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We present a calculation using lattice QCD of the ratios of decay constants of the excited states of the
pion, to that of the pion ground state, at three values of the pion mass between 400 and 700 MeV, using an
anisotropic clover fermion action with three flavors of quarks. We find that the decay constant of the first
excitation, and more notably of the second, is suppressed with respect to that of the ground-state pion, but
that the suppression shows little dependence on the quark mass. The strong suppression of the decay
constant of the second excited state is consistent with its interpretation as a predominantly hybrid state.
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I. INTRODUCTION

Obtaining precise information about excited hadrons
poses numerous challenges. The principal computational
challenge arises from the faster decay of their Euclidean
correlation functions in comparison with those of the ground
state, which leads to the worsening of the signal-to-noise
ratio. Additional complications arise in constructing had-
ronic operators, where we seek to balance the computational
cost with the level of overlap achieved by a set of operators.
Despite these obstacles, advances in computational lattice

QCD techniques are such that precise quantitative calcu-
lations that can confront both existing and forthcoming
experiments are increasingly feasible. Experiments include
those at the 12 GeV upgrade of the Continuous Electron
Beam Accelerator Facility (CEBAF) at Jefferson Lab [1],
with its new meson spectroscopy program in the mass range
up to 3.5 GeV. The expectation is that new data produced in
such experiments, combined with recent lattice QCD results
aimed at extracting the spectrum of the excited states for both
mesons and baryons [2–6], will represent a unique oppor-
tunity for the study of the nature of confinement mechanism,
and for identifying the role of gluonic degrees of freedom in
the spectrum.
The theoretical work presented here is devoted to the

study of some of the properties of excited states. It
represents the first step in a program to investigate quark
distribution amplitudes, which can be extracted from the
vacuum-to-hadron matrix elements of quark bilinear oper-
ators in the case of mesons, and of three-quark operators in
the case of baryons. These amplitudes can be used to
provide predictions for form factors and transition form
factors at high momentum transfers; in the case of baryons,
the study of transition form factors at high Q2 is a focus
of the JLab CLAS12 experiment, with the aim of exploring
the transition from hadronic to quark-and-gluon-dominated
dynamics.

In this paper, we provide details of a calculation of the
leptonic decay constant of the pion— the lightest system
with a valence quark-antiquark structure—and its excita-
tions. A knowledge of the decay constants of the excited
states, as well as of the ground state, is important in
delineating between different QCD-inspired pictures of the
meson spectrum, as well as demonstrating the feasibility of
studying the properties of highly excited states within
lattice QCD.
The layout of the remainder of the paper is as follows. In

the next section, we outline briefly the significance of the
pseudoscalar decay constants, and the state of our under-
standing for the pion. We then describe our computational
methodology for extracting the decay constants not only
of the ground-state pion, but also of its excitations, and
provide details of the lattices used in our calculation. In
Sec. IV we present our results, and compare them to
expectations from models, and from previous lattice stud-
ies. A summary and conclusions are given in Sec. V, while
details of some derivations are provided in the Appendix.

II. PSEUDOSCALAR LEPTONIC
DECAY CONSTANTS

Charged mesons are allowed to decay, through quark-
antiquark annihilations via a virtual W boson, to a charged
lepton and (anti)neutrino. The decay width for any pseu-
doscalar meson P of a quark content q1q̄2 with mass mP is
given by

ΓðP → lνÞ ¼ G2
f

8π
f2Pm

2
l mP

�
1 −

m2
l

m2
P

�
2

jVq1q̄2 j2: ð1Þ

Here ml is the mass of the lepton l, GF is the Fermi
coupling constant, Vq1q̄2 is the Cabibbo-Kobayashi-
Moskawa (CKM) matrix element between the constituent
quarks in P, and fP is the decay constant related to the
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wave-function overlap of the quark and antiquark. A
charged pion can decay as π → lν (we assume here πþ →
lþνl or π− → l−ν̄l), and its decay constant fπ , which
dictates the strength of these leptonic pion decays, has a
significance in many areas of modern physics. Thus a
knowledge of fπ is important for the extraction of certain
CKM matrix elements, where the leptonic decay width Γ
in Eq. (1) is proportional to fPjVq1q̄2 j. The pion decay
constant, through its role in determining the strength of ππ
interactions, also serves as an expansion parameter in chiral
perturbation theory [7,8]. As jVudj has been quite accu-
rately measured in superallowed β decays, measurements
of Γðπþ → μþνÞ yield a value of fπ . According to PDG [9],
the most precise value of fπ is

fπ− ¼ ð130.41� 0.03� 0.20Þ MeV: ð2Þ

Lattice QCD enables ab initio computations of the mass
spectrum and decay constants of pseudoscalar mesons,
and the calculation of the decay constant for ground-state
mesons has been an important endeavor in lattice calcu-
lations for the reasons cited above. Recent lattice predic-
tions [10–13] for the ratio fK=fπ of K− and π− decay
constants were used in order to find a value for jVusj=jVudj
which, together with the precisely measured jVudj, provides
an independent measure of jVusj.
The leptonic decay constant has a further role in hadronic

