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A recent numerical lattice calculation of the kaon mixing matrix elements of general ΔS ¼ 2 four-
fermion operators using staggered fermions relied on two auxiliary theoretical calculations. Here we
describe the methodology and present the results of these two calculations. The first concerns one-loop
matching coefficients between staggered lattice operators and the corresponding continuum operators.
Previous calculations with staggered fermions have used a nonstandard regularization scheme for the
continuum operators, and here we provide the additional matching factors needed to connect to the standard
regularization scheme. This is the scheme in which two-loop anomalous dimensions are known. We also
observe that all previous calculations of this operator matching using staggered fermions have overlooked
one matching step in the continuum. This extra step turns out to have no impact on three of the five operators
(including that relevant for BK), but it does affect the other two operators. The second auxiliary calculation
concerns the two-loop renormalization group (RG) evolution equations for the B parameters of the ΔS ¼ 2

operators. For one pair of operators, the standard analytic solution to the two-loopRG equations fails due to a
spurious singularity introduced by the approximations made in the calculation. We give a nonsingular
expression derived using analytic continuation and check the result using a numerical solution to the RG
equations.We also describe the RG evolution for “golden” combinations ofB parameters and give numerical
results for RG evolution matrices needed in the companion lattice calculation.
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I. OVERVIEW

There have been several recent lattice calculations of the
kaon mixing matrix elements of all ΔS ¼ 2 operators
appearing in a general theory of physics beyond the
standard model (BSM) [1–6]. These matrix elements are
needed in order to use the experimental results for εK and
ΔMK to constrain the parameters of models of new physics.
As members of the SWME Collaboration, we have been
involved in a calculation using improved staggered fer-
mions, which recently presented results in Refs. [3,5].
These results relied on two auxiliary theoretical calcula-
tions, and the purpose of this paper is to present the details
and results of these calculations.
The first auxiliary calculation concerns the matching

between the continuum operators whose matrix elements
we desire and the lattice operators whose matrix elements
we calculate. We use one-loop perturbative matching.
The requisite one-loop calculations have been done in
Ref. [7], but only using a nonstandard continuum scheme
for defining four-fermion operators. This scheme, intro-
duced in Ref. [8], has attractive properties under Fierz

transformations, but has not been adopted in the con-
tinuum literature. Instead, the standard continuum scheme
is that used in Ref. [9] to calculate the two-loop
anomalous dimensions for the complete set of ΔS ¼ 2
operators. This scheme differs from that of Ref. [8] in
the choice of evanescent operators. Since we need the
two-loop anomalous dimensions in order to evolve lattice
results to a common scale, it is necessary to match
the lattice operators to the standard continuum scheme.
Thus we have augmented the results of Ref. [7] by calculat-
ing the matching factor between the two continuum
schemes.
Undertaking this relatively straightforward task, we have

uncovered a conceptual error in previous staggered per-
turbative matching calculations for four-fermion operators
[7,10,11]. It turns out that the matching factors obtained in
these works connect the lattice operators to continuum
operators which are nonstandard not only because of the
choice of scheme just described, but also because of an
additional finite correction. Technically, this arises because
an additional continuum-to-continuum matching step is
required. In general this leads to a correction beginning at
one-loop order. Since this point is of more general interest
for applications using staggered fermions, we explain it in
some detail.
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It turns out that the additional matching corrections
vanish for three of the five operators which arise in a
general BSM theory. In particular, previous results for the
standard-model BK operator are unaffected. We also stress
that the results for all five operators presented in Refs. [3,5]
do include the correct matching factors.
The second auxiliary calculation concerns the renorm-

alization group (RG) running in the continuum. Our lattice
calculation needs RG evolution to convert results obtained
at the lattice scale 1=a to a standard scale such as 2 GeV.
Although this might appear to be a standard calculation,
there are two complications which arise. First, the standard
expressions for two-loop running break down for one pair
of operators, due to a spurious singularity. In this case one
can either use the analytic continuation method of Ref. [12]
or simply solve the RG equations numerically. We have
compared these approaches and present numerical results
for the evolution matrices. The second complication is
that, in our lattice calculation, we make use of particular
“golden” ratios or products of B parameters which are
chosen to have simpler chiral extrapolations [13,14]. Here
we present the formulas for RG evolution of these
combinations.
A further reason for presenting our RG running factors

is that there is some disagreement between the results
for BSM matrix elements of our work and those of
Refs. [1,2,4,6]. Thus it is useful to present the technical
details of our work so as to facilitate a more thorough
comparison.
This paper is organized as follows. In Sec. II, we recall

the relevantΔS ¼ 2 operators and define the corresponding
B parameters. The method for calculating the one-loop
matching factors is described in Sec. III, and final results
are presented. The issues arising in RG evolution are
described in Sec. IV. We include three appendices.
Appendix A provides the technical details of the calculation
of the matching factors, Appendix B collects results for
anomalous dimensions, and Appendix C gives numerical
results for evolution kernels.

II. CONTINUUM ΔS ¼ 2 OPERATORS
AND B PARAMETERS

The ΔS ¼ 2 effective Hamiltonian has the general form

HΔS¼2
eff ¼

X
i

CiðμÞQiðμÞ; ð1Þ

where the Qi form a basis of ΔS ¼ 2 four-fermion
operators, and the Ci are Wilson coefficients. This form
holds both in the standard model (SM) and in a general
BSM theory, and arises after heavy particles are integrated
out. Contributions from operators of higher dimension are
neglected. Both Ci and Qi depend on the renormalization
scale μ, as is displayed explicitly. They also have an
implicit dependence on the regularization scheme used

to define the operators. This could be either a continuum
scheme or some form of lattice regularization. The scheme
and scale dependence cancels in Heff , and using this one
can determine how the Ci depend on the scheme and on μ.
Determining the relationship between the Ci in different
schemes and at different scales is the focus of this paper.
We first consider the form of the operators that appear in

continuum regularization. These will be given a superscript
“Cont.” In the SM, the left-handed couplings of theW boson
imply that only a single operator has a nonvanishingWilson
coefficient, namely that with “left-left” spin structure,

QCont
1 ≡QCont

K ¼ ½s̄aγμLda�½s̄bγμLdb�: ð2Þ

Here L ¼ ð1 − γ5Þ, a and b are color indices, and repeated
indices are summed. We work in Euclidean space through-
out. In a general BSM theory, four other operators appear in
addition to Eq. (2). These can be chosen to be

QCont
2 ¼ ½s̄aLda�½s̄bLdb�; ð3Þ

QCont
3 ¼ ½s̄aσμνLda�½s̄bσμνLdb�; ð4Þ

QCont
4 ¼ ½s̄aLda�½s̄bRdb�; ð5Þ

QCont
5 ¼ ½s̄aγμLda�½s̄bγμRdb�; ð6Þ

whereR ¼ ð1þ γ5Þ and σμν ¼ ½γμ; γν�=2. This is essentially
the basis given in Ref. [9], which we call the “Dirac basis.”1

A complete definition also requires a choice of basis for the
evanescent operators, i.e. those which appear when one
extends from 4 to D ¼ 4 − 2ϵ dimensions. We use the
choice of Ref. [9]. This is the scheme in which the two-loop
anomalous dimensions have been calculated.
The list of operators given above is, in fact, incomplete.

Three more operators can appear—those obtained from
QCont

1;2;3 by interchanging L and R. We do not consider these
operators separately because we are ultimately interested in
the positive parity parts of all operators, which are the same
for both left- and right-handed operators. Only the positive
parity parts contribute to the K0 − K̄0 mixing matrix
elements. Furthermore, the matching of the right-handed
operators to the corresponding lattice operators involves
identical coefficients as for the left-handed operators, and
the RG running is also identical.
It is useful in lattice calculations to determine dimen-

sionless B parameters rather than matrix elements. For the
Dirac basis operators, these are

1Specifically, our operators are related to those of Ref. [9] by
QCont

2;3 ¼ 4QSLL
1;2 and QCont

4;5 ¼ 4QLR
2;1. The factor of four arises

because we use ð1� γ5Þ instead of ð1� γ5Þ=2 in order to
simplify some subsequent results. This factor cancels in suitably
defined B parameters and in anomalous dimensions. We have
also reordered the “LR” operators.
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B1 ¼ BK ¼ hK̄0jQCont
i jK0i

N1hK̄0js̄γμγ5dj0ih0js̄γμγ5djK0i ; ð7Þ

Bi ¼
hK̄0jQCont

i jK0i
NihK̄0js̄γ5dj0ih0js̄γ5djK0i for i ¼ 2; 3; 4; 5; ð8Þ

where Nj ¼ f8
3
; 5
3
; 4;−2; 4

3
g for j ¼ 1; 2; 3; 4; 5, respec-

tively. The denominators are obtained using the vacuum
insertion approximation though only keeping the leading
terms in the SU(3) chiral limit. We stress that these B
parameters are simply useful intermediate quantities, with
their precise definition being immaterial as long as one uses
the same definition throughout.
An alternative to the Dirac basis is the “SUSY basis” of

