
space comprises mχ , θ, and the corresponding suppression
scale MI, MII, or MIII. The first of these parameters enters
the expected event rate for a given detector in a complicated
way through the scattering kinematics, while the second
and third enter through the ratios gχp=Λ2 and gχn=Λ2 in
Eq. (4.7), as discussed in Sec. II C.
Since the χ=nucleus interactions which follow fromOðSPÞ

χq

involve the nuclear spin ~SN , the relevant constraints on
these parameters are those which pertain to spin-dependent
scattering. Several direct-detection experiments already
provide comparable, stringent limits on spin-dependent
scattering [23,30,31]. Moreover, the next generation of
these experiments, including COUPP-60 and PICO-250L,
are projected to significantly extend the reach of these
experiments in the near future [32]. In this paper, our
primary aim is to investigate the sensitivity of these latter
experiments to scalar-pseudoscalar interactions between
dark-matter particles and atomic nuclei. We therefore focus
on the results from COUPP-4, for which the experimental
setup and analysis parallel those for COUPP-60 and PICO-
250L, when discussing existing limits on spin-dependent
scattering. These limits are typically expressed as bounds
on the spin-dependent dark-matter/proton scattering cross
section σðAAÞχp for a dark-matter particle whose interactions
with nuclei are primarily due to the axial-vector operators
OðAAÞ

χq . This cross section may be parametrized as

σðAAÞχp ¼ 3a2χpμ2χp
πΛ4

; ð4:8Þ

where μp is the reduced mass of the χ=proton system and
where

aχN ≡ X
q¼u;d;s

cðAAÞq ΔqðNÞ ð4:9Þ

are the axial-vector analogues of the χ=nucleon couplings
gχN given in Eq. (2.20). Note that because we take χ to be a
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Dirac fermion, this expression differs by a factor of 4 from
the standard expression for a Majorana fermion. The
differential cross section for χ=nucleus scattering for such
an interaction, expressed in terms of σðAAÞχp , is given by

∂σðAAÞχT

∂ER
¼ 2σðAAÞχp mT

3μ2pv2
JT þ 1

JT

×

�
hSpi þ

aχn
aχp

hSni
�

2

F2ðERÞ: ð4:10Þ

It is therefore straightforward to convert the limits on σðAAÞχp

into limits on the expected event rate for dark-matter
scattering off nuclei within the detector volume. The latter
limits are model-independent and applicable to any inter-
action between dark-matter and atomic nuclei, including
the scalar-pseudoscalar interactions which are the focus of
this paper.
The bounds implied by COUPP-4 data on the parameter

space of each of our three coupling scenarios, along with
the projected reach into that parameter space for both
COUPP-60 and PICO-250L, will be discussed in the next
section. These bounds and sensitivities will be expressed
as contours in ðmχ ;M�Þ space for each scenario and for
several benchmark values of θ, where M� denotes the
corresponding suppression scale MI, MII, or MIII. In
evaluating these contours, we will make use of the
DMFORMFACTOR package [29]. Wewill also include bands
indicating the uncertainties in these contours which arise as
a result of the uncertainties in the nucleon couplings gχN
discussed in Sec. II.

B. Relic abundance

Thermal freeze-out is a natural mechanism through
which a sizable relic abundance can be generated for a
massive particle with suppressed couplings to SM states. It
is therefore useful to identify the regions of parameter space
within which the relic abundance of a dark-matter particle
which annihilates via the OðSPÞ

χq operator reproduces the
observed dark-matter relic abundance ΩDM ≈ 0.26 [33]. In
this section, we briefly summarize the relic-abundance
calculation for an interaction of this sort. Note that we take
χ to be a Dirac fermion throughout and make use of the
general formalism in Ref. [34] for multiparticle freeze-out
dynamics in order to evaluate the total relic abundance of χ
and its conjugate χ̄, which in this case represent distinct
degrees of freedom.
The evolution of the total number density Y ≡ Yχ þ Y χ̄

of particles which contribute to the dark-matter abundance
at late times due to thermal freeze-out in this scenario can
be described by the single differential equation

