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Motivated by the sign problem, we calculate the effective Polyakov line action corresponding to certain
SU(3) lattice gauge theories on a 163 × 6 lattice via the “relative weights” method introduced in our
previous papers. The calculation is carried out at β ¼ 5.6, 5.7 for the pure gauge theory and at β ¼ 5.6 for
the gauge field coupled to a relatively light scalar particle. In the latter example we determine the effective
theory also at finite chemical potential and show how observables relevant to phase structure can be
computed in the effective theory via mean field methods. In all cases a comparison of Polyakov line
correlators in the effective theory and the underlying lattice gauge theory, computed numerically at zero
chemical potential, shows accurate agreement down to correlator magnitudes of order 10−5. We also derive
the effective Polyakov line action corresponding to a gauge theory with heavy quarks and large chemical
potential and apply mean field methods to extract observables.
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I. INTRODUCTION

The effective Polyakov line action SP of a lattice
gauge theory is defined by integrating out all degrees of
freedom of the lattice gauge theory, under the constraint
that the Polyakov line holonomies are held fixed. It is
convenient to implement this constraint in temporal gauge
(U0ðx; t ≠ 0Þ ¼ 1), so that

exp½SP½Ux; U
†
x��

¼
Z

DU0ðx; 0ÞDUkDϕ
nY

x

δ½Ux −U0ðx; 0Þ�
o
eSL;

ð1Þ
where ϕ denotes any matter fields, scalar or fermionic,
coupled to the gauge field, and SL is the lattice action (note
that we adopt a sign convention for the Euclidean action
such that the Boltzman weight is proportional to exp½þS�).1
The effective Polyakov line action SP can be computed
analytically from the underlying lattice gauge theory at
strong gauge couplings and heavy quark masses, and at
leading order it has the form of an SU(3) spin model in
D ¼ 3 dimensions,2

Sspin ¼ J
X
x

X3
k¼1

ðTr½Ux�Tr½U†
xþk̂

� þ c.c.Þ

þ h
X
x

ðeμ=TTr½Ux� þ e−μ=TTr½U†
x�Þ: ð2Þ

This model has been solved at finite chemical potential μ by
several different methods, including the flux representation
[2], stochastic quantization [3], reweighting [1], and the
mean field approach [4].
This paper is concerned with computing SP from the

underlying lattice gauge theory at gauge couplings which
are not so strong, and matter fields which are not so heavy.
The motivation is that since the phase diagram for Sspin has
been determined over a large range of J, h, μ by the
methods mentioned above, perhaps the same methods can
be successfully applied to solve SP, providing that theory is
known in the parameter range (of temperature, quark mass,
and chemical potential) of interest. The phase diagram of
the effective theory will mirror the phase diagram of the
underlying gauge theory.
There is a simple relationship between the effective

Polyakov line action (PLA) Sμ¼0
P corresponding to zero

chemical potential in the underlying lattice gauge theory,
and the PLA SμP corresponding to finite μ in the underlying
theory:

SμP½Ux; U
†
x� ¼ Sμ¼0

P ½eNtμUx; e−NtμU†
x�: ð3Þ

This relationship was shown to be true to all orders in
the strong-coupling/hopping parameter expansion [5];

1Temporal gauge is convenient but not essential. In the absence
of gauge-fixing one could simply apply the Metropolis algorithm
to simultaneous trial updates of neighboring timelike links
U0ðx; tÞ → GU0ðx; tÞ, U0ðx; t − 1Þ → U0ðx; t − 1ÞG†, where G
is an SU(3) group element, which leave the Polyakov line
holonomy fixed.

2SP has been computed to higher orders in the combined
strong-coupling/hopping parameter expansion in Ref. [1].
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presumably it holds in general. However, if SP is expressed
in terms of the trace of Polyakov line holonomies, rather
than the holonomies themselves, then certain ambiguities
arise in the use of (3). We will show how these ambiguities
are resolved by computing the PLA numerically also at
imaginary values μ ¼ iθ=Nt of the chemical potential.
In order to determine the PLA at μ ¼ 0 (and at

imaginary μ) we make use of the “relative weights”
method, which was introduced and tested on SU(2) lattice
gauge theory in our two previous papers on this subject
[5,6]. There is no sign problem for the SU(2) gauge group,
but it is still a challenge to extract the PLA from the
underlying gauge theory. The criterion for success of the
method, for any SU(N) gauge group, is that spin-spin
correlators

GðRÞ ¼ 1

N2
hTr½Ux�Tr½U†

y �i; R ¼ jx − yj ð4Þ

computed in the effective theory agree with the correspond-
ing Polyakov line correlators in the underlying lattice gauge
theory. For SU(2) lattice gauge theory we found agreement
at gauge couplings ranging from very strong couplings up
to the deconfinement transition, for separations R up to
twelve lattice spacings, and over a range of correlator
values down to Oð10−5Þ.3 In this paper we will extend our
previous work to the SU(3) gauge theory. It is ultimately
our intention to compute the effective PLA for gauge fields
coupled to light quarks. However, in this first investigation,
we prefer to avoid the complexities of dynamical fermion
simulations and study instead the gauge-Higgs theory

SL ¼ β

3

X
p

ReTr½UðpÞ�

þ κ

3

X
x

X4
μ¼1

Re½Ω†ðxÞUμðxÞΩðxþ μ̂Þ�; ð5Þ

where ΩðxÞ is a unimodular scalar field Ω†ðxÞΩðxÞ ¼ 1
transforming under gauge transformations ΩðxÞ →
gðxÞΩðxÞ in the fundamental representation. For κ ≠ 0
we determine the effective PLA at non-zero μ, and solve
the effective theory in the mean-field approximation,
postponing more sophisticated methods [1–3] to a later
study. We will also determine the PLA corresponding to a
lattice SU(3) gauge theory with massive quarks and large
chemical potential, and again apply mean field methods to
compute observables.
In Sec. II we will review the relative weights method, and

show how the introduction of an imaginary chemical

potential, in the gauge-matter system, allows us to deter-
mine the μ-dependence of the center-symmetry-breaking
terms. The PLA corresponding to SU(3) pure-gauge
theories at β ¼ 5.6, 5.7 on a 163 × 6 lattice volume is
derived in Sec. III. The main concern of this paper, which is
the effective action for a gauge theory coupled to matter
fields at finite chemical potential, is the subject of Sec. IV,
where we derive the PLA for the SU(3) gauge-Higgs model
(5) in the confinementlike region, again at β ¼ 5.6 on a
163 × 6 lattice, and for κ ¼ 3.6, 3.8, 3.9, which is just
below the crossover to a Higgs-like region. The effective
PLA for the gauge-Higgs theory at κ ¼ 3.9, and the
effective PLA for an SU(3) gauge field coupled to massive
quarks, are solved in the mean field approximation,
following Ref. [4], in Sec. V. We conclude in Sec. VI.

II. THE RELATIVE WEIGHTS METHOD

Let U denote the space of all Polyakov line (i.e. SU(3)
spin) configurationsUx on the lattice volume. Consider any
path through this configuration space UxðλÞ parametrized
by λ. The relative weights method enables us to compute
the derivative of the effective action SP along the path�

dSP
dλ

�
λ¼λ0

ð6Þ

at any point fUxðλ0Þg ∈ U. By computing appropriate path
derivatives, the aim is to determine SP itself.
The relativeweightsmethodisbasedon theobservationthat

while the path integral in (1), leading to the Boltzman weight
eSP , may be difficult to compute directly for a particular
configuration Ux, the ratio of such path integrals for slightly
different Polyakov line configurations (the “relativeweights”)
can be expressed as an expectation value, which can be
computed by standard lattice Monte Carlo methods. Let

U0
x ¼ Ux

�
λ0 þ

1

2
Δλ

�
; U00

x ¼ Ux

�
λ0 − 1

2
Δλ

�
; ð7Þ

denote two Polyakov line configurations that are nearby
in U, with S0L, S

00
L the lattice actions with timelike links

U0ðx; 0Þona t ¼ 0 timesliceheld fixed toU0ðx; 0Þ ¼ U0
x and

U0ðx; 0Þ ¼ U00
x , respectively. Defining

ΔSP ¼ SP½U0
x� − SP½U00

x�; ð8Þ

we have from (1),

eΔSP ¼
R
DUkDϕeS

0
LR

DUkDϕeS
00
L

¼
R
DUkDϕ exp½S0L − S00L�eS00LR

DUkDϕeS
00
L

¼ hexp½S0L − S00L�i00; ð9Þ

3There have been other approaches to the problem of deter-
mining the PLA, notably the Inverse Monte Carlo method [7],
and strong-coupling expansions [1], but these have so far not
demonstrated an agreement in the Polyakov line correlators
beyond separations of two or three lattice spacings (for recent
work, see [8]).

