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We suggest that the Higgs boson is a light composite state that does not emerge from TeV scale strong
dynamics for any generic reason, such as when it is pseudo-Goldstone boson. Instead, a state that is Higgs-
like and fairly decoupled from heavier states may simply be a reflection of very particular strong dynamics,
with properties quite distinct from more familiar large-Nc type gauge dynamics. We elaborate on this
picture in the context of a strongly interacting fourth family and an effective 4-Higgs-doublet model. The
origin of a decoupling limit and the corrections to it are discussed.
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The discovery of the 126 GeV mass Higgs would appear
to resolve the question of the origin of electroweak
symmetry breaking, especially given the simplicity of
the standard model (SM) description and the lack of any
evidence of additional physics. But nagging issues of
naturalness and the long list of parameters of the standard
model suggest that we have not yet reached the end of the
story. If the Higgs description emerges as only an effective
low energy description then it is with the ultraviolet
completion that the story can continue.
But ultraviolet completions that maintain the local Higgs

description on scales at least an order of magnitude above
the TeV scale are now facing their own issues of naturalness
as well as a general lack of simplicity. Of course the reason
to push the ultraviolet completions to higher scales is to
avoid effects of the new physics that perhaps should already
have been seen. But we view the exact nature of the new
effects to be a model dependent question, so that the
generic estimates of the effects may be substantially
modified by the structure of a particular theory or by
difficult to calculate effects of strong interactions. With this
in mind we feel that it remains worthwhile to consider the
possibility that the Higgs description breaks down at no
more than a few times the TeV scale, since it is in this case
that issues of naturalness are most simply resolved. It may
appear that nature has conspired a little to keep this nearby
physics hidden from us, but we won’t know by how much
unless we study these theories further.
From the viewpoint of simplicity and economy, the main

advantage of an ultraviolet completion at a TeV is that the
fundamental matter degrees of freedom can be standard
chiral fermions. Rather than exotically charged fermions a
sequential extension of the known fermions, a fourth
family, can be considered. New fermions of a fourth family
have masses that are bounded from above, ≲1 TeV, due to
the fact that their masses would contribute to W and Z
masses. The direct search for the heavy quarks of a fourth

family have not yet saturated this bound, but the current
lower limits on their masses do put the nature of new
interactions involving the fourth family firmly in the
strongly interacting regime.
In the case of a strongly interacting fourth family it is the

condensates of the heavy quarks, the t0 and the b0, that are
likely the primary origin of electroweak symmetry break-
ing. We shall find that it is also important to include the
effects of the t and the τ0, and so we include all four
fermions in the set of heavy fermions we consider. They all
contribute to the loop induced gg and/or γγ couplings of
the light states of interest while the fourth neutrino ν0τ does
not and so we choose to neglect it. A neutrino condensate
does contribute to electroweak symmetry breaking but the
error we make by neglecting it should be small. In addition
if this neutrino mass is of the Majorana type then the
mixing of the associated scalar mode with the other scalar
modes should be suppressed. There are various contribu-
tions of both signs that the heavy fermions make to the S
and T parameters, but a fourth family cannot as yet be ruled
out solely by these precision measurements [1,2].
The discovery of the Higgs-like 126 GeV state presents

some serious hurdles for any theory of dynamical electro-
weak symmetry breaking. There are basically three ques-
tions. (1) How can the strongly interacting theory at a TeV
have a light scalar in its mass spectrum? (2) Why should
this light scalar resemble a fluctuation around the vacuum
expectation value (vev) of an electroweak scalar doublet,
as indicated by its observed couplings toW and Z? (3) How
can it be that the couplings of the scalar to the heavy
fermions are such that the induced loop couplings to gg
and γγ also resemble that of the Higgs boson?
We first comment on the second question. We are

interested in the condensates that can develop for the four
scalar electroweak doublets t̄RqL, t̄0Rq

0
L, b̄

0
Rq

0
L, τ̄

0
Rl

0
L. The

fluctuations around these condensates include the neutral
and charged Goldstone bosons. They may also include
other rather light states, at least lighter than twice the
heavy quark mass. The local fermion condensates are one
manifestation of the symmetry breaking, but a better*bob.holdom@utoronto.ca
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representation of the order parameters is provided by the
momentum dependent dynamically generated fermion
mass functions. Then differing fluctuations around these
mass functions will also be characterized by their differing
momentum dependence, that is by their form factors in
momentum space.
The main question is the nature of the form factor of

the lightest neutral scalar fluctuation (one for each flavor).
The point is that this form factor may have a momentum
dependence that is similar to that of the mass function.1

That is the lowest lying scalar fluctuation of the mass
function is close to being a fluctuating multiplicative factor
times the mass function. This means that the attachment of
a low momentum scalar to a fermion loop hardly changes
the value of the loop, or in other words the amplitude for an
additional scalar is close to being σðxÞ=v times the original
amplitude.2 This is a property of a linear sigma model
description, in which the action is a function of vþ σðxÞ.
SUð2Þ × Uð1Þ symmetry must also be manifest and so the
approximate low energy description must be in terms of
electroweak scalar doublets fluctuating about their vevs.3

We thus pursue an effective scalar field description in
which we have four electroweak doublets,