dY
dt

¼ −shσjvji½Y2 − ðYeqÞ2�; ð4:11Þ

where Yeq is the value which Y would have were χ and χ̄ in
thermal equilibrium at time t; where s ¼ 2π2g�sðTÞT3=45
is the entropy density of the universe, expressed here
in terms of the temperature T of the thermal bath at time
t and the number of effectively massless degrees of freedom
g�ðTÞ at that temperature T; and where hσjvji is the
thermally averaged total cross section for dark-matter
annihilation. The total present-day dark-matter-abundance
contribution from χ and χ̄ due to thermal freeze-out is
related to the present-day value Ynow of Y by

Ωχ ≡ ρχ
ρcrit

¼ snowmχYnow

ρcrit
; ð4:12Þ

wheresnow≈2.22×10−38GeV3 andρcrit≈4.18×10−47GeV4

are the present-day entropy density and present-day critical
energy density of the universe, respectively.
In the case in which χ and χ̄ annihilate primarily to

SM quarks via OðSPÞ
χq , we find that the thermally averaged

annihilation cross section for processes of the form
χ̄χ → q̄q is given by

hσjvji ¼ 3x
256πm5

χK2ðxÞ
X
q

c2q
Λ4

IqðxÞ; ð4:13Þ

where we have defined

IqðxÞ≡
Z

∞

4m2
χ

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

χÞ3ðs − 4m2
qÞ

q
K1

�
x

ffiffiffi
s

p
mχ

�
:

ð4:14Þ
In these expressions, x≡mχ=T, s ¼ ðpχ þ pχ̄Þ2 is the
usual Mandelstam variable (not the entropy density of the
universe, and not the strange quark either), and K1ðxÞ
and K2ðxÞ denote the modified Bessel functions of the
second kind of degree one and two, respectively.
In the next section we will display contours correspond-

ing to the condition Ωχ ¼ ΩDM, as well as contours of
hσjvji. In accord with expectation, we will find that a
relic abundance of the correct order is obtained for
hσjvji ≈ 1 pb. In interpreting these results, it should be
noted that Ωχ depends on mχ in the usual manner, whereas
this quantity depends on θ and the corresponding suppres-
sion scaleMI,MII, orMIII in each of our coupling scenarios
through the ratio c2q=Λ4 in Eq. (4.13). Generally speaking,
Ωχ ∝ hσjvji−1 for thermal freeze-out, and therefore a higher
suppression scale corresponds to a smaller hσjvji and a
larger relic abundance.

C. Collider constraints

Colliders offer a complementary way of probing the
couplings between dark-sector and visible-sector fields. In
particular, the effective operators given in Eq. (2.1) generi-
cally contribute to the event rate for processes of the form
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pp → X þ ET at the LHC—i.e., so-called “mono-
anything” processes—where X denotes a single SM
particle such as a photon (the monophoton channel), an
electroweak gauge boson, or even a “particle” such as a
hadronic jet (the monojet channel). While the results
depend on the particular operator and the relative values
of the coupling coefficients (see, e.g., Ref. [35]), the most
stringent constraints on such operators are typically those
derived from limits on monojet production at ATLAS
[36,37] and CMS [38,39] and from limits on the production
of a hadronically decayingW� or Z boson at ATLAS [40].
We will henceforth focus on these channels, but we also
note that a combined analysis [41,42] involving all relevant
pp → X þ ET processes would lead to a slight enhance-
ment of the bounds from these two leading channels
individually. Moreover, we also note that searches in the
mono-b and tt̄þ ET channels can potentially supersede
these limits for models in which the couplings between the
dark matter and the third-generation quarks are enhanced
[28], as is the case in our Scenario II.
We now proceed to derive a set of rough limits on the

corresponding suppression scaleMI,MII, orMIII associated
with each of our benchmark coupling scenarios. We derive
these limits under the assumption that a contact-operator
description of the interactions between χ and the SM quarks
remains valid up to the center-of-mass-energy scaleffiffiffi
s

p
≈ 8 TeV of the LHC. We then return to discuss how

these results are altered in cases in which the contact-
operator description is valid at scales relevant for direct
detection, but breaks down at scales well below

ffiffiffi
s

p
.