JEFF GREENSITE AND KURT LANGFELD PHYSICAL REVIEW D 90, 014507 (2014)

014507-2



where h…i00 indicates that the VEV is to be taken in the
probability measure

eS
00
LR

DUkDϕeS
00
L
: ð10Þ

Then �
dSP
dλ

�
λ¼λ0

≈
ΔSP
Δλ

: ð11Þ

Weare therefore able to compute numerically the derivative of
the true effective action SP along any path in configuration
space. The problem is to choose path derivatives which will
enable us to deduce SP itself.

A. Symmetries of SP
The PLA SP inherits, from the underlying gauge theory,

an invariance under local transformations

Ux → gxUxg
†
x; ð12Þ

where gx is a position-dependent element of the SUðNÞ
group. This means that SP can depend on holonomies only
through local traces of powers of holonomies Tr½Up

x �; there
can be no dependence on expressions such as Tr½UxUy�,
since for x ≠ y this term is not invariant under (12).
Equivalently, the invariance (12) means that SP depends
only on the eigenvalues of the holonomies Ux. We take the
term “Polyakov line” in an SUðNÞ theory to refer to the
trace of the Polyakov line holonomy

Px ≡ 1

N
Tr½Ux�: ð13Þ

The SU(2) and SU(3) groups are special in the sense that Px
contains enough information to determine the eigenvalues
of Ux providing, in the SU(3) case, that Px lies in a certain
region of the complex plane. Explicitly, if we denote the
eigenvalues of Ux as feiθ1 ; eiθ2 ; e−iðθ1þθ2Þg, then θ1, θ2 are
determined by separating (13) into its real and imaginary
parts, and solving the resulting transcendental equations

cosðθ1Þ þ cosðθ2Þ þ cosðθ1 þ θ2Þ ¼ 3Re½Px�;
sinðθ1Þ þ sinðθ2Þ − sinðθ1 þ θ2Þ ¼ 3Im½Px�: ð14Þ

In this sense the PLA for SU(2) and SU(3) lattice gauge
theories at μ ¼ 0 is a function of only the Polyakov
lines Px.

4

In a pure-gauge SU(N) theory, or in an SU(N) gauge
theory with matter fields in zero N-ality representations of
the gauge group, there is a sharp distinction between the
confinement and deconfinement phases, based on whether
or not the invariance with respect to global center symmetry
is spontaneously broken. In the confinement phase, this
means that the SU(3) PLA SP must also be invariant under
global transformations Px → zPx, where z is an element of
the center subgroup Z3. Center symmetric actions are also
independent of chemical potential, introduced via eμ, e−μ
factors in the U0 and U†

0. Only terms in the action which
explicitly break center symmetry will depend on the
chemical potential introduced in this way, and pass on
that dependence, along with explicit center-symmetry-
breaking, to the effective action.
Motivated by our previous work on the PLA of SU(2)

lattice gauge theory [5,6], we will focus on the Fourier (or
“momentum”) components ak ¼ aRk þ iaIk of Polyakov line
configurations, where

Px ¼
X
k

akeik·x; ð15Þ

and compute via relative weights the path derivatives with
respect to the real part of ak

OkðαÞ ¼
1

L3

�∂SP
∂aRk

�
ak¼α

; ð16Þ

where L is the extension of the cubic lattice and α is real.
We will see below that Ok has a simple dependence on the
lattice momentum kL, where

kL ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

sin2ðki=2Þ
s

; ð17Þ

and can be used to determine SP, at least up to terms
bilinear in the Polyakov lines.

B. Use of the imaginary chemical potential

In the confinement phase of a pure gauge theory, the part
of SP which is bilinear in Px is constrained by center
symmetry to a single term of the form

SP ¼
X
xy

PxP
†
yKðx − yÞ: ð18Þ

In the presence of matter fields which break the center
symmetry, other terms proportional toX

x

ðPx þ P†
xÞ;

X
x

ðP2
x þ P2†

x Þ;
X
xy

ðPxPy þ P†
xP

†
yÞQðx − yÞ; ð19Þ

4For N > 3 colors, reconstruction of the eigenvalues would
require traces of higher powers of the holonomy. The present
paper is concerned specifically with the SU(3) gauge group, and
the possible generalization of our procedure to larger gauge
groups will not be considered here.
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will appear in SP at the bilinear level. Now SP at finite
chemical potential μ is given by the change of variables
shown in (3), so one might naively imagine that these
symmetry-breaking terms would convert toX
x

ðPxeμ=T þ P†
xe−μ=TÞ;

X
x

ðP2
xe2μ=T þ P2†

x e−2μ=TÞ;
X
xy

ðPxPye2μ=T þ P†
xP

†
ye−2μ=TÞQðx − yÞ; ð20Þ

i.e. that terms linear in Px, P
†
x are proportional to eμ=T and

e−μ=T , respectively, while terms quadratic in P or P† are
proportional to e2μ=T or e−2μ=T. But this is a little too
simple. Going back to the Polyakov line holonomies, we
see that SP might contain, e.g. center-symmetry-breaking
terms such as

c1
X
x

ðTrUx þ TrU†
xÞ þ c2

X
x

ðTrU2
x þ TrU†2

x Þ: ð21Þ

Under the transformation

Ux → eμ=TUx; U† → e−μ=TU† ð22Þ

these would go over to

c1
X
x

ðTrUxeμ=T þ TrU†
xe−μ=TÞ

þ c2
X
x

ðTrU2
xe2μ=T þ TrU†2

x e−2μ=TÞ: ð23Þ

Now we apply the SU(3) group identities

Tr½U2
x� ¼ 9P2

x − 6P†
x; Tr½U†2

x � ¼ 9P†2
x − 6Px; ð24Þ

and obtainX
x

fð3c1eμ=T − 6c2e−2μ=TÞPx þ ð3c1e−μ=T − 6c2e2μ=TÞP†
xg

þ 9c2
X
x

ðP2
xe2μ=T þ P†2

x e−2μ=TÞ: ð25Þ

If we would reverse the order of operations, first applying
the SU(3) group identities (24) and then the transformation
(22), we would have insteadX

x

fð3c1 − 6c2Þeμ=TPx þ ð3c1 − 6c2Þe−μ=TP†
xg

þ 9c2
X
x

ðP2
xe2μ=T þ P†2

x e−2μ=TÞ: ð26Þ

It follows that if we only knew the effective action at μ ¼ 0
in powers of Px, rather than directly in terms of holono-
mies, then the naive application of (22) would lead to the
wrong answer at μ ≠ 0.

This problem was raised, and a solution was proposed,
already in Ref. [4]. The idea is to carry out the relative
weights calculation in a lattice gauge theory with an
imaginary chemical potential μ=T ¼ iθ. This is done by
simply multiplying the fixed configurations U0

x, U00
x of

timelike links at t ¼ 0 by an x-independent phase factor eiθ,
and calculating the path derivatives of SP at each θ of a set
of θ values. This enables us to separate, in the path
derivatives Okðα; θÞ, terms which are θ-independent from
terms which depend on cosðθÞ, cosð2θÞ and so on. From
knowledge of the θ-dependence, we are able to work out
the μ-dependence of the various terms in SP. This pro-
cedure will be illustrated in detail in Sec. IV below.