Φi ¼
�

ϕþ
i

ðvi þ σi þ iηiÞ=
ffiffiffi
2

p
�
; i ¼ t; t0; b0; τ0; ð1Þ

with
P

iv
2
i ¼ v2. This effective theory need only be well

behaved for field values and field momenta less than a
compositeness scale, at most a few times a TeV. The four
doublets have hypercharge þ1, and ~Φt, ~Φt0 , Φb0 , Φτ0 (where
~Φ≡ iτ2Φ�) have the quantum numbers of the fermion
bilinears t̄RqL, t̄0Rq

0
L, b̄0Rq

0
L, τ̄0Rl

0
L. There is a rough

proportionality between the vevs vi and the underlying
dynamical fermion masses mi. This is seen in the one loop
contribution to the W and Z masses which can be written
approximately in the form

v2i ¼
nim2

i

4π2
ln
Λi

mi
: ð2Þ

ni ¼ 1 or 3 is the color factor and Λi characterizes the scale
of significant falloff of the mass function. The large t0 and b0
masses should be similar and they are basically determined
so that the correct v emerges. Masses around 800 GeV
would mean that they have roughly the same ratio to v as the
constituent quark masses have to fπ in QCD.
We see then that v is well below the compositeness scale

∼2mq0 , as is needed for self-consistency of the effective
scalar description. This also means that Yukawa couplings
are large; the Yukawa coupling of the Φi field to the ith
heavy fermion is

ffiffiffi
2

p
mi=vi. From (2) this gives a Yukawa

coupling ∼5 for the heavy quarks; this is pushing into the
unitarity bound but this is just a reflection of an underlying
strongly interacting (and unitary) theory. Also, if the
Yukawa coupling was probed on scales of the order of
the compositeness scale or larger, a damping form factor
would become apparent.
The τ0 mass is likely closer to the tmass than to the t0 and

b0 masses [6]. Thus we shall be assuming a clear separation
between the large vevs vt0 and vb0 and the smaller vevs vτ0
and vt. To be definite we shall set4

v0 ≡ vt0 ¼ vb0 ¼ tχvt ¼ tχvτ0 ; ð3Þ
with tχ ≡ tan χ ∼mq0=mt ∼ 5 so that v02 ¼ 1

2
v2sin2χ ≈ 1

2
v2.

In the following this will lead to an expansion in powers
of 1=tχ .
We label the four neutral scalar mass eigenstates h1, h2,

h3, h4, ordered from small to large mass. Of most interest is
the lightest state h1 ¼

P
isiσi with

P
is

2
i ¼ 1. With stan-

dard kinetic terms for the Φi the coupling of h1 toWW and
ZZ is proportional to v−1

P
4
i¼1 sivi. The maximum value

of this is unity, the value for the SM Higgs boson, which
occurs for si ¼ vi=v. In our case this is ½st; st0 ; sb0 ; sτ0 � ¼
sin χffiffi

2
p ½1=tχ ; 1; 1; 1=tχ �. h1 has the Yukawa couplings h1

P
i

ðsimi=viÞψ̄ iψ i to the heavy fermions, and these also take
values expected of a Higgs boson when si ¼ vi=v. In our
framework there is no reason that it is precisely the si ¼
vi=v combination that is a mass eigenstate, but data tells us
that the 126 GeV state is not too far from it.
We can now turn to the third question posed above.

A fourth family yields additional loop contributions to
Higgs couplings to gg and γγ and these couplings are
typically driven very far from SM couplings. At least this is
true for the combination si ¼ vi=v. In particular the h1gg
loop amplitude relative to the SM value in the heavy
quark loop approximation is v

P
ft;t0;b0gsi=vi, which for si ¼

vi=v is 3. The fermion loop contribution to the h1γγ
amplitude relative to the standard top loop contribution
is vðst=vt þ st0=vt0 þ 1

4
sb0=vb0 þ 3

4
sτ0=vτ0 Þ, which for si ¼

vi=v would again be 3. But instead consider ½st; st0 ;
sb0 ; sτ0 � ¼ sin χffiffi

2
p ½−1=tχ ; 1; 1; 1=tχ �. In this case both of the

1As shall be discussed elsewhere [3], the integral equations
that determine the mass function and the form factor only differ
by terms that become important in the infrared, that is by terms
that implement an effective infrared cutoff in the respective
integral equation. Thus the solutions will be similar for momenta
above this cutoff.

2In more detail one needs to distinguish v ¼ fπ and fσ , but
again the (small) difference is due to terms that implement an
effective infrared cutoff in the respective loop integrals.

3The authors of [4] argue that this resemblance even extends to
the sigma resonance of QCD. They obtained the σππ coupling in
2-flavor QCD from the I ¼ 0 and J ¼ 0 partial-wave projection
of the elastic ππ scattering amplitude at the σ pole [5]. The value
of the σππ coupling so obtained agrees very well with the linear
sigma model prediction. This coupling is the analog of the Higgs
coupling to WW and ZZ.