We begin by noting that the monojet [39] and mono-
W=Z [40] analyses which correspond to the most stringent
current limits on dark-matter production at the LHC are
effectively counting experiments which serve to constrain
the total cross section for the corresponding production
processes. A lower limit M� > Mmin on the heavy mass
scale M� defined for the operator D3 in the standard
operator-classification scheme of Ref. [43] [which corre-

sponds to our scalar-pseudoscalar operator OðSPÞ
χq ] from

either of these analyses corresponds to a limit MII >
Mmin=21=6 in our Scenario II with θ ¼ π=4. We also note
that the production cross section for each process scales
like σIðmχ ;MI; θÞ ∝ M−4

I in Scenario I, whereas it scales
like σII;IIIðmχ ;MII;III; θÞ ∝ M−6

II;III in Scenarios II and III. It
therefore follows that bounds on MI can be derived from
the bounds on Mmin quoted in Refs. [39,40] and the ratio
of the corresponding production cross sections for the same
mχ and the same fiducial value of MI. In this analysis, we
choose 1 TeVas our fiducial mass scale. We therefore have

MI

GeV
≳
�

σIðmχ ; 1 TeV; θÞ
2σIIðmχ ; 1 TeV; π=4Þ

�
1=4

�
Mmin

10 GeV

�
3=2

: ð4:15Þ

Likewise, lower limits on MII and MIII may be derived
using the relation

MII;III ≳
�
σII;IIIðmχ ; 1 TeV; θÞ
2σIIðmχ ; 1 TeV; π=4Þ

�
1=6

Mmin: ð4:16Þ

Constraint contours corresponding to the limits on
contact-operator interactions from these most recent
monojet and mono-W=Z analyses will be discussed in
the next section for each of our three coupling scenarios.
The relevant cross sections in each case are evaluated at
parton level using the MADGRAPH/MADEVENT package
[44] (with the CTEQ6L1 PDF set [45]) including the
contribution from processes involving b quarks in the initial
state. The event-selection criteria we employ in estimating
these limits are modeled on those described in Ref. [39]
for the monojet channel and Ref. [40] for the mono-W=Z
channel, and we have verified that minor alterations in these
cuts do not have significant effects on our results.
As mentioned above, it is important to note that con-

straints derived in this manner are valid only in the regime
in which interactions between dark-matter particles and SM
quarks can legitimately be modeled as contact operators at
energies comparable to

ffiffiffi
s

p
. In other words, they are valid

for processes in which the mass mϕ of the particle ϕ which
mediates the interaction is much larger than the momentum
transfer to the dark-matter system. By contrast, for lower
mediator masses mϕ ≲ 1 TeV, these limits are no longer
applicable—even for mϕ > mχ. Constraints on interactions
between dark-matter particles and SM quarks can still be
derived from LHC data for theories in which mϕ ≲ 1 TeV;
however, such constraints are highly model dependent,
sensitive to the full structure of the dark sector, and
frequently weaker than the naïve limits one would obtain
for these same channels in the contact-operator regime [46].
On the other hand, while the contact-operator approxi-

mation becomes unreliable from the perspective of collider
phenomenology for mϕ ≲ 1 TeV, it remains valid for
direct-detection phenomenology down to far lower values
of mϕ. Indeed, interactions involving light mediators can
still be reliably modeled as contact interactions at energies
relevant for direct detection, provided that mϕ ≳ 1 GeV.
Moreover, the relic-density calculation in Sec. IV B also
remains qualitatively unaltered in the presence of a light
mediator down to the kinematic thresholdmϕ ¼ mχ . Below
this threshold, annihilation into pairs of on-shell mediators
becomes kinematically accessible. Moreover, below this
threshold, the behavior of the thermally averaged annihi-
lation cross section transitions from hσjvji ∝ m2

