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A recent numerical lattice calculation of the kaon mixing matrix elements of general AS = 2 four-
fermion operators using staggered fermions relied on two auxiliary theoretical calculations. Here we
describe the methodology and present the results of these two calculations. The first concerns one-loop
matching coefficients between staggered lattice operators and the corresponding continuum operators.
Previous calculations with staggered fermions have used a nonstandard regularization scheme for the
continuum operators, and here we provide the additional matching factors needed to connect to the standard
regularization scheme. This is the scheme in which two-loop anomalous dimensions are known. We also
observe that all previous calculations of this operator matching using staggered fermions have overlooked
one matching step in the continuum. This extra step turns out to have no impact on three of the five operators
(including that relevant for By), but it does affect the other two operators. The second auxiliary calculation
concerns the two-loop renormalization group (RG) evolution equations for the B parameters of the AS = 2
operators. For one pair of operators, the standard analytic solution to the two-loop RG equations fails due to a
spurious singularity introduced by the approximations made in the calculation. We give a nonsingular
expression derived using analytic continuation and check the result using a numerical solution to the RG
equations. We also describe the RG evolution for “golden” combinations of B parameters and give numerical

results for RG evolution matrices needed in the companion lattice calculation.
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I. OVERVIEW

There have been several recent lattice calculations of the
kaon mixing matrix elements of all AS =2 operators
appearing in a general theory of physics beyond the
standard model (BSM) [1-6]. These matrix elements are
needed in order to use the experimental results for e and
AM g to constrain the parameters of models of new physics.
As members of the SWME Collaboration, we have been
involved in a calculation using improved staggered fer-
mions, which recently presented results in Refs. [3,5].
These results relied on two auxiliary theoretical calcula-
tions, and the purpose of this paper is to present the details
and results of these calculations.

The first auxiliary calculation concerns the matching
between the continuum operators whose matrix elements
we desire and the lattice operators whose matrix elements
we calculate. We use one-loop perturbative matching.
The requisite one-loop calculations have been done in
Ref. [7], but only using a nonstandard continuum scheme
for defining four-fermion operators. This scheme, intro-
duced in Ref. [8], has attractive properties under Fierz
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transformations, but has not been adopted in the con-
tinuum literature. Instead, the standard continuum scheme
is that used in Ref. [9] to calculate the two-loop
anomalous dimensions for the complete set of AS =2
operators. This scheme differs from that of Ref. [8] in
the choice of evanescent operators. Since we need the
two-loop anomalous dimensions in order to evolve lattice
results to a common scale, it is necessary to match
the lattice operators to the standard continuum scheme.
Thus we have augmented the results of Ref. [7] by calculat-
ing the matching factor between the two continuum
schemes.

Undertaking this relatively straightforward task, we have
uncovered a conceptual error in previous staggered per-
turbative matching calculations for four-fermion operators
[7,10,11]. It turns out that the matching factors obtained in
these works connect the lattice operators to continuum
operators which are nonstandard not only because of the
choice of scheme just described, but also because of an
additional finite correction. Technically, this arises because
an additional continuum-to-continuum matching step is
required. In general this leads to a correction beginning at
one-loop order. Since this point is of more general interest
for applications using staggered fermions, we explain it in
some detail.

© 2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.90.014504
http://dx.doi.org/10.1103/PhysRevD.90.014504
http://dx.doi.org/10.1103/PhysRevD.90.014504
http://dx.doi.org/10.1103/PhysRevD.90.014504

KIM et al.

It turns out that the additional matching corrections
vanish for three of the five operators which arise in a
general BSM theory. In particular, previous results for the
standard-model By operator are unaffected. We also stress
that the results for all five operators presented in Refs. [3,5]
do include the correct matching factors.

The second auxiliary calculation concerns the renorm-
alization group (RG) running in the continuum. Our lattice
calculation needs RG evolution to convert results obtained
at the lattice scale 1/a to a standard scale such as 2 GeV.
Although this might appear to be a standard calculation,
there are two complications which arise. First, the standard
expressions for two-loop running break down for one pair
of operators, due to a spurious singularity. In this case one
can either use the analytic continuation method of Ref. [12]
or simply solve the RG equations numerically. We have
compared these approaches and present numerical results
for the evolution matrices. The second complication is
that, in our lattice calculation, we make use of particular
“golden” ratios or products of B parameters which are
chosen to have simpler chiral extrapolations [13,14]. Here
we present the formulas for RG evolution of these
combinations.

A further reason for presenting our RG running factors
is that there is some disagreement between the results
for BSM matrix elements of our work and those of
Refs. [1,2,4,6]. Thus it is useful to present the technical
details of our work so as to facilitate a more thorough
comparison.

This paper is organized as follows. In Sec. II, we recall
the relevant AS = 2 operators and define the corresponding
B parameters. The method for calculating the one-loop
matching factors is described in Sec. III, and final results
are presented. The issues arising in RG evolution are
described in Sec. IV. We include three appendices.
Appendix A provides the technical details of the calculation
of the matching factors, Appendix B collects results for
anomalous dimensions, and Appendix C gives numerical
results for evolution kernels.

II. CONTINUUM AS = 2 OPERATORS
AND B PARAMETERS

The AS = 2 effective Hamiltonian has the general form

ASZ

Zc (1)

where the Q; form a basis of AS =2 four-fermion
operators, and the C; are Wilson coefficients. This form
holds both in the standard model (SM) and in a general
BSM theory, and arises after heavy particles are integrated
out. Contributions from operators of higher dimension are
neglected. Both C; and Q; depend on the renormalization
scale u, as is displayed explicitly. They also have an
implicit dependence on the regularization scheme used
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to define the operators. This could be either a continuum
scheme or some form of lattice regularization. The scheme
and scale dependence cancels in H, and using this one
can determine how the C; depend on the scheme and on .
Determining the relationship between the C; in different
schemes and at different scales is the focus of this paper.
We first consider the form of the operators that appear in
continuum regularization. These will be given a superscript
“Cont.” In the SM, the left-handed couplings of the W boson
imply that only a single operator has a nonvanishing Wilson
coefficient, namely that with “left-left” spin structure,
Q?om = Q%ont — [Ea}/ﬂLda] [S,byﬂLdb} . (2)
Here L = (1 —y5), a and b are color indices, and repeated
indices are summed. We work in Euclidean space through-
out. In a general BSM theory, four other operators appear in
addition to Eq. (2). These can be chosen to be

05 = [“La)[s"Ld"), )
05™ = [0, Lo, L) @
05™ — [5°La"Rd") (5
05 = 5, L[5y, Ra", (6

where R = (1 +ys) and o,
the basis given in Ref. [9], which we call the “Dirac basis.
A complete definition also requires a choice of basis for the
evanescent operators, i.e. those which appear when one
extends from 4 to D =4 — 2¢ dimensions. We use the
choice of Ref. [9]. This is the scheme in which the two-loop
anomalous dimensions have been calculated.

The list of operators given above is, in fact, incomplete.
Three more operators can appear—those obtained from
Q?%“% by interchanging L and R. We do not consider these
operators separately because we are ultimately interested in
the positive parity parts of all operators, which are the same
for both left- and right-handed operators. Only the positive
parity parts contribute to the K°— K° mixing matrix
elements. Furthermore, the matching of the right-handed
operators to the corresponding lattice operators involves
identical coefficients as for the left-handed operators, and
the RG running is also identical.

It is useful in lattice calculations to determine dimen-
sionless B parameters rather than matrix elements. For the
Dirac basis operators, these are

= [¥u»7,)/2. This is essentially

sl

Specifically, our operators are related to those of Ref. [9] by

S = 4075k and Q59" = 4Q%R. The factor of four arises

because we use (1 iys) mstead of (1 +y5)/2 in order to

simplify some subsequent results. This factor cancels in suitably

defined B parameters and in anomalous dimensions. We have
also reordered the “LR” operators.
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b (KUK .
N (K°[57,75d|0)(0]57,y5d|K°)

I_(O Cont KO
B; = '0<— 0] — ) ov fori=2,3,45 (8
N(K®|5y5d|0)(0[5y5d|K®)

where N; ={8,3.4,-2,3} for j=1,2,3,4,5, respec-
tively. The denominators are obtained using the vacuum
insertion approximation though only keeping the leading
terms in the SU(3) chiral limit. We stress that these B
parameters are simply useful intermediate quantities, with
their precise definition being immaterial as long as one uses
the same definition throughout.