4The choice of vτ0 ¼ vt will simplify our discussion but it is
not crucial for our results.
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previous amplitude factors take the value of unity.5 The h1
coupling toWW and ZZ is then necessarily smaller, but it is
only slightly smaller by a factor of ð1þ 1=t2χÞ−1 ¼ sin2χ.
Thus only a change of sign of the small top component of
the h1 field, st → −st, brings its couplings dramatically
closer to the standard values. In the following we shall be
concerned with how this change of sign can arise through a
study of the mass matrix for the scalars.
The b quark and lighter fermions must also have Yukawa

couplings that are induced by some underlying flavor
physics. These Yukawa couplings can in principle involve
all of the four scalar doublets Φi. For example the 3 × 3
down-type quark mass matrix is

P
iviY

d
i where the Yd

i are
four Yukawa coupling matrices. Meanwhile the h1 cou-
pling matrix to the down-type quarks is

P
isiY

d
i . For the

special case si ¼ vi=v these two matrices are proportional
and h1 does not have flavor changing couplings. But when
st → −st then there can be flavor changing couplings that
are suppressed by Oð1=tχÞ. The h1b̄b coupling could also
receive a Oð1=tχÞ correction. The actual size of these
effects is of course dependent on the form and relative sizes
of the Yd

i . The situation is similar for the charged leptons
involving the Yukawa matrices Ye

i , and if for example Ye
t

was small compared to Ye
τ0 then the correction to the h1τ̄τ

coupling may be smaller than Oð1=tχÞ. For up-type quarks
the difference is that the t mass comes solely from Φt and
the h1 t̄t coupling stmt=vt ¼ −mt=v is negative. This sign
has physical effects since it is relative to the still positive
top mass.
There remains the first question posed above: why is

there any light scalar at all? We expect the ðt0; b0Þ sector to
display an approximate SUð2ÞL × SUð2ÞR symmetry and
so it will be useful to use a notation that makes this explicit.
We define the fields U ¼ ð ~Φt0Φb0 Þ and ~U ¼ ðiτ2ÞU�
ðiτ2ÞT ¼ ð ~Φb0Φt0 Þ (these 2 × 2 matrices are not constrained
to be unitary) that both transform like U → ULUU

†
R, under

SUð2ÞL × SUð2ÞR. Mass terms expressed in terms of these
fields take the familiar forms (with Trð ~U† ~UÞ ¼ TrðU†UÞ).

m2
2 TrðU†UÞ − 1

2
ðm2

3 Trð ~U†UÞ þ H:c:Þ
¼ m2

2ðΦ†
t0Φt0 þ Φ†

b0Φb0 Þ − ðm2
3Φ

†
t0Φb0 þ H:c:Þ: ð4Þ

The mass mixing term plays an essential role in 2-Higgs-
doublet models and it is clearly consistent with the
SUð2ÞL × SUð2ÞR symmetry.
We can now construct the SUð2ÞL × SUð2ÞR symmetric

quartic terms from the U and ~U fields. We have the one
trace

κ1 TrðU†UU†UÞ þ κ2 TrðU†U ~U† ~UÞ þ κ3 TrðU† ~U ~U†UÞ

þ
�
κ4
2

TrðU†U ~U†UÞ þ κ5
2

Trð ~U†U ~U†UÞ þ H:c:

�
;

ð5Þ
and the two trace terms

κ̂1 TrðU†UÞTrðU†UÞ þ κ̂2 TrðU†UÞTrð ~U† ~UÞ

þ κ̂3 TrðU† ~UÞ Trð ~U†UÞ þ
�
κ̂4
2

TrðU†UÞTrð ~U†UÞ

þ κ̂5
2

Trð ~U†UÞTrð ~U†UÞ þ H:c:

�
: ð6Þ

More insertions of ~U do not produce new terms.
Let us consider one particular degree of freedom σðxÞ

where

U; ~U →
1

2

�
σðxÞ 0

0 σðxÞ

�
: ð7Þ

It is easy to see that the contribution to the quartic term
1
4
λσðxÞ4 is

λ ¼ 1

2

X5
i¼1

ðκi þ 2κ̂iÞ: ð8Þ

Therefore λ → 0 when κ̂i → − 1
2
κi for i ¼ 1..5, and the

mass of this scalar vanishes in this limit for fixed v,
since m2

σ ≈ 2v2λ. Thus a light scalar emerges if a certain
approximate relation exists between those diagrams where
the four scalar fields couple to one or two q0 loops,
respectively (corresponding to the one and two trace terms).
Meanwhile, as familiar from the 2-Higgs-doublet model, if
them2

3 mass mixing term in (4) is large it gives a large mass
to the other physical states. We shall refer to the combi-
nation of these two phenomena as the decoupling limit for a
light scalar emerging from condensing t0 and b0 quarks.
We can now start to see the type of dynamics that is

required to have a light scalar. From largeNc arguments the
two trace terms are Oð1=NcÞ suppressed relative to the one
trace terms. In fact in Nambu-Jona-Lasinio models the two
trace terms are typically ignored by invoking this large Nc
argument. The κ2;…κ5 terms are also usually not consid-
ered and κ1 is estimated to be large [7], so this precludes a
light scalar. Similarly there is no light scalar in QCD or
QCD-like technicolor theories. The strong interactions
must be far away from a large Nc limit to allow for a
significant cancellation between the one and two trace
terms, and thus we are led to consider a strong Uð1Þ gauge
group. (Normal color is an effective flavor with respect to
this strong interaction and a two q0 loop diagram has a
flavor factor of three relative to a one q0 loop diagram.)
Purely structurally aUð1Þmay be the only choice for a new
gauge interaction that acts on a fourth family, and possibly
also the third [8]. We take it to be broken near the TeV scale

5If the t0, b0 and τ0 contributions to these amplitudes were
uniformly increased or decreased, perhaps due to some new
strong interaction effect we have neglected, then a further shift in
st could again bring both amplitudes back to unity.