χ=m4
ϕ to

hσjvji ∝ 1=m2
χ because mχ is always the dominant energy

scale entering into the propagators for all diagrams
contributing to this annihilation cross section. Above this
kinematic threshold, by contrast, we find that the correct
relic density can be obtained for perturbative couplings
between ϕ and both the dark-sector and visible-sector
fermions in our theory, provided that mχ ≲Oð10 TeVÞ.
In light of these considerations, we emphasize that the

monojet and mono-W=Z limits we have discussed here
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should not be interpreted as exclusion bounds, but rather as
relations which indicate the regions within which LHC data
can be interpreted as requiring that the mediator particle(s)
ϕ not be particularly heavy. Indeed, the suppression scale
MI,MII, orMIII in each of our three coupling scenarios can
still be large even if mϕ is light, provided the coupling
between ϕ and either χ or the SM quarks is small.

V. RESULTS

In the previous section, we outlined the physics that
determines the reach of various direct-detection experi-
ments, assuming only pseudoscalar interactions between
dark matter and Standard-Model quarks. We also outlined
the physics that determines the cosmological dark-matter
abundances after freeze-out, and summarized the physics
that determines the reach of monojet and mono-W=Z
searches at the LHC. As we saw in Sec. IV, all of these
calculations depend to varying degrees on the particular
flavor coupling structure assumed (i.e., whether we are
operating within Scenario I, Scenario II, or Scenario III),
and on the particular value of θ in each case.
The results of these analyses are shown in Fig. 2. The

reaches of the current and future direct-detection experi-
ments considered in this study are shown in red, purple,
and blue (along with their associated uncertainties); for the
COUPP-60 experiment we have assumed an exposure of
105 kg d while for the PICO-250L experiment we have
assumed three years of running with a 500 kg fiducial mass
[32]. Likewise, the black contour in each case corresponds
to the condition Ωχ ¼ ΩDM, which one would naïvely
expect to occur for hσjvji ≈ 1 pb. The orange dashed curve,
by contrast, explicitly indicates the points for which
hσjvji ¼ 1 pb, and the peach-colored and yellow-colored
bands around it correspond to the regions within which the
annihilation cross section matches this value to within an
increasing number of powers of ten (i.e., 0.1 pb ≤ hσjvji ≤
10 pb and 0.01 pb≤ hσjvji≤ 100 pb, respectively). Finally,
the blue dashed curve and cyan dot-dashed curve respec-
tively indicate the lower limits on MI, MII, or MIII from
monojet and mono-W=Z searches at the LHC in the case of
a heavy mediator.
Note that we have included the abundance and collider

curves within these plots merely in order to provide guid-
ance when interpreting the impact of the direct-detection
curves, and to indicate regions of specific interest. In
particular, the collider and abundance curves do not
represent strict bounds in any sense. For example, within
each panel of Fig. 2, the region of the ðmχ ;M�Þ plane below
the Ωχ ∼ ΩDM contour (with M� representing either MI,
MII, or MIII, as appropriate) is actually consistent with
observational limits under the assumption that some addi-
tional contribution makes up the remainder of ΩDM.
Conversely, the region above this contour can also be
consistent with a thermal relic dark-matter candidate if
the branching fraction for dark-matter annihilation into

visible-sector particles is less than unity due to the presence
of additional annihilation channels. This will also be true
if an additional source of entropy production dilutes the
relic abundance after freeze-out. Moreover, as discussed in
Sec. IV B, the abundance-related orange and black curves
in Fig. 2 do not represent true relic-density limits if
mϕ < mχ . Similarly, as discussed in Sec. IV, our monojet
and mono-W=Z collider curves only represent exclusion
bounds under the assumption that the contact-operator
description of our scalar/pseudoscalar interaction remains
valid up to the TeV scale. When this is not the case, the
bounds can be far weaker or even effectively disappear.
As we see from Fig. 2, the dark-matter abundance does