An alternative to the Dirac basis is the “SUSY basis” of

Ref. [15],

OCont QCont (9)
OCont QCont (10)
O = [59LdP)[s" Ld“]. (11)
OCom QCOm (12)
O%om = [59Ld"|[3"Rd“]. (13)

This has been used, for example, in the lattice calculations
of Refs. [1,2,4,6]. The corresponding B parameters are
defined as in Egs. (7) and (8), except with N3 = —1/3 and
Ns = —=2/3. In four dimensions one can relate the two
bases using Fierz transformations, while in D # 4 dimen-
sions the relation involves additional evanescent operators,

Q5o = 405 4+ 8O™ + evanescent, (14)

Qent = —205° + evanescent. (15)
A key point, however, is that the way the SUSY basis
operators are defined in Refs. [1,2,4,6] is by using the four-
dimensional Fierz transform to relate them to the Dirac
basis. It is in the latter basis that the evanescent operators
are defined and in which RG running is done. This means
that the B parameters in the two bases can be related simply

using the D =4 results. In particular, BSYSY = B; for
i=1,2,4, and 5, while
3 5
BSUSY — _ZB. +=B,. 1
3 573 +2 2 (16)
The latter result follows from the D = 4 relation
03 —40, 4Q2
Og’USY g (17)

obtained by inverting Eq. (14) in D = 4.
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II1. ONE-LOOP MATCHING

As noted in the Introduction, one-loop matching
calculations with staggered fermions [7,10,11] use
different continuum operators than those discussed
in the previous section. The difference is twofold:
the use of a different basis of evanescent operators and
a missing matching step. In this section we describe
how to change the previous calculations in order to
match to the desired continuum operators. The key is
to understand the impact of the extra tastes that come
with staggered fermions.

It turns out that the just-mentioned differences in
continuum operators have no impact on the one-loop
matching factors for the continuum operators Qf°™,

gont, and Q$°™. Thus the matching factors for these
operators obtained in Ref. [7] are correct. Why this is
the case will become clear only when the analysis is
complete. Given this result, we couch our discussion
in terms of the operators QS°™ and Q§°™, for which
the differences do lead to changes in the matching
factors.

A. Staggered complications

In a lattice calculation with staggered fermions, one
must deal with the fact that each lattice field yields four
degenerate tastes in the continuum limit. For sea quarks this
is done by taking the fourth root of the fermion determi-
nant. This prescription is not controversial in perturbation
theory, where it is implemented by dividing each quark
loop by a factor of 4. In fact, for the matching factors we
consider, quark loops do not enter until two-loop order so
we will not need this prescription for our one-loop
calculation.

For the valence quarks, on the other hand, one must
account for the fact that the lattice theory has more degrees
of freedom than QCD. This means that, even in the
continuum limit (where taste symmetry is restored), the
lattice theory is different from QCD. In particular, it is
necessarily a partially quenched (PQ) theory. Although
“rooting” ensures that the f function agrees with that of
QCD, the matching of operators, where rooting is not an
option, is more complicated.

To understand this in more detail, consider the matrix
element of Qg"“‘ [Eq. (3)] between an external kaon and
antikaon in QCD. Both particles are destroyed/created
by a local, color-singlet operator of the form d%yss®.
The matrix element involves two types of Wick con-
tractions, one in which the fields in the external
operator are both contracted with the 5 and d in a
single bilinear, and the other in which the external
fields are contracted with an § from one bilinear and a d
from the other. In the first type of contraction the color
indices form two loops, while in the second they form a
single loop. Thus we refer to them, respectively, as
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“two color-loop” and “one color-loop” contractions.”
At tree level, where one can work in four dimensions,
the one color-loop contraction can be rewritten by
doing a Fierz transformation on the operator,

-4 1
gont D:4 _ 5 [EaLdb] [S‘hLda]

1 g < a
+ 5 [0, Ld"[50,, L") (18)

In this form, the one color-loop contraction now has the
fields in each external operator contracted with those in
a single bilinear. Note that the Fierz-transformed forms
involve the same Dirac structures as in Q%’m, but with
color indices contracted differently.

We next consider the analogous operators in the con-
tinuum limit of the staggered theory. In this theory we have
fields S and D, where uppercase is used to indicate that
there are four tastes of each of the valence quarks, so that §
and D are vectors with an implicit taste index. A possible
choice of operator to match with Q$°™ is then

[S°(L ® &5)D7|[S"(L ® &5)D". (19)

Here the second matrix in each tensor product indicates the
taste matrix. We have chosen the bilinears to have
“Goldstone” taste, since that is what is done in actual
lattice calculations, but we stress that the problem we are
about to explain occurs for any choice of taste. If we now
take the matrix element of this operator between a kaon
destroyed by Dys ® &S and an antikaon created by an
operator of the same form, there will again be two types of
Wick contraction. At tree level, the two color-loop con-
traction will be the same as that for ngm in QCD,
aside from an overall taste factor of N2, where Ny =4.
(This arises because there are two “taste loops,” in each of
which all four tastes can flow.) To evaluate the one color-
loop contraction at tree level we can Fierz transform the
operator so that the contraction involves two taste loops.
This now requires simultaneous Fierz transformations on
Dirac and taste indices. The former transform as in Eq. (18),
while the taste transformation is

b by SIS e e (2)

2
F NT

*This classification into two types of contraction holds also in
perturbation theory (PT), although the description in terms of color
loops is less appropriate. This is because, in PT, one uses external
quark fields with uncontracted Dirac and color indices and having
definite momentum rather than pseudoscalar, color-singlet kaon
operators. Specifically, one uses d§(py)sj(p2)d;(ps)sy(ps) in
QCD. One can, however, still group the fields into two ds pairs in
an unambiguous (although arbitrary) way using the external
indices and/or momenta as labels, and then define one and two
color-loop contractions relative to those pairings.
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with F being summed over all 16 tastes. Upon contraction
with the external kaons of taste &5, only the F =5 term
contributes. This comes with a “Fierz factor” of trl/N% =
1/Ny as well as the overall factor of N2. Thus the one
color-loop contraction at tree level is the same as that for
ngm in QCD, aside from a taste factor of Ny. We now can
see the key problem: the two types of contraction come
with different taste factors compared to the QCD operator.
Thus, even with an overall rescaling, the entire matrix
elements cannot match. This is the inevitable consequence
of the presence of the additional tastes.

This problem has been recognized since the first calcu-
lation of matrix elements using staggered fermions [16],
and the solution adopted has been to match Wick con-
tractions rather than operators. This solution is explained in
Ref. [17], but, as noted above, is incomplete. In the next
few subsections we give the complete description, which
involves a sequence of four matching steps.

B. First matching step: QCD to PQQCD

In the first step we match from QCD to a partially
quenched extension of QCD in which there are two
degenerate valence strange quarks, s; and s,, and two
degenerate valence down quarks, d; and d,. The sea-quark
composition is the same as in QCD, and we consider this
theory only in the continuum. In this paper we refer to this
specific theory as PQQCD. At this stage there is no taste
degree of freedom, so this is not the continuum limit of a
staggered lattice theory. We regulate this theory using
dimensional regularization, using an Naive Dimensional
Regularization (NDR) scheme in which evanescent oper-
ators are generalized from QCD to the PQ theory in the
simplest way (as discussed below). The reason for intro-
ducing this theory is that it allows us to separate the two
types of Wick contraction without needing to deal with the
complications arising from the additional tastes.

Consider the matrix element in PQQCD of

059 = 2[5¢Ld{][5Ld5) (21)

between a K9 created by d,yss; and a K9 destroyed by
dyyss,. This matrix element is identical, diagram by
diagram in PT, to the two color-loop Wick contractions
of Qg""t between an external kaon and antikaon in QCD.
The factor of 2 in Eq. (21) is needed because, in QCD, each
external operator can be contracted with either bilinear,
while in PQQCD this is not possible. Because the matching
is with the two color-loop contraction in QCD, we label
Q;?, with the additional subscript /1.

This diagram by diagram equality in fact holds
much more generally. If one uses the external fields
J(‘j(pl)s/'}(pz)cz;(pgsg(pn in QCD (with a—§ Dirac
indices), and keeps only the contractions in which the
fields with momenta p; and p, are connected to the same
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bilinear (so that the fields with momenta p; and p, are
connected to the other bilinear), then the matrix element
agrees exactly with that in PQQCD with external fields
df (p1)s? j(p2)d5 ,(p3)ss,(ps). This holds for all values
of the external Dirac and color indices, and for all choices
of the momenta p;.

In a similar way, the one color-loop contractions of QSO“‘
in QCD matches exactly to the PQQCD matrix element of

054 = 2[5{Lds][s3Ld]). (22)

Here, the subscript “I” indicates matching with a one color-
loop contraction, while “A” distinguishes the operator from
a similar one introduced below. Note that this operator
differs from Qg% only by the interchange d; <> d, between
the bilinears, while keeping each bilinear a color singlet.
In particular, no Fierz transformation has been done on
QS°™, so that the exact matching holds for D = 4 — 2e.