ACCIDENTAL HIGGS BOSON PHYSICAL REVIEW D 90, 015004 (2014)

015004-3



so as to allow the heavy fermions to mix with lighter
fermions. The possible fixed point behavior of a strong
Uð1Þ at large Nf [9,10] may also be of interest in this
context.
The other ingredient of a decoupling limit is the required

Φ†
t0Φb0 term. It can be seen that Trð ~U†UÞ þ H:c:. is a

bosonized version of the operator ðiτ2Þabðiτ2Þcdq̄0Laq0Rc
q̄0Lbq

0
Rd þ H:c:, and so this operator must be present in

the underlying theory. Similarly a replacement of a U with a
~U in a quartic term corresponds to an insertion of this
operator. This operator cannot be generated perturbatively,
and so it represents another distinct feature of the non-
perturbative dynamics. This operator may contribute to the
breakdown of the Uð1Þ, depending on Uð1Þ charge assign-
ments [8]. Four-fermion operators of this chirality changing
structure have been argued to play a useful role in the
generation of other quark and lepton masses [11,12], and in
particular the top mass [13].

We now turn to the couplings between the Φt0 , Φb0 fields
and the Φt, Φτ0 fields, where these couplings can be treated
as SUð2ÞL × SUð2ÞR symmetry breaking effects. This will
lead to corrections to the decoupling limit that are of order
1=tχ . We can define additional 2 × 2 fields, X t ¼ ð ~Φt 0Þ
and X τ0 ¼ ð0Φτ0 Þ, and thus obtain additional mass mixing
terms in the scalar potential,

−fm2
4TrðU†X tÞþm2

5Trð ~U†X tÞþm2
6TrðX†

τ0
~UÞ

þm2
7TrðX†

τ0UÞþH:c:g
¼−fm2

4Φ
†
tΦt0 þm2

5Φ
†
tΦb0 þm2

6Φ
†
τ0Φt0 þm2

7Φ
†
τ0Φb0 þH:c:g:

ð9Þ

Each of these mass terms again has a corresponding four-
fermion interaction in the underlying theory. We can also
consider the quartic terms that are linear in the Φt, Φτ0

fields. There are again one and two trace terms.

κ6 TrðU†UU†X tÞ þ κ7 Trð ~U† ~U ~U†X tÞ þ κ8 TrðU† ~UU†X tÞ þ κ9 Trð ~U†U ~U†X tÞ
κ10 TrðU†U ~U†X tÞ þ κ11 Trð ~U†UU†X tÞ þ κ12 Trð ~U† ~UU†X tÞ þ κ13 TrðU† ~U ~U†X tÞ
þ ½2 trace terms with κi → κ̂i� þ H:c: ð10Þ

Here we have only shown the terms involving X t; there are
an analogous set of terms involving X τ0 .
We note that κ̂i ≈ − 1

2
κi for i ¼ 1; :::5 does not neces-

sarily imply that κ̂i ≈ − 1
2
κi for i ¼ 6; 7; :::13. Terms with a

X t have a top loop in addition to the q0 loops in the
underlying diagrams and if t and q0 have opposite Uð1Þ
charges [8] then it is especially clear that strong Uð1Þ
interactions will cause the relative size of the κi and κ̂i terms
to change for i ¼ 6; 7; :::13.

We now give the multi-Higgs potential in conventional
form, and then we can relate the standard quartic couplings,
the λis, to the κis and κ̂is. For the quartic terms we only
keep terms to first order in the Φt, Φτ0 fields as these will be
sufficient for the leading Oð1=tχÞ corrections. (We have
included them2

8 term just to show its effect.) We also ignore
charge parity (CP) violation and thus assume all coeffi-
cients are real.

V ¼ m2
0Φ

†
tΦt þm2

1Φ
†
τ0Φτ0 þm2

2ðΦ†
t0Φt0 þ Φ†

b0Φb0 Þ
− fm2

3Φ
†
t0Φb0 þm2

4Φ
†
tΦt0 þm2

5Φ
†
tΦb0 þm2

6Φ
†
τ0Φt0 þm2

7Φ
†
τ0Φb0 þm2

8Φ
†
τ0Φt þ H:c:g

þ 1

2
λ2½ðΦ†

t0Φt0 Þ2 þ ðΦ†
b0Φb0 Þ2� þ λ3ðΦ†

t0Φt0 ÞðΦ†
b0Φb0 Þ þ λ4ðΦ†

t0Φb0 ÞðΦ†
b0Φt0 Þ þ

�
1

2
λ5ðΦ†

t0Φb0 Þ2 þ H:c:

�

þ f½λ6Φ†
t0Φb0 þ λ7Φ

†
tΦt0 þ λ8Φ

†
tΦb0 þ λ9Φ

†
τ0Φt0 þ λ10Φ

†
τ0Φb0 �ðΦ†

t0Φt0 þ Φ†
b0Φb0 Þ

þ λ11Φ
†
tΦt0Φ

†
t0Φb0 þ λ12Φ

†
tΦb0Φ

†
b0Φt0 þ λ13Φ

†
τ0Φt0Φ

†
t0Φb0 þ λ14Φ

†
τ0Φb0Φ

†
b0Φt0

þ λ15Φ
†
tΦt0Φ

†
b0Φt0 þ λ16Φ

†
tΦb0Φ

†
t0Φb0 þ λ17Φ

†
τ0Φt0Φ

†
b0Φt0 þ λ18Φ

†
τ0Φb0Φ

†
t0Φb0 þ H:c:g þ � � � ð11Þ

We obtain the following relations for the terms that only
involve Φt0 and Φb0 fields.