Ref. [15],

OCont
1 ¼ QCont

1 ; ð9Þ

OCont
2 ¼ QCont

2 ; ð10Þ

OCont
3 ¼ ½s̄aLdb�½s̄bLda�; ð11Þ

OCont
4 ¼ QCont

4 ; ð12Þ

OCont
5 ¼ ½s̄aLdb�½s̄bRda�: ð13Þ

This has been used, for example, in the lattice calculations
of Refs. [1,2,4,6]. The corresponding B parameters are
defined as in Eqs. (7) and (8), except with N3 ¼ −1=3 and
N5 ¼ −2=3. In four dimensions one can relate the two
bases using Fierz transformations, while in D ≠ 4 dimen-
sions the relation involves additional evanescent operators,

QCont
3 ¼ 4OCont

2 þ 8OCont
3 þ evanescent; ð14Þ

Qcont
5 ¼ −2OCont

5 þ evanescent: ð15Þ

A key point, however, is that the way the SUSY basis
operators are defined in Refs. [1,2,4,6] is by using the four-
dimensional Fierz transform to relate them to the Dirac
basis. It is in the latter basis that the evanescent operators
are defined and in which RG running is done. This means
that the B parameters in the two bases can be related simply
using the D ¼ 4 results. In particular, BSUSY

i ¼ Bi for
i ¼ 1, 2, 4, and 5, while

BSUSY
3 ¼ −

3

2
B3 þ

5

2
B2: ð16Þ

The latter result follows from the D ¼ 4 relation

OSUSY
3 ¼ Q3 − 4Q2

8
; ð17Þ

obtained by inverting Eq. (14) in D ¼ 4.

III. ONE-LOOP MATCHING

As noted in the Introduction, one-loop matching
calculations with staggered fermions [7,10,11] use
different continuum operators than those discussed
in the previous section. The difference is twofold:
the use of a different basis of evanescent operators and
a missing matching step. In this section we describe
how to change the previous calculations in order to
match to the desired continuum operators. The key is
to understand the impact of the extra tastes that come
with staggered fermions.
It turns out that the just-mentioned differences in

continuum operators have no impact on the one-loop
matching factors for the continuum operators QCont

1 ,
QCont

4 , and QCont
5 . Thus the matching factors for these

operators obtained in Ref. [7] are correct. Why this is
the case will become clear only when the analysis is
complete. Given this result, we couch our discussion
in terms of the operators QCont

2 and QCont
3 , for which

the differences do lead to changes in the matching
factors.

A. Staggered complications

In a lattice calculation with staggered fermions, one
must deal with the fact that each lattice field yields four
degenerate tastes in the continuum limit. For sea quarks this
is done by taking the fourth root of the fermion determi-
nant. This prescription is not controversial in perturbation
theory, where it is implemented by dividing each quark
loop by a factor of 4. In fact, for the matching factors we
consider, quark loops do not enter until two-loop order so
we will not need this prescription for our one-loop
calculation.
For the valence quarks, on the other hand, one must

account for the fact that the lattice theory has more degrees
of freedom than QCD. This means that, even in the
continuum limit (where taste symmetry is restored), the
lattice theory is different from QCD. In particular, it is
necessarily a partially quenched (PQ) theory. Although
“rooting” ensures that the β function agrees with that of
QCD, the matching of operators, where rooting is not an
option, is more complicated.
To understand this in more detail, consider the matrix

element of QCont
2 [Eq. (3)] between an external kaon and

antikaon in QCD. Both particles are destroyed/created
by a local, color-singlet operator of the form d̄aγ5sa.
The matrix element involves two types of Wick con-
tractions, one in which the fields in the external
operator are both contracted with the s̄ and d in a
single bilinear, and the other in which the external
fields are contracted with an s̄ from one bilinear and a d
from the other. In the first type of contraction the color
indices form two loops, while in the second they form a
single loop. Thus we refer to them, respectively, as
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“two color-loop” and “one color-loop” contractions.2

At tree level, where one can work in four dimensions,
the one color-loop contraction can be rewritten by
doing a Fierz transformation on the operator,

QCont
2 ¼D¼4 −

1

2
½s̄aLdb�½s̄bLda�

þ 1

8
½s̄aσμνLdb�½s̄bσμνLda�: ð18Þ

In this form, the one color-loop contraction now has the
fields in each external operator contracted with those in
a single bilinear. Note that the Fierz-transformed forms
involve the same Dirac structures as in QCont

2;3 , but with
color indices contracted differently.
We next consider the analogous operators in the con-

tinuum limit of the staggered theory. In this theory we have
fields S and D, where uppercase is used to indicate that
there are four tastes of each of the valence quarks, so that S
and D are vectors with an implicit taste index. A possible
choice of operator to match with QCont

2 is then

½S̄aðL ⊗ ξ5ÞDa�½S̄bðL ⊗ ξ5ÞDb�: ð19Þ

Here the second matrix in each tensor product indicates the
taste matrix. We have chosen the bilinears to have
“Goldstone” taste, since that is what is done in actual
lattice calculations, but we stress that the problem we are
about to explain occurs for any choice of taste. If we now
take the matrix element of this operator between a kaon
destroyed by D̄γ5 ⊗ ξ5S and an antikaon created by an
operator of the same form, there will again be two types of
Wick contraction. At tree level, the two color-loop con-
traction will be the same as that for QCont

2 in QCD,
aside from an overall taste factor of N2

T , where NT ¼ 4.
(This arises because there are two “taste loops,” in each of
which all four tastes can flow.) To evaluate the one color-
loop contraction at tree level we can Fierz transform the
operator so that the contraction involves two taste loops.
This now requires simultaneous Fierz transformations on
Dirac and taste indices. The former transform as in Eq. (18),
while the taste transformation is

ξ5 · ξ5 →
X
F

trðξ5ξFξ5ξFÞ
N2

T
ξF · ξF; ð20Þ

with F being summed over all 16 tastes. Upon contraction
with the external kaons of taste ξ5, only the F ¼ 5 term
contributes. This comes with a “Fierz factor” of tr1=N2

T ¼
1=NT as well as the overall factor of N2

T . Thus the one
color-loop contraction at tree level is the same as that for
QCont

2 in QCD, aside from a taste factor of NT . We now can
see the key problem: the two types of contraction come
with different taste factors compared to the QCD operator.
Thus, even with an overall rescaling, the entire matrix
elements cannot match. This is the inevitable consequence
of the presence of the additional tastes.
This problem has been recognized since the first calcu-

lation of matrix elements using staggered fermions [16],
and the solution adopted has been to match Wick con-
tractions rather than operators. This solution is explained in
Ref. [17], but, as noted above, is incomplete. In the next
few subsections we give the complete description, which
involves a sequence of four matching steps.

B. First matching step: QCD to PQQCD

In the first step we match from QCD to a partially
quenched extension of QCD in which there are two
degenerate valence strange quarks, s1 and s2, and two
degenerate valence down quarks, d1 and d2. The sea-quark
composition is the same as in QCD, and we consider this
theory only in the continuum. In this paper we refer to this
specific theory as PQQCD. At this stage there is no taste
degree of freedom, so this is not the continuum limit of a
staggered lattice theory. We regulate this theory using
dimensional regularization, using an Naive Dimensional
Regularization (NDR) scheme in which evanescent oper-
ators are generalized from QCD to the PQ theory in the
simplest way (as discussed below). The reason for intro-
ducing this theory is that it allows us to separate the two
types of Wick contraction without needing to deal with the
complications arising from the additional tastes.
Consider the matrix element in PQQCD of

QPQ
2;II ¼ 2½s̄a1Lda1�½s̄b2Ldb2� ð21Þ

between a K0
1 created by d̄1γ5s1 and a K̄0

2 destroyed by
d̄2γ5s2. This matrix element is identical, diagram by
diagram in PT, to the two color-loop Wick contractions
of QCont

2 between an external kaon and antikaon in QCD.
The factor of 2 in Eq. (21) is needed because, in QCD, each
external operator can be contracted with either bilinear,
while in PQQCD this is not possible. Because the matching
is with the two color-loop contraction in QCD, we label
QPQ

2;II with the additional subscript II.
This diagram by diagram equality in fact holds

much more generally. If one uses the external fields
d̄aαðp1Þsbβðp2Þd̄cγðp3Þsdδðp4Þ in QCD (with α − δ Dirac
indices), and keeps only the contractions in which the
fields with momenta p1 and p2 are connected to the same