not depend significantly on the value of θ in Scenarios I
or III. By contrast, in Scenario II, our results depend
sensitively on θ due to the enhanced couplings to third-
generation quarks relative to those of the first and second
generations. Indeed, in Scenario II the abundance contours
have sharp kinks or discontinuities that are not apparent in
Scenarios I or III. This behavior ultimately arises because
the couplings to the SM quarks in Scenario II are propor-
tional to their masses, leading to a dramatic enhancement
in the annihilation rate when the thresholds for new
annihilation channels into heavy quark species are crossed.
However, this assumes that the dark-matter coupling to
these heavy-quark species is substantial—a feature that is
ultimately θ dependent.
Overall, examining the plots in Fig. 2, we see that there

are three main conclusions which may be drawn. The first
and most significant result demonstrated in Fig. 2 is that
there are regions of parameter space for which a thermal
abundance matching ΩDM is not only consistent with
current experimental limits on the pseudoscalar operator,
but can actually be probed by the next generation of direct-
detection experiments. This does not occur in merely one
or two fine-tuned cases, but rather as a fairly generic result
for all three scenarios defined in Sec. II and for most
values of θ.
Second, we observe that in some cases, the opposite

is true: the reach of our direct-detection experiments is
significantly less than might be expected based on the
magnitudes of the Δ ~qðNÞ coefficients. This is particularly
true for the θ ¼ π=4 case of Scenario I, or the θ ¼ 0 case of
Scenario II. Indeed, in such cases, we see that the direct-
detection experiments cannot even probe that portion of the
parameter space that would be associated with a thermal
relic. Moreover, we see from Fig. 2 that the uncertainties in
these cases are sufficiently broad that the direct-detection
experiments may not even have any significant reach
at all! Ultimately, these effects can easily be understood
in relation to Fig. 1, where we have seen that for both of
these cases the effective dark-matter/nucleon couplings
themselves come extremely close to vanishing. (A similar
thing would also have happened for θ ≈ π=8 in Scenario III,
if such a θ value were being plotted in Fig. 2.) As discussed
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FIG. 2 (color online). Experimental reach of direct-detection experiments, assuming pseudoscalar interactions with the benchmark
coupling structures of our Scenario I (top row), Scenario II (center row), and Scenario III (bottom row), with θ ¼ 0 (left column),
θ ¼ π=4 (center column), and θ ¼ π=2 (right column) in each case. These coupling structures are discussed in Sec. II C, and each
panel is plotted as a function of the dark-matter mass mχ and the mass scale MI, MII, or MIII associated with the corresponding
scenario. Within each panel, the red curve indicates the upper limit of the region already excluded by COUPP-4 data, while the
purple and green curves respectively indicate the projected discovery reaches of the COUPP-60 and PICO-250L experiments. The
thickness of each curve indicates the uncertainty associated with the corresponding experimental reach, as discussed and calculated
in the text; note that in some cases these uncertainties are sufficiently large as to cause these “lines” to become entire red-, purple-,
and blue-shaded regions. For guidance, we have also indicated the contour (black line) along which Ωχ ¼ ΩDM ≈ 0.26, while the
orange dashed line corresponds to a thermally averaged dark-matter annihilation cross section hσjvji ¼ 1 pb. The pale peach- and
yellow-colored bands correspond to the regions within which 0.1 pb ≤ hσjvji ≤ 10 pb and 0.01 pb ≤ hσjvji ≤ 100 pb, respectively.
Finally, the blue dashed curve and cyan dot-dashed curve respectively indicate the lower limits on the appropriate mass scale MI;II;III
from monojet and mono-W=Z searches at the LHC which would apply in the case of a heavy mediator. We see from these plots
that there are many situations in which upcoming direct-detection experiments can easily reach into the range of greatest interest for
thermally produced dark matter and its possible collider signatures—even when only pseudoscalar interactions between dark matter
and Standard-Model quarks are assumed.
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in Sec. II, these are situations in which the dark matter
couples significantly to quarks, but not to nucleons. In such
cases, we conclude that the nonobservation of a dark-matter
signal in COUPP-4 and in future direct-detection experi-
ments need not rule out the existence of dark matter
which nevertheless still couples to quarks and which
could therefore potentially produce a signal at collider
experiments.
Finally, conversely, we see that the effects of isospin vio-

lation (i.e., variations in the value of θ) can have dramatic
effects, potentially enhancing the reach of direct-detection
experiments quite significantly compared with the reach
of these experiments when nucleon-level isospin symmetry
is preserved. For example, in Scenario I, we note that the
reach of PICO-250L is approximately 20 times greater
(in terms of the values of MI being probed) for θ ¼ 0 than
for θ ¼ π=4.