physics in representing the wave function at the origin,
and therefore a knowledge of the decay constant not only of
the lowest-lying state but of some of the excitations is
important in confronting QCD-inspired descriptions of the
meson spectrum. The pion excited states decay predomi-
nantly through strong decays, and therefore experimental
data on their decay constants are lacking. A study based on
Schwinger-Dyson equations [14] predicted significant
suppression of the excited-state pion decay constant in
comparison to that of the ground state. Similar predictions,
based on the QCD-inspired models and sum rules, also
propose remarkably small values for the decay constant of

the first pion excitation fπ1 ; e.g., [15] proposed the ratio
fπ1
fπ0

to be of the order of 1%. The authors of Ref. [16] in their
review of meson properties note that the prediction in the
chiral limit

fπN ≡ 0; N > 0

is perhaps surprising, even though some suppression of the
leptonic decay constants might be expected; for S-wave
states, the decay constant is proportional to the wave
function at the origin, and for excited states the configu-
ration-space wave function is broader. The only lattice
studies of the decay constants of the excited state of the
pion are those of the UKQCD Collaboration [17] using a
nonperturbatively improved clover fermion action with
two mass-degenerate quark flavors, and by the RBC

Collaboration, using a domain-wall fermion action with
two mass-degenerate quark flavors [18]; both exhibit a
strong suppression of fπ1 in the chiral limit. We will discuss
these results in further detail later.

III. COMPUTATIONAL METHOD

The procedure for extracting energies and hadron-to-
vacuum matrix elements from a lattice calculation is to
evaluate numerically Euclidean correlation functions of
operators Oi and Oj of given quantum numbers, which are
then expressed through their spectral representation

Cijðt; 0Þ ¼
1

V3

X
x⃗;y⃗

hOiðx⃗; tÞO†
jðy⃗; 0Þi ¼

X
N

ZN�
i ZN

j

2EN
e−ENt:

ð3Þ

Here ZN is the overlap of the Nth state in the spectrum, πN ,

ZN
i ≡ hπN∣O†

i ð0Þ∣0i; ð4Þ

EN is the energy of the state, and V3 is the spatial volume.1

The ability to perform the time-sliced sum at both source
and sink is a major benefit of the “distillation”method used
in our calculation.
The representation in Eq. (3) exposes some of the

challenges in the study of hadronic excitations. The
contributions of the excited states are suppressed exponen-
tially, and the extraction of subleading exponentials is a
demanding problem. As we climb up the spectrum, the
signal-to-noise ratio tends to worsen with increasing t
(correlation functions decrease rapidly while statistical
noise does not), and obtaining signals from the higher
excitations becomes more and more problematic. Our
means of overcoming these challenges is dependent on
three novel elements. Firstly, the use of anisotropic lattices
with a finer temporal than spatial resolution enabling the
time-sliced correlators to be examined at small Euclidean
times. Secondly, the use of the variational method [19–21]
with a large basis of operators derived from a continuum
construction yet which satisfy the symmetries of the lattice.
Finally, an efficient means of computing the necessary
correlation functions through the use of “distillation” [22].

A. Gauge configurations

We employ the Nf ¼ 2 ⊕ 1 anisotropic lattices gener-
ated by the Hadron Spectrum Collaboration, with two
mass-degenerate light quarks of mass ml and a strange
quark of mass ms. The lattices employ improved gluon and
“clover” fermion actions, with stout smearing restricted to

1Note that the correlation function defined here differs by a
factor of V3 from that of [3] so as to avoid an implicit factor offfiffiffiffiffiffi
V3

p
in ZN

j and other matrix elements.
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the spatial directions. Details are contained in Refs. [23]
and [24]. Here we employ 163 × 128 lattices having a
spatial lattice spacing of as ≃ 0.123 fm, and a renormal-
ized anisotropy, the ratio of the spatial and temporal lattice
spacings, of ξ≃ 3.5. The calculations are performed at
three values of the light-quark masses, corresponding to
pion masses of 391, 524 and 702 MeV. The 702 MeV pion
mass corresponds to the SUð3Þ-flavor-symmetric point.
The parameters of the lattices used here are shown in
Table I. The mass of the Ω baryon is used to set the scale,
and was determined within an estimated uncertainty of 2%
in Ref. [25] on the same ensembles; to facilitate comparison
with other calculations, we also provide the value of the
Sommer parameter r0 on each ensemble.

