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The absence of supersymmetry or other new physics at the Large Hadron Collider (LHC) has lead many
to question naturalness arguments. With Bayesian statistics, we argue that natural models are most probable
and that naturalness is not merely an aesthetic principle. We calculate a probabilistic measure of
naturalness, the Bayesian evidence, for the Standard Model (SM) with and without quadratic divergences,
confirming that the SM with quadratic divergences is improbable. We calculate the Bayesian evidence for
the constrained minimal supersymmetric Standard Model (CMSSM) with naturalness priors in three cases:
with only the MZ measurement; with the MZ measurement and LHC measurements; and with the MZ

measurement, mh measurement and a hypothetical null result from a
ffiffiffi
s

p ¼ 100 TeV Very Large Hadron
Collider (VLHC) with 3000=fb. The “fine-tuning price” of the VLHC given LHC results would be ∼400,
which is slightly less than that of the LHC results given the electroweak scale (∼500).
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I. INTRODUCTION

Weak-scale supersymmetry (SUSY) [1–4] was supposed
to solve the naturalness problem of the Standard Model
(SM) [5,6], but it was absent in the ATLAS [7] and
CMS [8] searches at the Large Hadron Collider (LHC)
in 20=fb with center-of-mass energies of

ffiffiffi
s

p ¼ 7 TeV andffiffiffi
s

p ¼ 8 TeV. Although ATLAS and CMS will continue
their searches for SUSY at

ffiffiffi
s

p ¼ 13 TeV, a new
ffiffiffi
s

p ¼
100 TeV Very Large Hadron Collider (VLHC) might be
built [9].
There are numerous motivations for SUSY. The theo-

retical motivations for SUSY (see, e.g., Ref. [10]) are, inter
alia, that it completes the maximal symmetries of the S
matrix and connects with gravity and superstrings. The
phenomenological and experimental motivations for SUSY
(see, e.g., Ref. [11]) are that it unifies the gauge couplings
at the anticipated scale, that the lightest SUSY particle
could explain the measured abundance of dark matter in the
Universe and that it predicts that the mass of the lightest
Higgs boson is mh ≲ 135 GeV. Perhaps the strongest
motivation for SUSY, however, is that it solves the technical
naturalness problem of the SM, if SUSY particles are
sufficiently light. The LHC results, however, suggest that
SUSY particles might not be sufficiently light [12,13] and
have led many to question naturalness arguments [14–18].
We argue in Sec. II that the best measure of naturalness is

Bayesian evidence. We measure naturalness in the SM in
Sec. III and in the constrained minimal supersymmetric SM
(CMSSM) [19–21] in Sec. IV by calculating their Bayesian
evidences with “honest” or “naturalness” priors. We evalu-
ate the consequences for naturalness of hypothetical null
results from a

ffiffiffi
s

p ¼ 100 TeV VLHC with Bayesian

statistics, i.e., the “fine-tuning price” of the VLHC
[22–24], by calculating the Bayesian evidence in this
scenario. Learning this price could motivate building the
VLHC [25]. We argue that our comparison between the
SM and the CMSSM was fair in Sec. V. We discuss the μ
problem of the MSSM [26] in the context of Bayesian
statistics in Sec. VI, and conclude in Sec. VII. For similar
analyses, see, e.g., Refs. [27–33].

II. BAYESIAN EVIDENCE

For a pedagogical introduction to Bayesian statistics,
see, e.g., Ref. [34]. In Bayesian statistics, probability is a
numerical measure of belief in a proposition. With Bayes’
theorem, our belief in a model given experimental data is
given by

pðmodeljdataÞ ¼ pðdatajmodelÞ × pðmodelÞ
pðdataÞ ; ð1Þ

where Z ≡ pðdatajmodelÞ is the Bayesian evidence,
pðmodelÞ is our prior belief in the model, and pðdataÞ is
a normalization constant. We can eliminate the normali-
zation constant if we consider a ratio of probabilities for
modela and modelb:

pðmodelajdataÞ
pðmodelbjdataÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Posterior odds;θ0

¼ pðdatajmodelaÞ
pðdatajmodelbÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Bayes factor;B

×
pðmodelaÞ
pðmodelbÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Prior odds;θ