2This classification into two types of contraction holds also in
perturbation theory (PT), although the description in terms of color
loops is less appropriate. This is because, in PT, one uses external
quark fields with uncontracted Dirac and color indices and having
definite momentum rather than pseudoscalar, color-singlet kaon
operators. Specifically, one uses d̄aαðp1Þsbβðp2Þd̄cγðp3Þsdγ ðp4Þ in
QCD. One can, however, still group the fields into two d̄s pairs in
an unambiguous (although arbitrary) way using the external
indices and/or momenta as labels, and then define one and two
color-loop contractions relative to those pairings.
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bilinear (so that the fields with momenta p3 and p4 are
connected to the other bilinear), then the matrix element
agrees exactly with that in PQQCD with external fields
d̄a1;αðp1Þsb1;βðp2Þd̄c2;γðp3Þsd2;γðp4Þ. This holds for all values
of the external Dirac and color indices, and for all choices
of the momenta pi.
In a similar way, the one color-loop contractions ofQCont

2

in QCD matches exactly to the PQQCD matrix element of

QPQ
2;IA ¼ 2½s̄a1Lda2�½s̄b2Ldb1�: ð22Þ

Here, the subscript “I” indicates matching with a one color-
loop contraction, while “A” distinguishes the operator from
a similar one introduced below. Note that this operator
differs fromQPQ

2;II only by the interchange d1 ↔ d2 between
the bilinears, while keeping each bilinear a color singlet.
In particular, no Fierz transformation has been done on
QCont

2 , so that the exact matching holds for D ¼ 4 − 2ϵ.
Repeating this exercise for QCont

3 one finds that the PQ
operator corresponding to its two and one color-loop
contractions are, respectively,

QPQ
3;II ¼ 2½s̄a1σμνLda1�½s̄b2σμνLdb2�; ð23Þ

QPQ
3;IA ¼ 2½s̄a1σμνLda2�½s̄b2σμνLdb1�: ð24Þ

To write a matching equation involving operators we
form the linear combinations

QPQ
j;� ¼ QPQ

j;II �QPQ
j;IA ðj ¼ 2; 3Þ: ð25Þ

Our claim is that, for matrix elements involving the external
operators described above, we have, to all orders in PT

QCont
j ≅ QPQ

j;þ ðj ¼ 2; 3Þ: ð26Þ

This is our first matching equation. The two operators on the
right-hand side are needed to obtain both Wick contractions
of the operator on the left-hand side. The symbol “≅”
indicates that this is not a true operator matching, but rather
that the matrix elements of the type described above agree
between the two theories. This is sufficient for our purposes
since these are the matrix elements of interest.
The difference operatorsQPQ

j;− in Eq. (25) do not play a role
in the matching toQCont

j . In fact, they are PQQCD operators
with no counterparts in the ΔS ¼ 2 sector of QCD. We will
use them, however, in the next stage of the calculation.
As already noted, when doing a perturbative calculation

of the matrix elements described above, one encounters
additional, evanescent operators which must be dealt with
in order to renormalize the matrix elements. These are local
operators with Dirac structures that vanish when D ¼ 4. In
order for the above-described exact matching to hold after
renormalization, evanescent operators must be treated in

the same way in both QCD and PQQCD. Doing so is, in
fact, completely straightforward, since the treatment in
QCD is already done contraction by contraction. Concrete
examples of this statement are given in the explicit
calculation of Appendix A.
We stress that, although the exact equality of matrix

elements described in this subsection is almost trivial, it is
nevertheless useful in order to set up the next, nontrivial,
stage of the matching. We also note that our argument is a
minor adaptation of that used in Ref. [9] to show how the
anomalous dimensions of ΔF ¼ 1 operators with flavor
s̄dūc can be related to those of ΔS ¼ 2 operators.

C. Second step: Basis change in PQQCD

At this stage we have succeeded in exactly converting the
desired QCD calculation into one in PQQCD. The next step
is to change the operator basis in PQQCD. Essentially, we
are doing a Fierz transform on the operators which match
with one color-loop contractions in QCD, but taking into
account the failure of Fierz transforms away from D ¼ 4.
This step is useful since the new basis in PQQCD matches
straightforwardly onto the lattice theory.
We collect the operators discussed in the previous

subsection into a vector,

OPQA
���! ¼ fQPQ

2;þ; Q
PQ
3;þ; Q

PQ
2;−; Q

PQ
3;−g: ð27Þ

We will change from this basis to

OPQB
���! ¼ fQPQ

2;I ; Q
PQ
2;II ; Q

PQ
3;I ; Q

PQ
3;IIg: ð28Þ

Here QPQ
2;II and QPQ

3;II are defined in Eqs. (21) and (23)
above, while

QPQ
2;I ≡OPQB

1 ¼ 2½s̄a1Ldb1�½s̄b2Lda2�; ð29Þ

QPQ
3;I ≡OPQB

3 ¼ 2½s̄1aσμνLdb1�½s̄2bσμνLda2�: ð30Þ

These are the two operators one obtains from QPQ
2;IA and

QPQ
3;IA by interchanging da2 and db1. For D ¼ 4 such an

interchange is brought about by a Fierz transformation,
which also affects the Dirac structure. Specifically, we have

QPQ
2;IA ¼D¼4 −

1

2
QPQ

2;I þ
1

8
QPQ

3;I ; ð31Þ

QPQ
3;IA ¼D¼4

6QPQ
2;I þ

1

2
QPQ

3;I ; ð32Þ

so that

OPQA
k ¼D¼4 RklO

PQB
l ; ð33Þ

with
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R ¼

0
BBBBB@

− 1
2

1 1
8

0

6 0 1
2

1

1
2

1 − 1
8

0

−6 0 − 1
2

1

1
CCCCCA: ð34Þ

This means that tree-level matrix elements with the external
fields described in the previous subsection will be related
by the same linear transformation

hOPQA
k ið0Þ ¼ RklhOPQB

l ið0Þ: ð35Þ

Here the superscript indicates the order in α.
This simple relation does not hold beyond tree level,

since the Fierz transforms (32) fail forD ¼ 4 − 2ϵ. This is a
standard situation in renormalization theory, explained
clearly, for example, in Ref. [9]. The basis must be
extended to include evanescent operators. At one-loop
order, all one needs, in fact, is a set of projectors which
pick out the components of the desired operators from
expressions in 4 − 2ϵ dimensions. The projectors for the
operators we consider have been given in Ref. [9], and are
conveniently summarized in Ref. [18]. The general result is
that one-loop anomalous dimensions are the same in the two
bases [once the linear transformation given in Eq. (33) is
taken into account], while finite parts of one-loop matrix
elements (and correspondingly two-loop anomalous dimen-
sions) can be different. This is thus an example of nontrivial
operator matching, although simplified because both sets of
operators are defined in the same theory.
To determine the one-loop matching between the bases

one calculates the one-loop matrix elements with the same
external fields and equates them. After renormalization,
these matrix elements take the forms

hOPQA
k ið1Þ ¼ ZPQA

kl hOPQA
l ið0Þ; ð36Þ

ZPQA
kl ¼ δkl þ

α

4π
½γPQkl logðλ=μÞ þ CPQA

kl �; ð37Þ

and

hOPQB
k ið1Þ ¼ ZPQB

kl hOPQB
l ið0Þ; ð38Þ

ZPQB
kl ¼ δkl þ

α

4π
½ðR−1γPQRÞkl logðλ=μÞ þ CPQB

kl �: ð39Þ

Here λ is an infrared cutoff (for which we use a gluon
mass), μ the renormalization scale, and γPQ the one-loop
anomalous dimension in the PQA basis. The factors of R−1

and R in the result for ZPQB are needed so that the one-loop
anomalous dimensions match once the linear transforma-
tion (33) is taken into account. CPQA and CPQB are the finite
parts of the one-loop result.

Equating hOPQA
k ið1Þ with RklhOPQ

l ið1Þ (a step that can be
done in D ¼ 4 since the matrix elements have been
renormalized), and using (35), one finds our second
matching equation

OPQA
k ≅

�
Rkl þ

α

4π
½ðCPQARÞkl − ðRCPQBÞkl�

�
OPQB

l :

ð40Þ
The precise meaning of this equation is that the one-loop
matrix elements of the operators on the two sides agree, as
long as one uses the same definitions of evanescent
operators as were used to determine the matrices CPQA

and CPQB. We still use the symbol ≅, although here the
theory is the same on both sides of the matching, because
we want to allow for the possibility of using a different
renormalization scheme for the two bases.
We calculate the difference matrix CPQAR − RCPQB in

Appendix A. It is convenient to use different definitions of
evanescent operators for the PQA and PQB bases. For the
former we use the definitions of Ref. [9], so that we are
ultimately matching to an operator basis in which we know
the two-loop anomalous dimensions. For the PQB basis,
however, we adopt the NDR0 scheme, which was intro-
duced in Ref. [10]. This is a convenient choice as it allows
us to piggyback on previous one-loop calculations. We
stress, however, that even if we use the definitions of
Ref. [9] in both bases, the one-loop matching would be
nontrivial.