B. Variational method

A detailed description of the Hadron Spectrum
Collaboration implementation of the variational method
can be found in Ref. [3], but we summarize it briefly here.
The approach involves the solution of the generalized
eigenvalue equation

CðtÞvðNÞðt; t0Þ ¼ λNðt; t0ÞCðt0ÞvðNÞðt; t0Þ: ð5Þ
At sufficiently large t > t0, the ordered eigenvalues satisfy

λNðt; t0Þ → e−ENðt−t0Þ;

where EN is the energy of the Nth state. The eigenvalues
are normalized to unity at t ¼ t0, while the eigenvectors
satisfy the orthogonality condition:

vðN0Þ†Cðt0ÞvðNÞ ¼ δN;N0 : ð6Þ
Identifying the energy of the Nth state with its mass, the
overlap factors ZN

i of the spectral representation are
straightforwardly related to the eigenvectors through

ZN
i ¼

ffiffiffiffiffiffiffiffiffi
2mN

p
emNt0=2vðNÞ�

j Cjiðt0Þ: ð7Þ

We can define an “ideal” operator

ΩN ¼
ffiffiffiffiffiffiffiffiffi
2mN

p
e−mNt0=2vðNÞ

i Oi ð8Þ
within the operator space for the state N [26], where the v’s
are obtained from the solution of the generalized eigenvalue

equation at some t ¼ tref , and the operators are normalized
so as to remove the dependence on t0.

C. Interpolating operator basis

The efficacy of the variational method relies on an
operator basis that faithfully spans the low-lying spectrum.
The construction of single-particle elements of such a basis
is described in detail in Refs. [2] and [3]. Briefly, each
operator is constructed from elements of the general form

ψ̄ΓD
↔

iD
↔

j…ψ ; ð9Þ
where D

↔ ≡ ⃖D − ⃗D is a discretization of gauge-covariant
derivatives, and Γ is one of the sixteen Dirac matrices.
We then form an operator of definite J and M, which we
denote by

OJ;M ¼ ðΓ ×D½N�
JD
ÞJ: ð10Þ

We note that both charge conjugation, for neutral particles,
and parity are good symmetries on the lattice, but the full
three-dimensional rotational symmetry of the continuum is
reduced to the symmetry group of a cube. In the case of
integer spin, there are only five lattice irreducible repre-
sentations, irreps, labeled by Λ with row λ, instead of an
infinite number of irreducible representations labeled by
spin J in the continuum. For this study we are interested in
mesons of spin 0, lying in the A1 irrep; we note that this
irrep also contains continuum states of spin 4 and higher.
The subduction from the continuum operators OJ;M of
Eq. (10) onto the lattice irreps denoted by Λ and row λ is
performed through the projection formula

O½J�
Λ;λ ¼

X
M

SΛ;λJ;MO
J;M; ð11Þ

where SΛλJ;M are the subduction coefficients.
We use all possible continuum operators with up to three

derivatives, yielding a basis of 12 operators. An important
observation is that for the “single-particle” operators used
here, there is remarkable manifestation of continuum
rotational symmetry at the hadronic scale, that is the
subduced operators of Eq. (11) retain a memory of their
continuum antecedents [2,3]. One of the operators arises
from a continuum operator of spin 4. Several operators,

notably two of the form ðΓ ×D½2�
J¼1ÞJ¼0, correspond to the

TABLE I. Lattice extents (Ns and Nt), the bare masses of light quark atml and strange quark atms, the pion mass
atmπ , the Sommer scale r0, and the number Ncfg of gauge-field configurations. On each configuration, solution
vectors are computed from Nvecs ¼ 64 distillation vectors [22], located on a single time slice.

Ns Nt atml atms atmπ r0=as Ncfg

16 128 −0.0743 −0.0743 0.1483(2) 3.21(1) 535
16 128 −0.0808 −0.0743 0.0996(6) 3.51(1) 470
16 128 −0.0840 −0.0743 0.0691(6) 3.65(1) 480
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coupling of a chromomagnetic gluon field to the quark
and antiquark; these operators are used as signatures for
“hybrid” states with manifest gluonic content.
The combination of the variational method, our operator

constructions, and the distillation method, described below,
applied to the anisotropic lattice ensembles has been shown
to be very effective in studies of excited light isovector
mesons [2,3], isoscalar mesons [5,27], mesons containing
charmed quarks [28,29] and of baryons [30–33]. We now
show how to exploit this toolkit to extract the vacuum-to-
hadron matrix elements of excited states.