: ð2Þ

Our prior odds, θ, is a numerical measure of our relative
belief in modela over modelb, before considering exper-
imental data. The Bayes factor, B, updates our prior odds,
θ, with the experimental data, resulting in our posterior
odds, θ0. Our posterior odds is a numerical measure of our*Andrew.Fowlie@KBFI.ee
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relative belief in modela over modelb, after considering
experimental data. The Bayes factor is the ratio of the
models’ evidences.
Let us make our discussion more concrete. From an

experiment, one can construct a “likelihood function”
giving the frequentist probability of obtaining the data,
given a particular point, ~x, in a model’s parameter space,

Lð~xÞ ¼ pðdataj~x;modelÞ: ð3Þ

The likelihood function for a measurement is typically a
Gaussian function (by the central limit theorem). It could
be, e.g., the probability of measuring a Higgs mass mh ¼
125 GeV given a particular parameter point ~x in a SUSY
model. With Bayes’ theorem, it can be readily shown that
the evidence is an integral over the likelihood,

Z ¼
Z

Lð~xÞπð~xÞ
Y

dx; ð4Þ

where πð~xÞ≡ pð~xjmodelÞ is our prior; our prior belief
in the model’s parameter space. Priors are somewhat
subjective and there might exist a spectrum of assigned
priors amongst investigators. All investigators, however,
will make identical conclusions from the evidence, if the
likelihood is sufficiently informative.
Because individual evidences are somewhat meaningless

(e.g., the evidence has dimension ½1=data�), it is necessary
to compare the evidence against that of a reference model
with a Bayes factor. If the Bayes factor is greater than (less
than) 1, the model in the numerator (denominator) is
favored. The interpretation of Bayes factors is somewhat
subjective, though we have chosen the Jeffreys’ scale,
Table I, to ascribe qualitative meanings to Bayes factors. If
a Bayes factor is sufficiently large, all investigators will
conclude that a particular model is favorable, regardless of
their prior odds for the models. The Jeffreys’ scale is,
however, only a guide for interpreting a Bayes factor; the
full result is the posterior odds found by multiplying the
Bayes factor by the prior odds in Eq. (2).
The Bayes factor quantitatively incorporates a principle

of economy widely known as Occam’s razor and in physics
as “fine-tuning” or “naturalness” [36–38]. It is insightful to

consider the evidence Z ¼ pðdatajmodelÞ a function of the
data normalized to unity, i.e., as a sampling distribution
[39]. Natural models “spend” their probability mass near
the obtained data, i.e., a large fraction of their parameter
space agrees with the data. Complicated models squander
their probability mass away from the obtained data. This is
illustrated in Fig. 1. Bayesian statistics formalizes Occam’s
razor, fine-tuning and naturalness arguments. Naturalness
is no longer a nebulous, aesthetic criterion; it is formalized
and justified by Bayesian statistics.
We measure the “fine-tuning price” of new experimental

data with a partial Bayes factor. A partial Bayes factor, P,
updates our relative belief in modela over modelb with new
experimental data,

P ·
pðmodelajdataÞ
pðmodelbjdataÞ

¼ pðmodelajdataþ newdataÞ
pðmodelbjdataþ newdataÞ : ð5Þ

It can be readily shown that a partial Bayes factor is a ratio
of Bayes factors,

P ¼ pðdataþ newdatajmodelaÞ
pðdataþ newdatajmodelbÞ

pðdatajmodelbÞ
pðdatajmodelaÞ

: ð6Þ

See, e.g., Ref. [33] for a comprehensive discussion of
partial Bayes factors. Having introduced our formalism, we
are ready to calculate evidences in the SM and CMSSM.

TABLE I. The Jeffreys’ scale for interpreting Bayes factors
[35], which are ratios of evidences. We assume that the favored
model is in the numerator, though this could be readily inverted.