C. Background momentum modes

Since we are computing derivatives of SP with respect to
individual momentum components, there is a question
about the other momentum modes which are not differ-
entiated. Suppose we are differentiating with respect to the
Fourier component ak. Should the other components aq≠k
be set to zero, or to something else?
There is clearly a danger in setting all other aq ¼ 0. This

means that we are computing the path derivative in a highly
atypical region of configuration space, a region which
contributes essentially nothing to the partition function. For
the purpose of determining SP, it is safer to carry out the
calculation in a region of U which has the optimum
“energy-entropy” balance, and which provides the typical
thermalized configurations found in a Monte Carlo simu-
lation. Ideally, then, we would like to carry out the
calculation of the path derivative OkðαÞ precisely at a
configuration in U which is generated by the lattice
Monte Carlo method.
This ideal is only attainable in the large volume, α → 0

limit. In practice our procedure is as follows: We first run
a standard Monte Carlo simulation, generate a configura-
tion of Polyakov line holonomies Ux, and compute the
Polyakov lines Px. We then set the momentum mode
ak ¼ 0 in this configuration to zero, to obtain the configu-
ration ~Px, where

~Px ¼ Px −
�
1

L3

X
y

Pye−ik·y
�
eik·x: ð27Þ

Then define

P00
x ¼

�
α − 1

2
Δα

�
eik·x þ f ~Px;

P0
x ¼

�
αþ 1

2
Δα

�
eik·x þ f ~Px; ð28Þ

where f is a constant close to one. We derive the
eigenvalues of the corresponding holonomies U00

x and
U0

x, whose traces are P00
x, P0

x, respectively, by solving
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(14). The holonomies themselves can be taken to be
diagonal matrices, without any loss of generality, thanks
to the invariance (12). If we could take f ¼ 1, then in
creating P00

x, P0
x we are only modifying a single momentum

mode of the Polyakov lines of a thermalized configura-
tion. However, there are two problems with setting f ¼ 1.
The first, which already came up in our SU(2) calcula-
tions, is that at f ¼ 1 and finite α there are usually some
lattice sites where jP0

xj, jP00
xj > 1, which is not allowed. In

SU(3) there is the further problem that at some sites the
transcendental equations (14) have no solution for real
angles θ1, θ2. So we are forced to choose f somewhat less
than one; in practice we have used f ¼ 0.8. The choice
f ¼ 1 is only possible in the large volume, α → 0 limit.
We have checked that our numerical results are insensitive
to small changes in f.
From the holonomy configurations U00

x , U0
x we can

compute ∂SP=∂aRk by the relative weights method. This
procedure is repeated a number of times (ranging from 30
to 180, depending on the simulation), starting each time
from a different thermalized configuration Ux, and the
results for ∂SP=∂aRk are averaged. The standard deviation
of the observable ∂SP=∂aRk within a sample of configura-
tions is smallest at the low momenta which dominate the
long range behavior of the correlator, and is typically an
order of magnitude less than the average value of the
correlator at the lowest kL. As kL increases and the value of
the observable drops towards zero, the standard deviation is
eventually on the order of the average value. Of course, the
overall statistical error depends on the sample size. For the
data shown below for kL ¼ 0 in Fig. 1, with a sample size
of 160, the statistical error is two orders of magnitude
smaller than the average values, which is smaller than the
symbol size.

D. Limitations of the method

Effective actions have, in general, an infinite number of
terms, and some truncation is unavoidable. At finite
chemical potential, SP can be expanded in powers of
fugacity

SP ¼
X∞
s¼−∞

esμ=TSðsÞP ½Ux; U
†
x�: ð29Þ

If this is a convergent series (rather than an asymptotic
expansion), it implies that SðsÞP must drop off with s > 0
faster than any exponential of−s. But whether convergent or
asymptotic, it is certain that as μ increases one must keep a
increasing number of terms in the sum in order to have an
accurate approximation to the effective action. Since these
higher terms will be very small in magnitude at zero or
imaginary chemical potential, it is certain that they will be
missed, beyond some order in the fugacity, in a relative
weights computation.
In this paper we will be able to determine the contribu-

tions to SP up to second order in fugacity, and to second
order in products of the Polyakov line holonomies. These
restrictions are not absolute, and can probably be overcome
to some extent by further development of our method. But
it should be clear from the start that we are always bound to
miss terms in the sum that will become important at
sufficiently large chemical potential. Hopefully our meth-
ods will determine enough of SP that the interesting
transitions in the μ-T phase diagram for light quarks will
be accessible, and that the large particle densities associated
with such transitions are obtained at moderate, rather than
enormous fugacities. But this issue can only be decided by
investigation, of the sort we initiate here.

III. RESULTS FOR PURE GAUGE THEORY

We consider the effective action SP corresponding to an
underlying pure SU(3) lattice gauge on a 163 × 6 lattice, at
lattice couplings β ¼ 5.6, 5.7. For these couplings the gauge
theory is in the confinement phase; the deconfinement
transition at Nt ¼ 6 lattice spacings in the time direction
is at β ¼ 5.89.
For a pure SU(3) gauge theory the bilinear form of the

effective action is particularly simple, as already noted
above. Expressing (18) in momentum components, we
have

SP ¼
X
k

aka�k ~KðkÞ; ð30Þ

where

Kðx − yÞ ¼ 1

L3

X
k

~KðkÞe−ik·ðx−yÞ: ð31Þ

We see that for real α

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

L-3
 d

S
P
/d

a 0

α

zero mode
fit

FIG. 1 (color online). The path derivative of SP with respect to
the real part of the mode at kL ¼ 0, evaluated at several values
a0 ¼ α of the kL ¼ 0 mode. This is for an underlying pure gauge
theory at β ¼ 5.6. The data is fit to Aαþ Bα2, with A ¼ 2 ~Kð0Þ.
In this figure, and in all other figures below, the lattice volume of
the underlying lattice gauge theory is 163 × 6.
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1

L3

�∂SP
∂aRk

�
ak¼α

¼ 2 ~KðkÞα: ð32Þ

We compute the left hand side at several values of α, and
divide each result by α. The values almost coincide within
errors, apart from the values at kL ¼ 0, where there is a
small but noticeable (∼3%) deviation. For the data point at
kL ¼ 0 we therefore extrapolate to α ¼ 0 by fitting the data
to the curve Aαþ Bα2, as shown in Fig. 1.5 Then 2 ~Kð0Þ ¼
A is the extrapolated value.
The data for

1

α

1

L3

�∂SP
∂aRk

�
ak¼α

ð33Þ

at all kL is displayed in Fig. 2(a), together with the value at
kL ¼ 0 extrapolated to α ¼ 0. In this and all other graphs
with kL on the x axis, we have used momenta k with
components ki ¼ 2πmi=L (L ¼ 16 in this case), for the
following triplets m ¼ ðm1m2m3Þ of mode numbers:

ð000Þ; ð100Þ; ð110Þ; ð200Þ; ð210Þ; ð300Þ; ð311Þ; ð400Þ;
ð322Þ; ð430Þ; ð333Þ; ð433Þ; ð443Þ; ð444Þ; ð554Þ: ð34Þ

The main point to notice in Fig. 2(a) is that most of the data
fits on a straight line, with the exception of the point at
kL ¼ 0. This was also what we found for SU(2) gauge
theory in our previous work [5,6]: the very low momentum
data tends to bend away from a straight-line fit. There are
no indications of rotational symmetry-breaking that might
arise due to the cubic lattice. A new feature that has turned
up in the SU(3) case is that the higher momentum points, at

kL ≥ k0 ≈ 1.8, seem to fit a straight line with a slightly
different slope than the line which fits the kL < k0 data.
This change of slope will be more pronounced in the further
examples below.
So the data seems to depend only on kL, and fits a

straight line in the ranges kmin < kL < k0, and kL > k0,
where k0 ≈ 1.8 is the point where the slope suddenly
changes, and kmin ¼ 0. We therefore write the kernel as
a function of just kL, rather than the wavevector k. The way
that we fit the data is to first do a linear fit to c1 − 4c2kL for
the data in the range kmin < kL < k0, and a fit to b1 −
4b2kL in the high momentum range kL > k0. Then set