D. Third step: PQQCD to continuum staggered theory

The next step is to match to the theory obtained in the
continuum limit of a staggered lattice theory, which we
refer to as the “SPQ” theory (with S for staggered). This
differs from PQQCD by the presence of additional tastes.
Specifically, this new theory has valence quarks Sj and Dj,
with j ¼ 1; 2, in addition to the (rooted) sea quarks. As
above, uppercase letters indicate the presence of four
tastes.3

The operators we consider in the SPQ theory are simple
generalizations of those in the PQB basis in PQQCD. They
are obtained by replacing lowercase fields with their
uppercase versions, and inserting the taste matrix ξ5. For
example,

QPQ
2;I ¼ 2½s̄a1Ldb1�½s̄b2Lda2�

→ 2½S̄a1ðL ⊗ ξ5ÞDb
1�½S̄b2ðL ⊗ ξ5ÞDa

2�: ð41Þ

In addition we will keep only the positive parity parts of the
operators, since these are the parts which contribute to the
K0 − K̄0 matrix elements in which we are ultimately

3The SPQ theory differs from the staggered theory discussed in
Sec. III A in which there was only one S and one D quark.
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interested. This has no impact on anomalous dimensions
or matching coefficients. In this way we arrive at the
basis

OSPQ
1 ¼ 2ð½S̄a1ð1 ⊗ ξ5ÞDb

1�½S̄b2ð1 ⊗ ξ5ÞDa
2�

þ ½S̄a1ðγ5 ⊗ ξ5ÞDb
1�½S̄b2ðγ5 ⊗ ξ5ÞDa

2�Þ; ð42Þ

OSPQ
2 ¼ 2ð½S̄a1ð1 ⊗ ξ5ÞDa

1�½S̄b2ð1 ⊗ ξ5ÞDb
2�

þ ½S̄a1ðγ5 ⊗ ξ5ÞDa
1�½S̄b2ðγ5 ⊗ ξ5ÞDb

2�Þ; ð43Þ

OSPQ
3 ¼ 4½S̄a1ðσμν ⊗ ξ5ÞDb

1�½S̄b2ðσμν ⊗ ξ5ÞDa
2�; ð44Þ

OSPQ
4 ¼ 4½S̄a1ðσμν ⊗ ξ5ÞDa

1�½S̄b2ðσμν ⊗ ξ5ÞDb
2�: ð45Þ

Note that for the “tensor” operators OSPQ
3;4 there is only one

term, since the operators differing by a factor of γ5 · γ5 are
identical, and can thus be combined. This changes the
overall factor from 2 to 4.
We now consider the matching between matrix elements

of the PQB basis operators in PQQCD and those of the
above-described operators in the SPQ theory. In PQQCD
we use the external operators d̄1γ5s1 and d̄2γ5s2, as already
discussed in Sec. III B. In the SPQ theory we use D̄1ðγ5 ⊗
ξ5ÞS1 and D̄2ðγ5 ⊗ ξ5ÞS2. Thus only positive parity oper-
ators contribute to the matrix elements. We now observe
that, at any order in PT, the diagrams contributing to the
matrix elements of OPQB

k in the PQ theory are identical to
those contributing to the corresponding matrix elements
of OSPQ

k in the SPQ theory, aside from the presence of the
taste matrices ξ5 · ξ5. Given the exact taste symmetry of the
SPQ theory, however, the extra taste factors lead only to an
overall factor of N2

T , which can be removed by hand. Thus,
as long as we use the analogous choices for evanescent
operators in the two theories,4 there is an exact matching of
matrix elements. We write this result as

OPQB
k ≅ OSPQ

k ; ð46Þ

where we are stretching the meaning of ≅ here to include
the provisos that taste factors are removed and only a
particular class of matrix elements is considered. We also
note that a consequence of this exact matching is that
anomalous dimensions agree to all orders.

E. Final step: Continuum to lattice staggered theory

The final matching step is between the SPQ theory and
the lattice theory using improved staggered fermions. This
is a conventional matching between the same theory
regularized in two different ways: dimensional regulariza-
tion, with operators defined in the NDR0 scheme for the
SPQ theory, and lattice regularization, for which no issues

of evanescent operators arise. For the operators we use in
our numerical calculation, the required one-loop matching
has been done in Ref. [7]. The only subtlety is that, due to
the breaking of taste symmetry by lattice regularization, the
basis of lattice operators which mix with one another is
much larger than that in the continuum theory. As in
Ref. [7], we show here only the mixing with operators
having the same taste as those in the SPQ theory, namely
ξ5 · ξ5. These are the operators used in present simulations.
Dropping operators with other tastes leads to an error
suppressed both by α and by a factor of m2

π=m2
K or

m2
π=ð4πfπÞ2 [14].
There are six lattice operators with taste ξ5 · ξ5 that enter,

and we collect these into a vector,

OLat
��! ¼ fOLat

S1 ;O
Lat
S2 ;O

Lat
P1 ;O

Lat
P2 ;O

Lat
T1 ;O

Lat
T2 g: ð47Þ

Here we are using the notation and definitions of Ref. [7].
The subscripts indicate, first, the nature of the Dirac
matrices (scalar, pseudoscalar, or tensor) and, second,
the color contraction (one or two color loops). We do
not repeat the details here. The difference from the basis
OSPQ of Eqs. (42)–(45) is that the parts of OSPQ

1;2 with Dirac
structures 1 · 1 and γ5 · γ5 have been separated in the lattice
operators. This is required because they renormalize
differently.
The tree-level relationship between the bases is

hOSPQ
k ið0Þ ¼ 2SkmhOLat

m ið0Þ; ð48Þ

with S the rectangular matrix

S ¼

0
BBB@

1 0 1 0 0 0

0 1 0 1 1 0

0 0 0 0 4 0

0 0 0 0 0 4

1
CCCA: ð49Þ

The overall factor of 2 in (48) appears because the
definition of the lattice operators does not include the
overall factors of 2 that appear in the continuum PQ
operators [see Eqs. (42) and (43)]. The factors of 4 in S
relating the SPQ to lattice tensor operators arise because,
first, the lattice tensor operators OLat

T1 and OLat
T2 are defined

with the indices constrained to satisfy μ < ν, rather than
being freely summed as in the continuum operators, and,
second, because the continuum tensor operators come with
a factor of 4 rather than 2 [see Eqs. (44) and (45)].
The one-loop matrix elements in the SPQ theory, with

NDR0 regularization, are

hOSPQ
k ið1Þ ¼ZPQB

kl hOSPQ
l ið0Þ;

ZPQB
kl ¼ δklþ

α

4π
½ðR−1γPQRÞkl logðλ=μÞþCPQB

kl �: ð50Þ4In practice, we use the NDR0 scheme for both theories.
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This is identical to Eq. (39) because of the exact matching
between the PQB and SPQ bases, Eq. (46). The one-loop
lattice matrix elements take the form

hOLat
m ið1Þ ¼ hOLat

m ið0Þ þ α

4π
½~γmn logðaλÞ þ CLat

mn�hOLat
n ið0Þ;

ð51Þ

with ~γ the one-loop anomalous dimension matrix in the
lattice basis. This satisfies R−1γPQRS ¼ S~γ, which is
simply the statement that the projection of ~γ onto the basis
corresponding to OSPQ

k is regularization independent.
Equating one-loop matrix elements after transforming
the lattice results by the matrix S leads to

OSPQ
k ≅

�
Skm þ α

4π
½−ðR−1γPQRSÞkm logðaμÞ

þ ðCPQBSÞkm − ðSCLatÞkm�
�
OLat

m : ð52Þ

Note that in this case ≅means a genuine matching between
operators. Taste factors match and there are no restrictions
on external fields. The only provisos are that, on the right-
hand side, we have dropped lattice operators having tastes
other than ξ5 · ξ5 and corrections proportional to powers of
the lattice spacing.