Grade Bayes factor, B
Preference for model in

numerator

0 B ≤ 1 Negative
1 1 < B ≤ 3 Barely worth mentioning
2 3 < B ≤ 20 Positive
3 20 < B ≤ 150 Strong
4 B > 150 Very strong

FIG. 1 (color online). Illustration of the evidence, interpreted as
a sampling distribution, originally from Ref. [39]. The observed
evidence is the evidence evaluated at the observed data. The red
line shows a model that concentrates its probability mass at the
observed data: it is a good, simple model. The green line shows a
model that concentrates its probability mass away from the
observed data: it is a bad, simple model. The blue line shows
a model that thinly spreads its probability mass around the
observed data: it is an OK, complicated model.
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III. BAYESIAN EVIDENCE FOR THE
STANDARD MODEL

If the SM is coupled to the Planck scale, it suffers from a
well-known fine-tuning problem, the “hierarchy problem”
[5,6]. The dimension-2 coupling, μ2, in the Higgs potential,

V ¼ μ2ϕ2 þ λϕ4; ð7Þ
must be incredibly fine-tuned. The dressed coupling must
be ∼ − ð100 GeVÞ2, but the bare coupling receives a
positive quadratic correction ∼M2

P. Let us calculate the
evidence for the SM, given the electroweak scale and that
the Higgs mass is ∼125 GeV. While naively our Higgs
potential is described by μ2 and λ, let us instead write the
dressed dimension-2 coupling as the sum of a bare coupling
and a quadratic correction,

μ2 ¼ μ20 þ Δμ2; ð8Þ

and treat μ20, Δμ2 and λ as separate parameters. A priori, if
the SM is coupled to the Planck scale, Mp, we expect that
Δμ2 ∼M2

P, and that λ ∼ 1, whereas we have no idea about
the scale of μ20. Let us formalize these thoughts with
logarithmic, scale invariant priors πðxÞ ∝ 1=x:

Δμ2 between 1036 and 1040 GeV2; ð9Þ

μ20 between 10
0 and 1040 GeV2; ð10Þ

λ between 10−3 and 101: ð11Þ

We also note that a priori μ20 could be positive or negative.
We calculate the evidence for the SM given the MZ

measurement [40] and the LHC mh ∼ 125 GeV measure-
ment [40–42]. We approximate the likelihood functions for
the measurements of MZ and mh as Dirac delta functions:

ZonlyMZ
¼

R
δðMZ − 91.1876 GeVÞ dμ20

μ2
0

dλ
λ
dΔμ2
Δμ2R dμ2

0

μ2
0

dλ
λ
dΔμ2
Δμ2

;

Zmh andMZ
¼

R
δðMZ − 91.1876 GeVÞδðmh − 125.9 GeVÞ dμ20

μ2
0

dλ
λ
dΔμ2
Δμ2R dμ2

0

μ2
0

dλ
λ
dΔμ2
Δμ2

: ð12Þ

The denominators normalize our logarithmic priors. We
integrate the Dirac delta functions with tree-level formulas
for the Higgs and Z-boson masses (see, e.g., Ref. [43]),

mh ¼
ffiffiffiffiffiffiffiffiffiffiffi
−2μ2

q
; ð13Þ

MZ ¼ g

ffiffiffiffiffiffiffiffi
−μ2

2λ

r
: ð14Þ

We calculate evidences by performing the integrals in
Eq. (12) for two models:
(1) The SM with quadratic divergences, Δμ2 ∼M2

P, and
(2) The SM without quadratic divergences, Δμ2 ¼ 0.

References [44,45] argue that quadratic divergences
vanish in theories with classical scale invariance
without modifications to the Z-boson or Higgs
boson masses.

The resulting evidences are in Table II. Unsurprisingly,
the evidence for the SM with quadratic divergences is

TABLE II. Bayesian evidences and Bayes factors for the SM with quadratic divergences, SM without quadratic
divergences and CMSSM. The headings indicate which experimental results were included. The final column is the
fine-tuning price, as measured by partial Bayes factors.

MZ MZ, mh and LHC MZ, mh and VLHC

Evidences, Z GeV−1 GeV−2 GeV−2

SM with quadratic divergences 9 × 10−37 2 × 10−40 2 × 10−40

SM no quadratic divergences 1 × 10−4 2 × 10−7 2 × 10−7

CMSSM 8 × 10−5 3 × 10−10 7 × 10−13

Bayes factors, B ¼ Za=Zb

CMSSM/SM with quadratic divergences 9 × 1031 2 × 1030 4 × 1027

SM no quadratic divergences/CMSSM 2 × 100 7 × 102 3 × 105

Partial Bayes factors, P ¼ Biþ1=Bi
SM no quadratic divergences/CMSSM ∼2 ∼500 ∼400
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minuscule compared to that for the SM without quadratic
divergences. The Bayes factors in Table II are more than
1030 against the SM with quadratic divergences (150 is
considered “very strong” on the Jeffreys’ scale).
Let us interpret the evidence as a sampling distribution