D. Axial-vector current

The decay constant of the Nth excitation of the pion, πN ,
is given by the hadron-to-vacuum matrix element of the
axial-vector current,

h0∣Aμð0ÞjπNi ¼ pμfπN ; ð12Þ

where Aμ ¼ ψ̄γμγ5ψ ; for a state at rest, considered here,
only the temporal component of the matrix element
is nonzero. The flavor-nonsinglet axial-vector Ward-
Takahashi identity relates the decay constant to the matrix
element of the pseudoscalar density P through

fπNm
2
N ¼ 2mqh0∣P∣πNi; ð13Þ

and it is this expression that gives rise to the expectation
fπN ≡ 0 forN > 0 in the chiral limit. It is important to note,
however, that away from the chiral limit any suppression
of fπN could be due to a small value of the matrix
element h0∣P∣πNi.
The matrix element of the axial-vector current deter-

mined on an isotropic lattice is related to that in some
specified continuum renormalization scheme through an
operator matching coefficient ZA:

Aμ ¼ ZAAlat
μ : ð14Þ

ZA is unity to tree level in perturbation theory, and
furthermore the mixing with higher-dimension operators
at OðaÞ only occurs at one loop. However, on an aniso-
tropic lattice, mixing with higher-dimension operators
occurs at tree level [34]. For the action employed here,
we find

AI
4 ¼ ð1þmatΩmÞ

�
AU
4 −

1

4
ðξ − 1Þat∂4P

�
ð15Þ

where AU
4 ≡ ψ̄γ4γ5ψ is the temporal component of the

unimproved local axial-vector current introduced earlier,
and P ¼ ψ̄γ5ψ is the pseudoscalar current; the derivation is
provided in the Appendix. There is an ambiguity in the
values of the parameters m, Ωm, ξ at tree level, and in this
work we take ξ to have its target renormalized value of 3.5.

It is important to note that the mixing at tree level vanishes
for an isotropic action, ξ ¼ 1, and therefore is an artifact of
the anisotropic action used in this work. In our subsequent
analysis, we will consider the ratios of the decay constant
of an excited state and that of the ground state; both the
matching coefficient of ZA of Eq. (14) and the mass
improvement term ð1þmatΩmÞ of Eq. (15) cancel in
these ratios. Finally, to obtain the physical value of the
decay constant from the lattice value, we have [35]

fπN ¼ ξ−3=2a−1t ~fπN ; ð16Þ

where ~fπN is the dimensionless value obtained in our
calculation.
Armed with the optimal interpolating operator for the

Nth excited state, we now extract its lattice decay constant
~fπN through the two-point correlation function

CA4;NðtÞ ¼
1

V3

X
x⃗;y⃗

h0∣A4ðx⃗; tÞΩ†
Nðy⃗; 0Þ∣0i

→ e−mNtmN
~fπN ; ð17Þ

where A4 is the temporal component of either the unim-
proved or improved axial-vector current. Finally, we note
that while the sign of the decay constants has been
discussed in Refs. [36] and [37], the matrix element
h0∣Aμ∣πNi for both the improved and unimproved currents,
obtained through Eq. (17), is defined only up to a phase,
since the corresponding eigenvector vðNÞ can be multiplied
by an arbitrary phase. We therefore quote the absolute
values of the decay constants in our subsequent analyses.

E. Distillation

Physically relevant signals in correlation functions fall
exponentially and are dominated by statistical fluctuations
at increasing times. Therefore, it is essential to use
operators with strong overlaps onto the low-lying states,
and whose overlaps to the high-energy modes are sup-
pressed. If the interpolating operators are constructed
directly from the local fields in the lattice Lagrangian,
then the coupling to the high energy modes is strong. A
widely adopted means of suppressing this coupling is
through the use of spatially extended, or “smeared,” quark
fields. We accomplish this smearing through the adoption
of “distillation” [22], in which the distillation operator has
the following form:

□x;yðtÞ ¼
XNvecs

k¼1

ξðkÞx ðtÞξðkÞ†y ðtÞ: ð18Þ

Here ξðkÞðk ¼ 1;…; NvecsÞ are the Nvecs eigenvectors of the
gauge-covariant lattice Laplacian, −∇2, corresponding to
the Nvecs lowest eigenvalues, evaluated on the background
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of the spatial gauge fields of time slice t. A meson
interpolating operator then has the general form

O ¼ ~̄ψðtÞΓ ~ψðtÞ; ð19Þ

where ~ψ ¼ □ψ , Γ is an operator acting in {position, spin,
color} space, and a correlation function between operators
Oi and Oj can be written as

CijðtÞ ¼ hψ̄ðtÞ□ðtÞΓiðtÞ□ðtÞψðtÞ
· ψ̄ð0Þ□ð0ÞΓjð0Þ□ð0Þψð0Þi: ð20Þ

Due to the small rank of its smearing operator, distillation
has a major benefit over other smearing techniques in
significantly reducing the computational cost related to the
construction of all elements of the correlation matrix, while
enabling a time-sliced sum to be performed both at the sink
and at the source.
The construction of the correlation functions from

operators smeared both at the sink and the source has
been described in detail in Ref. [22], but the extension to
the calculation of the smeared-local two-point functions

needed here is straightforward. Our starting point is the
solution of the Dirac equation from the eigenvectors at time
slice t0, which without loss of generality we take to be on
time slice t0 ¼ 0:

~τðkÞαβ ðx⃗; t; t0 ¼ 0Þ ¼ M−1
αβ ðx⃗; t; t0 ¼ 0ÞξðkÞðt0 ¼ 0Þ: ð21Þ

We then construct

Cμ;iðt; 0Þ ¼
1

V3

X
x⃗;y⃗

h0∣Aμðx⃗; tÞO†
i ðy⃗; 0Þ∣0i

¼
X
x⃗

Tr½γμ ~τðx⃗; t; 0ÞΦið0Þγ5~τðx⃗; t; 0Þ†�; ð22Þ

where the trace is over spin, color and eigenvector indices,
and Φ is the representation of the operator Oi in terms of
the eigenvectors ξ. The correlator onto the optimal operator
for the Nth excited state immediately follows from
Eq. (17).

TABLE II. The first line for each ensemble lists the masses of the pion and its first three excitations in lattice units
obtained from the variational method. The second line lists the masses obtained from a two-exponential fit to the
correlator of Eq. (17) using the optimal interpolating operator from the variational method at the source, and the
unimproved axial-vector current at the sink. In the third line the pion masses in physical units (MeV) obtained from
the variational method are presented.

mπ N ¼ 0 N ¼ 1 N ¼ 2 N ¼ 3

0.1483(1) 0.3619(11) 0.4439(34) 0.5199(61)
0.1482(4) 0.3600(84) 0.3664(975) 0.5569(506)

mπðMeVÞ 702.0(1) 1713(5) 2101(16) 2461(29)
0.0999(5) 0.3118(31) 0.4028(43) 0.4493(149)
0.1008(4) 0.3134(99) 0.4047(683) 0.4361(460)

mπðMeVÞ 524(3) 1635(16) 2113(23) 2357(78)
0.0694(2) 0.2735(31) 0.3665(34) 0.4209(99)
0.0709(10) 0.2626(93) 0.3592(688) 0.4270(75)

mπðMeVÞ 391(1) 1541(17) 2065(19) 2371(56)

TABLE III. The unrenormalized values of atfπN for the ground state and first three excitations. For each ensemble,
the first line is the values computed using the unimproved axial-vector current, while the second and third lines
employ the improved axial-vector current of Eq. (15) with the derivative of the pseudoscalar current computed using
the corresponding energy of the state, and a finite time difference, respectively.

mπ (MeV) N ¼ 0 N ¼ 1 N ¼ 2 N ¼ 3

702 0.0551(3) 0.0319(10) 0.0005(12) 0.0307(23)
0.0716(6) 0.0556(52) 0.0041(23) 0.0565(54)
0.0710(4) 0.0543(8) 0.0017(21) 0.0466(54)

524 0.0441(5) 0.0261(12) 0.0057(3) 0.0315(31)
0.0565(18) 0.0465(27) 0.0065(43) 0.0493(132)
0.0564(6) 0.0476(62) 0.0083(10) 0.0483(91)

391 0.0369(7) 0.0218(15) 0.0062(18) 0.0256(5)
0.0476(8) 0.0429(113) 0.0138(28) 0.0508(11)
0.0473(9) 0.0398(90) 0.0140(67) 0.0462(11)
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FIG. 1 (color online). The data for atfπN in units of the temporal lattice spacing from Eq. (23), for the ensemble atmπ ¼ 702 MeV; the
line corresponds to the value of atfπN obtained from a three-parameter fit to the data as discussed in the text. The optimal operators are
obtained from the variational method with t0 ¼ 7 and the eigenvectors determined at t ref ¼ 15.

FIG. 2 (color online). The unrenormalized pion decay constants
atfπN on each of our ensembles obtained using the unimproved
axial-vector current.

FIG. 3 (color online). The unrenormalized pion decay constants
atfπN on each of our ensembles obtained using the improved
axial-vector current.
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IV. RESULTS

The determination of the excited-state spectrum using
the variational method has been described in detail in
Refs. [2,3], and we merely present the results for the
spectrum of the lowest-lying states as the first row for each
ensemble in Table II; we quote only the lowest-lying
four states in the spectrum, since the next state is identified
as having spin 4, as we discuss later. In practice, the
coefficients giving rise to the “optimal” operator for theNth
excited states must be determined at some value tref > t0;
we take the value of tref as that which gives the best
reconstruction of the correlation matrix used in the varia-
tional method, following the technique described in
Ref. [3]. The decay constants fπN are obtained through

the correlation function CA4;NðtÞ of Eq. (17), using the
optimal operator determined above. The mass spectrum
obtained from two-exponential fits to these correlators,
using the unimproved axial-vector current at the sink, is
listed in the second row for each ensemble in Table II. The
consistency between the resultant spectra is encouraging.
Finally, in the third row of the same Table II we presented
the masses of the pion and its excitations in physical units
(MeV) for each ensemble.
In order to extract the matrix element, we form the

combination

emNtCA4;NðtÞ=mN → ~fπN þ BNe−ΔmNt; ð23Þ

FIG. 5 (color online). Ratios of the excited-state decay con-
stants fπN to the ground-state decay constant fπ0 for the first three
pion excitations (N ¼ 1; 2; 3), using the unimproved current.