Repeating this exercise for Q§°™ one finds that the PQ
operator corresponding to its two and one color-loop
contractions are, respectively,

311 = 2[ 10;de H Oy Ldb] (23)
038, = 2[5¢0,,Ld3][550,,Ld}). (24)

To write a matching equation involving operators we
form the linear combinations

0% =003 +0%% (1=2.3). (25)

Our claim is that, for matrix elements involving the external
operators described above, we have, to all orders in PT

P .

o5 =07 (j=2.3) (26)

This is our first matching equation. The two operators on the

right-hand side are needed to obtain both Wick contractions

of the operator on the left-hand side. The symbol “x~”

indicates that this is not a true operator matching, but rather

that the matrix elements of the type described above agree

between the two theories. This is sufficient for our purposes
since these are the matrix elements of interest.

The difference operators Q in Eq. (25) do not play arole
in the matching to QJC""‘. In fact, they are PQQCD operators
with no counterparts in the AS = 2 sector of QCD. We will
use them, however, in the next stage of the calculation.

As already noted, when doing a perturbative calculation
of the matrix elements described above, one encounters
additional, evanescent operators which must be dealt with
in order to renormalize the matrix elements. These are local
operators with Dirac structures that vanish when D = 4. In
order for the above-described exact matching to hold after
renormalization, evanescent operators must be treated in
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the same way in both QCD and PQQCD. Doing so is, in
fact, completely straightforward, since the treatment in
QCD is already done contraction by contraction. Concrete
examples of this statement are given in the explicit
calculation of Appendix A.

We stress that, although the exact equality of matrix
elements described in this subsection is almost trivial, it is
nevertheless useful in order to set up the next, nontrivial,
stage of the matching. We also note that our argument is a
minor adaptation of that used in Ref. [9] to show how the
anomalous dimensions of AF = 1 operators with flavor
Sduc can be related to those of AS = 2 operators.

C. Second step: Basis change in PQQCD

At this stage we have succeeded in exactly converting the
desired QCD calculation into one in PQQCD. The next step
is to change the operator basis in PQQCD. Essentially, we
are doing a Fierz transform on the operators which match
with one color-loop contractions in QCD, but taking into
account the failure of Fierz transforms away from D = 4.
This step is useful since the new basis in PQQCD matches
straightforwardly onto the lattice theory.

We collect the operators discussed in the previous
subsection into a vector,

OFQA — (02 0% 0% of?}, (27)

We will change from this basis to

OPQB - {Q2I’ 2P,?I’ 3, I’ Q3 11 (28)

Here Q2 ;; and Q;% are defined in Eqs. (21) and (23)
above, while

59 = 07 = 2[5¢Ld%)[s5L.d3). (29)

31 - OPQB [ 1u0,def1)] [s_2b0;deg]' (30)

These are the two operators one obtains from QggA and
Qg_?A by interchanging d4 and d%. For D =4 such an

interchange is brought about by a Fierz transformation,
which also affects the Dirac structure. Specifically, we have

pQ D=4 | p 1 p
2.(12A - 75 23+_ 337 (31)
2 8
pQ D=4
= 6057+ Q“, (32)
so that
D=4
Op =" R, O5®, (33)
with
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-1 40

R 60 2! (34)
1 =40
-6 0 -1 1

This means that tree-level matrix elements with the external
fields described in the previous subsection will be related
by the same linear transformation

(OFOM)O) — Ry (OFOP)0). (35)
Here the superscript indicates the order in a.

This simple relation does not hold beyond tree level,
since the Fierz transforms (32) fail for D = 4 — 2¢. This is a
standard situation in renormalization theory, explained
clearly, for example, in Ref. [9]. The basis must be
extended to include evanescent operators. At one-loop
order, all one needs, in fact, is a set of projectors which
pick out the components of the desired operators from
expressions in 4 — 2e dimensions. The projectors for the
operators we consider have been given in Ref. [9], and are
conveniently summarized in Ref. [18]. The general result is
that one-loop anomalous dimensions are the same in the two
bases [once the linear transformation given in Eq. (33) is
taken into account], while finite parts of one-loop matrix
elements (and correspondingly two-loop anomalous dimen-
sions) can be different. This is thus an example of nontrivial
operator matching, although simplified because both sets of
operators are defined in the same theory.

To determine the one-loop matching between the bases
one calculates the one-loop matrix elements with the same
external fields and equates them. After renormalization,
these matrix elements take the forms

(OO = ZZNOF™O), (36)
Z2h =81 +— yp [ka log(A/u) + C2%,  (37)

and
(07D = 222050, (38)
Zi8® = 61 + 1 [(R77R)y log(h/m) + CI°. (39)

Here 1 is an infrared cutoff (for which we use a gluon
mass), 4 the renormalization scale, and y*Q the one-loop
anomalous dimension in the PQA basis. The factors of R~!
and R in the result for ZPQB are needed so that the one-loop
anomalous dimensions match once the linear transforma-
tion (33) is taken into account. C*?* and CP?® are the finite
parts of the one-loop result.

PHYSICAL REVIEW D 90, 014504 (2014)

Equating (O} (1) with R, (O5%) (1) (a step that can be
done in D =4 since the matrix elements have been
renormalized), and using (35), one finds our second
matching equation

O 2 {Rug + 42 [(CPOAR), = (RCOP), 1 OR,
(40)

The precise meaning of this equation is that the one-loop
matrix elements of the operators on the two sides agree, as
long as one uses the same definitions of evanescent
operators as were used to determine the matrices CFQA
and CPQB. We still use the symbol =, although here the
theory is the same on both sides of the matching, because
we want to allow for the possibility of using a different
renormalization scheme for the two bases.

We calculate the difference matrix CPRAR — RCP?® in
Appendix A. It is convenient to use different definitions of
evanescent operators for the PQA and PQB bases. For the
former we use the definitions of Ref. [9], so that we are
ultimately matching to an operator basis in which we know
the two-loop anomalous dimensions. For the PQB basis,
however, we adopt the NDR’ scheme, which was intro-
duced in Ref. [10]. This is a convenient choice as it allows
us to piggyback on previous one-loop calculations. We
stress, however, that even if we use the definitions of
Ref. [9] in both bases, the one-loop matching would be
nontrivial.

D. Third step: PQQCD to continuum staggered theory

The next step is to match to the theory obtained in the
continuum limit of a staggered lattice theory, which we
refer to as the “SPQ” theory (with S for staggered). This
differs from PQQCD by the presence of additional tastes.
Specifically, this new theory has valence quarks S; and D;,
with j = 1,2, in addition to the (rooted) sea quarks. As
above, uppercase letters indicate the presence of four
tastes.’

The operators we consider in the SPQ theory are simple
generalizations of those in the PQB basis in PQQCD. They
are obtained by replacing lowercase fields with their
uppercase versions, and inserting the taste matrix &5. For
example,

59 = 2[s¢Ld%][s5Ld3)]
2[S4(L ® &)DY[S5(L ® &) D3). (41)

In addition we will keep only the positive parity parts of the
operators, since these are the parts which contribute to the
K° — K° matrix elements in which we are ultimately

The SPQ theory differs from the staggered theory discussed in
Sec. III A in which there was only one S and one D quark.
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interested. This has no impact on anomalous dimensions
or matching coefficients. In this way we arrive at the
basis

07" = 2([84(1 ® &)D})[S5(1 ® &5)D4]
+ [S4(rs ® &)DY][S5(rs ® &5)DS]).  (42)
05" = 2([84(1 ® &)D{][S5(1 ® &) D3]

+[87(rs ® &5)D{][S3(rs ® &5)D5)),  (43)

O = 4[5¢(0,, ® &5)DY[S8(0,, ® E5)DS],  (44)

Oy = 4[8¢(0,, ® &5)D5][S5(0,, ® &)DS].  (45)
Note that for the “tensor” operators (’) < there is only one
term, since the operators differing by a factor of y5 - y5 are
identical, and can thus be combined. This changes the
overall factor from 2 to 4.

We now consider the matching between matrix elements
of the PQB basis operators in PQQCD and those of the
above-described operators in the SPQ theory. In PQQCD
we use the external operators d,yss; and d,yss,, as already
discussed in Sec. I B. In the SPQ theory we use D, (ys ®
£5)S; and D, (ys ® &£)S,. Thus only positive parity oper-
ators contribute to the matrix elements. We now observe
that, at any order in PT the diagrams contributing to the
matrix elements of Ok in the PQ theory are identical to
those contributing to the corresponding matrix elements
of OfPQ in the SPQ theory, aside from the presence of the
taste matrices &s - £s. Given the exact taste symmetry of the
SPQ theory, however, the extra taste factors lead only to an
overall factor of N' % which can be removed by hand. Thus,
as long as we use the analogous choices for evanescent
operators in the two theories,4 there is an exact matching of
matrix elements. We write this result as

OFB ~ O, (46)

where we are stretching the meaning of = here to include
the provisos that taste factors are removed and only a
particular class of matrix elements is considered. We also
note that a consequence of this exact matching is that
anomalous dimensions agree to all orders.