~KfitðkLÞ ¼
(

1
2
c1 − 2c2kL kL ≤ k0

1
2
b1 − 2b2kL kL > k0

: ð35Þ

Next define the position-space kernel with a long distance
cutoff rmax

-2

-1
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 4

 5
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 8

 0  0.5  1  1.5  2  2.5  3

L-3
 (

dS
P
/d

a k
)/

α

kL

α-->0
α=0.02
α=0.03
α=0.04

low kL fit
high kL fit

(a)

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.5  1  1.5  2  2.5  3  3.5

L-3
 (

dS
P
/d

a k
)/

α

kL

α-->0
α=0.02
α=0.03
α=0.04

2K(k)

(b)

FIG. 2 (color online). Path derivatives of SP with respect to momentum modes ak, evaluated at ak ¼ α and then divided by α, for 15
values of kL. The rescaled derivatives are shown for several values of α, with the exception of the point at kL ¼ 0, which is the value
determined from the data in Fig. 1. This is for an underlying pure gauge theory at β ¼ 5.6. (a) data points fit by two straight lines. (b) the
data points together with 2 ~KðkLÞ, determined by the procedure explained in the text.
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FIG. 3 (color online). The Polyakov line correlators for pure
gauge theory at β ¼ 5.6, computed from numerical simulation of
the effective PLA SP, and from simulation of the underlying
lattice SU(3) gauge theory.

5This implies, of course, that there must be terms in SP which
are higher order than quadratic. We will return to this issue later;
for the moment we are concerned with computing only the
bilinear terms.
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Kðx− yÞ ¼
( 1

L3

P
k

~KfitðkLÞeik·ðx−yÞ jx− yj ≤ rmax

0 jx− yj > rmax

: ð36Þ

The cutoff rmax is chosen so that, upon transforming this
kernel back to momentum space, the resulting ~KðkÞ also
fits the low-momentum data at kL ≤ kmin, where kmin ¼ 0
in this example. The procedure is described in more detail
in [6]. The point k0 is determining by carrying out two
straight line fits to the data in the regions kmin < kL ≤ k0
and kL ≥ k0, and then checking that the two straight lines
intersect at k0. We vary k0 until this matching condition is
satisfied. The quantity 2 ~KðkLÞ obtained by this method is
shown in Fig. 2(b), together with the data for (33).
Once again, this is all very similar to our previous

findings for the SU(2) PLA. The only difference is that we
now have to allow for a different linear fit for higher
momentum points, in this case for kL > 1.8. The physical
mechanism behind this abrupt change in slope at kL ¼ k0 is
not yet clear to us.
Now that we have obtained the kernel Kðx − yÞ we can

simulate the effective PLA, which is an SU(3) spin model

(18), by standard lattice Monte Carlo methods, and
calculate the spin-spin correlator (4). We can compare this
with the corresponding Polyakov line correlator computed
in the underlying SU(3) lattice pure gauge theory, at β ¼
5.6 on a 163 × 6 lattice volume. The comparison (including
off-axis separations) is shown in Fig. 3. Allowing for the
fact that the data is a little noisy beyond R ¼ 4, this seems
like good agreement.
The next example, coming a little closer to the decon-

finement transition at β ¼ 5.89, is the pure gauge theory at
β ¼ 5.7. We again calculate the observable (33) at several α
values, and we find again that the data points overlap,
excluding the point at kL ¼ 0. Extrapolating this point to
α ¼ 0 by the same method as before, we find results for
(33) displayed in Fig. 4. This time the change in slope is
found at k0 ¼ 1.51. We determine the kernel Kðx − yÞ by
the procedure outlined above, and simulate the resulting SP.
The comparison of Polyakov line correlators at off-axis
separations is shown in Fig. 5.
The parameters which define the effective action (18) in

these two examples are given in Table I. Note the very
substantial increase in parameters c1, c2 as we approach the
deconfinement transition.
It should be emphasized that the bilinear action does not

imply that the effective action is a free field theory (any
more than a non-linear sigma model is a free field theory),
and of course there are an infinite number of non-trivial
connected n-point functions in the theory. It is not hard to
see, in the context of a strong-coupling expansion, how the
bilinear action can generate, e.g. a 3-point correlator
hPxPyPzi in SU(3). We have computed the two-point
Polyakov line correlator simply because it is the simplest
thing to measure; n ¼ 3 point (and higher) correlators are
left for future work.

IV. RESULTS FOR SU(3)
GAUGE-HIGGS THEORY

We now add a scalar matter term, and consider the SU(3)
gauge-Higgs theory (5) at several different values of κ.
There is an extensive literature on the SU(2) version of this
theory (see, e.g. Bonati et al. [9] and references therein),
and it is well known from the work of Fradkin and Shenker
[10] and Osterwalder and Seiler [11] that there is no
complete separation of the phase diagram into a confining
and a deconfining (or “Higgs”) phase. This ties in with the
fact that there is no local or semilocal gauge-invariant order
parameter which would distinguish the two phases. In some
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FIG. 4 (color online). Same as Fig. 2(a), but for the pure gauge
theory at β ¼ 5.7.
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FIG. 5 (color online). The Polyakov line correlators for pure
gauge theory at β ¼ 5.7, computed from numerical simulation of
the effective PLA SP, and from simulation of the underlying
lattice SU(3) gauge theory.

TABLE I. Parameters defining the effective Polyakov line
action SP for pure SU(3) lattice gauge theory on a 163 × 6 lattice.

β c1 c2 k0 b1 b2 rmax

5.6 7.15(5) 0.79(1) 1.79 6.22(14) 0.66(1)
ffiffiffiffiffi
29

p
5.7 12.41(5) 1.60(1) 1.51 7.94(14) 0.86(2) 6
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regions of the β-κ phase diagram, however, there can be
either a first-order transition, or a rapid crossover, from a
“confinementlike” region to a “Higgs-like” region. The
confinementlike region is characterized, as in real QCD, by
an area-law falloff of Wilson loops (or an exponential drop
in the Polyakov-line correlator) up to some string-breaking
scale. In the Higgs-like region the behavior is more like the
electroweak theory, with no string formation (or linear
static potential) at any scale. In the present exploratory
study, we are interested mainly in the confinementlike
region, and we will work exclusively at the gauge coupling
β ¼ 5.6 on a 163 × 6 lattice volume as before.
Results for the Polyakov line correlators in the lattice

gauge-Higgs theory at a variety of κ values are shown in
Fig. 6. A calculation of the Polyakov line susceptability
does not reveal a phase transition, but there is a peak in the

susceptability at κ ≈ 4, indicative of a rapid crossover.
Since we are interested in the effects of (relatively) light
scalars in the confinementlike regime, we consider κ-values
close to but just below the crossover, specifically at
κ ¼ 3.6, 3.8, 3.9.
The new feature at κ > 0 is that we have to determine the

terms in the effective action SP which explicitly break
center symmetry, and also to sort out their behavior at finite
chemical potential. Effective actions which result from
integrating out degrees of freedom in the underlying theory
will typically involve an infinite number of terms.
Truncation to a finite number of terms is therefore essential.
We first consider a PLA truncated to terms bilinear in TrUx
and TrU2

x (and their complex conjugates), and apply the
transform (3) to obtain the action at finite μ. We then use the
identities (24) to express SP in terms of the Polyakov lines,
and finally discard terms involving products of three or
more of the Px. Even with such a truncation, we will see
that some of the terms are negligible, at least until eμ=T is
quite large. So initially we have