for the expected Z-boson mass, i.e., plot the evidence as
a function of MZ (Fig. 2). As expected, the SM with
quadratic divergences squanders its prediction for the
Z-boson mass near Mp, far away from the measured MZ.
The SM with quadratic divergences is unnatural. Because
without quadratic divergences one can make no prediction
for the magnitude of MZ, the SM without quadratic
divergences is somewhat unnatural and complicated.
Now that we have completed the somewhat trivial

exercise of calculating the evidences for the SM, let us
calculate the evidences for the CMSSM.

IV. BAYESIAN EVIDENCES FOR THE CMSSM

The Z-boson mass, or, equivalently, the scale of electro-
weak symmetry breaking, is predicted in the MSSM via
radiative electroweak symmetry breaking. At tree level [4],

1

2
M2

Z ¼ −μ2 þm2
Hd

−m2
Hu
tan2β

tan2β − 1
: ð15Þ

This expression is problematic; it contains the “little-
hierarchy problem” [46] and the related “μ problem” [26].
From experiments, we know that MZ is ∼100 GeV.
The MSSM predicts MZ via a cancellation between the
SUSY breaking parameters, m2

Hu
and m2

Hd
, and a SUSY

preserving parameter in the superpotential, μ. If the SUSY
breaking scale is greater than the measured value of MZ, a
cancellation between such large numbers is somewhat

miraculous. This is the little-hierarchy problem. This prob-
lem is statistical in nature; we are concerned that the MSSM
is unlikely because its parameters must be fine-tuned; i.e., it
might only agree with experiments in a small fraction of
its parameter space.
With a simplified Eq. (15),

1

2
M2

Z ≃ −μ2 −m2
Hu
; ð16Þ

we found an analytic expression for the evidence from
Eq. (4) as a function ofMZ in the CMSSMwith logarithmic
priors. We plot this expression as a function of the Z-boson
mass in Fig. 2. While the CMSSM is somewhat fine-tuned,
the fine-tuning of the SM with quadratic divergences is far
worse. The SM dimension-2 coupling is quadratically
sensitive to the UV; the highest scales must enter our
expression for MZ. In the SM with quadratic divergences,
the cancellation resulting in MZ must involve quantities
∼MP. In the CMSSM, we require a cancellation, but the
cancellation could be at any scale up to Mp.
Fine-tuning is typically measured with a sensitivity, for

example, that was originally proposed in Refs. [37,38], the
Barbieri-Giudice measure,

Δi ¼
xi
M2

Z

∂M2
Z

∂xi ; ð17Þ

where xi are the model’s parameters. The reciprocal of this
measure is, indeed, similar to our Bayesian evidence, in that
a small Barbieri-Giudice measure indicates that the model
might spend its probability mass around the measured value
of MZ. This is illuminated by rewriting Eq. (17),

Δ−1
i ¼

�
ΔM2

Z

M2
Z

xi
Δxi

�−1
∝
Δxi
xi

: ð18Þ

The reciprocal of the Barbieri-Giudice measure is propor-
tional to the local fraction of the model’s parameter space in
which MZ varies by ΔMZ; in similarity, the evidence is a
measure of the fraction of the model’s prior volume in
which the model agrees with experiments [47–49]. The
Barbieri-Giudice measure lacks, however, a formal inter-
pretation and is, furthermore, a property of a point in the
model’s parameter space, rather than of the model itself
(cf. the evidence).
Bayesian evidence automatically penalizes fine-tuning.