FIG. 6 (color online). Ratios of the excited-state decay con-
stants fπN to the ground-state decay constant fπ0 for the first three
pion excitations (N ¼ 1; 2; 3), using the improved current.

FIG. 4 (color online). Lattice values for the ratio of the “improved” decay constants for the first excited fπ1 and ground-state fπ0 pion as a
function of the pion mass squared. The green (lower) points represent unimproved values, while data in red color (upper set of points)
correspond to the ratios of improved decay constants. We present linear (left) and constant (right) fits in m2

π to the ratio of decay constants.

DECAY CONSTANTS OF THE PION AND ITS … PHYSICAL REVIEW D 90, 014511 (2014)

014511-7



using the mass mN obtained through the variational method.
A three-parameter fit in f ~fπN ; BN;ΔmNg then yields the
value of the decay constant. In Table III we present, as the
first line for each ensemble, our results for the absolute,
unrenormalized values of the pion decay constants atfπN for
the ground (N ¼ 0) and first three excited states
(N ¼ 1; 2; 3), obtained using the unimproved axial-vector
current. As discussed earlier, the use of an anisotropic lattice
introduces mixing with higher-dimension operators, even at
tree level. We thus calculate the decay constants through
Eq. (17), but using the improved axial-vector current of
Eq. (15). We can evaluate the partial derivative of the
pseudoscalar current contributing to the improved current
in two ways: by replacing it with energy of the state,
∂4P → ENP, and through the use of a finite difference
between successive time slices, ∂4P → Pðtþ 1Þ − PðtÞ.
These are presented as the second and third rows for each
ensemble in Table III. The two methods of computing the
temporal derivative are in general consistent, and we will use
the finite-difference method in the subsequent discussion.
Finally, as an illustration of the quality of our procedure,
we show in Fig. 1 the data for Eq. (23), together with the
values of atfπN obtained from the three-parameter fit, for the
Nf ¼ 3 ensemble.
The decay constants atfπN for each of our ensembles

computed using the unimproved and improved axial-vector
currents are presented in Figs. 2 and 3, respectively. We
observe a decrease in the value of the decay constant up to
and including that for the second excited state on all three

ensembles, irrespective of the use of the unimproved or
improved axial-vector current. In Fig. 4, we show the ratio
of the decay constant of the first excited state to that of the
ground state, a combination in which the matching factor
cancels, for both the unimproved (green, or lower points)
and improved (red, or upper points) currents; we also show
in Fig. 4 the linear and constant fits in m2

π to this ratio.
While we note that the improvement term represents a
significant contribution at each quark mass, once again, the
qualitative behavior of the ratios remains the same for both
currents.
So far, all lattice QCD predictions for the decay constant

of the excitations of the pion have been made for the first
excited state only. Here, we extend previous work through
the calculation of the decay constant of higher excitations,
up to that of the third excited state. The ratios fπN=fπ0
of decay constants for the first, second and third excited states
to that of the ground state fπ0 are shown using the unim-
proved and improved currents respectively in Figs. 5 and 6.
Our results indicate the value of fπ1

fπ0
to be largely

independent of the pion mass in the explored region of
400–700 MeV. These conclusions differ from the previ-
ously mentioned studies performed by the UKQCD
Collaboration [17] and by the RBC Colaboration [18].
In the former, using an isotropic clover fermion action, they
find in particular that their results show a strong depend-
ence on the current used. A simple linear fit to the ratio of
the improved decay constants obtained through the imple-
mentation of the full ALPHA Collaboration method [38]
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FIG. 7 (color online). The histogram shows the overlap of the operators of the variational basis to the five lowest-lying states in the
spectrum, for the data corresponding to a pion mass of 391 MeV, as described in Refs. [2,3]. The yellow bar (operator
b1xD3_J132_J3__J4_A1) denotes the overlap onto an operator derived from a J ¼ 4 continuum construction; we associate the
fourth excitation with a state of spin 4, and do not discuss further. Grey bars (operators rho_2xD2_J1__J0_A1 and rhoxD2_J1__J0_A1)
denote overlaps onto hybrid operators, as described in the text.
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gave jfπ1=fπ0 j ¼ 0.078ð93Þ in the chiral limit, showing a
significant suppression of the decay constant for the first
pion excitation. Meanwhile, for the unimproved decay
constants, they obtained jfπ1=fπ0 j ¼ 0.38ð11Þ in the chiral
limit. We have also employed an improved current, but the
improvement term we include arises at tree level and is an
artifact of the use of an anisotropic lattice. The RBC
calculation, using domain-wall fermions, explores the
spectrum of the flavor-singlet pseudoscalar mesons, and
amongst the compendium of results presents the leptonic
decay constant of the ground-state and first-excited-state
pion. There, the decay constants are obtained by relating
the matrix elements of the axial-vector current to those of
the pseudoscalar density through the axial-vector Ward-
Takahashi identity, and a linear extrapolation in the quark
mass yields a value of fπ1 consistent with zero in the
chiral limit.
A particularly striking observation in our calculation is