E. Final step: Continuum to lattice staggered theory

The final matching step is between the SPQ theory and
the lattice theory using improved staggered fermions. This
is a conventional matching between the same theory
regularized in two different ways: dimensional regulariza-
tion, with operators defined in the NDR’ scheme for the
SPQ theory, and lattice regularization, for which no issues

“In practice, we use the NDR’ scheme for both theories.
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of evanescent operators arise. For the operators we use in
our numerical calculation, the required one-loop matching
has been done in Ref. [7]. The only subtlety is that, due to
the breaking of taste symmetry by lattice regularization, the
basis of lattice operators which mix with one another is
much larger than that in the continuum theory. As in
Ref. [7], we show here only the mixing with operators
having the same taste as those in the SPQ theory, namely
&s - &5. These are the operators used in present simulations.
Dropping operators with other tastes leads to an error
suppressed both by a and by a factor of m2/m% or
m2) (4 f,)? [14].

There are six lattice operators with taste &s - &5 that enter,
and we collect these into a vector,

0% = (0. 0% O OR. 0. O0). (@)
Here we are using the notation and definitions of Ref. [7].
The subscripts indicate, first, the nature of the Dirac
matrices (scalar, pseudoscalar, or tensor) and, second,
the color contraction (one or two color loops). We do
not repeat the details here. The difference from the basis
OSPQ of Egs. (42)~(45) is that the parts of O}
structures 1 - 1 and y5 - y5 have been separated in the lattice
operators. This is required because they renormalize
differently.
The tree-level relationship between the bases is

with Dirac

(OF DO =28, (05, (48)

with § the rectangular matrix

(49)

S O O =
oS o = O
S O O =
o O = O
S b~ = O
~ O O O

The overall factor of 2 in (48) appears because the
definition of the lattice operators does not include the
overall factors of 2 that appear in the continuum PQ
operators [see Eqgs. (42) and (43)]. The factors of 4 in §
relating the SPQ to lattice tensor operators arise because,
first, the lattice tensor operators Q% and O%4! are defined
with the indices constrained to satlsfy u < v, rather than
being freely summed as in the continuum operators, and,
second, because the continuum tensor operators come with
a factor of 4 rather than 2 [see Egs. (44) and (45)].

The one-loop matrix elements in the SPQ theory, with
NDR' regularization, are

()W
a
ZIIZSB =0y +4

=207,

(R PQR)kflog(/l/#)‘f‘CPQB] (50)
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This is identical to Eq. (39) because of the exact matching
between the PQB and SPQ bases, Eq. (46). The one-loop
lattice matrix elements take the form

a

(05 = (O +
A

[7un log(a) + CE (O,
(51)

with 7 the one-loop anomalous dimension matrix in the
lattice basis. This satisfies R™'yPQRS = Sy, which is
simply the statement that the projection of 7 onto the basis

. SPQ - o .
corresponding to (J; - is regularization independent.
Equating one-loop matrix elements after transforming
the lattice results by the matrix S leads to

a
0 = {50y + 1 [-(R17PORS ) o
T (craBg),, - <scLat>km]}o%f‘. (52)

Note that in this case = means a genuine matching between
operators. Taste factors match and there are no restrictions
on external fields. The only provisos are that, on the right-
hand side, we have dropped lattice operators having tastes
other than &5 - &5 and corrections proportional to powers of
the lattice spacing.

F. Final matching results

Combining the results (26), (40), (46), and (52) we can
now match continuum operators QS and Q$°™ in the
Dirac basis [Egs. (3) and (4)] to lattice operators,

Q% =2z, 0%, (53)

a
2 = Pid (RS} + 12 07Oy n(a)
+ (CPARS — RCPOBS),,

+ (RCPABS — RSCH), ] } (54)

where j =2,3, k=1—-4, and m=1—-6. Here P is a
rectangular matrix projecting out the first two operators
from the four-dimensional PQA basis of Eq. (27). Its only
nonzero elements are P,; = P3, = 1 [corresponding to the
exact matching of Eq. (26)]. As a matrix it looks like

(00

We stress again that Eq. (53) is not a true operator
matching, but rather a shorthand indicating agreement
(at one-loop order, and up to known taste factors) between
the positive parity parts of the appropriate kaon mixing
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matrix elements defined using the external operators
described above.

We also note that the contribution from the matching to
operators in the PQB basis cancels, as can be seen from the
fact that the RCPQBS term appears with both signs.
Cancellation is expected since this is an intermediate
scheme. We find it useful, however, to break the result
up as shown. This simplifies the calculation (as discussed in
Appendix A), and is also useful conceptually. In particular,
it is the contribution from the PQA to PQB matching, i.e.
the CPRARS — RCPBS term, which was not previously
accounted for in Refs. [7,10,11]. In other words, these
works effectively started with the continuum PQB basis
(defining the operators using the regularization scheme of
Ref. [8]) and matched from this to lattice operators.

It is useful to recast our final result into the notation used
in Ref. [7],

2
g
Zjm = bjm + W<_7jm log(,ua) + ij)’ (56)

Cim = d,Cn‘i“‘ - djL‘;:lt = CrlyrT jn, (57)
with Cr = 4/3. Here b;,, gives the linear relations between
operators at tree level, while d°°™ and d“* are the finite
parts of one-loop matrix elements in continuum and lattice
regularizations, respectively. The term proportional to the
matrix 7 appears if one mean-field improves the lattice
operators, with I, the appropriate lattice integral. Details
are given in Ref. [7]. This contribution is, strictly speaking,
part of d", but this separation allows one to see the
numerical impact of mean-field improvement. We note that
below we use the formula (57) not only for j = 2, 3 but also
for j =4,5.
Comparing Eqs. (57) and (54), we see that

bjm = (PRS),. (58)
Yim = (PY"?RS);,,. (59)
dSomt = (PCPRARS) . (60)
dat = (PRSCH),, — CplypT . (61)

The anomalous dimension matrix y*Q can be obtained, for
example, from Ref. [9]. The new quantity d°°™ is calcu-
lated in Appendix A. The finite part of the lattice one-loop
matrix elements, d“*, and the mean-field improvement
matrix 7T are calculated for our choice of operators and
action in Ref. [7]. We collect all these results in Tables I
and I

We include in the last column of each table the numerical
values of the matching coefficients for mean-field improved
operators on the finest MILC ensemble used in our
companion numerical study [3,5]. These are the operators
we use in practice. Comparing the results for z,,; to the
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TABLE I. Components of the matching coefficients for ngm,

as defined in Eq. (57). The d“* are for HYP-smeared valence
fermions and operators and the Symanzik gauge action. The last
column gives the numerical values for the complete one-loop
matching coefficients z,,, for mean-field improved operators (for

which Iy =0.722795) on the MILC ultrafine lattices
(¢ = 0.2098) and with pya = 1.

Operator m by, Yom A5 & Ty, Zom
Okt -1/2 6 -11/6 2335 -1 -0.554
Ok 1 —-10 +13/6 -—14.528 6 1.182
oL -1/2 6 —11/6 3.174 -1 -0.568
oL 1 -10 +13/6 4061 -2 1.001
Ok 1/2 -14/3 +5/6 2518 0.540
oL 0 2/3  —1/2 0.012 0 -0.009

TABLE II.  Components of the matching coefficients for Q§°™.
Notation as in Table I.

Operator m by, Yam  d5oM d5 Ty, Z3m
oL 6 88 +50/3 -13703 12 6314
Ol 0  —40 —46/3 —15035 0 —0.005
O]ﬁfi‘ 6 88 +50/3 —23.769 12 6.482
OII;%‘ 0 —-40 —46/3 15.165 0 -0.509
O]f"i“ 2 8/3 —14/3 —-8.164 4 1.994
Ot 4 136/3 46 —12376 8 4178
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TABLE III. Components of the matching coefficients for QS"’“.
Notation as in Table I.

Operator m by,  Vam dsgont dit Ty, Zam
O]S“T“ 0 0 -3 0 0 —0.050
Olat 1 —16 +23/3 -160196 6 1299
oL 0 0 +3 0 0 0.050
O];)gt -1 16 -23/3 —5.0862 2 —-1.075
O]‘ﬂt -1/2 8 -23/6 27193 -1 -0.593
oL 0 0 +43/2 0.3401 0 0019
O/]g"ln 1/2 -8 +423/6 —=2.9543 1 0.597
Ok%t 0 0 -3/2 0.3651 0 -0.031

TABLEIV. Components of the matching coefficients for Q§°™.
Notation as in Table L

Operator m  bs,, 75, dso™ ds®  Ts, Z5m
(9]5,*1“ -2 -4  -1/3 6.835 -4 =2.055
Ol 0o 12 I 4892 0 —0.065
(’)Ilfit 2 4 1/3  -10.191 4 2.111
O];,%t 0 -12 -1 5.174 0 -0.103
O 0 -6 -1/2 053 0 0001
O]‘ﬁ 1 2 1/6 —8.083 4 1.073
Ol 0 6 1/2 057 0 —0.00l
Ol “1 =2 —1/6 -0179 0 —1.000

tree-level values, b,,; shows that the one-loop perturbative
corrections are ~5%.