λ2¼ λ3¼ 2κ1þ2κ̂1þ2κ̂2 λ4¼−2κ1þ2κ2þ2κ3þ4κ̂3

λ5¼ 2κ5þ4κ̂5 λ6¼
1

2
κ4þ κ̂4: ð12Þ

In the decoupling limit where κ̂i ≈ − 1
2
κi we have λ2 ¼

λ3 ≈ − 1
2
λ4 ≈ ðκ1 − κ2Þ and λ5 ≈ λ6 ≈ 0. It might be

expected that both κ1 and κ2 are positive and that the
two insertions of ~U in the κ2 term result in κ1 − κ2 > 0.
For the quartic terms involving Φt we have

λ7 ¼ κ6þ κ̂6þ κ̂12; λ8¼ κ7þ κ̂7þ κ̂10;

λ11¼−κ7þ κ10þ κ11þ2κ̂11; λ12¼−κ6þ κ12þ κ13þ2κ̂13;

λ15¼ κ8þ2κ̂8; λ16¼ κ9þ2κ̂9: ð13Þ
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There are analogous relations for the quartic terms involv-
ing Φτ0 .
We use the minimization conditions to eliminate to m0,

m1 and m2 and thus write the mass matrices,

M2
η ¼ M þ E ð14Þ

M2
h� ¼ M2

η þ C ð15Þ
M2

h ¼ M2
η þ S; ð16Þ

as follows, with [t, t0, b0, τ0] as the basis order and where it
is understood that the matrices are symmetric.

M ¼

0
BBBBBB@

tχðm2
4 þm2

5Þ þm2
8 −m2

4 −m2
5 −m2

8

m2
3 þ m2

4
þm2

6

tχ
−m2

3 −m2
6

m2
3 þ m2

5
þm2

7

tχ
−m2

7

tχðm2
6 þm2

7Þ þm2
8

1
CCCCCCA

ð17Þ

E ¼ v02

0
BBBBBB@

−tχλa λ7 þ 1
2
λ12 þ λ15 − 1

2
λ16 λ8 þ 1

2
λ11 þ λ16 − 1

2
λ15 0

−λ5 − λ6 −
λc
tχ

λ5 þ λ6 þ λg
tχ

λ9 þ 1
2
λ14 þ λ17 − 1

2
λ18

−λ5 − λ6 −
λd
tχ

λ10 þ 1
2
λ13 þ λ18 − 1

2
λ17

−tχλb

1
CCCCCCA

ð18Þ

C ¼ v02

2

0
BBBBBB@

0 λ11 − λ12 − λ15 þ λ16 λ12 − λ11 þ λ15 − λ16 0

−λ4 þ λ5 − 2 λ11þλ13−λ15−λ17
tχ

λ4 − λ5 þ λf−λg
tχ

λ13 − λ14 − λ17 þ λ18

−λ4 þ λ5 − 2 λ12þλ14−λ16−λ18
tχ

λ14 − λ13 þ λ17 − λ18

0

1
CCCCCCA

ð19Þ

S ¼ v02

0
BBBBBB@

0 λ7 þ λ8 þ λ11 þ λ16 λ7 þ λ8 þ λ12 þ λ15 0

λ2 þ λ5 þ 2λ6 þ 2 λ7þλ9þλ15þλ17
tχ

λ3 þ λ4 þ 2λ6 þ λeþλf
tχ

λ9 þ λ10 þ λ13 þ λ18

λ2 þ λ5 þ 2λ6 þ 2 λ8þλ10þλ16þλ18
tχ

λ9 þ λ10 þ λ14 þ λ17

0

1
CCCCCCA

ð20Þ

We have defined

λa ¼ λ7 þ λ8 þ
1

2
ðλ11 þ λ12 þ λ15 þ λ16Þ;

λb ¼ λ9 þ λ10 þ
1

2
ðλ13 þ λ14 þ λ17 þ λ18Þ;

λc ¼ λ7 þ λ9 þ
1

2
ðλ12 þ λ14 þ 4λ15 þ λ16 þ 4λ17 þ λ18Þ;

λd ¼ λ8 þ λ10 þ
1

2
ðλ11 þ λ13 þ λ15 þ 4λ16 þ λ17 þ 4λ18Þ;

λe ¼ λ7 þ λ8 þ λ9 þ λ10;

λf ¼ λ11 þ λ12 þ λ13 þ λ14;

