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We apply the Schrödinger functional method to the Abelian gauge theory in three dimensions with
Nf ¼ 2 four-component fermions. We find that the calculated beta function does not cross zero in the range
of coupling we study. This implies that the theory exhibits confinement and mass generation, rather than a
conformal infrared regime.
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I. INTRODUCTION

The infrared structure of massless quantum electrody-
namics in three dimensions (QED3) is an old problem [1].
Like other three-dimensional theories, QED3 is plagued by
infrared divergences. It is widely believed that these signal
a ground state that is far from the perturbative vacuum. Two
possibilities have been entertained [2]. One is that the
infrared physics of the theory is described by confinement
of charge, with a concomitant dynamical mass for the
fermions. The other is that dynamical charges screen the
Coulomb interaction, so that charges at large distances
interact via a power law potential. In the first case the scale
of the theory’s physics is presumably set by the coupling
e2, which has dimensions of mass. In the second case, there
is no scale in the infrared physics, but rather an emergent
conformal symmetry. A number of studies have concluded
that confinement and mass generation occur if the number
of (four-component) fermions, Nf, is small. It is clear, on
the other hand, that in the large-Nf domain the theory is
screened and conformal. Estimates of Nc, the critical value
of Nf that divides the two domains, have varied widely
in various analytical approaches [3–19] and lattice simu-
lations [20–28] (for interim summaries see [2,28]).
We can explore this question via the renormalization

group, guided by our knowledge of four-dimensional non-
Abelian gauge theories. The running of the coupling e2ðqÞ
is governed by the beta function,

de2

d log q
¼ Nfb1e4=qþ � � � ; ð1Þ

where b1 > 0 is the one-loop coefficient. Upon defining a
dimensionless coupling g2ðqÞ ¼ e2=q, we have

dg2

d log q
¼ −g2 þ Nfb1g4 þ � � � ; ð2Þ

a form typical of a super-renormalizable field theory.1

When Nf is small, there is a region around g2 ¼ 0
where the running is dominated by the first term, which
has the sign associated with asymptotic freedom in four
dimensions. As a consequence, the infrared running is
towards strong coupling. When the coupling becomes large
enough, but before the second term becomes important,
a condensate hψ̄ψi forms. This generates a mass for the
fermions, whereupon at sufficiently small energy scales
the fermions drop out of the theory, leaving free photons.
The running of e2 stops.
WhenNf is large, on the other hand, the one-loop term in

Eq. (2) has to be considered.2 The beta function starts out
negative at small g2 but the one-loop term then makes it
cross zero at g2 ¼ g2� ≡ ðNfb1Þ−1. This is an infrared-
attractive fixed point. Once the coupling runs there, a
scale invariance sets in. There are no massive particles
and indeed, since Green functions behave as powers of
distance, there are no particles at all.
There must be a value of Nf, which we have called Nc,

that divides the two domains. ForNf just below thisNc, the
one-loop term is significant: It make the beta function turn
towards zero as g2 grows. This only happens, however, at a
strong coupling, and the condensate is triggered before g2

actually reaches the zero of the one-loop beta function.
Then the fermions develop a mass and decouple in the
infrared, as described for the small-Nf case.
These infrared scenarios are familiar from non-Abelian

theories in four dimensions. In an asymptotically free
theory the one-loop term in the beta function is negative,
while the two-loop term changes sign as the number of
fermion flavors is increased [29,30]. The transition from
confinement to conformality has been much studied, most
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1b1 depends on the renormalization scheme: It is not invariant
under a perturbative change in scheme, g2 ¼ g02 þ bg04 þ � � �.
Hence we do not specify it further, until we adopt the Schrödinger
functionalschemebelow.Sinceb1 comesfromscreeningbyphysical
particles, it should be positive in any sensible scheme.