F. Final matching results

Combining the results (26), (40), (46), and (52) we can
now match continuum operators QCont

2 and QCont
3 in the

Dirac basis [Eqs. (3) and (4)] to lattice operators,

QCont
j ≅ 2zjmOLat

m ; ð53Þ

zjm ¼ Pjk

�
ðRSÞkm þ α

4π
½−ðγPQRSÞkm lnðaμÞ

þ ðCPQARS − RCPQBSÞkm
þ ðRCPQBS − RSCLatÞkm�

�
; ð54Þ

where j ¼ 2; 3, k ¼ 1 − 4, and m ¼ 1 − 6. Here P is a
rectangular matrix projecting out the first two operators
from the four-dimensional PQA basis of Eq. (27). Its only
nonzero elements are P21 ¼ P32 ¼ 1 [corresponding to the
exact matching of Eq. (26)]. As a matrix it looks like

P ¼
�
1 0 0 0

0 1 0 0

�
: ð55Þ

We stress again that Eq. (53) is not a true operator
matching, but rather a shorthand indicating agreement
(at one-loop order, and up to known taste factors) between
the positive parity parts of the appropriate kaon mixing

matrix elements defined using the external operators
described above.
We also note that the contribution from the matching to

operators in the PQB basis cancels, as can be seen from the
fact that the RCPQBS term appears with both signs.
Cancellation is expected since this is an intermediate
scheme. We find it useful, however, to break the result
up as shown. This simplifies the calculation (as discussed in
Appendix A), and is also useful conceptually. In particular,
it is the contribution from the PQA to PQB matching, i.e.
the CPQARS − RCPQBS term, which was not previously
accounted for in Refs. [7,10,11]. In other words, these
works effectively started with the continuum PQB basis
(defining the operators using the regularization scheme of
Ref. [8]) and matched from this to lattice operators.
It is useful to recast our final result into the notation used

in Ref. [7],

zjm ¼ bjm þ g2

ð4πÞ2 ð−γjm logðμaÞ þ cjmÞ; ð56Þ

cjm ¼ dContjm − dLatjm − CFIMFTjm; ð57Þ

with CF ¼ 4=3. Here bjm gives the linear relations between
operators at tree level, while dCont and dLat are the finite
parts of one-loop matrix elements in continuum and lattice
regularizations, respectively. The term proportional to the
matrix T appears if one mean-field improves the lattice
operators, with IMF the appropriate lattice integral. Details
are given in Ref. [7]. This contribution is, strictly speaking,
part of dLat, but this separation allows one to see the
numerical impact of mean-field improvement. We note that
below we use the formula (57) not only for j ¼ 2; 3 but also
for j ¼ 4; 5.
Comparing Eqs. (57) and (54), we see that

bjm ¼ ðPRSÞjm; ð58Þ

γjm ¼ ðPγPQRSÞjm; ð59Þ

dContjm ¼ ðPCPQARSÞjm; ð60Þ

dLatjm ¼ ðPRSCLatÞjm − CFIMFTjm: ð61Þ

The anomalous dimension matrix γPQ can be obtained, for
example, from Ref. [9]. The new quantity dCont is calcu-
lated in Appendix A. The finite part of the lattice one-loop
matrix elements, dLat, and the mean-field improvement
matrix T are calculated for our choice of operators and
action in Ref. [7]. We collect all these results in Tables I
and II.
We include in the last column of each table the numerical

values of the matching coefficients for mean-field improved
operators on the finest MILC ensemble used in our
companion numerical study [3,5]. These are the operators
we use in practice. Comparing the results for zmj to the
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tree-level values, bmj shows that the one-loop perturbative
corrections are ∼5%.
As noted above, the matching results of Ref. [7] for the

operators QCont
1 , QCont

4 , and QCont
5 remain valid, because the

missing PQA to PQB matching step turns out to have a
vanishing one-loop coefficient. This is explained in
Appendix A 5. However, since the results in Ref. [7] are
presented for operators in the Supersymmetry (SUSY)
basis, and also for completeness, we collect the results
for QCont

4 and QCont
5 in Tables III and IV. The results for the

BK operator QCont
1 can be read directly from Ref. [7].

To complete the description of the matching results used
in Refs. [3,5]. we must also consider the denominator of the
B parameters defined in Eq. (8). The matching of the
pseudoscalar bilinears in the denominator is given by

s̄γ5d ≅ zPOLat
P ; ð62Þ

OLat
P ¼ χ̄sðγ5 ⊗ ξ5Þχd; ð63Þ

where, as above, the symbol ≅ implies matching of matrix
elements (here connecting the vacuum to an appropriate
kaon or antikaon) up to taste factors (here a single factor of
NT since there is only one taste loop). The notation for the

staggered bilinear is as in Ref. [19]. For the bilinear matrix
elements we do not need to introduce the extra d and s
quarks of the PQQCD and SPQ theories, since there is only
one contraction. For the same reason, there is no contrac-
tion factor of 2 in Eq. (62) [as compared, say, to Eq. (53)].
The one-loop result for zP is [19]

zP ¼ 1þ α

4π
ð8 logðμaÞ þ 10=3 − 1.57938Þ: ð64Þ

This is for the continuum bilinear defined in the NDR
scheme and the lattice bilinear composed of HYP-smeared
(Hypercubic blocking) valence fermions with Symanzik-
improved glue. Note that the lattice operator involves no
gauge links and thus cannot be mean-field improved.
In terms of lattice operators, the B parameters thus

become

BiðμÞ ¼
2hK̄0

P1jzijOLat
j jK0

P2i
NihK̄PjzPOLat

P j0ih0jzPOLat
P jK0i

: ð65Þ

This is now an equality (up to two-loop and discretization
corrections) since the taste factors cancel between numer-
ator and denominator.

TABLE II. Components of the matching coefficients for QCont
3 .

Notation as in Table I.

Operator m b3m γ3m dCont3m dLat3m T3m z3m

OLat
S1 6 88 þ50=3 −13.703 12 6.314

OLat
S2 0 −40 −46=3 −15.035 0 −0.005

OLat
P1 6 88 þ50=3 −23.769 12 6.482

OLat
P2 0 −40 −46=3 15.165 0 −0.509

OLat
T1 2 8=3 −14=3 −8.164 4 1.994

OLat
T2 4 136=3 þ6 −12.376 8 4.178

TABLE III. Components of the matching coefficients forQCont
4 .

Notation as in Table I.

Operator m b4m γ4m dCont4m dLat4m T4m z4m

OLat
S1 0 0 −3 0 0 −0.050

OLat
S2 1 −16 þ23=3 −16.0196 6 1.299

OLat
P1 0 0 þ3 0 0 0.050

OLat
P2 −1 16 −23=3 −5.0862 2 −1.075

OLat
V1 −1=2 8 −23=6 2.7193 −1 −0.593

OLat
V2 0 0 þ3=2 0.3401 0 0.019

OLat
A1 1=2 −8 þ23=6 −2.9543 1 0.597

OLat
A2 0 0 −3=2 0.3651 0 −0.031

TABLE IV. Components of the matching coefficients for QCont
5 .

Notation as in Table I.

Operator m b5m γ5m dCont5m dLat5m T5m z5m

OLat
S1 −2 −4 −1=3 6.835 −4 −2.055

OLat
S2 0 12 1 4.892 0 −0.065

OLat
P1 2 4 1=3 −10.191 4 2.111

OLat
P2 0 −12 −1 5.174 0 −0.103

OLat
V1 0 −6 −1=2 −0.537 0 0.001

OLat
V2 1 2 1=6 −8.083 4 1.073

OLat
A1 0 6 1=2 0.537 0 −0.001

OLat
A2 −1 −2 −1=6 −0.179 0 −1.000

TABLE I. Components of the matching coefficients for QCont
2 ,

as defined in Eq. (57). The dLat are for HYP-smeared valence
fermions and operators and the Symanzik gauge action. The last
column gives the numerical values for the complete one-loop
matching coefficients z2m for mean-field improved operators (for
which IMF ¼ 0.722795) on the MILC ultrafine lattices
(α ¼ 0.2098) and with μa ¼ 1.

Operator m b2m γ2m dCont2m dLat2m T2m z2m

OLat
S1 −1=2 6 −11=6 2.335 −1 −0.554

OLat
S2 1 −10 þ13=6 −14.528 6 1.182

OLat
P1 −1=2 6 −11=6 3.174 −1 −0.568

OLat
P2 1 −10 þ13=6 4.061 −2 1.001

OLat
T1 1=2 −14=3 þ5=6 −2.518 1 0.540

OLat
T2 0 2=3 −1=2 0.012 0 −0.009
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IV. RENORMALIZATION GROUP EVOLUTION

In our numerical calculations, we match matrix elements
of lattice operators to those of continuum operators using
Eqs. (53) and (54). To avoid large logarithms in this
matching, we set μ ¼ 1=a. Before taking the continuum
limit, we must evolve the resulting matrix elements to a
common scale. We do this using the most accurate
anomalous dimensions available, which in this case are
of two-loop order. Although this is a standard procedure,
there are some subtleties which arise for the operators under
consideration. In this section we discuss these subtleties.
RG evolution can be expressed as

hQiðμbÞi ¼ Wðμb; μaÞijhQjðμaÞi; ð66Þ

where the matrix kernel satisfies

d
d ln μb

Wðμb; μaÞij ¼ −γðμbÞikWðμb; μaÞkj; ð67Þ

together with the boundary condition WQðμa; μaÞij ¼ δij.
We expand the anomalous dimension matrix as

γðμÞ ¼ γð0Þ
αðμÞ
4π

þ γð1Þ
�
αðμÞ
4π

�
2

þ � � � : ð68Þ

Results for γð0Þ and γð1Þ for the operators of interest are
collected in Appendix B. There is mixing within the
operator pairs fQCont