λg ¼ λ15 þ λ16 þ λ17 þ λ18: ð21Þ
Let us start by turning off all the terms in V that are linear

in the Φt, Φτ0 fields and only consider the 2 × 2 version of

the above matrices for the Φt0 , Φb0 sector. These results will
then be familiar from the 2-Higgs-doublet model with
tan β ¼ 1. The state h1 ¼ ðσt0 þ σb0 Þ=

ffiffiffi
2

p
has mass

m2
h1
¼ v02ðλ2 þ λ3 þ λ4 þ λ5 þ 4λ6Þ

¼ 2v02
X5
i¼1

ðκi þ 2κ̂iÞ ð22Þ

where we have used the relations in (12). A neutral
pseudoscalar, η1 ¼ ðηt0 − ηb0 Þ=

ffiffiffi
2

p
,6 has mass

m2
η1 ¼ 2m2

3 − v02ð2λ5 þ 2λ6Þ; ð23Þ

6This combination is a isosinglet due to the definition of the
fields in (1).
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a charged scalar h� ¼ ðϕ�
t0 − ϕ�

b0 Þ=
ffiffiffi
2

p
has mass

m2
h� ¼ 2m2

3 − v02ðλ4 þ λ5 þ 2λ6Þ; ð24Þ

and the next heavier neutral scalar h2 ¼ ðσt0 − σb0 Þ=
ffiffiffi
2

p
has

mass

m2
h2

¼ 2m2
3 þ v02ðλ2 − λ3 − λ4 − λ5 − 2λ6Þ: ð25Þ

SUð2ÞL × SUð2ÞR symmetry implies λ2 ¼ λ3 and thus a
near degeneracy in the h2 and h� masses. In the decoupling
limit

m2
h� ≈m2

h2
≈m2

η1 þ 2v02ðκ1 − κ2Þ: ð26Þ

We also give the trilinear couplings involving h1 that
occur at leading order in 1=tχ .

v0

2
ffiffiffi
2

p
�
m2

h1

v02
h31 þ ð3λ2 − λ3 − λ4 − λ5Þh1h22

þ2ðλ2 þ λ3 − λ4 − λ5Þh1hþh−

þðλ2 þ λ3 þ λ4 − 3λ5Þh1η21
�
: ð27Þ

The h31 coupling is the SM value and the other couplings in
the decoupling limit reduce to

≈
ffiffiffi
2

p
v0ðκ1 − κ2Þ½h1ðh22 þ 2hþh−Þ�: ð28Þ

From (26) this coupling is related to a mass difference.
The h1hþh− couplings imply a charged scalar loop cor-
rection to h1 → γγ, but this correction is further suppressed
by v02=m2

h�.
Now let us turn back on the mixing between the Φt0 , Φb0

and the Φt, Φτ0 sectors and so study the Oð1=tχÞ correc-
tions. The full matrices M2

η and M2
h� each have a

vanishing eigenvalue (the Goldstone mode) with the same
eigenvector, sin χffiffi

2
p ½1=tχ ; 1; 1; 1=tχ �. These matrices have the

same form as M, that is they can be written as a matrix, M,
with the masses redefined to include the λi contributions.
Another eigenvalue of M is

2m2
3 þ

2

tχ

�
m2

4m
2
5

ðm2
4 þm2

5Þ
þ m2

6m
2
7

ðm2
6 þm2

7Þ
�
þO

�
1

t2χ

�
: ð29Þ

This is the next lowest eigenvalue if it is less than tχðm2
4 þ

m2
5Þ and tχðm2

6 þm2
7Þ, which are respectively the other two

eigenvalues at leading order. The Oð1=tχÞ corrections for
m2

η1 and m2
h� can be obtained by using (29) with masses

suitably redefined to represent the matrices M2
η and M2

h� .
Of more interest is the neutral scalar mass matrix M2

h
that is obtained from M2

η by adding S; this raises the

vanishing eigenvalue and distorts the corresponding eigen-
vector. We have already seen how this eigenvalue can
remain small compared to the next higher eigenvalues of
all three mass matrices. We now need to see how the
corresponding eigenvector can be close to sin χffiffi

2
p ½−1=tχ ; 1;

1; 1=tχ �. First we see that the existence of such an
eigenvector constrains the relevant mixing terms in the
mass matrix,

M2
h12 þM2

h13

M2
h11

≈
1

tχ
;

M2
h24 þM2

h34

M2
h44

≈ −
1

tχ
: ð30Þ

By inspection of the mass matrix this then leads to the
necessary constraints,

λav02 ≈ ðm2
4 þm2

5Þ=2 and λbv02 ≈ 0; ð31Þ

where λa and λb are defined in (21). We note that λav02 and
λbv02 cannot be greater than m2

4 þm2
5 and m2

6 þm2
7,

respectively, to ensure that M2
h11 and M2

h44 are positive.
With this we can obtain the Oð1=tχÞ correction to m2

h1
.

There are contributions both from the mixing as described
by (30) (this reduces m2

h1
) and from the 1=tχ corrections

that are present in the inner 2 × 2 block. The combined
correction is found to give the 1=tχ term in the following:

m2
h1
¼ v02ðλ2þλ3þλ4þλ5þ4λ6Þþ

1

tχ
ðm2

4þm2
5ÞþO

�
1

t2χ

�

¼ 2v02
X5
i¼1

ðκiþ2κ̂iÞþ
v02

tχ

X13
i¼6

ðκiþ2κ̂iÞþO
�
1

t2χ

�
:

ð32Þ

The second sum is a representation of 2λa after using (13).
For illustration if we take tχðm2