2In the ’t Hooft limit, Nf → ∞ with e2Nf fixed, the one-loop
term in Eq. (1) is the exact beta function.
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recently by the methods of lattice gauge theory (for surveys
see [31,32]).
The Schrödinger functional (SF) method gives a non-

perturbative definition of the beta function that lends itself
to lattice calculations [33,34]. Originally designed for QCD
[35–37], it has also been applied to gauge theories that are
on the borderline between confining and conformal
[38–50]. In this paper we present a study of QED3 with
Nf ¼ 2 four-component fermions by this method. We first
calculate and plot results for the beta function at fixed lattice
spacing. These indicate that the beta function deviates from
the one-loop form (2) at strong coupling and does not cross
zero. This is confirmed when we extrapolate to the
continuum by two different methods. Unless this trend is
reversed at yet stronger couplings, our results imply that the
Nf ¼ 2 theory is a confining theory with a mass scale.
As mentioned above, more straightforward lattice meth-

ods have also been applied to QED3. We note in particular
the extensive studies of Refs. [26–28]. This work has
pointed towards Nc ≈ 2. Calculating mass spectra and the
chiral condensate is then quite challenging in the Nf ¼ 2
theory, because of the strong finite-volume effects inherent
in low dimensionality: If Nc is nearby then the condensate
(if any) could be very small and particle masses (if any)
likewise. Deciding whether these quantities are really
nonzero requires simulation on very large lattices [14].
The strength of the SF method, on the other hand, comes
from the idea behind the renormalization group. There is no
need to control a large range of length scales in a given
calculation, because the method relates nearby scales to
derive the beta function. Thus finite size turns from a
hindrance to a basis for calculation.
This paper is organized as follows. In Sec. II we review

the SF method by adapting it to QED3; the language is
entirely that of the continuum. We describe the lattice
theory in Sec. III: a noncompact Abelian gauge field
coupled to Nf ¼ 2 four-component fermions. We simulate
this theory to obtain the running coupling, with results
presented in Sec. IV. Section V contains further discussion
of our method, while the Appendices contain some
technical details.

II. DEFINING THE RUNNING COUPLING

The Schrödinger functional offers a definition of the
running coupling that is convenient for nonperturbative
lattice calculations. We apply the method to QED3 in the
continuum; lattice modifications will be given below. The
action is

S ¼
Z

d3x

�
1

4e20
FμνFμν þ

XNf

i¼1

ψ̄ iDψ i

�
; ð3Þ

where Fμν ¼ ∂μAν − ∂νAμ is the usual field strength and
Dμ ¼ ∂μ þ iAμ. With this definition, A has dimensions of

mass and so does the coupling e20. Renormalizing at a scale
μ, we identify e20 ≡ e2ðμÞ and define a dimensionless
coupling g2ðμÞ ¼ e2ðμÞ=μ.
We work in a cubic volume of size L3 and impose

a background field in a way that L is its only scale.
Then calculation of the quantum effective action yields a
coupling that runs with L, which we denote by g2ðLÞ.
We impose the background field through boundary

conditions on the spacelike components Ax and Ay at
t ¼ 0 and t ¼ L,

Ax ¼ Ay ¼ þϕ=L; t ¼ 0;

Ax ¼ Ay ¼ −ϕ=L; t ¼ L: ð4Þ

The background field in the bulk is found by minimizing
the classical action,

Scl ¼
1

e20

Z
d3x

1

4
FμνFμν; ð5Þ

and it is easy to see that the solution is a linear function of t,

AxðtÞ ¼ AyðtÞ ¼
ϕ

L

�
1 −

2t
L

�
; ð6Þ

corresponding to a constant electric field,

Ex ¼ Ey ¼ −
2ϕ

L2
: ð7Þ

The classical action of this field is

Scl ¼
4ϕ2

e20L
≡ ~KðϕÞ

e20L
: ð8Þ

In our work we fixed the background field parameter to
be ϕ ¼ π=4.
The effective action Γ ¼ − logZ gives a definition of the

running coupling in the SF scheme. We write

Γ≡ 1

e2ðLÞ
Z

d3x
1

4
FμνFμν; ð9Þ

where Fμν is the classical background field. Using Eqs. (5)
and (8) gives

Γ ¼
~KðϕÞ

e2ðLÞL ¼
~KðϕÞ
g2ðLÞ ; ð10Þ

and thus a calculation of Γ, in a three-dimensional volume
of size L, gives directly the running coupling g2ðLÞ at
the scale L. In any field theory, one generally calculates
not Γ but its derivatives, which are given by Green func-
tions. Thus we differentiate with respect to the boundary
parameter to obtain
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∂Γ
∂ϕ ¼ KðϕÞ