the strong suppression of the decay constant of the second
excitation. The quark and gluon content of the excitations
of the pion spectrum was investigated earlier using the
overlaps of the operators of the variational basis with the
states in the spectrum as signatures for their partonic
content [2,3], and a phenomenological interpretation was
provided in Ref. [4]. Of the lowest four states in the
spectrum that we study here, each was identified as
corresponding to a state of spin 0 rather than of spin 4,
with the first excitation an S-wave radial excitation, but
with the second excited state having a significant hybrid
content represented by a strong overlap onto operators
comprising a quark and antiquark coupled to a chromo-
magnetic field, as we illustrate for the lightest ensemble in
Fig. 7. Thus the strong suppression of the decay constant
for the second excited state, but the far more moderate
suppression of the first excited state, is quite understand-
able within this phenomenology.

V. CONCLUSIONS

In this work, we have undertaken the first steps in
investigating the properties of the excited meson states in
QCD by computing the decay constants both of the pion
and of its lowest three excitations. Our results show that the
optimal operators obtained through the variational method
are effective interpolating operators when calculating the
hadron-to-vacuum matrix elements of local operators. The
picture that emerges is that for the lowest two excitations,
the decay constants are indeed suppressed, but largely
independent of the quark mass, and that the strong
suppression for the second excited state is indicative of
the predominantly hybrid nature of the state.
The work presented here is highly encouraging, but there

are certain caveats. Firstly, the basis of interpolating
operators used here includes only “single-hadron” oper-
ators, whose coupling to multihadron decay states is
expected to be suppressed by the volume, and thus our

results effectively ignore that higher excitations become
unstable under the strong interactions. Our previous work
on the isovector spectrum suggested that the single-particle
energy levels at these values of the quark mass are some-
what insensitive to the volume, but that has not been
checked for the decay matrix elements. Nonetheless, the
fact that the decay constant ratios themselves show a
limited quark-mass dependence, despite large differences
inmπL (L being the length of the lattice), lends credence to
the results presented here. Secondly, the improvement term
we include in the axial-vector current is that arising at tree
level through the use of an anisotropic action; mixings
beyond tree level, and the matching coefficients, which
cancel in the ratios of decays constants, have not been
included. As well as addressing these issues, future work
will extend the calculation to obtain the moments of the
quark distribution amplitudes, and will investigate
the decay constants and distribution amplitudes for both
the ρ and nucleon excitations.
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APPENDIX: AXIAL-VECTOR CURRENT
IMPROVEMENT

Here we provide derivation of the formula for the
improved axial-vector current that we use in our compu-
tations. Following closely the discussion on the classical
improvement of the anisotropic action introduced in
Ref. [34], we first start with the naive fermion action that
has manifestly no OðaÞ discretization errors

ψ̄cðmc þ∇Þψc;

the bare quark mass mc here is the same as in the
continuum. The OðaÞ-improved anisotropic quark action
can be derived by applying the field redefinition ψ̄c ¼ ψ̄ Ω̄
(ψc ¼ ψΩ), where

Ω ¼ 1þΩm

2
atmc þ

Ωt

2
at ⃗∇t þ

Ωs

2
as ⃗∇;

Ω̄ ¼ 1þ Ω̄m

2
atmc þ

Ω̄t

2
at ⃖∇t þ

Ω̄s

2
as ⃖∇; ðA1Þ
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with Ωm;t;s (and Ω̄m;t;s) being mass-dependent pure num-
bers, and where the covariant lattice derivatives ∇μ are
defined as

∇μψðxÞ ¼
1

2aμ
½UμðxÞψðxþ μÞ −U−μðxÞψðx − μÞ�:

The application of this field redefinition to the aniso-
tropic action is discussed in detail in Ref. [34]. Here we
will focus on the improved quark-bilinear operators,
given by

JI ¼ ψ̄cΓψc ¼ ψ̄ Ω̄ ΓΩψ ; ðA2Þ

which, after substituting the formulas from Eq. (A1) and
requiring Ωm ¼ Ω̄m, Ωt ¼ Ω̄t and Ωs ¼ Ω̄s (see [34]) turns
into

JI ¼ ð1þmcatΩmÞJU þ 1

2
Ωtat½ψ̄Γ ⃗∇tψ − ψ̄ ⃖∇tΓψ �

þ 1

2
Ωsas½ψ̄Γ ⃗∇sψ − ψ̄ ⃖∇sΓψ �; ðA3Þ

where JU ≡ ψ̄Γψ is the unimproved operator.
For the case of the axial-vector current we have