3 þm2
4Þ ¼ 1 TeV and tχ ¼

5 then the second term is ð200 GeVÞ2. For a 126 GeV mass
Higgs boson the first term would need to be −ð155 GeVÞ2,
or in other words the sum of λis in the first term is −0.8. In
this case the 1=tχ corrections are stabilizing the vacuum.
We may also obtain the 1=tχ correction to the h31

coupling,

v0

2
ffiffiffi
2

p h31

�
λ2 þ λ3 þ λ4 þ λ5 þ 4λ6 þ

1

tχ
λh þO

�
1

t2χ

��
; ð33Þ

with λh ¼ 2λ7þ2λ8−4λ9−4λ10þλ11þλ12−2λ13−2λ14þ
λ15þ λ16−2λ17−2λ18. This 1=tχ correction may also be
relatively significant when compared to the anomalously
small lowest order value.
We would now like to explore just how close we need to

be to the mixing pattern we have described, that is how
close to the relations in (30) we need to be, for consistency
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with the present data. For this it is sufficient to simplify
things and setM2

h11 ¼ M2
h44 ≡ μ2 andM2

h14 ¼ M2
h41 ¼ 0

[notice how (29) does not depend on m2
8]. The difference

betweenM2
h22 andM

2
h33 is suppressed by 1=tχ and it could

be of either sign, so we also set M2
h22 ¼ M2

h33. We can
then write

M2
h ¼ μ2

0
BBB@

1 −d −c 0

−d a −b −f
−c −b a −e
0 −f −e 1

1
CCCA: ð34Þ

Insisting that all eigenvalues are positive implies that

a > A≡ 1

2
ðc2 þ d2 þ e2 þ f2Þ; ð35Þ

− ða − AÞ≲ bþ cdþ ef ≲ a − A: ð36Þ

The decoupling limit corresponds to when b is near the
upper end of its range in (36). The relations in (30) become

cþ d ≈ −1=tχ ; eþ f ≈ 1=tχ : ð37Þ

The two lowest eigenvalues (as long as aþ b≲ 1) are
approximately

m2
h1
=μ2 ≈ a − b −

ðcþ dÞ2 þ ðeþ fÞ2
2

; ð38Þ

m2
h2
=μ2 ≈ aþ b −

ðc − dÞ2 þ ðe − fÞ2
2

: ð39Þ

The corresponding eigenvectors are approximately propor-
tional to

�
cþ d; 1 −

ðc2 þ e2 − d2 − f2Þ
4b

;

1þ ðc2 þ e2 − d2 − f2Þ
4b

; eþ f

�
; ð40Þ

�
d − c
1 − 2b

; 1þ ðc2 þ e2 − d2 − f2Þ
4bð1 − 2bÞ ;

− 1þ ðc2 þ e2 − d2 − f2Þ
4bð1 − 2bÞ ;

f − e
1 − 2b

�
: ð41Þ

The new correction terms in (40) will affect the h1 coupling
to γγ, but will cancel in the gg and VV (WW and ZZ)
couplings. The couplings of h2 are determined approx-
imately by (41) and in particular we see that its VV
couplings are quite suppressed. The h2 coupling to tt̄ or
τ0τ0 depends on d − c or f − e respectively and the gg
coupling is also strongly dependent on these differences. In

addition the coupling responsible for the decay h2 → h1h1
only appears at order 1=tχ, and so h2 → η1Z may be a
dominant decay of h2 if mh2 −mη1 is large enough.
To find the allowed region in the space of c; d; e; f

parameters we perform a scan over this space for the fixed
a and b. Rather than use the approximate results in (38)–(41)
we instead use the eigenvalues and eigenvectors of (34) as
obtained numerically. We uniformly sample c; d; e; f and
onlykeepthosevalues thatproducepositivemasssquaresand
are such that the h1 production cross section times width
(σ × Γ) intoVV, γγ and ττ respectively is eachwithin 20%of
the SM Higgs value (the h1 coupling to ττ is assumed to be
sτ0v=vτ0 times the SM value). Then the acceptable values of
c; d; e; f are shown in Fig. 1, wherewe havemade the choice
a ¼ 0.4, b ¼ 0.35 and tχ ¼ 5. This shows quite clearly the
extent to which the sums cþ d and eþ f are constrained,
while showing that the differences c − d and e − f are not
constrained. The resulting values of σ × Γ for VV, γγ and ττ
are spread quite uniformly over the allowed ranges.
In Fig. 2(a) we display some quantities as a function of

m2
h2
=μ2, where the large range of m2

h2
=μ2 is due to the

variation in c − d and e − f. If these differences were small
then m2

h2
=μ2 would be confined to the upper end of its

range. The figure shows that the values of m2
h1
=μ2 are small

(with an average value of 0.016) and are quite independent
of the allowed values of c; d; e; f, as (37) and (38) indicate.
This figure also displays (1) σ × Γ for the vector boson
fusion (VBF) or associated production (VH) process with
h1 decay to VV and (2) the square of the h1 coupling to tt̄,
both relative to the SM Higgs boson. The former is seen to
have values that are about 0.85 times the SM values; this is
a reflection of the slightly smaller h1VV coupling we
mentioned earlier. This result can receive corrections from
possible dimension-six terms in the effective scalar doublet
theory.