g2ðLÞ ; ð11Þ

where K ¼ ∂ ~K=∂ϕ. (Our choice ϕ ¼ π=4 gives
K ¼ 8ϕ ¼ 2π.)
We can check our numerical results by comparing to the

first two terms in a loop expansion for Γ,

Γ ¼ Scl þ Γð1Þ þ � � � : ð12Þ
The one-loop quantum correction is given by

Γð1Þ ¼ −Nftr logðDÞ; ð13Þ

and thus we define the one-loop quantity cðϕÞ via

∂Γð1Þ

∂ϕ ≡ NfKðϕÞcðϕÞ: ð14Þ

[We have taken out a factor of KðϕÞ for convenience.] Here
cðϕÞ is a dimensionless function of the boundary con-
ditions, independent of the coupling and of the system size
L. We calculate it in Appendix A. Inserting in Eq. (11) we
have the perturbative expression for the running coupling,

1

g2ðLÞ ¼
1

g2ðμÞμLþ Nfcþ � � � : ð15Þ

Setting q ¼ 1=L, we rewrite the renormalization group
equation (2) as

~βð1=g2Þ≡ dð1=g2Þ
d logL

¼ −
1

g2
þ Nfb1 þOðg2Þ: ð16Þ

Upon differentiating Eq. (15), we identify

b1 ¼ c; ð17Þ
the one-loop coefficient in the SF renormalization scheme.

III. THE LATTICE THEORY

We use a noncompact formulation of the gauge field,
wherein we define the vector potential Anμ on each link
ðn; μÞ of the three-dimensional lattice; we put a four-
component Dirac field ψn on each site n. (We suppress
the flavor index f ¼ 1, 2 throughout.) The Euclidean action
contains the usual quadratic term for the gauge field and a
smoothed Wilson-clover action for the fermions,

S ¼ β

2

X
n

μ<ν

ð∇ × AÞ2nμν þ ψ̄Dψ : ð18Þ

All the fields in Eq. (18) have been made dimensionless via
appropriate powers of the lattice spacing a. The lattice
curl is

ð∇ × AÞnμν ¼ Anμ þ Anþμ̂;ν − Anþν̂;μ − Anν; ð19Þ

and the first summation in Eq. (18) counts each plaquette
once. The fermion term is

ψ̄Dψ ¼
X
n

ψ̄nψn ð20aÞ

þκ
X
nμ

½ψ̄nð1þ γμÞVnμψnþμ̂ þ ψ̄nþμ̂ð1 − γμÞV†
nμψn� ð20bÞ

þκcSW
X
n

ψ̄n
i
4
σμνFnμνψn: ð20cÞ

The Wilson hopping term (20b) contains a link connection
Vnμ. This is constructed from the compact gauge variables

Unμ ¼ eiAnμ ð21Þ

by a normalized hypercubic (nHYP) smearing process
[51,52], where each Vnμ is a weighted average of the U
variables on nearby links (see Appendix B). The purpose
of this smearing is the suppression of lattice artifacts. It
allows us to go to stronger couplings before encountering
numerical instabilities [46].
A further cancellation of lattice artifacts is offered by

the clover term (20c) [53]. While the field strength Fnμν
could be defined via the simple curl (19), we adopt a
definition appropriate to the compact theory, a sum over the
four leaves of the “clover” surrounding the site n,

Fnμν ¼
1

4
ðFð1Þ

nμν þ Fð1Þ
n−μ̂;μν þ Fð1Þ

n−ν̂;μν þ Fð1Þ
n−μ̂−ν̂;μνÞ; ð22Þ

where each term Fð1Þ is a compact curl,

Fð1Þ
nμν ¼ sinð∇ × AÞnμν: ð23Þ

This clover structure is the same as in non-Abelian theories
and enables easy adaptation of existing code. We set the
coefficient to its tree-level value, cSW ¼ 1, since we have
found this to be close to optimal when nHYP smearing is
used [54].
The boundary conditions (4) for the Schrödinger func-

tional are now imposed on the gauge field on the time slices
of the lattice at t ¼ 0 and t ¼ L. Moreover, there are no
dynamical fermion fields on these boundaries.
The coupling in Eq. (18) is