As noted above, the matching results of Ref. [7] for the
operators Q°", 0$°™, and Q$°™ remain valid, because the
missing PQA to PQB matching step turns out to have a
vanishing one-loop coefficient. This is explained in
Appendix A 5. However, since the results in Ref. [7] are
presented for operators in the Supersymmetry (SUSY)
basis, and also for completeness, we collect the results
for 0$°" and Q$° in Tables III and IV. The results for the
By operator Q" can be read directly from Ref. [7].

To complete the description of the matching results used
in Refs. [3,5]. we must also consider the denominator of the
B parameters defined in Eq. (8). The matching of the
pseudoscalar bilinears in the denominator is given by

§ysd = 7pO%™, (62)

O = 7,(rs ® &)xa (63)

where, as above, the symbol = implies matching of matrix
elements (here connecting the vacuum to an appropriate
kaon or antikaon) up to taste factors (here a single factor of
N7 since there is only one taste loop). The notation for the

staggered bilinear is as in Ref. [19]. For the bilinear matrix
elements we do not need to introduce the extra d and s
quarks of the PQQCD and SPQ theories, since there is only
one contraction. For the same reason, there is no contrac-
tion factor of 2 in Eq. (62) [as compared, say, to Eq. (53)].
The one-loop result for zp is [19]

=1+ % (8 log(ua) + 10/3 — 1.57938).  (64)

This is for the continuum bilinear defined in the NDR
scheme and the lattice bilinear composed of HYP-smeared
(Hypercubic blocking) valence fermions with Symanzik-
improved glue. Note that the lattice operator involves no
gauge links and thus cannot be mean-field improved.

In terms of lattice operators, the B parameters thus
become

By - 2Rz, O K .
M N 20310} 0120 OF 1K)

This is now an equality (up to two-loop and discretization
corrections) since the taste factors cancel between numer-
ator and denominator.
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IV. RENORMALIZATION GROUP EVOLUTION

In our numerical calculations, we match matrix elements
of lattice operators to those of continuum operators using
Eqgs. (53) and (54). To avoid large logarithms in this
matching, we set u = 1/a. Before taking the continuum
limit, we must evolve the resulting matrix elements to a
common scale. We do this using the most accurate
anomalous dimensions available, which in this case are
of two-loop order. Although this is a standard procedure,
there are some subtleties which arise for the operators under
consideration. In this section we discuss these subtleties.

RG evolution can be expressed as

(Qi(up)) = W(ﬂb’ﬂa)ij<Qj<ﬂa)>v (66)

where the matrix kernel satisfies

d
dln/,{b

W(/‘buua)ij = _7<ﬂb>ikW(ﬂbvﬂa)kjv (67)

together with the boundary condition W2 (u,, ﬂa),-j = 0jj.
We expand the anomalous dimension matrix as

v(p) = ]/<0) a(p) + 7/(1) <0l(/4)>2 4o, (68)

Az dr

Results for (*) and y(!) for the operators of interest are
collected in Appendix B. There is mixing within the
operator pairs {Q5°", 0§°"} and {Q%°", 0$°"}, while
Q§° and the pseudoscalar density do not mix.

To evolve the B parameters B,_s, we first take out the
normalization factors N, from Eq. (8) by defining

Ri(u) = N,B;(u) (69)

___ (KolQF™|Ky)
(Ko [575d|0)(0[575d|Ko)

(70)

These quantities can be run to a common scale, and then
divided by the N; to return to the B parameters. Defining
WR(uy, u,) as the RG kernel for the R;,

Ri(pp) = WR(up, o) iR (1) (71)

we have

W(ﬂb’/‘a)ij

W Gy i) P 72

WR(ﬂbvﬂa)ij =

where W’ describes the evolution of the pseudoscalar
density. Combining these results we arrive at

Bi(uy) = ZWB(/"bvﬂa)iij(”a)v (73)
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1
WB(,“b,ﬂa)ij :_WR(/"bﬂa)iij' (74)

N;

We stress that Eqgs. (70)-(74) apply only for the BSM
operators (with i, j = 2-5) and not for Bg. By involves a
different denominator, which does not run, so its running,
which is diagonal, is given by the element W, of the
operator evolution kernel.

We can also consider anomalous dimensions for the B
parameters themselves, defined as in Eq. (67) but with
O — B. This gives

raly = 37 (ol = 200, (75)

where again i, j = 2-5. Numerical values are given in
Appendix B.

A. Solutions for the evolution kernel

The general solution of the RG equation (67) is

W) = Pacwp (- | Lda).  (6)

where P, indicates “a ordering” of the matrices in the
integral, a, = a(u,), @, = a(u,), and the f function is
defined with the normalization

1 da a? o
_ﬁOE - b W

" 2dlnp
(so that fy = 9 and f; = 64). In the literature, a standard
approximate form of the general solution Eq. (76) is
used when the anomalous dimension is known to two-
loop order [20],

p(a) +o (77)

-1
Wy, pia) = [1 +%J] WO (uy, 1) [1 +&J], (78)
dr 4
where
a, V(D)/Qﬁo
WO ) = v (22) . (19)
ad
ﬁly(o) —1
J= - VMV, (80)
2655
vy(y-17..
My —— i ki T (81)
2B+ (rp')ji— (rp i
Here V is the matrix that diagonalizes y(‘)),
VYOt =49, (82)
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[ <%> yi?/z*ﬁo] _s, <ﬂ> <yi§’)>,-,-/z/fo. (83)
A ij Aq

In practice, we use an alternative form of Eq. (78),

and

Wy pta) & WO (1)
1
+ E [aaW(O) (Iub’,ua)‘] - ab‘]W(()) (ﬂbuua)]
(84)

1

1AV
5 VAv (85)

= W(O) (,ub’ ﬂa) +

This form is equivalent at the order we work and is more
convenient for the following discussion.

This approximate analytic solution fails, however, if, for
some choice of i # j,

280+ (7)) — (1)) = 0, (86)

for then M diverges [see Eq. (81)]. This indeed happens for
the pair of operators Eg“‘, since the eigenvalues of y(¥)
differ by exactly 25, = 18 (see Appendix B). We stress that
this is a failure of the approximation method and does not
indicate a breakdown in perturbative convergence for W
itself. Indeed, the truncated version of the differential
equation (67) is not singular.

The problem can be resolved using the analytic con-
tinuation technique introduced in Ref. [12]. The outcome is
that, for each {i, j} pair for which the denominator of M;;
vanishes [i.e. for which Eq. (86) holds], the element A;; of
the matrix A in Eq. (85) is replaced by

vy y-17 (r));1/2
W7 VT i <@> <@> (8

2:6 0 o7 o7

The derivation of this result is given in Ref. [12].

We have checked these analytic expressions by solving
the RG equation (67) numerically, after truncating
the anomalous dimension and f function. Specifically,
we use the variable 7 = (Ina)/(2f,) which satisfies, at
two-loop order,

dt
ey hay (88)
dinyu 4z Podn

Then

dW(th»ta) _ ( dtb >_1 dW(/"bv/’la)

89
dtb dln/,tb dln/,tb ( )
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a f
1+20

W(tp. 1) (90)

~ (0 1% |0 _Pr o
<7 +4ﬂ{7 5,7 :|>W(tbata)7 (91)

where the approximations are allowed since they involve
dropping terms of the same order as the missing three-loop
contributions. The resulting equation is straightforward to
integrate numerically.