VI. CONCLUSIONS

In this paper, we have studied the sensitivity of direct-
detection experiments to dark matter which couples to
quarks through dimension-six effective operators of the
form OðSPÞ

χq ∼ cqðχ̄χÞðq̄iγ5qÞ, utilizing (for illustrative
purposes) several distinct benchmark choices for the quark
couplings cq. As we discussed, such effective operators
give rise to velocity-suppressed spin-dependent dark-
matter/nucleon scattering. Such operators can also give
rise to χ̄χ → q̄q annihilation from a p-wave initial state, as
well as mono-anything signals at the LHC.
Although it might naïvely be supposed that velocity-

dependent spin-dependent scattering would produce an
unobservably small event rate at direct-detection experi-
ments, we have demonstrated that this in fact need not be
the case. Indeed, as we have seen, the velocity-suppression
factors that arise in the pseudoscalar matrix element can
be compensated by extra enhancement factors which also
emerge in the pseudoscalar case when relating the corre-
sponding pseudoscalar quark currents to effective pseudo-
scalar nucleon currents. These latter enhancement factors
are of sizeOð102–103Þ relative to similar factors associated
with velocity-independent spin-dependent scattering (such
as arises through axial-vector interactions). As a result,
contrary to popular lore, we see that velocity-suppressed
scattering may actually be within reach of current and
upcoming direct-detection experiments. This then necessi-
tates a sensitivity study of the sort that we have performed.
Specifically, our main conclusions are as follows:
• We have shown that there exists a substantial region of
ðmχ ;MI; II; III; θÞ parameter space in which the cou-

plings of the OðSPÞ
χq operators are consistent with a

thermal relic density which matches observation. Of
course, given the model-independent nature of our
approach, we have not addressed the question of how
these operators might ultimately be embedded in a

UV-complete model. Nevertheless, such models can
easily be constructed—for example, the coupling struc-
ture of Scenario II can be realized within the context of
CP-violating two-Higgs-doublet models [47].

• A subset of the above parameter space is excluded by
current bounds from COUPP-4, and it is expected that
an even larger region of this viable parameter space
will be probed by COUPP-60 and PICO-250L.

• While part of the parameter space may be constrained
by LHC bounds if the contact-operator approximation
remains valid at the TeV scale, there are a wide range
of models for which spin-dependent scattering is
actually the discovery channel. As we have seen, this
is true because the velocity-suppression effects nor-
mally associated with pseudoscalar couplings can be
overcome through nucleonic effects that emerge
in relating quark pseudoscalar currents to nucleon
pseudoscalar currents.

• Conversely, there are special situations (often asso-
ciated with isospin-preserving limits) in which
these same nucleonic effects render direct-detection
experiments utterly insensitive to nonzero couplings
between dark matter and SM quarks. In other words,
we have seen that dark matter can have a significant,
nonvanishing coupling to quarks and yet simultane-
ously have no coupling to nucleons! This opens up the
intriguing possibility that collider experiments and
other indirect-detection experiments could potentially
see dark-matter signals to which direct-detection
experiments would be utterly blind. This may be
extremely relevant in case of future apparent conflicts
between positive signals from collider experiments and
negative results from direct-detection experiments.

• Finally, we see that isospin violation generally tends to
enhance dark-matter signals in direct-detection ex-
periments relative to the signals which would have
been expected if the quark/nucleon couplings were
isospin-preserving. Moreover, for pseudoscalar cou-
plings, this enhancement is not just a factor of 2 or 3
(as would be the case for axial-vector interactions), but
a factor of 10 or more. This then opens up the
possibility that direct-detection experiments can be
sensitive to such pseudoscalar couplings.