β ¼ 1

e20a
; ð24Þ

where e0 is the bare charge. The hopping parameter is
related to the bare electron mass m0 by
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κ ¼ 1

6þ 2m0a
: ð25Þ

We study the massless theory by demanding that the
measured, physical fermion mass m vanish. We define
this from the axial Ward identity,

∂−
μAa

μ ¼ 2mPa; ð26Þ

where Aa
μ ¼ 1

2
ψ̄γμγ5τ

aψ is the isovector axial current
and Pa ¼ 1

2
ψ̄γ5τ

aψ is the isovector pseudoscalar density.
(∂−

μ is the backward lattice derivative.) It is convenient
in a SF calculation to define a gauge-invariant, pseudo-
scalar wall source operator Oa near the boundary at
t ¼ 0 (see Refs. [54,55] for details). Then Eq. (26) can
be used to relate two Green functions at zero spatial
momentum, viz.,

∂−
0

X
x

hAa
0ðx; tÞOai ¼ 2m

X
x

hPaðx; tÞOai: ð27Þ

We evaluate the Green functions at t ¼ L=2, whence the
ratio gives m. At each value of β, we tune the hopping
parameter κ to make m vanish, which defines the critical
curve κcðβÞ. We list the values of β used in this study, as
well as the values of κcðβÞ, in Table I.
As mentioned above, a Monte Carlo simulation of the

lattice theory does not give the effective action directly.
Instead, one applies the Schrödinger functional method by
using Green functions, which are derivatives of Γ. The
derivative on the left-hand side of Eq. (11) is

∂Γ
∂ϕ

����
ϕ¼π=4

¼
�∂SG
∂ϕ − tr

�
1

D†
∂ðD†DÞ

∂ϕ
1

D

������
ϕ¼π=4

; ð28Þ

where SG is the pure gauge action, the first term in Eq. (18).
Equation (28) is a particular expectation value of the gauge
fields and the Dirac operatorD. Differentiating with respect
to ϕ is the same as differentiating with respect to Anμ on
the boundary. We also impose twisted spatial boundary
conditions on the fermion fields [35], ψðxþ LÞ ¼
expðiθÞψðxÞ, with θ ¼ π=5 on both spatial axes.
We employed the hybrid Monte Carlo algorithm [56–58]

in our simulations. The molecular dynamics integration was
accelerated with an additional heavy pseudofermion field
[59], multiple time scales [60], and a second-order Omelyan
integrator [61]. Since the noncompact formulation allows
gauge fluctuations in which Anμ can wander to infinity, we
monitor the field and carry out gauge transformations, local
and global, to keep the field within certain bounds.

IV. THE RUNNING COUPLING
AND THE BETA FUNCTION

We calculated the running coupling from Eqs. (11) and
(28) for lattice sizes L=a ¼ 8, 12, 16, and 24 for the bare
couplings listed in Table I. The results are shown in
Table II. We use different subsets of the data for two
different analysis methods. Our goal is the beta function ~β,
defined in Eq. (16), or, equivalently, its representation as
the rescaled discrete beta function (RDBF) [47] for scaling
by a fixed factor s,

Rðu; sÞ≡ uðsLÞ − uðLÞ
log s

; ð29Þ

where the argument is

u ¼ uðLÞ≡ 1

g2ðLÞ : ð30Þ

It is clear that at a fixed point, where ~β ¼ 0, the RDBF will
be zero as well.

TABLE I. Summary of simulation runs for obtaining the
running coupling g2 at bare couplings ðβ; κcÞ for lattice sizes
L used in this work. We used a trajectory length of unity for most
of the simulations. The exceptions are the strong coupling runs
(β ≤ 0.4) and the β ¼ 0.6 run on the biggest lattice, in which we
used a trajectory length of 1=2.

Trajectories (thousands)

β κc L ¼ 8a L ¼ 12a L ¼ 16a L ¼ 24a

0.355 0.17440 150 150 � � � � � �
0.39 0.17325 150 100 � � � � � �
0.4 0.17282 100 150 150 122
0.458 0.17166 100 100 � � � � � �
0.541 0.17055 100 100 � � � � � �
0.6 0.16994 100 100 150 110
0.8 0.16898 100 100 100 100
1 0.16848 100 100 100 105
2 0.16757 � � � � � � 50 50

TABLE II. Schrödinger functional running coupling calculated
at bare couplings β on lattices of size L. The first two lines are
affected by lattice artifacts that make them unusable in calculating
the RDBF.