We find that, for the ranges over which we evolve, the
analytic and numerical results for the elements of W agree
to ~0.01 or better. For example, the evolution matrix for
the operators in the full Dirac basis from p, = 3 GeV to
u, =2 GeV is

10349 0 0 0 0
0 0882 00013 0 0

Weou=| 0 —04786 11532 0 o |,
0 0 0  0.8289 0.0106
0 0 0 01310 1.0225

(92)

using the analytic results, and

1.0350 0 0 0 0
0 08863 00013 0 0

Wom=| 0 —04789 1.1536 0 0
0 0 0 08291 0.0105
0 0 0  0.1308 1.0225

(93)

from the numerical solution. Here we use a(2 GeV) =
0.2959 and a(3 GeV) = 0.2448.° The running between
these two values is done using the four-loop f function with
N; = 3. We use three active flavors (despite being in the
regime where the charm is active) because this is the
number of dynamical flavors in our simulations. We use
the four-loop f function (despite evolving the operators
using two-loop expressions) since this incorporates some of
the known higher-order terms. Numerically this is not,
however, very important. For example, if we start from
a(2 GeV) = 0.2959 and run using the two-loop  function
we find a(3 GeV) = 0.2470, which leads to

These values are obtained at N =3 by following the
four-loop running procedure given in Ref. [21] starting from
a(Myz) =0.118 with M, = 91187.6 x MeV.
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1.0333 0 0 0 0

0 0.8913 0.0012 0 0

W ioopa = 0 -0.4563 1.1460 O 0
0 0 0  0.8363 0.0101
0 0 0 0.1252 1.0214

(94)

Here we have used the numerical solution of the evolution
equation. We see that the elements differ by ~0.02 or less
from those given above using four-loop running of a.

It is also interesting to see how quickly perturbation
theory is converging. This is illustrated by comparing the
matrices above to the one-loop result

1.043 0 0 0 0
0 0900 00018 0 0
Wiop=| 0 —0425 1126 0 0
0 0 0 0845 0
0 0 0 0118 1.021

(obtained using the four-loop values of a).
As a check on our calculation of W, we can compare to
the result for W(3 GeV,2 GeV) given in Ref. [22],°

1.035 0 0 0 0
0 0887 0001 0 0
Wyv=| 0 —0474 1152 0 0
0 0 0 0830 0011
0 0 0 0130 1.022

(96)

This agrees with our results to better than the +0.02
variation between approximation methods, thus checking
our transcription of anomalous dimensions and calculation
of evolution matrices.

Results for the evolution kernels needed in our numerical
calculations are collected in Appendix C.

B. Running of ‘“‘golden” combinations

The quantities

B, B,
By =—, =, B,, =B, x B,, and
23 B; 45 Bs 24 2 4
B,
B, =— 97
21 Bx (97)

®Note that Ref. [22] uses a different ordering of operators and
also quotes the transpose of W. Here we have converted to our
notation.
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were found in Ref. [14] to have no one-loop chiral
logarithms in SU(2) chiral perturbation theory. Thus they
are expected to have better controlled chiral extrapolations
than the B parameters themselves. Following Ref. [13], we
refer to them as golden combinations.

We are using these quantities in our companion lattice
calculations [3,5]. Indeed our central values for the B; are
reconstructed from these four golden quantities and our
result for Bg. Thus it is useful to have the RG running
formulas directly for the golden combinations. The evolu-
tion of the B parameters is given by Eq. (73), with the
evolution kernel W2 being nonvanishing only within the
(1), (2,3), and (4,5) blocks. From this we can determine
the evolution of the golden combinations,

WE iy, a) 2Bz (ta) + W2 (p. pa) 23
By (pp) = , 98
23(045) WE(up, o) 32Baz (ta) + W2 (1p. 1) 33 %)
W2 (up, ) 4aBas (a) + WP (i, i
B45<ﬂb) _ B( b )44 45( ) B( b )457 (99)
W5y, pa)5aBas(ta) + WP (1. p14) 55
Bos(up) = Boa(pa)
X (WB(Mhnuu)ZZ + WB(Mh9/’tu)23/B23(Ma))
X (W (up pia) as + W2t o) 45/ Bas(ta))
(100)
By (1p) = Boi(Ha)
B B
« W8y, p4)0 + W (/‘b»/‘a)/BB(ﬂa). (101)

W(/‘bu“a)ll

Note that the running of B,3; depends only on the initial
value of this quantity, which is the case also for Bys. For
B»,, however, one needs the initial values of B,,, B,3, and
B,s, while for B, one needs the initial values of both B,
and B,;. Note also that the denominator of Eq. (101)
involves W rather than W2, because the denominator of By
involves axial currents which have vanishing anomalous
dimensions.
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APPENDIX A: CALCULATION OF FINITE
PARTS OF MATCHING MATRICES

In this section we describe the calculation of the finite
part of the continuum contribution to the one-loop matrix
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elements of the operators QJC"“‘ [Egs. (3)-(6)]. The main

focus is on Q™ and QS°™. Specifically, we determine
CPQA| which is needed to determine d“°" in Eq. (60). The
calculation turns out to be simplified by first calculating the
difference CPRAR — RCP@®, which arises in the matching
step described in Sec. III C, and then determining CPQB.
Combining these two results we obtain CPQA,

As explained in the main text, the required matching
calculation involves a change of operator basis and NDR
scheme in the PQQCD continuum theory. Since the change
of basis is, for D =4, accomplished by a Fierz trans-
formation described by the matrix R, any contribution to
the one-loop matrix elements in Egs. (37) and (39) whose
calculation is consistent with the Fierz transformation will
cancel in the difference CPRAR — RCPQB. This is, for
example, why there is no anomalous dimension term in
Eq. (40). It also means that wave function renormalization
diagrams do not contribute. The upshot is that we need only
keep those parts of the one-loop diagrams which contain
O(e) contributions arising from the projections onto the
basis operators used in the two NDR schemes (or, equiv-
alently, from the subtraction of evanescent operators).
These will multiply the 1/¢ pole from the loop integral,
leading to finite contributions to the matrix elements. All
other parts of the calculation are common to the two
schemes and cancel in the difference.

We call the projection-related finite contributions
CPQAPOl and CPRB-Poi We stress that they are not the
complete finite contributions, so that, e.g., CPQAPrI £
CPQA. But they are the only parts we need in order to
calculate the difference CPRAR — RCPQB,

With this background in place, we now explain, in turn,
the calculation of CPQAProj  (CPQBproj  and CPQB - from
which we obtain CPQA, We then explain why the results
for operators Q§°™, Q§°, and QS from Ref. [7] are not
impacted by the considerations of this appendix.

1. Projection parts in PQA basis

For the PQA calculation, it is simplest to make a small
further change in the basis from our canonical PQA basis
(which we repeat for convenience)

OFOR = (QF0 QP2 0F2. 072}, (A1)
to
p p
{Qz IA» 231, 33/47 Q3 11 (A2)
where we recall that
Q;%:Q]IlinlA (j=2.3). (A3)

We use the same definition of evanescent operators in the
PQ and PQA bases, so the two bases are exactly related by
a linear transformation, namely
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OEQA == kaOPQ, (A4)
with
1 1 0 O
0 0 1
V= . (A5)
-11 0 0
0 0 -1 1

Thus if we calculate CPQ from

(O = (OO + = [ R108(2/u) + CEI(OF©
(A6)
then
CPoA — y Py~ (A7)
and
CPQA.proj — VcPQ.projv—l’ ( A8)

where CPQP™i s the finite part of the matrix element in the
PQ basis arising from projections.

We now sketch the calculation of CPQPi, We illustrate
the method by Working in detail through the example of
matching for O} = 05%, = 2[5¢Ld3][s5Ld"?). We use the
terminology that the “Dirac structure” of this operator
isL-L.

There are three types of one-loop diagrams, shown in
Fig. 1. The Xa diagrams are those in which the gluon
connects external quark and antiquark propagators which
are attached to the same bilinear. The flavor of the bilinears
depends on the operator under consideration. For Q;?A and
Q3 74 [Eq. (24)], the bilinears have flavors 5,d, and 5,d,,
while for Q2 j; and Q3 7; [defined in Egs. (21) and (23)]

they have flavors 5,d; and 5,d,. For Qg_?A, Xa diagrams
have Dirac structure

y(lYﬁL},ﬁy(l L= 16(1 - E)L : L’ (Ag)
where the y,’s come from vertices of the Feynman gauge
gluon propagator, while the yj’s arise from the fermion
propagators after loop integration has contracted their
indices. The right-hand side of (A9) is the result after
performing D-dimensional Dirac algebra. In this case, the
resulting operator has the same Dirac structure as the
original operator for all D, so no projection is required.
The loop integral gives rise to a 1/€ pole, and the desired
finite part is obtained from combining this with the factor of
e multiplying the operator. Taking into account the loop
integral, and the fact that there are two Xa diagrams, each
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>

(a) Xa

X

(b) Xb

P

(c) Xc

FIG. 1. Classes of one-loop diagrams, with labeling as in
Ref. [23]. Each filled circle represents one of the two bilinears
composing the four-fermion operator. For each diagram shown,
there is a second one (not shown) in which the gluon connects the
other two fermion propagators.

giving an identical contribution, one finds the rule that the
desired finite part is obtained by multiplying the € term in
the Dirac structure by 1/(2¢) [leading to —16¢/(2¢) = —8],
as well as by the color factor. In the present case, the gluon
loop simply gives back the original color structure with an
overall factor of C. = 4/3. In total, then, the Xa diagrams
give a contribution of —32/3 to the diagonal element C]f?.