2 ; QCont
3 g and fQCont

4 ; QCont
5 g, while

QCont
1 and the pseudoscalar density do not mix.
To evolve the B parameters B2−5, we first take out the

normalization factors Ni from Eq. (8) by defining

RiðμÞ≡ NiBiðμÞ ð69Þ

¼ hK̄0jQCont
i jK0i

hK̄0js̄γ5dj0ih0js̄γ5djK0i
: ð70Þ

These quantities can be run to a common scale, and then
divided by the Ni to return to the B parameters. Defining
WRðμb; μaÞ as the RG kernel for the Ri,

RiðμbÞ ¼ WRðμb; μaÞijRjðμaÞ; ð71Þ

we have

WRðμb; μaÞij ¼
Wðμb; μaÞij
½WPðμb; μaÞ�2

; ð72Þ

where WP describes the evolution of the pseudoscalar
density. Combining these results we arrive at

BiðμbÞ ¼
X
j

WBðμb; μaÞijBjðμaÞ; ð73Þ

WBðμb; μaÞij ¼
1

Ni
WRðμb; μaÞijNj: ð74Þ

We stress that Eqs. (70)–(74) apply only for the BSM
operators (with i; j ¼ 2–5) and not for BK. BK involves a
different denominator, which does not run, so its running,
which is diagonal, is given by the element W11 of the
operator evolution kernel.
We can also consider anomalous dimensions for the B

parameters themselves, defined as in Eq. (67) but with
Q → B. This gives

½γB�ij ¼
Nj

Ni
ð½γQ�ij − 2γPδijÞ; ð75Þ

where again i; j ¼ 2 – 5. Numerical values are given in
Appendix B.

A. Solutions for the evolution kernel

The general solution of the RG equation (67) is

Wðμb; μaÞ ¼ Pα exp

�
−
Z

αb

αa

γðαÞ
2βðαÞ dα

�
; ð76Þ

where Pα indicates “α ordering” of the matrices in the
integral, αa ¼ αðμaÞ, αb ¼ αðμbÞ, and the β function is
defined with the normalization

βðαÞ ¼ 1

2

dα
d ln μ

¼ −β0
α2

4π
− β1

α3

ð4πÞ2 þ � � � ð77Þ

(so that β0 ¼ 9 and β1 ¼ 64). In the literature, a standard
approximate form of the general solution Eq. (76) is
used when the anomalous dimension is known to two-
loop order [20],

Wðμb; μaÞ ≈
�
1þ αb

4π
J
�
−1
Wð0Þðμb; μaÞ

�
1þ αa

4π
J
�
; ð78Þ

where

Wð0Þðμb; μaÞ ¼ V−1
�
αb
αa

�
γð0ÞD =2β0

V; ð79Þ

J ¼ β1γ
ð0Þ

2β20
− V−1MV; ð80Þ

Mij ¼
½Vγð1ÞV−1�ij

2β0 þ ðγð0ÞD Þjj − ðγð0ÞD Þii
: ð81Þ

Here V is the matrix that diagonalizes γð0Þ,

Vγð0ÞV−1 ¼ γð0ÞD ; ð82Þ
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and

��
αb
αa

�
γð0ÞD =2β0

�
ij
¼ δij

�
αb
αa

�ðγð0ÞD Þii=2β0
: ð83Þ

In practice, we use an alternative form of Eq. (78),

Wðμb; μaÞ ≈ Wð0Þðμb; μaÞ

þ 1

4π
½αaWð0Þðμb; μaÞJ − αbJWð0Þðμb; μaÞ�

ð84Þ

≡Wð0Þðμb; μaÞ þ
1

4π
V−1AV: ð85Þ

This form is equivalent at the order we work and is more
convenient for the following discussion.
This approximate analytic solution fails, however, if, for

some choice of i ≠ j,

2β0 þ ðγð0ÞD Þjj − ðγð0ÞD Þii ¼ 0; ð86Þ

for thenM diverges [see Eq. (81)]. This indeed happens for
the pair of operators QCont

4;5 , since the eigenvalues of γð0Þ

differ by exactly 2β0 ¼ 18 (see Appendix B). We stress that
this is a failure of the approximation method and does not
indicate a breakdown in perturbative convergence for W
itself. Indeed, the truncated version of the differential
equation (67) is not singular.
The problem can be resolved using the analytic con-

tinuation technique introduced in Ref. [12]. The outcome is
that, for each fi; jg pair for which the denominator of Mij
vanishes [i.e. for which Eq. (86) holds], the element Aij of
the matrix A in Eq. (85) is replaced by

½Vγð1ÞV−1�ij
2β0

αb ln

�
αb
αa

��
αb
αa

�ðγð0ÞD Þjj=2β0
: ð87Þ

The derivation of this result is given in Ref. [12].
We have checked these analytic expressions by solving

the RG equation (67) numerically, after truncating
the anomalous dimension and β function. Specifically,
we use the variable t ¼ ðln αÞ=ð2β0Þ which satisfies, at
two-loop order,

dt
d ln μ

¼ −
α

4π

�
1þ β1

β0

α

4π

�
; ð88Þ

Then

dWðtb; taÞ
dtb

¼
�

dtb
d ln μb

�
−1 dWðμb; μaÞ

d ln μb
ð89Þ

≈
γð0Þ þ αb

4π γ
ð1Þ

1þ αb
4π

β1
β0

Wðtb; taÞ ð90Þ

≈
�
γð0Þ þ αb

4π

�
γð1Þ −

β1
β0

γð0Þ
��

Wðtb; taÞ; ð91Þ

where the approximations are allowed since they involve
dropping terms of the same order as the missing three-loop
contributions. The resulting equation is straightforward to
integrate numerically.
We find that, for the ranges over which we evolve, the

analytic and numerical results for the elements of W agree
to ∼0.01 or better. For example, the evolution matrix for
the operators in the full Dirac basis from μa ¼ 3 GeV to
μb ¼ 2 GeV is

Wanal ¼

0
BBBBBB@

1.0349 0 0 0 0

0 0.8862 0.0013 0 0

0 −0.4786 1.1532 0 0

0 0 0 0.8289 0.0106

0 0 0 0.1310 1.0225

1
CCCCCCA
;

ð92Þ

using the analytic results, and

Wnum ¼

0
BBBBBB@

1.0350 0 0 0 0

0 0.8863 0.0013 0 0

0 −0.4789 1.1536 0 0

0 0 0 0.8291 0.0105

0 0 0 0.1308 1.0225

1
CCCCCCA

ð93Þ

from the numerical solution. Here we use αð2 GeVÞ ¼
0.2959 and αð3 GeVÞ ¼ 0.2448.5 The running between
these two values is done using the four-loop β function with
Nf ¼ 3. We use three active flavors (despite being in the
regime where the charm is active) because this is the
number of dynamical flavors in our simulations. We use
the four-loop β function (despite evolving the operators
using two-loop expressions) since this incorporates some of
the known higher-order terms. Numerically this is not,
however, very important. For example, if we start from
αð2 GeVÞ ¼ 0.2959 and run using the two-loop β function
we find αð3 GeVÞ ¼ 0.2470, which leads to

5These values are obtained at Nf ¼ 3 by following the
four-loop running procedure given in Ref. [21] starting from
αðMZÞ ¼ 0.118 with MZ ¼ 91187.6 × MeV.
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W2-loopα ¼

0
BBBBB@

1.0333 0 0 0 0

0 0.8913 0.0012 0 0

0 −0.4563 1.1460 0 0

0 0 0 0.8363 0.0101

0 0 0 0.1252 1.0214

1
CCCCCA:

ð94Þ

Here we have used the numerical solution of the evolution
equation. We see that the elements differ by ∼0.02 or less
from those given above using four-loop running of α.
It is also interesting to see how quickly perturbation

theory is converging. This is illustrated by comparing the
matrices above to the one-loop result

W1-loop ¼

0
BBBBBB@

1.043 0 0 0 0

0 0.900 0.0018 0 0

0 −0.425 1.126 0 0

0 0 0 0.845 0

0 0 0 0.118 1.021

1
CCCCCCA
ð95Þ

(obtained using the four-loop values of α).
As a check on our calculation of W, we can compare to

the result for Wð3 GeV; 2 GeVÞ given in Ref. [22],6

WMV ¼

0
BBBBBB@

1.035 0 0 0 0

0 0.887 0.001 0 0

0 −0.474 1.152 0 0

0 0 0 0.830 0.011

0 0 0 0.130 1.022

1
CCCCCCA
:

ð96Þ
This agrees with our results to better than the �0.02
variation between approximation methods, thus checking
our transcription of anomalous dimensions and calculation
of evolution matrices.
Results for the evolution kernels needed in our numerical

calculations are collected in Appendix C.