1=g2

β L ¼ 8a L ¼ 12a L ¼ 16a L ¼ 24a

0.355 0.0753(20) 0.0515(35) � � � � � �
0.39 0.0751(18) 0.0608(42) � � � � � �
0.4 0.0753(24) 0.0591(34) 0.0558(41) 0.0422(75)
0.458 0.0824(22) 0.0644(41) � � � � � �
0.541 0.0992(16) 0.0771(21) � � � � � �
0.6 0.1110(16) 0.0833(22) 0.0686(21) 0.0485(63)
0.8 0.1374(17) 0.1018(22) 0.0854(26) 0.0635(32)
1 0.1643(16) 0.1258(21) 0.0978(25) 0.0837(32)
2 � � � � � � 0.1732(35) 0.1277(43)
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A. Discrete beta function—two-lattice matching

We calculate the RDBF directly by comparing pairs of
lattice sizes L and L0 ¼ sL at fixed bare coupling β. [Two
lattices with the same ðβ; κÞ have the same lattice spacing.]
Lattices of size L ¼ 8a and 12a give a scale factor s ¼ 3=2,
as do lattices of size L ¼ 16a and 24a. We plot the RDBF
for all such pairs of lattices in Fig. 1. For comparison we
plot the one-loop formula, derived from using Eq. (15) in
the definition (29),

Rð1Þðu; sÞ ¼ 1 − 1=s
log s

ð−uþ NfcÞ: ð31Þ

We note the general trend that as u decreases the data
deviate downwards from the one-loop curve—away from
the axis—and avoid its zero.
Figure 1 is a first look only, since the dependence on

lattice spacing has not yet been studied. The quantity
plotted in Fig. 1 is really Rðu; s; aÞ, where the added
argument is the lattice spacing. To extrapolate to a ¼ 0, we
seek data for R at fixed u—which means fixed L—but at
different a, and thus different lattice size L=a. We show this
procedure in Fig. 2. The horizontal lines link data points at
fixed u, but measured on different lattice sizes L=a ¼ 8 and
16.3 Thus the RDBFs calculated from these points are
Rðu; s; a ¼ L=8Þ and Rðu; s; a ¼ L=16Þ, respectively. We
have such pairs at fixed u at u≃ 0.84 and u≃ 0.98. We
replot them in Fig. 3, together with the extrapolations
according to

Rðu; s; aÞ ¼ Rðu; s; a ¼ 0Þ þ C
a
L
: ð32Þ

It proved impossible to extend the two-lattice matching
method to stronger coupling because of lattice artifacts. We
attempted to extend the L ¼ 8a data to stronger couplings
than those shown in Fig. 2 (see Table II). The measured
coupling 1=g2 levels off, rather than continuing downward
with smaller β. This prevents matching to the L ¼ 16a data.

0.05 0.1 0.15

u = 1/g
2

-0.1

-0.05

0
R

(u
,3

/2
)

L/a = 8 -> 12
L/a = 16 -> 24
one loop

FIG. 1 (color online). The rescaled discrete beta function
calculated from each pair of couplings for the lattices of size
L=a ¼ 8 → 12 and 16 → 24.

0.5 1
β

0.05

0.1

1/g
2

L = 8a
L = 12a
L = 16a
L = 24a

FIG. 2 (color online). Extrapolating the RDBF to the con-
tinuum. Plotted is a subset of the results for the running coupling
that are listed in Table II. Pairs of data points at the same β give
the RDBF for a single lattice spacing. The horizontal lines link
data points at the same coupling u ¼ 1=g2 but at different lattice
spacings. These pairs give the RDBF at the two lattice spacings,
to be compared and extrapolated in Fig. 3.

0.05 0.1 0.15

u = 1/g2

-0.1

-0.05

0

R
(u

,3
/2

)

L/a = 8 -> 12
L/a = 16 -> 24
extrapolation
one loop

FIG. 3 (color online). Extrapolation of the RDBF to the
continuum, at the two couplings for which we have the needed
data.