FIG. 1 (color online). The allowed ranges of the parameters
c; d; e; f appearing in the scalar mass matrix M2

h in (34) for
a ¼ 0.4, b ¼ 0.35 and tχ ¼ 5.
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As another possibility we point out a significant leeway
that is still permitted by the data, which allows various
Higgs couplings to be uniformly smaller (or larger) than
in the SM. We show a fit to the combined data using
HiggsSignals 1.2 [14] in Fig. 3. It displays the correlation
in the allowed scaling of the bb̄ coupling (not squared)
with the allowed uniform scaling of the γγ, ττ and VV
couplings. The reason for this is that the Higgs widths into
each of γγ, ττ and VV can all be smaller than in the
standard model as long as the width into bb̄ is also
appropriately smaller. The latter reduces the total width
and thus boosts the branching ratios up to the observed
values. We mentioned earlier that the h1b̄b coupling can
receive a Oð1=tχÞ correction.
The present data can easily accommodate a reduction in

σ × Γ for γγ, ττ and VV on the order of 0.85 that is
compensated by a reduced total width due to a smaller bb̄
coupling. We thus perform a second scan over the c; d; e; f

parameters where we assume that the total width is
reduced by 0.85. The result is shown in Fig. 2(b). The
VBF or VH processes are now SM-like in size, but the
square of the h1 coupling to tt̄ is now seen to be enhanced.
The average value of m2

h1
=μ2 is little changed at 0.014.

The couplings of h2 are also determined in the scan and
in Fig. 4 we show results for the first scan above (the
second scan is similar). In Fig. 4(a) we show the gluon
fusion production cross section for h2. The range of values
grows very dramatically as m2

h2
decreases. In Fig. 4(b) we

show Γ̂ðh2 → tt̄Þ þ Γ̂ðh2 → τ0τ0Þ where Γ̂ denotes the
width relative to the SM Higgs boson. Thus at least one
of these widths also grows dramatically as m2

h2
decreases.

From this it would appear that a h2 mass that is well below
its maximum value could easily be ruled out. Meanwhile
Γ̂ðh2 → VVÞ=ðΓ̂ðh2 → t̄tÞ þ Γ̂ðh2 → τ0τ0ÞÞ remains small,
remaining below ≈0.004 for any m2

h2
.

The heaviest two neutral scalars h3 and h4 have masses
of order μ (this is μ ≈ 1 TeV if our illustrative value of
m2

h1
=μ2 is to produce the correct mh1). Their eigenvectors

are dominated by the t and τ0 components and so the sum of
the squares of the h3 couplings to t and τ0 will be a factor of
≈2t2χ larger than the square of the SM Higgs coupling to t
(and the same for h4). Among the scalars h2, h3 h4, the
most interesting one may be the one with the largest
product of production cross section and branching ratio
to τ0τ0. With an enhanced cross section and significant
branching ratio, such a boson could be accessible even with
a large mass.
We have mentioned the Yukawa couplings of the scalar

fields to the lighter families and the suppression of the
flavor changing couplings of h1 by Oð1=tχÞ. The heavier
scalars can have flavor changing couplings that are not
suppressed in this way, although in this case the higher
mass of these states can produce a similar suppression.
In both cases the ultimate size of these effects will
be governed by the form of the Yukawa couplings.

(a) (b)

FIG. 2 (color online). σVBFΓðh1 → VVÞ (blue squares) and g2h1 t̄t (red circles), both relative to the SM Higgs boson, and m2
h1
=μ2 (green

diamonds) as a function of m2
h2
=μ2. The left and right plots are for two different scans as described in the text.

0 1 2
gbb

0

1

g X

0

5

 10

 15

 20
ATLAS, CMS, CDF, D0 combined, HiggsSignals 1.2 ∆χ2

1 σ
2 σ
3 σ

FIG. 3 (color online). gX is a uniform scaling of the Higgs
couplings to VV, γγ and ττ and gbb scales the Higgs coupling to
bb̄ [based on data included in HiggsSignals 1.2 (March 2014)].
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These couplings are induced by four-fermion interactions
that couple light to heavy fermions and that reflect new
flavor physics at scales up to ≈103 TeV. The structure of
the underlying flavor physics may be such as to give rise
to additional suppression of flavor changing neutral
currents. This can occur through approximate symmetries
in the effective theory, of the standard discrete type or of
the continuous type [15–18]. Approximate symmetries are
consistent because of the natural UV cutoff of loop effects
involving scalars.
In summary we have discussed some particular features

of strong interactions involving a fourth family that could
underlie the existence of a light Higgs-like scalar. We
argued that “small Nc” dynamics is necessary for a partial
cancellation between the one and two trace contributions to
the lightest scalar mass. This points to a strong and broken
Uð1Þ gauge interaction. The other required feature is a
scalar mass mixing term, well known in 2-Higgs-doublet
models, that pushes the other states to higher mass. The
origin of this term lies with a four-fermion interaction
of a certain chiral structure that cannot be generated
perturbatively. These features of the strong interactions

can allow one to be “accidentally” close to a decoupling
limit for a light scalar. We also commented on how it can
be that a linear sigma model provides a good description
of such a scalar.
The small mass of the t and τ0 relative to the large mass of

t0 and b0 implies a similar ratio of the vevs, and this small
ratio determines the size of corrections to the decoupling
limit. It also implies that the light scalar has small σt and στ0
components. When the relative sign of the σt component
is negative this changes the sign of the scalar coupling to
the top quark. We have shown how this can emerge via a
4-Higgs-doublet potential and how it is needed to bring gg
and γγ couplings into line with the observed values.
Experimentally the sign of the Higgs coupling to the top
is accessible through the study of Higgs boson plus single
top production [19–23].
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