Focusing mechanisms (e.g., the focus point [50–52]) are
automatically incorporated. We must, however, choose
“honest” priors. In the CMSSM, we ought to formulate
our prior beliefs in μ and b, the fundamental parameters,
defined as

W ⊃ μHuHd; ð19Þ
LSoft ⊃ −b2HuHd þ c:c: ð20Þ

FIG. 2 (color online). The probability distribution of the
Z-boson mass in the various models. The area under each plot
is equal to 1.
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For pragmatism, however, we exchange μ and b forMZand
tan β via e.g., Eq. (15). We ought to transform our priors
with the appropriate Jacobian, resulting in effective priors
for MZ and tan β [28,29,31,47–49]. With logarithmic
priors for μ and b, our effective priors are

πðMZÞ ¼
∂μ
∂MZ

πðμÞ ¼ 2μ

MZ
Δ−1

μ πðμÞ ¼ constΔ−1
μ ; ð21Þ

πðtan βÞ ¼ ∂b
∂ tan β πðbÞ ¼

const
b

∂b
∂ tan β : ð22Þ

The effective prior for MZ reveals the formal relationship
between Bayesian statistics and the Barbieri-Giudice mea-
sure [47,48]. With the Barbieri-Giudice measure, the
statistical nature of the problem is latent [27,53]; it is
now manifest.
We calculated the evidence exactly in the CMSSM with

honest priors. Let us make our prior choices clear, because
it is a potential source of confusion. For the fundamental
CMSSM parameters and priors we pick1

m0 log prior between 1 GeV and MP;

m1=2=m0 log prior between 10−3 and 103;

A0=m0 linear prior between − 5 and 5;

b=m0 log prior between 10−3 and 103;

μ log prior between 1 GeV and MP: ð23Þ

We anticipate that a breaking mechanism might distribute
the SUSY breaking masses about a common SUSY break-
ing scale [48], which we pick as m0. We do not consider
mechanisms in which SUSY breaking parameters are split
into distinct groups separated by many orders of magnitude
[54,55]. We call this choice of priors and parametrization
our de jure priors.
Were we to numerically calculate the evidence for the

CMSSMwith our de jure priors, we would waste CPU time
considering parameter space with incorrect MZ. For the
purpose of our numerical calculation, we transform our de
jure priors into our equivalent de facto priors,

m0 log prior between 1 GeV and 20 TeV;

m1=2=m0 log prior between 10−3 and 103;

A0=m0 linear prior between − 5 and 5;

tan β effective prior between 1 and 60;

MZ effective prior; fixed 91.1876 GeV; ð24Þ

where the effective priors are in Eq. (21). The “missing”
parameter space in our de facto priors atMSUSY ≫ 20 TeV
is irrelevant in our calculation, because it contains negli-
gible evidence. The “missing” parameter space, however,
results in differences in normalization between our de jure
and de facto priors, which we correct by hand. Fortunately,
because the sign of μ is identical at the electroweak andMP
scales, we require no Jacobian to transform our prior for
sign μ from MP to the electroweak scale.
We pick informative, Gaussian priors for the SM

nuisance parameters mt, mb, 1=αem and αs [40].
Reference [47] stresses that the top and bottom masses
are derived parameters; the input parameters are the
Yukawa couplings, yt and yb. In the CMSSM, the relation-
ship between fermion masses and the Yukawa couplings
includes factors of sin β and cos β. We should pick priors
for the Yukawa couplings rather than for the fermion
masses; however, at leading order with logarithmic priors
for the Yukawa couplings, there is no effective prior
associated with ðyt; ybÞ → ðmt;mbÞ. At leading order,
our treatment of the SM nuisance parameters is equivalent
to picking logarithmic priors for the Yukawa couplings.
We calculated the CMSSM’s mass spectrum and effec-

tive priors with SOFTSUSY [56]. We used MultiNest [57]
with PyMultiNest [58] to perform the integral in Eq. (4).
We found the evidence for three cases:
(1) MZ ¼ 91.1876 GeV [40] only in our likelihood

(fixed by our de facto priors),
(2) MZ, mh ¼ 125.9� 0.4� 2.0 GeV [40–42,59] and

the null result from the LHC in 20=fb [7] in our
likelihood, and

(3) MZ, mh and a hypothetical null result from the
VLHC in 3000=fb [60] in our likelihood.