A few comments are in order, especially in relation to the
last two points above. In Scenario I, dark-matter/nucleon
couplings are maximally isospin-violating when θ ≈ 0
or θ ¼ π=2. Interestingly, these cases provide the greatest
sensitivity for direct-detection experiments (such as PICO-
250L) which are sensitive to spin-dependent scattering.
By contrast, detectors which are only sensitive to spin-
independent scattering would have no chance of discov-
ering such events, even if velocity-dependent effects are
included. This is because, as discussed in Sec. II, all terms
originating from OðSPÞ

χq which contribute to the scattering
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cross section—and not just those at leading order—are spin
dependent.
On the other hand, we have seen that the sensitivity

of direct-detection experiments is especially poor in the
isospin-conserving cases (such as θ ≈ π=4 in our Scenario I)
for which the couplings to up and down quarks are similar.
This poor sensitivity is ultimately the result of a destructive
interference among these quark-level couplings, resulting
in a small net coupling to both protons and neutrons. Indeed,
in the limit within Scenario I for which mu;d ≪ ms and
Δ ~GðNÞ ∼ 0, we find gχp, gχn → 0 identically at θ ¼ π=4.
Note that result is detector independent: one obtains a
large suppression in the event rate regardless of whether
the detector is sensitive to spin-dependent scattering
from protons or neutrons. Moreover, since the dark-matter
bilinear is a scalar, dark-matter annihilation is p-wave
suppressed. Thus, although the annihilation rate at the time
of freeze-out may have been large enough to ensure the
correct relic density, the annihilation cross section at the
current epoch would be so small as to be unobservable.
Dark-matter models of this sort would be difficult to probe
via any direct- or indirect-detection experiments.
In this paper, we considered three different scenarios for

the couplings cq between the dark matter and SM quarks.
These correspond to different weightings for the various
contributions from the light quarks to the resulting dark-
matter/nucleon couplings and their associated dark-matter
scattering rates. In Scenario I, for example, the dominant
contributions came from the couplings of the quarks of the
first generation, but we found that there also exist small
contributions from the strange quark and heavier quarks.
Likewise, in Scenario I we found that gχp, gχn → 0 for
θ ¼ π=4. In Scenario III, by contrast, the additional
contributions from the strange and heavier quarks are
absent. Moreover, since the cq coefficients of Scenario
III scale with the masses of the quarks, we instead find that
gχp, gχn → 0 for tan θ ¼ mu=md. In this connection, it is
perhaps worth emphasizing that it is only for the pseudo-
scalar interactions that there exist values of θ for which both
gχp and gχn vanish simultaneously. As can be seen in Fig. 1,
this does not happen for any of the analogous couplings in
the axial-vector case.
Finally, Scenario II is an example of a class of models in

which the largest dark-matter coupling is to the strange
quark or the heavy quarks. As discussed earlier, this
particular example is motivated by minimal flavor viola-
tion. As evident from Fig. 2, the sensitivity of direct-
detection experiments to viable dark-matter models is
suppressed for such cases. It is clear why this occurs. In
Scenario II, the largest dark-matter couplings are those to
the second- and third-generation quarks—indeed, these are
ultimately bounded by constraints on the relic density.

Unfortunately, the contributions from these second- and
third-generation quark couplings to dark-matter scattering
are relatively small as a result of a suppression of the
corresponding nucleon enhancement factors, while the
coupling to first-generation quarks is necessarily small
by assumption in this scenario.
Depending on the details of the short-distance (ultraviolet)

physics model we imagine, dark matter which couples to

quarks through an effective operator such asOðSPÞ
χq may also

be amenable to mono-anything searches at the LHC. In
particular, for isospin-conserving variants in which the first-
generation quarks dominate the scattering, LHC searches
maybe the only viable options for discovery.Moreover, LHC
sensitivity may be enhanced for flavor structures such as
those in Scenario II which are motivated by minimal flavor
violation, due to the large contribution to the LHC event rate
that arises from the couplings to the heavy quarks.
Ultimately, however, LHC sensitivity depends on the details
of the model, and in particular on the flavor structure of the
couplings. For the wide class of models in which such
large LHC event rates do not occur, spin-dependent direct
detection will then be the discovery search channel.
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