3The points for L ¼ 8a were calculated at β ¼ 0.458 and
0.541—lines 4 and 5 of Table II. These β values were chosen for
this purpose, i.e., to match u to the L ¼ 16a values at β ¼ 0.8
and 1.
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B. Slope analysis

In order to perform an analysis at stronger couplings than
the two-lattice method allows, we begin by plotting data
sets for 1=g2 in Fig. 4. At four values of β, we have results
for 1=g2 on four lattice volumes, L ¼ 8a, 12a, 16a, and
24a. Since fixing β fixes the lattice spacing a, these sets
represent scaling in L at fixed a. As L is increased, 1=g2

decreases in accord with a negative beta function. The
figure shows the results of a straight-line fit to each data set,

uðLÞ ¼ 1

g2ðLÞ ¼ c0 þ c1 logL=a: ð33Þ

At the two weakest bare couplings, β ¼ 1.0 and 0.8, the fit
is poor because of the obvious curvature of the dependence
on logðL=aÞ. This means that the decrease in 1=g2 is not
described by a constant beta function ~β. Indeed, the one-
loop continuum formula predicts that the decrease in 1=g2

slows as one moves leftward in Fig. 1.
At β ¼ 0.6 and 0.4, on the other hand, a straight line fits

the points well, with perhaps a small deviation for L ¼ 24a
where the error bar is large anyway. Since g2 is not constant
as L changes, this motivates the hypothesis that the beta
function ~βðuÞ has leveled off in the range of u covered by
these data. Thus we arrive at estimates ~βðuÞ≃ c1. The
different slopes of the two data sets show that the estimates
vary with the lattice spacing.
Choosing a value of u ¼ 1=g2 in Fig. 4 gives a horizontal

line that intersects the fit lines for the two data sets. The two
intercepts give two values of a=L, one for each fit. We
again extrapolate these to the continuum linearly,

~βðu; aÞ ¼ ~βðu; a ¼ 0Þ þ C
a
L
; ð34Þ

as shown in Table III and Fig. 5. The final result is plotted
in Fig. 6.
The three u values chosen span a short interval. We do

not go to yet stronger coupling in this analysis because
lowering the chosen value of u in Fig. 4 will give intercepts
that are too far to the right; here the data deviate from the
straight lines, as they must, and the straight lines will not
give accurate values of ~β.
[A complementary argument is the following. The

quality of the linear fits in Fig. 4 is good for both
β ¼ 0.4 and 0.6. Therefore, when we extrapolate to
the continuum limit it is legitimate to use the two slopes
as estimates for the beta functions for any value
0.0422 ≤ u ≤ 0.0753, which is the interval covered by
the β ¼ 0.4 data. (It is contained in the interval covered by

8 12 16 24
L/a

0.05

0.1

0.15

1/g
2

FIG. 4 (color online). Running couplings 1=g2 vs logðL=aÞ,
from Table II. Each set corresponds to a fixed bare coupling β.
Top to bottom: β ¼ 1, 0.8, 0.6, 0.4. The solid lines are the linear
fits (33) for each bare coupling. The horizontal, dashed lines are
values of 1=g2 chosen for extrapolating the slopes to a=L ¼ 0.

0 0.05 0.1
a/L

-0.15

-0.1

-0.05

0

β~

1/g
2
 = 0.0753

1/g
2
 = 0.0686

1/g
2
 = 0.06

FIG. 5 (color online). Extrapolating the beta function to the
continuum, as described in Table III. The y values of the upper
and lower sets of data are the slopes of the fits shown in Fig. 4 for
β ¼ 0.4 and 0.6. The x values are the inverses of the intercepts of
the horizontal lines in that figure with the fit lines. The data are
extrapolated to a=L ¼ 0 as shown (solid points, displaced
horizontally from the axis for clarity).

TABLE III. Extrapolation to a=L ¼ 0 in slope analysis. 1=g2 is
the chosen value of the running coupling for the horizontal line
in Fig. 4. The next two columns are the values of L=a for
the intercepts of the horizontal line with the fit lines for β ¼ 0.4
and 0.6. The slopes for the two lines, which give ~βðu; aÞ,
are respectively −0.031ð6Þ and −0.062ð4Þ. The final column
gives the extrapolation from these two values to a=L ¼ 0
(Figs. 5 and 6).