In the first case, our likelihood for MZ is a Dirac delta
function. In the second case, our likelihood for mh is a
Gaussian with theoretical and experimental errors added in
quadrature, and we veto points that are excluded by an
ATLAS search for jets and missing energy [7]. In the last
case, we consider the potential consequences of the

ffiffiffi
s

p ¼
100 TeV VLHC, by vetoing points that would be excluded
by a null result in 3000=fb [60], i.e., points with m~g ≲
16 TeV and m ~q ≲ 16 TeV or points with m~g ≲ 13.5 TeV.
The evidences for the CMSSM in our three cases are

shown are shown in Table II. Let us discuss the results case
by case:
(1) MZ only in our likelihood. The Bayes factor favors

the CMSSM over the SMwith quadratic divergences
by ∼1032; as anticipated, the CMSSM is favored by
naturalness. The Bayes factor favors the SM without
quadratic divergences over the CMSSM by only ∼2,
which is “barely worth mentioning” on the Jeffreys’
scale in Table I. Prior to LHC experiments, the
CMSSM was not unnatural.

(2) MZ, mh and LHC 20=fb in our likelihood. The
Bayes factor favors the CMSSM over the SM with

1One might wonder whether we should pick, e.g., m2
0 rather

than m0 as a fundamental parameter, since it is the square which
appears in the soft-breaking Lagrangian. Because we pick
logarithmic priors, however, the choice is irrelevant.
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quadratic divergences by ∼1030; the little-hierarchy
problem in the CMSSM is minuscule compared with
the hierarchy problem in the SM with quadratic
divergences. The Bayes factor favors the SM with-
out quadratic divergences over the CMSSM by∼700
(150 is very strong on the Jeffreys’ scale). Relative to
the SM without quadratic divergences, the evidence
for the CMSSM diminishes by a factor of ∼500; this
is the fine-tuning price of the LHC.

(3) MZ, mh and a hypothetical null result from VLHC
3000=fb in our likelihood. The Bayes factor favors
the SM without quadratic divergences over the
CMSSM by ∼105. Relative to the SM without
quadratic divergences, the evidence for the CMSSM
diminishes by a further factor of ∼400. The fine-
tuning price of null results from the VLHC (∼400)
would be similar to, though slightly less than, that of
the LHC (∼500).

Note that in all cases, however, the Bayes factors favor the
CMSSM over the SMwith quadratic divergences by≳1027.
The fine-tuning prices for the experiments in the CMSSM
are illustrated in Fig. 3 by the logarithm of the Bayes factor
for the SM without quadratic divergences against
the CMSSM.
The posterior probability density (see, e.g., Ref. [61] for

an introduction) is a by-product of the MultiNest evidence

calculation. With MZ, mh and null results from the LHC
in our likelihood, the posterior probability density for
(m0, m1=2) confirms that the focus point [50–52] at
m0 ∼ 8 TeV and m1=2 ≲ 2 TeV is favored. With only
MZ in our likelihood, unsurprisingly, we find thatMSUSY ∼
MZ is favored by MZ, i.e., by naturalness.

V. EFFECTIVE VERSUS UV-COMPLETE
THEORIES

We interpreted the SM as an effective theory valid only
below a cutoff scale, Λ ¼ MP, above which, we presumed,
quantum field theory (QFT) is significantly modified by
new physics (NP) related to gravity. The SM has a single
relevant operator, μ2ϕ2. We considered the finite bare mass,
μ2, to be a physical parameter originating from NP. We
parametrized our ignorance of μ2 with a logarithmic prior.
We assumed that quadratic corrections to μ2 are unaffected
by NP below the Planck scale, hinted at by, e.g., neutrino
masses, inflation and dark matter.
If one attempts to remove the cutoff from the SM,

Λ → ∞, the bare mass diverges. The renormalized mass,
μ2R, might be considered to be fundamental. The renormal-
ized mass differs from the bare mass by a quadratic
correction and scheme-dependent terms. Because there
are no quadratic corrections to the renormalized mass, it
runs logarithmically from the Planck scale to the electro-
weak (EW) scale. The hierarchy problem is hidden in
counterterms. There are numerous problems with such an
approach, e.g., triviality.
We, however, interpreted the CMSSM as an ultraviolet