SP ¼
X
xy

TrUxTrU
†
yK1ðx − yÞ þ

X
xy

TrU2
xTrU

†2
y K2ðx − yÞ

þ a1
X
x

ðTrUx þ TrU†
xÞ þ a2

X
x

ðTrU2
x þ TrU†2

x Þ

þ
X
xy

ðTrUxTrUy þ TrU†2
x TrU†2

y ÞQ1ðx − yÞ

þ
X
xy

ðTrU2
xTrU

†
y þ TrU†2

x TrUyÞQ2ðx − yÞ

þ
X
xy

ðTrU2
xTrU2

y þ TrU†2
x TrU†2

y ÞQ3ðx − yÞ: ð37Þ

Then at finite chemical potential, from (3),

SP ¼
X
xy

TrUxTrU
†
yK1ðx − yÞ þ

X
xy

TrU2
xTrU

†2
y K2ðx − yÞ þ a1

X
x

ðTrUxeμ=T þ TrU†
xe−μ=TÞ

þ a2
X
x

ðTrU2
xe2μ=T þ TrU†2

x e−2μ=TÞ þ
X
xy

ðTrUxTrUye2μ=T þ TrU†2
x TrU†2

y e−2μ=TÞQ1ðx − yÞ

þ
X
xy

ðTrU2
xTrU

†
yeμ=T þ TrU†2

x TrUye−μ=TÞQ2ðx − yÞ þ
X
xy

ðTrU2
xTrU2

ye4μ=T þ TrU†2
x TrU†2

y e−4μ=TÞQ3ðx − yÞ:

ð38Þ

Now apply the identities (24) to express everything in terms of the Polyakov lines, and discard terms involving a product of
three or more lines:

SP ¼
X
xy

PxP
†
yKðx − yÞ þ

X
fðd1eμ=T − d2e−2μ=TÞPx þ ðd1e−μ=T − d2e2μ=TÞP†

xg

þ
X
xy

ðPxPyQðx − y; μÞ þ P†
xP

†
yQðx − y;−μÞÞ; ð39Þ
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FIG. 6 (color online). On-axis Polyakov line correlators com-
puted for the underlying gauge-Higgs theory at β ¼ 5.6 and a
variety of κ values on a 163 × 6 lattice volume. The correlators
have been computed using the Lüscher-Weisz noise reduction
method.
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where d1 ¼ 9a1, d2 ¼ 6a2; and

Kðx − yÞ ¼ 9K1ðx − yÞ þ 36K2ðx − yÞ;
Qðx − y; μÞ ¼ Qð1Þðx − yÞe−μ=T þQð2Þðx − yÞe2μ=T

þQð4Þðx − yÞe−4μ=T; ð40Þ

where

Qð1Þðx − yÞ ¼ −18Q2ðx − yÞ;
Qð2Þðx − yÞ ¼ 9a2δxy þ 9Q1ðx − yÞ;
Qð4Þðx − yÞ ¼ 36Q3ðx − yÞ: ð41Þ

The problem is to determine the kernelsKðx − yÞ,Qðx −
y; μÞ and the constants d1, d2. For this purpose it is useful to
introduce an imaginary chemical potential μ=T ¼ iθ, as
discussed in Sec. II B. In momentum space the bilinear
action becomes

1

L3
SP ¼

X
k

aka�k ~KðkLÞ þ a0ðd1eiθ − d2e−2iθÞ

þ a�0ðd1e−iθ − d2e2iθÞ
þ
X
k

ðaka−k ~QðkL; μÞ þ a�ka
�−k ~QðkL;−μÞÞ: ð42Þ

Taking the derivative with respect to aR0 , evaluated at
a0 ¼ a�0 ¼ α, we have
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θ
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 d
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SU(3) Higgs, beta=5.6, kappa=3.9, 32 configs
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FIG. 7 (color online). A plot of L−3∂SP=∂aR0 evaluated at a0 ¼ α, plotted against the imaginary chemical potential μ=T ¼ iθ. The data
is fit to a truncated cosine series (44) to determine center-symmetry-breaking terms. (a) α ¼ 0.0025, (b) α ¼ 0.005,
(c) α ¼ 0.0075, (d) α ¼ 0.01.
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1

L3

�∂SP
∂aR0

�
a0¼α

¼ 2 ~Kð0Þαþ ð2d1 þ 4 ~Qð1Þð0ÞαÞ cosðθÞ

− ð2d2 − 4 ~Qð2Þð0ÞαÞ cosð2θÞ: ð43Þ

Fitting the data to

1

L3

�∂SP
∂aR0

�
aR
0
¼α

¼ AðαÞ þ BðαÞ cosðθÞ − CðαÞ cosð2θÞ

ð44Þ

allows us to determine

~Kð0Þ ¼ 1

2

dA
dα

; d1 ¼
1

2
Bð0Þ; ~Qð1Þð0Þ ¼ 1

4

dB
dα

;

d2 ¼
1

2
Cð0Þ; ~Qð2Þð0Þ ¼ − 1

4

dC
dα

: ð45Þ

For k ≠ 0, the derivative wrt ak has terms proportional to
a−k. We set a−k to some constant real value a−k ¼ σ. Then

1

L3

�∂SP
∂aRk

�
α−k¼σ

ak¼α

¼ 2 ~KðkLÞαþ 4ð ~Qð1ÞðkLÞ cosðθÞ

þ ~Qð2ÞðkLÞ cosð2θÞ
þ ~Qð4ÞðkLÞ cosð4θÞÞσ: ð46Þ

First, setting σ ¼ 0, we have

~KðkLÞ ¼
1

2L3

d
dα

�∂SP
∂aRk

�
a−k¼0

ak¼α

: ð47Þ

Then, at small but finite σ, we can determine the ~QðnÞðkLÞ
from the θ-dependence of the data.

A. κ ¼ 3.9

We begin by computing the derivative of SP with respect
to the zero-mode aR0 at 15 values of the imaginary chemical
potential in the range 0 ≤ θ < 2π, and four values of α. At
each α we fit the results to a truncated cosine series (44).
The data and the fits are shown in Fig. 7. We then plot AðαÞ,
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FIG. 8 (color online). Coefficients A, B, C of the best fit to the data in Fig. 7 by a truncated cosine series Aþ B cosðθÞ þ C cosð2θÞ;
these coefficients are displayed in subfigures (a), (b), and (c), respectively. The coefficients are computed at several values of α0 ¼ α,
and the lines shown are a best linear fit. From the slope and y-axis intercept of these lines, we are able to compute parameters of the
center-symmetry-breaking terms, as explained in the text.
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BðαÞ, CðαÞ extracted from the cosine fits, and make a linear
best fit to the results for A, B, C vs α, as displayed in
Fig. (8). From the slope of the best fit lines we get the
α-derivatives of these quantities, and the y intercept gives
us the values of A, B, C extrapolated to α ¼ 0. The α
derivatives and α ¼ 0 values give us ~Kð0Þ, ~Qð1;2Þð0Þ, d1, d2,
as explained above.
Next we compute the ak derivatives at k ≠ 0 with σ ¼

a−k set to zero. This result, together with our usual fit by
two straight lines, is shown in Fig. 9. In this case it appears
that the extrapolated α → 0 value of 2 ~Kð0Þ falls very near
the y intercept of the first straight line. That means that we

do not see a long-distance cutoff for the position-space
kernel Kðx − yÞ, at least on a 163 × 6 lattice, and on a
lattice volume of this size every point is coupled to every
other point in SP. This all-points-to-all-points coupling
makes the numerical simulation of the effective action a
little more time-consuming than before (unless we just
truncate the long-distance coupling by hand), but it is still
possible.
Finally we consider ~QðkL; μÞ, with μ=T ¼ iθ. Let us

concentrate on the lowest non-zero momentum with com-
ponents ki ¼ 2πmi=L, with the mode number triplet
ðm1m2m3Þ ¼ ð100Þ, and compute (46) at 15 values of θ,
with α ¼ σ ¼ 0.01. The error bars are large but what we
find, seen in Fig. 10(a), is that the θ-dependence seems to
be dominated by a term proportional to cosðθÞ. However,
~QðkL; μÞ itself is almost negligible compared to ~KðkLÞ, as
seen in Fig. 10(b), where we plot a rough estimate of
2 ~Qð1ÞðkLÞ vs kL, based on only three θ values at each kL.
Certainly ~QðkL; μÞ will become important at sufficiently
large and real μ such that eμ > 10, but its contribution at
μ ¼ 0 can be ignored.
The comparison of off-axis Polyakov line correlators at

β ¼ 5.6, κ ¼ 3.9 computed for SP and for the underlying
lattice gauge-Higgs theory is shown in Fig. 11. On-axis
data points derived from the underlying theory using
Lüscher-Weisz noise reduction [12] are also displayed in
this figure.