In the Xb diagrams the gluon connects a quark attached
to one bilinear to the antiquark attached to the other. Thus,
for Q;?A, the Dirac structure is

PHYSICAL REVIEW D 90, 014504 (2014)

FIZQ = yaY/}L : Ly/ﬁ/a' (AIO)
In four dimensions one can use Fierz transformations to
manipulate this structure into a linear combination of L - L
and oL - oL (the latter being a shorthand for the Dirac
structure of Qg"m). For D # 4 such manipulations intro-
duce additional operators. The contribution of these evan-
escent operators, which multiplies the 1/¢ pole, is then
subtracted by counterterms. What remains after this sub-
traction depends on the choice of evanescent operators.
This choice of scheme can be encapsulated into rules for
projecting Dirac structures such as FIZQ onto the operators
in the PQ basis. We use the rules for the scheme of Ref. [9],
which are conveniently collected in Appendix B of
Ref. [18]. In the present example, we need Eq. (45c)
from the latter work, according to which one makes the
replacement

e - (4—2€)L-L—oL-oL. (A11)
The desired finite part is thus
—2eL - L
R S (A12)
2e

multiplied by the color factor. The color factor is simple to
work out but will not be needed.

Finally, we turn to the Xc diagrams, in which the gluon
connects a quark to a quark or an antiquark to an antiquark.
Here the Dirac structure is
e = Ya¥pL - Vavpl — (4 —=2€)L - L + oL -cL, (Al3)
where in the second step we have used the projection of
Eq. (45b) of Ref. [18]. The Xc diagrams come with an
additional minus sign, so the desired finite part is obtained
by multiplying the ¢ term in Eq. (A13) by —1/(2¢). The
result is

—2¢L - L B

L-L,
—2e +

(A14)

multiplied by the same color factor as for the Xb diagrams.
Thus the contributions from the Xb and Xc diagrams
cancel.

The overall result is that we know the first row of
CPQ.pr0j7

PPl — (_32/3 0 0 0). (A15)
The calculation for the operator (92PQ = ];31 =

2[59Ld¢][s5Ld5)] is identical. This is because the regulari-
zation is defined relative to the contractions of external
fields to the bilinears in the operator at hand, irrespective of
its particular flavor structure. Since the Dirac and color

014504-14



TOOLKIT FOR STAGGERED AS = 2 MATRIX ELEMENTS

structure of Q;% are the same as that of sz,%v the results
for the two operators are in one-to-one correspondence.
The only change is that d; and d, are interchanged. The

upshot is that the only nonzero entry is Che ™™™ = —32/3,
so the second row of CPQP™ g
ChOPl — (0 —32/3 0 0) (A16)
*%n = .
We now turn to the tensor operator OPQ E?A =

2[50LdS][556Ld%]. Here we are keeping the indices on
0, implicit. The Xa diagrams lead to

Ya¥poLysyy - oL (A17)

which vanishes through O(e). Thus there is no finite
contribution from these diagrams. For the Xb and Xc
diagrams we need [using Egs. (46¢) and (46b) of Ref. [18],
respectively]

(—48+80¢)L - L+ (12—14¢)oL -oL
(A18)

Ya¥poL -oLygy, —

and

Ya¥pOL - yayPoL — (48 — 80¢)L - L + (12 — 6¢)oL - oL.
(A19)

Both types of the diagram come with the same color factor,
and so can be combined. The total finite part is thus
(remembering the relative minus sign for the Xc diagrams)

80L - L — 4oL - oL. (A20)

The diagonal color factor is —1/6, leading to the results
CHP™ — _80/6 and Chg™™ = 4/6.

There is also an off- dlagonal color factor of 1/2. This
gives rise to the combination

40 x 2[s¢Ld5][S5Ld{] — 2 x 2[s{oLd5][sheLdd]. (A21)
Neither of these two operators is in the PQ basis (nor, for
that matter, in either of the PQA or PQB bases). To express
this combination in the PQ basis one must do a Fierz
transform, which now can be done setting D = 4 since the
matrix elements have been renormalized,’

1 PQ 1 PQ

—a b1 a1 D=4
z[ledg][sngl] = ) 2.11+§ 3110 (A22)

"At O(e), this Fierz transformation introduces further evan-
escent operators (which are included in the list in Appendix A of
Ref. [9]). These must be kept in the calculation of two-loop
anomalous dimensions.
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Z[E?ULd ][szoLd“] = 6Q2 it Q3 - (A23)
Thus the combination in (A21) becomes
_32Q2 ut 4Q% Nig (A24)

Combining the above we find the third row of CP2P™ to be

PQ.proj
&h

= (—-40/3 =32 2/34). (A25)

The calculation for the fourth row is identical to the third
aside from interchanging the roles of the two contractions,
and leads to

ChOPOl — (32 —40/3 4 2/3). (A26)

We can now change to the PQA basis, and find

CPQA.proj — VcPQ,proj V—l

-32 0 0 0
1| -136 14 o0
3 o o -32

0 0 56 -10

(A27)

In fact, we need only the first two rows, but display the full
matrix for completeness and to allow checking.

2. Projection parts in PQB basis

We recall that we use the NDR’ scheme of Ref. [10] in
the PQB basis. In this scheme, one uses, by definition,
D = 4 Fierz transforms to bring Xb and Xc diagrams into
the form of bilinear corrections. For the Xc diagrams one
also needs to charge conjugate one of the bilinears. This
procedure allows one to separate the Dirac and color parts
of the calculation. We note that this scheme is defined only
at one-loop order, but this is not a problem, both because
we are working at one loop, and, more importantly, because
we are using this scheme only as an intermediate calcula-
tional device.

We recall that the operators in the PQB basis are

OF® = Q89 =2[s(Lat)[s5Ldg).  (A28)
O8® = Q89 = 2[s¢Ldi|[S4Ld5].  (A29)
0L = 059 = 2[5, Ld})[$0,, Ld3),  (A30)
OPQB = Q3 = 2[5_1a0,deﬂ[S_zbO'pDLdg]‘ (A31)

The Dirac structure of these four operators are the same as
those in the PQA basis. The differences between bases are
in the flavor indices (which has no impact since projections
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are defined relative to type of contractions) and in the color
indices (which does impact the color factors).

The Xa diagrams give exactly the same finite contribu-
tions as in the PQ basis, i.e., a factor of —8 for L - L and 0
for oL - oL.

For the Xb diagrams one must Fierz transform, calculate
the finite part, and then Fierz transform back. This proceeds
as follows

. 1 1
L-LE% 1. L 4+-6L-6L
2 8
1 i 1
“FAL LTS 2L L gelool  (AR)
and
Fierz 1
oL-oL—=6L L+ oL oL
P 8L L2041 L — 6oL oL, (A33)

For the Xc diagrams there are charge conjugation steps at
the beginning and end, which flip the sign of 6L - 6L while
leaving L - L unchanged. Taking this into account, and
including the extra sign from the Xc loop, one finds

c 1
L~LL2L~L+§GL~0L, (A34)
oL oL =5 24L - L + 6oL - oL. (A35)

Combining these results with the color factors, we find
CPQB proj _ <—8 O) ® (—1/6 1/2)
0 O 0 4/3
-2 1/2 4/3 0
(o Ze)e (e o)
24 -6 1/2 -1/6

2 12 -1/6 1/2
+<24 6>®<1/2 —1/6)

-5/3 -3 7/12 1/4
0 -32/3 1/2 -1/6
= /31 /o] (A36)
2 12 -9 3
24 -8 0 0

In the tensor products the first matrix acts on the Q,, 05
indices while the second matrix acts on the I, I] indices.
Combining this result with (A27), we find

CPQA _ RCPQBR-I

— CPQA,proj _ RcPQB.projR—l (A37)
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-3 -1/12 0 0
-76/3 5/3 0 0
= / / . (A38)
0 0 3 5/12

0 0 44/3 -1/3

3. Finite part in PQB basis

The final ingredient we need is the full finite part for the
PQB-basis operators in the NDR’ scheme. The calculation
proceeds essentially as in the previous subsection, except
that now we use the full finite parts for bilinears in the NDR
scheme, which can be taken, e.g., from Ref. [23]. The
method is explained in more detail in Ref. [8]. The result is

(25 0 -1/6 1/2
CPQB_(O 2c7)®( 0 4/3)
(cs+3cr)/2 (cr—cs)/8 4/3 0
+< 6(cr—cs) (3c5+cT>/2>®<1/2 —1/6)
—(cs+3cr)/2  (cr—cs)/8
+< 6(cr—cs) _(3CS+CT>/2>

-1/6 1/2
o )
1/2 —-1/6
with cg = 2.5 and ¢y = 0.5. Numerically, the result takes
its simplest form after a similarity transform with R,

(A39)

31/6 —1/24 0 0
10 —1/6 0 0
RCPBR-1 — / (A40)
0 0 49/6 5/24
0 0 -2 17/6
4. Final result for C?QA
Combining Egs. (A38) and (A40) we find
13/6  —1/8 0 0
—46/3 3/2 0 0
CPQA — / / (A41)
0 0 67/6 5/8
0 0 38/3 5/2

Multiplying from the right by RS leads to the results quoted
in Tables I and IL

5. Other operators

We have claimed above that the results given in Ref. [7]
for the matching of operators lczn; are correct, although
the matching was not done completely correctly. Here we
substantiate this claim.