B. Running of “golden” combinations

The quantities

B23 ≡ B2

B3

; B45 ≡ B4

B5

; B24 ≡ B2 × B4; and

B21 ¼
B2

BK
ð97Þ

were found in Ref. [14] to have no one-loop chiral
logarithms in SU(2) chiral perturbation theory. Thus they
are expected to have better controlled chiral extrapolations
than the B parameters themselves. Following Ref. [13], we
refer to them as golden combinations.
We are using these quantities in our companion lattice

calculations [3,5]. Indeed our central values for the Bj are
reconstructed from these four golden quantities and our
result for BK. Thus it is useful to have the RG running
formulas directly for the golden combinations. The evolu-
tion of the B parameters is given by Eq. (73), with the
evolution kernel WB being nonvanishing only within the
(1), (2,3), and (4,5) blocks. From this we can determine
the evolution of the golden combinations,

B23ðμbÞ ¼
WBðμb; μaÞ22B23ðμaÞ þWBðμb; μaÞ23
WBðμb; μaÞ32B23ðμaÞ þWBðμb; μaÞ33

; ð98Þ

B45ðμbÞ ¼
WBðμb; μaÞ44B45ðμaÞ þWBðμb; μaÞ45
WBðμb; μaÞ54B45ðμaÞ þWBðμb; μaÞ55

; ð99Þ

B24ðμbÞ ¼ B24ðμaÞ
× ðWBðμb; μaÞ22 þWBðμb; μaÞ23=B23ðμaÞÞ
× ðWBðμb; μaÞ44 þWBðμb; μaÞ45=B45ðμaÞÞ;

ð100Þ
B21ðμbÞ ¼ B21ðμaÞ

×
WBðμb; μaÞ22 þWBðμb; μaÞ=B23ðμaÞ

Wðμb; μaÞ11
: ð101Þ

Note that the running of B23 depends only on the initial
value of this quantity, which is the case also for B45. For
B24, however, one needs the initial values of B24, B23, and
B45, while for B21 one needs the initial values of both B21

and B23. Note also that the denominator of Eq. (101)
involvesW rather thanWB, because the denominator of BK
involves axial currents which have vanishing anomalous
dimensions.
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APPENDIX A: CALCULATION OF FINITE
PARTS OF MATCHING MATRICES

In this section we describe the calculation of the finite
part of the continuum contribution to the one-loop matrix

6Note that Ref. [22] uses a different ordering of operators and
also quotes the transpose of W. Here we have converted to our
notation.
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elements of the operators QCont
j [Eqs. (3)–(6)]. The main

focus is on QCont
2 and QCont

3 . Specifically, we determine
CPQA, which is needed to determine dCont in Eq. (60). The
calculation turns out to be simplified by first calculating the
difference CPQAR − RCPQB, which arises in the matching
step described in Sec. III C, and then determining CPQB.
Combining these two results we obtain CPQA.
As explained in the main text, the required matching

calculation involves a change of operator basis and NDR
scheme in the PQQCD continuum theory. Since the change
of basis is, for D ¼ 4, accomplished by a Fierz trans-
formation described by the matrix R, any contribution to
the one-loop matrix elements in Eqs. (37) and (39) whose
calculation is consistent with the Fierz transformation will
cancel in the difference CPQAR − RCPQB. This is, for
example, why there is no anomalous dimension term in
Eq. (40). It also means that wave function renormalization
diagrams do not contribute. The upshot is that we need only
keep those parts of the one-loop diagrams which contain
OðϵÞ contributions arising from the projections onto the
basis operators used in the two NDR schemes (or, equiv-
alently, from the subtraction of evanescent operators).
These will multiply the 1=ϵ pole from the loop integral,
leading to finite contributions to the matrix elements. All
other parts of the calculation are common to the two
schemes and cancel in the difference.
We call the projection-related finite contributions

CPQA;proj and CPQB;proj. We stress that they are not the
complete finite contributions, so that, e.g., CPQA;proj ≠
CPQA. But they are the only parts we need in order to
calculate the difference CPQAR − RCPQB.
With this background in place, we now explain, in turn,

the calculation of CPQA;proj, CPQB;proj, and CPQB, from
which we obtain CPQA. We then explain why the results
for operators QCont

1 , QCont
4 , and QCont

5 from Ref. [7] are not
impacted by the considerations of this appendix.

1. Projection parts in PQA basis

For the PQA calculation, it is simplest to make a small
further change in the basis from our canonical PQA basis
(which we repeat for convenience)

OPQA
���! ¼ fQPQ

2;þ; Q
PQ
3;þ; Q

PQ
2;−; Q

PQ
3;−g; ðA1Þ

to

OPQ
��! ¼ fQPQ

2;IA; Q
PQ
2;II; Q

PQ
3;IA; Q

PQ
3;IIg; ðA2Þ

where we recall that

QPQ
j;� ¼ QPQ

j;II �QPQ
j;IA ðj ¼ 2; 3Þ: ðA3Þ

We use the same definition of evanescent operators in the
PQ and PQA bases, so the two bases are exactly related by
a linear transformation, namely

OPQA
k ¼ VklO

PQ
l ; ðA4Þ

with

V ¼

0
BBBB@

1 1 0 0

0 0 1 1

−1 1 0 0

0 0 −1 1

1
CCCCA: ðA5Þ

Thus if we calculate CPQ from

hOPQ
k ið1Þ ¼ hOPQ

k ið0Þ þ α

4π
½γPQkl logðλ=μÞ þ CPQ

kl �hOPQ
l ið0Þ;

ðA6Þ

then

CPQA ¼ VCPQV−1 ðA7Þ

and

CPQA;proj ¼ VCPQ;projV−1; ðA8Þ

where CPQ;proj is the finite part of the matrix element in the
PQ basis arising from projections.
We now sketch the calculation of CPQ;proj. We illustrate

the method by working in detail through the example of
matching for OPQ

1 ¼ QPQ
2;IA ¼ 2½s̄a1Lda2�½s̄b2Ldb1�. We use the

terminology that the “Dirac structure” of this operator
is L · L.
There are three types of one-loop diagrams, shown in

Fig. 1. The Xa diagrams are those in which the gluon
connects external quark and antiquark propagators which
are attached to the same bilinear. The flavor of the bilinears
depends on the operator under consideration. For QPQ

2;IA and

QPQ
3;IA [Eq. (24)], the bilinears have flavors s̄1d2 and s̄2d1,

while for QPQ
2;II and QPQ

3;II [defined in Eqs. (21) and (23)]

they have flavors s̄1d1 and s̄2d2. For Q
PQ
2;IA, Xa diagrams

have Dirac structure

γαγβLγβγα · L ¼ 16ð1 − ϵÞL · L; ðA9Þ

where the γα’s come from vertices of the Feynman gauge
gluon propagator, while the γβ’s arise from the fermion
propagators after loop integration has contracted their
indices. The right-hand side of (A9) is the result after
performing D-dimensional Dirac algebra. In this case, the
resulting operator has the same Dirac structure as the
original operator for all D, so no projection is required.
The loop integral gives rise to a 1=ϵ pole, and the desired
finite part is obtained from combining this with the factor of
ϵ multiplying the operator. Taking into account the loop
integral, and the fact that there are two Xa diagrams, each
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giving an identical contribution, one finds the rule that the
desired finite part is obtained by multiplying the ϵ term in
the Dirac structure by 1=ð2ϵÞ [leading to−16ϵ=ð2ϵÞ ¼ −8],
as well as by the color factor. In the present case, the gluon
loop simply gives back the original color structure with an
overall factor of CF ¼ 4=3. In total, then, the Xa diagrams
give a contribution of −32=3 to the diagonal element CPQ

11 .
In the Xb diagrams the gluon connects a quark attached

to one bilinear to the antiquark attached to the other. Thus,
for QPQ

2;IA, the Dirac structure is

ΓPQ
b ¼ γαγβL · Lγβγα: ðA10Þ

In four dimensions one can use Fierz transformations to
manipulate this structure into a linear combination of L · L
and σL · σL (the latter being a shorthand for the Dirac
structure of QCont

3 ). For D ≠ 4 such manipulations intro-
duce additional operators. The contribution of these evan-
escent operators, which multiplies the 1=ϵ pole, is then
subtracted by counterterms. What remains after this sub-
traction depends on the choice of evanescent operators.
This choice of scheme can be encapsulated into rules for
projecting Dirac structures such as ΓPQ

b onto the operators
in the PQ basis. We use the rules for the scheme of Ref. [9],
which are conveniently collected in Appendix B of
Ref. [18]. In the present example, we need Eq. (45c)
from the latter work, according to which one makes the
replacement

ΓPQ
b → ð4 − 2ϵÞL · L − σL · σL: ðA11Þ

The desired finite part is thus

−2ϵL · L
2ϵ

¼ −L · L; ðA12Þ

multiplied by the color factor. The color factor is simple to
work out but will not be needed.
Finally, we turn to the Xc diagrams, in which the gluon

connects a quark to a quark or an antiquark to an antiquark.
Here the Dirac structure is