1=g2 L=aðβ ¼ 0.4Þ L=aðβ ¼ 0.6Þ ~βða=L → 0Þ
0.0753(24) 8 14.10(64) −0.103ð13Þ
0.0686(21) 9.73(87) 16 −0.11ð2Þ
0.06 12.85(96) 18.04(65) −0.14ð3Þ
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the β ¼ 0.6 data.) As we move down in u, however,
the intercepts with the linear fits get closer to each other,
and, moreover, the uncertainty in the L=a value of each
intercept grows. As a result, the uncertainty in the con-
tinuum extrapolation grows rapidly, a trend that is clear in
Figs. 5 and 6. Thus no further information will emerge from
pushing to stronger coupling.]
Figure 6 shows that our numerical results deviate consid-

erably from the one-loop curve. They show no sign of
crossing the axis; takingFigs. 3 and6 together,wehave a beta
function that approaches the axis with the one-loop curve but
then curves away from it in the strong coupling region.

V. DISCUSSION

QED3 is qualitatively different from the four-
dimensional non-Abelian theories studied with the SF
method [38–50]. This is evident already in the weak-
coupling behavior of the beta function. In four dimensions,
the beta function ~βðuÞ for the inverse coupling is constant in
one loop; in three, it is linear in u, as seen in Eq. (16) and in
the figures. Moreover, in the borderline-conformal theories
there is a partial cancellation between the one-loop and
two-loop terms that makes the beta function small com-
pared to that of QCD. These differences are reflected in the
analysis technique we adopt here, which is different from
that in our earlier papers [47–50] and more closely
resembles the applications of the method to QCD [37].
Our technique of linear fits at fixed bare coupling β

[Eq. (33) and Fig. 4] was designed for a slowly running
theory, where the slopes are small and the coupling changes

little from the smallest lattice to the largest. It works best
when the beta function changes slowly as well. It is plain
that neither property holds in Fig. 4: the slopes are large and
the couplings change rapidly. For the two largest values of
β, where the beta function is largest, the rate of change of
the coupling decreases markedly as one follows the data to
large volumes, so that the nonconstancy of the beta function
is evident. At the smaller β’s the slopes hold more nearly
constant, validating the fits and allowing us to make the
hypothesis that the beta function has leveled off.
We have used two different methods for extrapolation to

the continuum, each with its own limitations. In weak
coupling, we used the two-lattice method to extrapolate the
rescaled discrete beta function. This works as long as one
can match couplings between two different lattice sizes. As
we saw, it fails at stronger couplings because of lattice
artifacts. At the stronger bare couplings we use the fact that,
as in QCD, the data in Fig. 4 cover overlapping ranges in
the running coupling. The overlap between β ¼ 0.6 and 0.4
allows for a straightforward extrapolation of the slope—the
beta function—to a=L ¼ 0.
It is evident from Fig. 4 that the slopes decrease as β

decreases, as is to be expected from the form of the one-
loop beta function. Thus the horizontal lines in Fig. 4 will
associate the larger lattices (in terms of L=a) with larger
slopes. It is then inevitable that extrapolating the slopes in
Fig. 5 pushes the beta function away from the axis. Is the
result, then, due more to our method than to the data? The
examples offered by the four-dimensional non-Abelian
theories show that this is not the case [47–50]. There, as
one approaches a possible zero of the beta function, the
slopes become so small that the fixed-β data sets do not
overlap in coupling. This prevents an extrapolation of
slopes to the continuum limit in those theories. An
alternative method, based on only the linear fits at fixed
β, leads to a beta function that stays near (or even crosses)
zero [48].
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APPENDIX A: THE RUNNING COUPLING
IN ONE LOOP

As explained in Sec. II, the one-loop coefficient in the
beta function is given by b1 ¼ c, where

0.05 0.1 0.15

u = 1/g
2

-0.15

-0.1

-0.05

0

β~ (u
)

β = 0.4
β = 0.6
a/L -> 0
one loop

FIG. 6 (color online). Extrapolation of the beta function to the
continuum (Table III and Fig. 5), plotted against the coupling.
The points labeled β ¼ 0.4 and 0.6 are the y values of the data
plotted in Fig. 5. Assuming the slopes in Fig. 4 to be constant in
the coupling range shown gives a set of extrapolations to
a=L ¼ 0, depending on the chosen value of u, as shown. The
extrapolations are not statistically independent of each other.