We begin by discussing the By operator, Q" [see
Eq. (2)], for which the analysis is simplest. First we match
this operator into PQQCD, as in Sec. III B in the main text.

There is an exact matching of matrix elements with those of
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T =013 + 075, (A42)
0%, = 2[5¢y,LdS)[s5y,Ld3). (A43)
O'S, = 2[59y,Lds)[s5y,Ld?). (A44)

This forms the one-dimensional PQA basis in this case. In
Refs. [7,10,11] it was implicitly assumed that matrix
elements of this operator are equal at one-loop order to
those of the following operators in the PQB basis

1 = OV + 2[5y, L[5y, Lds). (A45)
as long as one uses the same NDR scheme for both
operators. In other words, it was assumed that D =4
Fierz transforms in PQQCD commute with the calculation
of one-loop corrections. This is not valid in general.
However, it is correct in this case, when using the projectors
of Ref. [9]. This we have checked by explicit calculation,
using the method of Sec. A 1.°

Given this result, the PQA-PQB matching can be
replaced by matching QI;QB regularized in the scheme of
Ref. [9] to the same operator in the NDR’ scheme. It was
this latter calculation that was done (correctly) in
Refs. [7,10,11].

The same result holds true for the operators fogm:
Fierzing in the PQ theory commutes with calculating the
finite correction at one loop (as long as one uses the same
NDR scheme). Specifically, these operators are exactly
matched in PQQCD to

W% = 2{[59Ld{][55RdE] + [5{LdS)[S5RdY)}.  (A46)

PO — 2([59y, Ld%[5%y,RdS] + [%y,LdS][s5y,Rd"]}.
(A47)

The claim is that, at one loop, these operators are matched
with no finite corrections to

1
1 =2A[5 L[5 R3]~ 5y, L][5r, R3]}, (A48)

s =2{[5¢y,Ld{][s5y,Rd5] - 2[5¢Ld?][s5Rd5]}. (A49)

as long as the regularization of Ref. [9] is used in both
cases. This was implicitly assumed in Refs. [7,10,11].
Because this assumption is correct, the matching calcu-
lations done in these works remain valid. We have double-
checked this by repeating the calculation from scratch.

$We stress that this PQA-PQB matching is different from that
just discussed for QS°™ and Q§°™. Here we are using the scheme
of Ref. [9] for both bases, while in Secs. A 1 and A 2 we use the
scheme of Ref. [9] in the PQA basis and the NDR’ scheme in the
PQB basis.
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This result does not hold, however, for Qggm. Fierzing

does not commute with one-loop correcting when using the
scheme of Ref. [9] in both PQA and PQB bases.”’

APPENDIX B: ANOMALOUS DIMENSIONS

We collect here the anomalous dimensions needed to
evolve the B parameters of Eq. (8) and the golden ratios
discussed in Sec. IV B. All anomalous dimensions are in
the NDR scheme, with those for the four-fermion operators
using the choices of evanescent operators given in Ref. [9].

The two-loop anomalous dimension matrices for Q53"
operators are calculated in Ref. [9]. (They are the same as
for the QF5" of that work, since the operators differ only by
an overall factor.) For N. = 3 and N, = 3, the results are

~10 1/6
)
- , BI
i (—40 34/3) (B1)
~1237/9 —37/36
=T som ) ®)
—4580/9  557/3

The eigenvalues for 7\ are 11.0161 and —9.68278.
For QE%“‘, the anomalous dimensions are the same as for
SR of Ref. [9]. Taking into account that our ordering of
the operators is opposite to that in Ref. [9], we have

~16 0
)
_ , B3
VLR (12 2) ( )
~1207/6 201 /4
)
- . B4
VLR < 154 49/3) (B4)

The eigenvalues of yéolg are —16 and 2.

The anomalous dimension of the pseudoscalar density
(which is the opposite of that of the quark mass) has
coefficients [24]

364
e

0 1
7 =8 rp =

(BS)
For the golden combinations, we also need the anomalous
dimension of the By operator Qlc"“t, which has coefficients
[25]

y 0 =4, y = —-17/3. (B6)
Finally, we can use these results in Eq. (75) to obtain the

two-loop anomalous dimensions of the B parameters
themselves. For B, ; we find

°To see this requires an additional calculation from that
presented above, since the difference quoted above is due both
to the basis change and the change in NDR scheme.
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6 2/5
(0)
= , B7
YBLL <_50/3 82/3) (B7)
947/9 -37/15
= (aer o) (B9
—5725/27 1285/3
while the results for By 5 are
0 0
0
= s 1s): (89)
83/2 —67/2
(1)
g . BlO
YBLR (_231 259 ) ( )

APPENDIX C: NUMERICAL RESULTS FOR
EVOLUTION KERNELS

In our numerical simulations we require the evolution
kernels to run the B parameters we evaluate at the lattice
scales, 1/a, to a canonical scale. We use MILC
Collaboration asqtad ensembles [26] having four nominal
lattice spacings. These are labeled C, F, S, and U for
coarse, fine, superfine, and ultrafine, respectively. Strictly
speaking, the lattice spacings vary slightly within the coarse
ensembles, and similarly for the fine and superfine ensem-
bles. Here we choose a representative ensemble at each
nominal lattice spacing. These are, in the notation of
Ref. [3], the C3, F1, S1, and Ul ensembles, all of which
have sea quarks in the ratio m,/m; = 1/5. In our numerical
work, we evaluate the kernels using the appropriate lattice
spacing for each ensemble.

The inverse lattice spacings and corresponding coupling
constants are

az! = 1.657x GeV,  a(az')=03291, (Cl)
a7l =2342x GeV,  a(az!) =02734, (C2)
s1=3353x GeV,  a(a5') =02340, (C3)
aj! =4504x GeV,  a(ap) =0.2098.  (C4)

These lattice spacings are obtained from the results for the
mass-dependent r; /a and using r; = 0.3117 x fm [26,27].
The coupling constants are in the MS scheme, and are
obtained using four-loop running as described in Sec. IV A.

We take the canonical final scale to be either 2 GeV,
the traditional value, or 3 GeV, which is used, for example,
in Ref. [1]. The values of a at these scales are given in
Sec. IVA. We calculate the evolution kernel assuming
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TABLE V. Results for evolution kernel for Bg, Wy (us, p;).
Note that this is the same as the kernel for the operator Q°m.

Hi Wi (2x GeV, ;) Wi (3 x GeV, ;)
azl 0.982 0.948
e 1.014 0.980
a! 1.044 1.008
aal 1.065 1.030

TABLE VL. Evolution matrices, W}, (uf, p;), for B parameters
of LL operators {B,, B3 }.

Hi WEL (2 GeV. ) WEL (3 x GeV, ;)
4 0.956 —0.001 0.885 —0.003
¢ 0.100  0.822 0.224 0.584
- 1.033  0.001 0.956 —0.002
ar -0.090 1.154 0.101  0.821
4! 1.100  0.005 1.018  0.001
s -0.316 1.522 —0.048 1.083
1.063  0.003
ay! 1.147  0.008 (—O 186 1 310)
—-0.519 1.840 ’ ’

TABLE VII.  Evolution matrices, W%y (5. u;), for B parameters
of LR operators {B,, Bs}.

Hi Wir(2x GeV.p;) Wir(3 x GeV. ;)
. 0.994 0.005 0.986 0.011
dc 0.114 0.882 0.281 0.710
o 1.004  —0.004 0.995 0.004
F —-0.094  1.097 0.116 0.881
o 1.013  —0.011 1.002  —0.002
s -0.304 1312 —-0.051 1.053
1.007  —0.006
ag! 1.019  -0.016 (_0186 1191)
—0473  1.485 ' '

N, = 3, although some of our scales are higher than the
charm mass. This is appropriate because our simulations
have N, =2 + 1 flavors of dynamical quarks.

Results for the evolution kernel for the B parameters, i.e.
W5 (ug, u;) of Eq. (74), are given in Tables V, VI, and VIL
These are obtained using numerical integration of the
two-loop RG equations, using the method described in
Sec. IVA. The elements of these kernels agree within
~0.01 with those obtained using the analytic expressions
described in Sec. IVA, and to within ~0.02 with those
obtained using two-loop running for a.
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