(UV) complete theory valid at all scales. The fundamental
parameters were renormalized SUSY breaking masses
defined at the renormalization scale μ ¼ MGUT in the
minimal subtraction scheme, rather than bare masses.
Was it fair to compare the SM as an effective theory with
the CMSSM as a UV-complete theory? While with
Bayesian evidence one can compare any models that make
predictions for the experimental data, comparisons are
interesting only if the models are realistically interpreted.
Suppose we instead interpreted the CMSSM as an

effective theory valid only below a cutoff scale,
Λ ¼ MGUT, at which new GUT physics is important, or
the Planck scale, at which gravitational interactions mediate
SUSY breaking. Divergences are no worse than logarithmic
in supersymmetric models. The bare SUSY breaking
masses at the cutoff scale would be similar to renormalized
SUSY breaking masses at the GUT or Planck scales; the
bare and renormalized masses would differ by logarithmic
corrections. No fine-tuning of the EW scale is hidden by
parametrizing the CMSSM as a UV-complete theory with
renormalized masses.2

FIG. 3 (color online). The fine-tuning prices of the MZ
measurement, LHC experiments and hypothetical null results
from the VLHC. Our fine-tuning prices are the Bayes factors for
the SM without quadratic divergences against the CMSSM
broken down by experiment. MZ indicates the measurement of
the Z-boson mass, mh; LHC indicates the LHC Higgs mass
measurement and null results from LHC; and VLHC indicates
hypothetical null results in 3000=fb at

ffiffiffi
s

p ¼ 100 TeV. The
logarithm is base 10.

2It is possible, however, that focusing mechanisms are dis-
favored if SUSY breaking masses are unified at the Planck scale
rather than at the GUT scale [62].
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The comparison was fair, though its outcome was
perhaps inevitable. Although the SMwas vastly disfavored,
it was important in the analysis; it was a reference model
against which we judged the severity of the change in the
“fine-tuning price” in the CMSSM.

VI. THE μ PROBLEM

A problem emerges from our honest choice of prior for μ,
which aggravates the fine-tuning problem. The μ parameter
is a symmetry conserving parameter in the superpotential.
A priori, it is unrelated to a symmetry breaking scale. This
is problematic; phenomenologically it must be that
μ ∼MSUSY. The evidence for a model in which we expect
100 GeV≲ μ ≲MP and observe μ ∼MSUSY could be
smaller than that for a model in which we expect μ ∼
MSUSY and observe μ ∼MSUSY. This is the μ problem; in
our formulation, its statistical nature is manifest.
Equation (21) reveals the μ problem and the fine-tuning
problem; the μ problem is that πðμ ≈MSUSYÞ is small and
the fine-tuning problem is that ∂μ=∂MZ is small, resulting
in a small prior belief in the observed electroweak scale,
πðMZÞ. The ratio of evidences for a model that predicts
MZ ≲ μ ≲MP and an “almost-so” model that predicts, e.g.,
10−1MSUSY ≲ μ≲ 103MSUSY, is approximately

lnð 103MSUSY
10−1MSUSY

Þ
lnðMP

MZ
Þ ≈

1

5
: ð25Þ

A similar result applies to SUSY models with a Giudice-
Masiero mechanism [63].
The little-hierarchy problem in the CMSSM is ∼30 times

worse than the μ problem. The μ problem contributes a
factor of only ∼5 to a Bayes factor for an “almost-so”
model against the CMSSM. The Bayes factor withMZ, mh

and null results from the LHC favors the SM without
quadratic divergences over the CMSSM by ∼700; the little-
hierarchy problem contributes a factor of ∼150 and the μ
problem contributes a factor of ∼5.

VII. CONCLUSIONS

The absence of SUSY or other new physics at the LHC
has led many to question naturalness arguments. Drawing
upon the literature, we clarified the relationship between
Bayesian statistics and naturalness, concluding that natural
models are most probable and that naturalness is not merely
an aesthetic principle. We calculated the Bayesian, prob-
abilistic measure of naturalness, the evidence, for the SM
with and without quadratic divergences, demonstrating that
the SM with quadratic divergences is improbable. We
calculated the evidence for the CMSSM in three cases:
with only the MZ measurement; with the MZ measurement
and LHC measurements; and with the MZ measurement
and a hypothetical null result from the VLHC with
3000=fb. The latter allowed us to quantitatively understand
the potential fine-tuning price of the VLHC. We found
that the fine-tuning price of null results from the VLHC
(∼400) would be slightly less than that of the LHC (∼500).
We hope this result might help to inform preliminary
discussions and plans for the VLHC.
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