Γ ¼ γμγ5, and the improved axial-vector current AI
μ is

given by

AI
μ ¼ ð1þΩmatmcÞAU

μ þΩtat
2

ðψ̄Γ ⃗∇tψ − ψ̄ ⃖∇tΓψÞ

þΩsas
2

ðψ̄Γ ⃗∇sψ − ψ̄ ⃖∇sΓψÞ

¼ ð1þΩmatmcÞAU
μ þΩtat

2
ðψ̄γμγ5γ4 ⃗D4ψ

− ψ̄γ4γμγ5 ⃖D4ψÞ þ
Ωsas
2

ðψ̄γμγ5γj ⃗Djψ

− ψ̄γjγμγ5 ⃖DjψÞ: ðA4Þ

Using the relationship between the Euclidean gamma
matrices and the Dirac matrices,

γμγν ¼ δμν þ σμν; ðA5Þ

where

σμν ¼
1

2
½γμ; γν�; ðA6Þ

Eq. (A4) can be rewritten as

AI
μ ¼ ð1þ ΩmatmcÞAU

μ

−
Ωtat
2

ðψ̄ðδμ4 þ σμ4Þγ5 ⃗D4ψ þ ψ̄ðδ4μ þ σ4μÞγ5 ⃖D4ψÞ

−
Ωsas
2

ðψ̄ðδμj þ σμjÞγ5 ⃗Djψ þ ψ̄ðδjμ þ σjμÞγ5 ⃖DjψÞ;
ðA7Þ

or

AI
μ ¼ ð1þ ΩmatmcÞAU

μ

þΩtat
2

ð−δμ4∂4ψ̄γ5ψ − σμ4ψ̄γ5 ⃗D4ψ − σ4μψ̄γ5 ⃖D4ψÞ

þΩsas
2

ð−δμj∂jψ̄γ5ψ − σμjψ̄γ5 ⃗Djψ − σjμψ̄γ5 ⃖DjψÞ:
ðA8Þ

To simplify this expression, we make use of the equations
of motion which (to the lowest order) are written as

ðm0 þ νt ⃗Dt þ νs ⃗DsÞψ ¼ 0; ðA9Þ

ψ̄ðm0 − νt ⃖Dt − νs ⃖DsÞ ¼ 0: ðA10Þ

From the first equation,

m0γρψ þ νtγργ4 ⃗D4ψ þ νsγργj ⃗Djψ ¼ 0; ðA11Þ

and therefore

νsσρj ⃗Djψ þ νtσρ4 ⃗D4ψ

¼ −m0γρψ − νtδρ4 ⃗D4ψ − νsδρj ⃗Djψ : ðA12Þ

Similarly, from Eq. (A10) we get

m0ψ̄γρ − νtψ̄γ4γρ ⃖D4 − νsψ̄γjγρ ⃖Dj ¼ 0; ðA13Þ

and

νtψ̄σ4ρ ⃖D4 þ νsψ̄σjρ ⃖Dj

¼ m0ψ̄γρ − νtψ̄δ4ρ ⃖D4 − νsψ̄δjρ ⃖Dj: ðA14Þ

Here we consider the temporal component of the axial-
vector current (μ ¼ 4), so Eq. (A8) becomes

AI
4 ¼ ð1þ ΩmatmcÞAU

4 −
Ωtat
2

δρ4∂4ψ̄γ5ψ

−
Ωsas
2

ðσ4jψ̄γ5 ⃗Djψ þ σj4ψ̄γ5 ⃖DjψÞ ðA15Þ

and, after applying Eqs. (A12) and (A14), we obtain
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AI
4 ¼ ð1þΩmatmcÞAU

4 þ at
2

�
Ωs

as
at

νt
νs

− Ωt

�
∂4ψ̄γ5ψ :

ðA16Þ

We choose the case with νt ¼ 1 (so-called “νs tuning”),
where νs is tuned via the dispersion relation between meson
energy and momentum, yielding

νs ¼
1þ 1

2
atmc

1þ 1
2
asmc

: ðA17Þ

The parameters Ωt and Ωs are set as in Ref. [34]:

Ωs ¼ −
1

2

�
1þ 1

2
atmc

1þ 1
2
asmc

�
; Ωt ¼ −

1

2
: ðA18Þ

The value for the anisotropy parameter in our calculations is
ξ ¼ as

at
≈ 3.5, so the final expression for the time component

of the improved axial-vector current takes the form

AI
4 ¼ ð1þ ΩmatmcÞAU

4 − 0.625at∂4ψ̄γ5ψ ; ðA19Þ

or, up to leading order in a,

AI
4 ¼ ð1þ ΩmatmcÞ

�
AU
4 −

1

4
ðξ − 1Þat∂4P

�
: ðA20Þ
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