B. κ ¼ 3.8, 3.6

As κ is reduced, the effective theory should approach the
pure gauge result discussed in Sec. III. Even a small
reduction away from the crossover, from κ ¼ 3.9 to
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FIG. 9 (color online). Path derivatives of SP with respect to
momentum modes aRk , evaluated at ak ¼ a�k ¼ α and then divided
by αL3, for 15 values of kL. This is for an underlying lattice
gauge-Higgs theory with β ¼ 5.6, κ ¼ 3.9. Data points at kL
below and above kL ¼ 1.36 fall on two straight lines, with a
different slope for each line.
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FIG. 10 (color online). (a) A plot of the path derivative data vs imaginary chemical potential, analogous to Fig. 7, but this time with the
derivative taken with respect to the (100) momentum mode at α ¼ σ ¼ 0.01. Statistics are not good enough to determine the coefficient
of the cosð2θÞ term. From data of this sort, taken over a range of kL, we can in principle determine the semilocal kernelQðx − y; μÞ of the
center-symmetry-breaking term involving a product of Polyakov line variables. (b) A rough estimate of 2 ~Qð1ÞðkLÞ vs kL, shown in
comparison with 2 ~KðkLÞ.
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κ ¼ 3.8 has a large effect on the Polyakov line correlator, as
we see in Fig. 6.
The effective action at κ ¼ 3.8 is determined by the same

means as at the larger κ ¼ 3.9 value. The main difference is
that the center-symmetry-breaking terms proportional to
e�2iθ are consistent with zero, within error bars. We only
show the results, in Fig. 12, for the zero-mode derivative,
which can be compared to Fig. 7 above. Note that the
coefficient of the cosð2θÞ term is essentially consistent with
zero. It is unlikely that this and higher terms in fugacity are
exactly zero, but they are too small to be detected with our
current statistics. The Polyakov line correlator comparison
at κ ¼ 3.8 is displayed in Fig. 13.
We have also carried out our procedure for κ ¼ 3.6, and

the corresponding correlator comparison is shown in
Fig. 14. In this case the mass of the matter field is so
large that the results are not far from the pure-gauge result
at β ¼ 5.6. The parameters which determine the effective
action SP at β ¼ 5.6 and κ ¼ 3.6,3.8, 3.9 are shown in
Table II.
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FIG. 11 (color online). The Polyakov line correlators for the
gauge-Higgs theory at β ¼ 5.6 and κ ¼ 3.9, corresponding to the
lightest matter field in our set of κ values, computed from
numerical simulation of the effective PLA SP, and from simu-
lation of the underlying lattice SU(3) gauge theory. On-axis data
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lying theory with Lüscher-Weisz noise reduction.
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FIG. 12 (color online). Same as Fig. 7, but this time at κ ¼ 3.8. (a) α ¼ 0.005; (b) α ¼ 0.010; (c) α ¼ 0.015.
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V. MEAN FIELD APPROACH TO SOLVING THE
EFFECTIVE ACTION

In this section we solve the effective theory SP in (39),
derived for the gauge-Higgs action (5) at finite chemical

potential, and also for the effective theory derived for heavy
quarks at large chemical potential. In both cases the
effective action SP still has a sign problem. As noted in
the Introduction, the sign problem in the effective model
can be attacked by a variety of methods [1–4], which have
been successfully applied to the SU(3) spin model (2). Here
we will implement the mean field approach, following
closely the treatment in [4], and postponing the treatment
by other procedures to later work. The mean field method
is, of course, an approximation, but it is worth noting that
the approximation typically improves the more spins are
coupled, in the action, to any given spin. For an action such
as SP, in which not only nearest neighbor spins, but spins
separated by any distance ≤ rmax are coupled together, it is
possible that the mean field treatment provides a better
approximation than one might otherwise expect in D ¼ 3
dimensions.

A. The gauge-Higgs model

The starting point is the effective bilinear action (39),
where Kðx − yÞ is determined from the parameters in
Table II. While Qðx − y; μÞ is consistent with zero, at
the level of our present statistics, we will carry it along just
to show how it is included in the mean field approach.
Reintroducing the holonomies via the definition (13), the
bilinear action has the form

SP ¼
X
xy

TrUxTrU
†
y
1

9
Kðx − yÞ

þ
X
x

�
1

3
ðd1eμ=T − d2e−2μ=TÞTrUx

þ 1

3
ðd1e−μ=T − d2e2μ=TÞTrU†

x

�

þ
X
xy

�
TrUxTrUy

1

9
Qðx − y; μÞ

þ TrU†
xTrU

†
y
1

9
Qðx − y;−μÞ

�
: ð48Þ

Introducing a notation for the double sum over sites x, y
that excludes x ¼ y X

ðx;yÞ
≡X

x

X
y≠x

ð49Þ
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FIG. 13 (color online). The Polyakov line correlators for the
gauge-Higgs theory at β ¼ 5.6 and κ ¼ 3.8, computed from
numerical simulation of the effective PLA SP, and from simulation
of the underlying lattice SU(3) gauge theory. In the latter case we
show off-axis points computed by standard methods, together with
on-axis points using Lüscher-Weisz noise reduction.
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FIG. 14 (color online). The Polyakov line correlators for the
gauge-Higgs theory at β ¼ 5.6 and κ ¼ 3.6, corresponding to the
heaviest scalar in our set of κ values, computed from numerical
simulation of the effective PLA SP, and from simulation of the
underlying lattice SU(3) gauge theory.

TABLE II. Parameters defining the effective Polyakov line action SP for SU(3) gauge-Higgs theory at β ¼ 5.6 and κ ¼ 3.6, 3.8, 3.9 on
a 163 × 6 lattice.

κ c1 c2 k0 b1 b2 rmax d1 d2

3.6 8.53(6) 0.99(4) 1.68 6.68(14) 0.71(2)
ffiffiffiffiffi
39

p
0.0062(7) < 0.001

3.8 9.77(8) 1.18(2) 1.63 6.77(17) 0.72(2)
ffiffiffiffiffi
41

p
0.0195(4) < 0.001

3.9 12.55(13) 1.69(4) 1.36 8.16(17) 0.89(2) no cutoff 0.0585(8) 0.0115(2)
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we have

SP ¼
X
ðx;yÞ

TrUxTrU
†
y
1

9
Kðx− yÞþ

X
x

TrUxTrU
†
x
1

9
Kð0Þþ

X
x

�
1

3
ðd1eμ=T − d2e−2μ=TÞTrUx þ

1

3
ðd1e−μ=T −d2e2μ=TÞTrU†

x

�

þ
X
ðx;yÞ

�
TrUxTrUy

1

9
Qðx− y;μÞþTrU†

xTrU
†
y
1

9
Qðx− y;−μÞ

�
þ
X
x

�
TrUxTrUx

1

9
Qð0;μÞþTrU†

xTrU
†
x
1

9
Qð0;−μÞ

�
:

ð50Þ

Let us focus on the two semilocal terms

T1 ¼
X
ðx;yÞ

TrUxTrU
†
y
1

9
Kðx − yÞ;

T2 ¼
X
ðx;yÞ

�
TrUxTrUy

1

9
Qðx − y; μÞ

þ TrU†
xTrU

†
y
1

9
Qðx − y;−μÞ

�
; ð51Þ

and write

TrUx ¼ ðTrUx − uÞ þ u; TrU†
x ¼ ðTrU†

x − vÞ þ v:

ð52Þ

Then

T1 ¼
X
ðxyÞ

fuTrU†
y þ vTrUx − uvg

�
1

9
Kðx − yÞ

�
þ E1

¼ J0
X
x

ðvTrUx þ uTrU†
xÞ − uvJ0V þ E1; ð53Þ

where we have defined

E1 ¼
X
ðxyÞ

ðTrUx − uÞðTrU†
y − vÞ 1

9
Kðx − yÞ;

J0 ¼
1

9

X
x≠0

KðxÞ: ð54Þ

Likewise

T2 ¼ 2
X
x

ðuTrUxJ2ðμÞ þ vTrU†
xJ2ð−μÞ

− ðu2J2ðμÞ þ v2J2ð−μÞÞV þ E2; ð55Þ

where

E2 ¼
X
ðx;yÞ

�
ðTrUx − uÞðTrUy − uÞ1

9
Qðx− y;μÞ

þ ðU†
x − vÞðTrU†

y − vÞ1
9
Qðx− y;−μÞ

�
;

J2ðμÞ ¼
1

9

X
x≠0

Qðx;μÞ; J2ð−μÞ ¼ 1

9

X
x≠0

Qðx;−μÞ: ð56Þ

Putting it all together,

SP¼
X
x

TrUx

�
J0vþ

1

3
ðd1eμ=T −d2e−2μ=T þ2J2ðμÞu

�

þ
X
x

TrU†
x

�
J0uþ

1

3
ðd1e−μ=T −d2e2μ=T þ2J2ð−μÞv

�

−uvJ0V− ðu2J2ðμÞþv2J2ð−μÞÞV
þ
X
x

TrUxTrU
†
x
1

9
Kð0Þ

þ1

9

X
x

fTrUxTrUxQð0;μÞþTrU†
xTrU

†
xQð0;−μÞg

þE1þE2: ð57Þ

The mean field approximation amounts to dropping E1,
E2, and then choosing the constants u, v such that the free
energy of the resulting theory is minimized. The justifica-
tion is that E1, E2 depend only on the differences TrUx − u
and TrU†

x − v, and the choice of u, v minimizing the free
energy sets the expectation value of these differences to
zero. The approximation can be improved by treating E1,
E2 as small corrections to the leading mean field result, as
carried out for the SU(3) spin model in [4], but for now we
will just work in the leading approximation, neglecting
E1, E2.
Let us define

AðμÞ¼J0vþ
1

3
ðd1eμ=T−d2e−2μ=TÞþ2J2ðμÞu;

BðμÞ¼J0uþ
1

3
ðd1e−μ=T−d2e2μ=TÞþ2J2ð−μÞv;

a0¼
1

9
Kð0Þ; a2ðμÞ¼

1

9
Qð0;μÞ; a2ð−μÞ¼1

9
Qð0;−μÞ:

ð58Þ
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The partition function of the effective model, in the mean
field approximation, is then

Zmf ¼ exp½−uvJ0V − ðu2J2ðμÞ þ v2J2ð−μÞÞV�
×

�
exp

�
a0

∂2

∂A∂Bþ a2ðμÞ
∂2

∂A2
þ a2ð−μÞ ∂2

∂B2

�

×
Z

DUeATrUþBTrU†
�

V
: ð59Þ

We introduce the rescalings

u¼ u0e−μ=T; v¼ v0eμ=T; A¼A0eμ=T; B¼B0e−μ=T;
ð60Þ

and follow the steps in Ref. [4], which will not be
reproduced here. The upshot is that if we denote
Zmf ¼ exp½−fmfV=T�, where V is the lattice volume in
D ¼ 3 dimensions, then

fmf=T ¼ u0v0J0 þ u02e−2μ=TJ2ðμÞ
þ v02e2μ=TJ2ð−μÞ − logF½A0; B0�; ð61Þ

where6

F½A0;B0�

¼ exp

�
a0

∂2

∂A0∂B0 þ a2ðμÞe−2μ=T
∂2

∂A02 þ a2ð−μÞe2μ=T ∂2

∂B02

�

×
X∞
s¼−∞

e3μs det½D−s
ij I0½2

ffiffiffiffiffiffiffiffiffi
A0B0p

��; ð62Þ

and D−s
ij is the i, jth component of a matrix of differential

operators

Ds
ij ¼

�
Di;jþs s ≥ 0

Diþjsj;j s < 0
; Dij ¼

( ð ∂
∂B0Þi−j i ≥ j

ð ∂
∂A0Þj−i i < j

:

ð63Þ

Since (58) can be inverted to give u0, v0 in terms of A0, B0,
we find the minimum of fmf by solving the stationarity
conditions

�∂u0
∂A0 v

0 þ u0
∂v0
∂A0

�
J0 þ 2

�
u0
∂u0
∂A0

�
e−2μ=TJ2ðμÞ

þ 2v0
�∂v0
∂A0

�
e2μ=TJ2ð−μÞ − 1

F
∂F
∂A0 ¼ 0;�∂u0

∂B0 v
0 þ u0

∂v0
∂B0

�
J0 þ 2

�
u0

∂u0
∂B0

�
e−2μ=TJ2ðμÞ

þ 2v0
�∂v0
∂B0

�
e2μ=TJ2ð−μÞ − 1

F
∂F
∂B0 ¼ 0; ð64Þ

numerically.
For the present we are ignoring the Qðx − yÞ kernel,

which is certainly negligible at small to moderate μ. In this
case one can show that

u0 ¼ J0
∂
∂A0 ðu0v0Þ; v0 ¼ J0

∂
∂B0 ðu0v0Þ; ð65Þ

and the stationarity conditions simplify to

u0 − 1

F
∂F
∂A0 ¼ 0; v0 − 1

F
∂F
∂B0 ¼ 0: ð66Þ

But we also have, in the mean field approximation, that [4]

hTrUxi ¼
1

F
∂F
∂A ; hTrU†

xi ¼ 1

F
∂F
∂B ; ð67Þ

which, together with the stationarity conditions, imply the
self-consistency conditions

u ¼ hTrUxi; v ¼ hTrU†
xi: ð68Þ

For phase structure the relevant observables are u; v and the
scalar “quark” number density

n¼−dfmf

dμ
¼−T

� ∂
∂μþ

∂A0

∂μ
∂
∂A0 þ

∂B0

∂μ
∂
∂B0

�
fmf ¼

1

F
∂F
∂μ=T
ð69Þ

where fmf is evaluated at the stationary point, so that
derivatives of fmf wrt A0, B0 vanish. These observables are
plotted as a function of μ=T in Fig. (15) for the case of
β ¼ 5.6, κ ¼ 3.8. We see no evidence of a phase transition.
The case of β ¼ 5.6, κ ¼ 3.9 is more problematic. In this

case, the mean field solution yields a negative number
density at finite μ, which we consider to be an unphysical
result. The error may lie in the mean field method itself, but
more likely it is due to the neglect of center symmetry-
breaking terms which are bilinear in the Polyakov lines.
Although such terms appear to be unimportant at μ ¼ 0, we
can see from our data [e.g. Fig. 10(a)] that they exist, and
presumably become relevant at finite μ. We will return to
this example, and a comparison of mean field and complex
Langevin techniques, in a subsequent paper [13].