NONPERTURBATIVE BETA FUNCTION IN THREE- … PHYSICAL REVIEW D 90, 014512 (2014)

014512-7



c ¼ −
1

K
∂
∂ϕ log detD; ðA1Þ

which is to be evaluated at ϕ ¼ π=4, our choice for the SF
boundary conditions.
The calculation of the derivative of the fermion deter-

minant using the lattice regularization follows closely
Ref. [35]. Since D is defined in a uniform (but time-
dependent) background potential (6), its eigenfunctions
take the form

ψαðnÞ ¼ exp ðip · xÞfαðtÞ; ðA2Þ
where p ¼ ðp1; p2Þ, and α is a Dirac index. The allowed
spatial momenta are

pk ¼ ð2πnk þ θÞ=L; k ¼ 1; 2; ðA3Þ
where θ is the fermion twist angle, and nk ¼ 1;…;l, with
l ¼ L=a. Thus the calculation is reduced to

c ¼ −
1

K
lim
l→∞

X
p

∂
∂ϕ log det ~DðpÞ; ðA4Þ

where ~DðpÞ is a 4ðl − 1Þ × 4ðl − 1Þ matrix acting on
functions of time fαðtÞ. (We recall that in the SF setup, the
dynamical fermionic degrees of freedom live on time slices
t=a ¼ 1;…;l − 1.) As shown in Ref. [35], one can
simplify this expression to

∂
∂ϕ log det ~D ¼ Tr

�
M−1 ∂

∂ϕM

�
; ðA5Þ

where M ¼ MðpÞ is a 2 × 2 matrix that encodes the
hopping in the time direction. For a fixed lattice of size
l, the calculation proceeds by using Eq. (A5) and summing
over all p. Thanks to the clover term, the result rapidly
tends to a constant as L is increased, and we find

c ¼ 0.0297ð1Þ: ðA6Þ

A comparison of the one-loop calculation with lattice
simulations at very weak bare coupling is shown in Fig. 7.
There is good agreement between the simulation results and
the one-loop expression

1

g2ðLÞ ¼
β

l
þ Nfc: ðA7Þ

APPENDIX B: nHYP SMEARING FOR THE
ABELIAN THEORY

We modify the formulas of nHYP smearing [49,51,52]
for the U(1) gauge group. While the smearing could be
simplified by using the noncompact gauge field Anμ, we
can take advantage of our experience with non-Abelian
theories (as well as of existing code) by modifying the non-
Abelian formulas to use the compact field Unμ. The
reduction in dimensionality to three shortens the smearing
procedure. The smeared links Vnμ are constructed from the
bare links Unμ in two consecutive smearing steps via
intermediate fields ~V according to

Vnμ ¼ Norm

�
ð1 − α1ÞUnμ þ

α1
4

X
�ν≠μ

~Vnν;μ
~Vnþν̂;μ;ν

~V†
nþμ̂;ν;μ

�
;

ðB1aÞ

~Vnμ;ν ¼ Norm

�
ð1 − α2ÞUnμ þ

α2
2

X
�η≠ν;μ

UnηUnþη̂;μU
†
nþμ̂;η

�
:

ðB1bÞ

Each step is a weighted averaging of a link with staples
surrounding it. The restricted sums ensure that only links
that share a cube with Unμ enter the smearing. We set the
parameters α1;2 ¼ ð0.75; 0.6Þ as used in Refs. [51,52] for
the four-dimensional theory (where there is an additional
direction in which to smear). The normalizations indicated
in Eq. (B1) are simply

NormV ¼ V
jVj : ðB2Þ

0 10 20 30 40
β

0

1

2

1/g
2

tree level
one loop

FIG. 7 (color online). Simulation results for L ¼ 16a in the
weak-coupling regime compared to the calculated tree-level and
one-loop expressions.
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