6In practice F½A0; B0� is evaluated by expanding the exponen-
tial containing differential operators in a Taylor series, and
truncating the series. In this particular gauge-Higgs example,
a0 is very small compared to J0, and the expansion to first order
makes hardly any difference to the result at zeroth order. The sum
over s is also truncated to jsj ≤ smax, and we have checked the
increasing the cutoff beyond smax ¼ 3 makes no difference to the
result.
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B. The heavy quark model

Let ζ represent the hopping parameter for Wilson
fermions, or 1=2m for staggered fermions, and h ¼ ζNt .
In the limit that ζ → 0 and eμ → ∞ in such a way that ζeμ is
finite, the lattice action simplifies drastically [14]. In
temporal gauge,

exp½SL� ¼
Y
x

det½1þ heμ=TU0ðx; 0Þ�p

× det½1þ he−μ=TU†ðx; 0Þ�p exp½Splaq�; ð70Þ

where p ¼ 1 for four-flavor staggered fermions, and p ¼
2Nf for Wilson fermions (Nf is the number of flavors), and
where the determinant refers to color indices since the
Dirac indices have already been accounted for. Since the
determinants only involve the Polyakov loop holonomies,
the effective PLA is derived trivially once one has derived

the SpgP for the pure gauge theory defined by the plaquette
action Splaq:

exp½SP� ¼
Y
x

det½1þ heμ=TUx�p

× det½1þ he−μ=TU†
x�p exp½SpgP �: ð71Þ

The determinants can be expressed entirely in terms of
Polyakov line operators, using the identities

det½1þ heμ=TUx�
¼ 1þ heμ=TTr½Ux� þ h2e2μ=TTr½U†

x� þ h3e3μ=T;

det½1þ he−μ=TU†
x�

¼ 1þ he−μ=TTr½U†
x� þ h2e−2μ=TTr½Ux� þ h3e−3μ=T:

ð72Þ
This leads us to the mean field expression7

Zmf ¼
�
e−J0uv

Z
dUð1þ heμ=TTr½U� þ h2e2μ=TTr½U†� þ h3e3μ=TÞp

× ð1þ he−μ=TTr½U†� þ h2e−2μ=TTr½U� þ h3e−3μ=TÞp exp½ATrU þ BTrU†�
�

V

¼
�
e−J0uv

�
1þ heμ=T

∂
∂Aþ h2e2μ=T

∂
∂Bþ h3e3μ=T

�
p

×

�
1þ he−μ=T ∂

∂Bþ h2e−2μ=T ∂
∂Aþ h3e−3μ=T

�
p
Z

dU exp½ATrU þ BTrU†�
�

V

¼
�
e−J0u0v0

�
a1 þ a2e−μ=T

∂
∂A0 þ a3eμ=T

∂
∂B0 þ a4e−2μ=T

∂2

∂A02 þ a5e2μ=T
∂2

∂B02 þ a6
∂2

∂A0∂B0

�
p

×
X∞
s¼−∞

e3μs det½D−s
ij I0½2

ffiffiffiffiffiffiffiffiffi
A0B0p

��
�V

; ð73Þ
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FIG. 15 (color online). Mean field solution of the effective Polyakov line action SP corresponding to a gauge-Higgs theory at β ¼ 5.6,
κ ¼ 3.8, at finite values of the chemical potential. (a) The expectation value of Polyakov lines hTrUi and hTrU†i vs μ=T. (b) Particle
number density vs μ=T.

7A term a0 ∂2
∂A∂B in the leading exponential containing J0uv is neglected, since a0 is two orders of magnitude smaller than J0.
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where

a1 ¼ 1þ h3ðe3μ=T þ e−3μ=TÞ þ h6

a2 ¼ ðhþ h5Þeμ=T þ ðh2 þ h4Þe−2μ=T;
a3 ¼ ðhþ h5Þe−μ=T þ ðh2 þ h4Þe2μ=T
a4 ¼ h3e−μ=T; a5 ¼ h3eμ=T; a6 ¼ h2 þ h3; ð74Þ

and in this case A ¼ J0v, B ¼ J0u, with rescalings as in
(60). Defining

GðA0; B0Þ ¼
�
a1 þ a2e−μ=T

∂
∂A0 þ a3eμ=T

∂
∂B0

þ a4e−2μ=T
∂2

∂A02þa5e2μ=T
∂2

∂B02 þ a6
∂2

∂A0∂B0

�
p

×
X∞
s¼−∞

e3μs det½D−s
ij I0½2

ffiffiffiffiffiffiffiffiffi
A0B0p

��; ð75Þ

then the mean field self-consistency conditions
u ¼ hTrUxi, v ¼ hTrU†

xi, equivalent to a stationarity
condition on the mean field free energy, are

B0

J0
− 1

G
∂G
∂A0 ¼ 0 and

A0

J0
− 1

G
∂G
∂B0 ¼ 0; ð76Þ

which can be solved numerically.
As an example, we have solved the heavy quark model

for staggered quarks (p ¼ 1, four flavors) at β ¼ 5.6,
Nt ¼ 6 and h ¼ 10−4, which corresponds to a mass
m ¼ 2.32 in inverse lattice spacing. The result is shown
in Fig. 16. Note that the number density saturates for large
μ=T at n ¼ 3 particles/lattice site, as is appropriate for
staggered quarks with three colors.

VI. CONCLUSIONS

We have tested the relative weights method for extracting
the effective Polyakov line action from both pure SU(3)
lattice gauge theory and in an SU(3) gauge-Higgs theory in
the “confinementlike” phase. In the latter case we have
shown how to compute the effective action also in the case
of finite chemical potential. In all cases studied so far there
is excellent agreement between Polyakov line correlators
computed in the effective action and in the underlying
gauge theory at zero chemical potential. Mean field
methods have been employed to determine the expectation
value of observables in the effective action, corresponding
to the gauge-Higgs theory (5) at β ¼ 5.6, κ ¼ 3.8, and
to a gauge theory with massive quarks, as a function of
chemical potential.
So far we have computed the effective action up to terms

bilinear in the Polyakov lines, at zeroth order in fugacity,
and terms linear in the Polyakov lines, up to second order in
the fugacity. It is straighforward, i.e. only a matter of
increased statistics, to extract also the fugacity dependent
bilinear terms. We believe that the method can be extended
to derive terms involving products of three or four
Polyakov lines by fitting the path derivatives (16) to
polynomials in α, and by computing second derivatives
of SP with regard to momentum modes. It is important to
determine at least the magnitude of μ-dependent terms
which are neglected at μ ¼ 0, as compared to terms
which are kept, because this will give us an estimate of
how far out we can go in μ before the neglected terms
become important. This problem is currently under
investigation.
The next steps in our program are as follows. First, since

any effective Polyakov line action at finite μ has a sign
problem, it is essential to assess the reliability of mean field
theory in this context, or to find another technique, such as
the complex Langevin [3] or the density of states method
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FIG. 16 (color online). Mean field solution of the effective Polyakov line action SP corresponding to a gauge theory on a 163 × 6
lattice at β ¼ 5.6, with heavy staggered fermions of mass m ¼ 2.32 in lattice units. (a) The expectation value of Polyakov lines hTrUi
and hTrU†i vs μ=T. (b) Particle number density vs μ=T.
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[15], to deal with the problem. One thing we can do along
these lines is to compare mean field and complex Langevin
solutions of the effective actions we have derived so far.
This work is well underway, and the results will be reported
shortly [13]. We would then like to extract terms in the
effective action for gauge-Higgs theory, such as bilinear
terms to second order in fugacity, which have been
neglected so far. The final step is to replace the scalar
field with fermion fields, and solve for the effective
Polyakov line action. The application of our method to
the case of gauge fields coupled to fermions was already
outlined in the Appendix of Ref. [5]. We have now seen that
the introduction of an imaginary chemical potential is
essential, and this technique should supplement the
approach in [5]. One can then vary parameters, and search

for phase transitions. Of course the ultimate goal, if it
proves feasible by these methods, is work out at least some
of the phase diagram in the μ-T plane for SU(3) lattice
gauge fields coupled to light dynamical quarks, i.e. QCD.
The work reported in this paper is intended as one of the
necessary steps in that direction.
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