ΓPQ
c ¼ γαγβL · γαγβL → ð4 − 2ϵÞL · Lþ σL · σL; ðA13Þ

where in the second step we have used the projection of
Eq. (45b) of Ref. [18]. The Xc diagrams come with an
additional minus sign, so the desired finite part is obtained
by multiplying the ϵ term in Eq. (A13) by −1=ð2ϵÞ. The
result is

−2ϵL · L
−2ϵ

¼ þL · L; ðA14Þ

multiplied by the same color factor as for the Xb diagrams.
Thus the contributions from the Xb and Xc diagrams
cancel.
The overall result is that we know the first row of

CPQ;proj,

CPQ;proj
1k ¼ ð−32=3 0 0 0 Þ: ðA15Þ

The calculation for the operator OPQ
2 ¼ QPQ

2;II ¼
2½s̄a1Lda1�½s̄b2Ldb2� is identical. This is because the regulari-
zation is defined relative to the contractions of external
fields to the bilinears in the operator at hand, irrespective of
its particular flavor structure. Since the Dirac and color

(a) Xa

(b) Xb

(c) Xc

FIG. 1. Classes of one-loop diagrams, with labeling as in
Ref. [23]. Each filled circle represents one of the two bilinears
composing the four-fermion operator. For each diagram shown,
there is a second one (not shown) in which the gluon connects the
other two fermion propagators.
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structure of QPQ
2;II are the same as that of QPQ

2;IA, the results
for the two operators are in one-to-one correspondence.
The only change is that d1 and d2 are interchanged. The
upshot is that the only nonzero entry is CPQ;proj

22 ¼ −32=3,
so the second row of CPQ;proj is

CPQ;proj
2k ¼ ð 0 −32=3 0 0 Þ: ðA16Þ

We now turn to the tensor operator OPQ
3 ¼ QPQ

3;IA ¼
2½s̄a1σLda2�½s̄b2σLdb1�. Here we are keeping the indices on
σμν implicit. The Xa diagrams lead to

γαγβσLγβγα · σL ðA17Þ

which vanishes through OðϵÞ. Thus there is no finite
contribution from these diagrams. For the Xb and Xc
diagrams we need [using Eqs. (46c) and (46b) of Ref. [18],
respectively]

γαγβσL ·σLγβγα → ð−48þ80ϵÞL ·Lþð12−14ϵÞσL ·σL

ðA18Þ

and

γαγβσL · γαγβσL → ð48 − 80ϵÞL · Lþ ð12 − 6ϵÞσL · σL:

ðA19Þ

Both types of the diagram come with the same color factor,
and so can be combined. The total finite part is thus
(remembering the relative minus sign for the Xc diagrams)

80L · L − 4σL · σL: ðA20Þ

The diagonal color factor is −1=6, leading to the results
CPQ;proj
31 ¼ −80=6 and CPQ;proj

33 ¼ 4=6.
There is also an off-diagonal color factor of 1=2. This

gives rise to the combination

40 × 2½s̄a1Ldb2�½s̄b2Lda1� − 2 × 2½s̄a1σLdb2�½s̄b2σLda1�: ðA21Þ

Neither of these two operators is in the PQ basis (nor, for
that matter, in either of the PQA or PQB bases). To express
this combination in the PQ basis one must do a Fierz
transform, which now can be done setting D ¼ 4 since the
matrix elements have been renormalized,7

2½s̄a1Ldb2�½s̄b2Lda1� ¼D¼4 −
1

2
QPQ

2;II þ
1

8
QPQ

3;II ; ðA22Þ

2½s̄a1σLdb2�½s̄b2σLda1� ¼D¼4
6QPQ

2;II þ
1

2
QPQ

3;II : ðA23Þ

Thus the combination in (A21) becomes

−32QPQ
2;II þ 4QPQ

3;II : ðA24Þ

Combining the above we find the third row of CPQ;proj to be

CPQ;proj
3k ¼ ð−40=3 −32 2=34 Þ: ðA25Þ

The calculation for the fourth row is identical to the third
aside from interchanging the roles of the two contractions,
and leads to

CPQ;proj
4k ¼ ð−32 −40=3 4 2=3 Þ: ðA26Þ

We can now change to the PQA basis, and find

CPQA;proj ¼ VCPQ;projV−1

¼ 1

3

0
BBBB@

−32 0 0 0

−136 14 0 0

0 0 −32 0

0 0 56 −10

1
CCCCA: ðA27Þ

In fact, we need only the first two rows, but display the full
matrix for completeness and to allow checking.

2. Projection parts in PQB basis

We recall that we use the NDR0 scheme of Ref. [10] in
the PQB basis. In this scheme, one uses, by definition,
D ¼ 4 Fierz transforms to bring Xb and Xc diagrams into
the form of bilinear corrections. For the Xc diagrams one
also needs to charge conjugate one of the bilinears. This
procedure allows one to separate the Dirac and color parts
of the calculation. We note that this scheme is defined only
at one-loop order, but this is not a problem, both because
we are working at one loop, and, more importantly, because
we are using this scheme only as an intermediate calcula-
tional device.
We recall that the operators in the PQB basis are

OPQB
1 ¼ QPQ

2;I ¼ 2½s̄a1Ldb1�½s̄b2Lda2�; ðA28Þ

OPQB
2 ¼ QPQ

2;II ¼ 2½s̄a1Lda1�½s̄b2Ldb2�; ðA29Þ

OPQB
3 ¼ QPQ

3;I ¼ 2½s̄1aσμνLdb1�½s̄2bσμνLda2�; ðA30Þ

OPQB
4 ¼ QPQ

3;II ¼ 2½s̄1aσμνLda1�½s̄2bσμνLdb2�: ðA31Þ

The Dirac structure of these four operators are the same as
those in the PQA basis. The differences between bases are
in the flavor indices (which has no impact since projections

7At OðϵÞ, this Fierz transformation introduces further evan-
escent operators (which are included in the list in Appendix A of
Ref. [9]). These must be kept in the calculation of two-loop
anomalous dimensions.
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are defined relative to type of contractions) and in the color
indices (which does impact the color factors).
The Xa diagrams give exactly the same finite contribu-

tions as in the PQ basis, i.e., a factor of −8 for L · L and 0
for σL · σL.
For the Xb diagrams one must Fierz transform, calculate

the finite part, and then Fierz transform back. This proceeds
as follows

L · L⟶
Fierz

−
1

2
L · Lþ 1

8
σL · σL

⟶
1-loop

4L · L⟶
Fierz

− 2L · Lþ 1

2
σL · σL ðA32Þ

and

σL · σL⟶
Fierz

6L · Lþ 1

2
σL · σL

⟶
1-loop

− 48L · L⟶
Fierz

24L · L − 6σL · σL: ðA33Þ

For the Xc diagrams there are charge conjugation steps at
the beginning and end, which flip the sign of σL · σL while
leaving L · L unchanged. Taking this into account, and
including the extra sign from the Xc loop, one finds

L · L⟶
Xc

2L · Lþ 1

2
σL · σL; ðA34Þ

σL · σL⟶
Xc

24L · Lþ 6σL · σL: ðA35Þ

Combining these results with the color factors, we find

CPQB;proj ¼
�−8 0

0 0

�
⊗

�−1=6 1=2

0 4=3

�

þ
�−2 1=2

24 −6

�
⊗

�
4=3 0

1=2 −1=6

�

þ
�

2 1=2

24 6

�
⊗

�−1=6 1=2

1=2 −1=6

�

¼

0
BBBB@

−5=3 −3 7=12 1=4

0 −32=3 1=2 −1=6
28 12 −9 3

24 −8 0 0

1
CCCCA: ðA36Þ

In the tensor products the first matrix acts on the Q2; Q3

indices while the second matrix acts on the I; II indices.
Combining this result with (A27), we find

CPQA − RCPQBR−1

¼ CPQA;proj − RCPQB;projR−1 ðA37Þ

¼

0
BBB@

−3 −1=12 0 0

−76=3 5=3 0 0

0 0 3 5=12

0 0 44=3 −1=3

1
CCCA: ðA38Þ

3. Finite part in PQB basis

The final ingredient we need is the full finite part for the
PQB-basis operators in the NDR0 scheme. The calculation
proceeds essentially as in the previous subsection, except
that now we use the full finite parts for bilinears in the NDR
scheme, which can be taken, e.g., from Ref. [23]. The
method is explained in more detail in Ref. [8]. The result is

CPQB¼
�
2cS 0

0 2cT

�
⊗
�−1=6 1=2

0 4=3

�

þ
�ðcSþ3cTÞ=2 ðcT −cSÞ=8

6ðcT −cSÞ ð3cSþcTÞ=2

�
⊗
�
4=3 0

1=2 −1=6

�

þ
�−ðcSþ3cTÞ=2 ðcT −cSÞ=8

6ðcT −cSÞ −ð3cSþcTÞ=2

�

⊗
�−1=6 1=2

1=2 −1=6

�
; ðA39Þ

with cS ¼ 2.5 and cT ¼ 0.5. Numerically, the result takes
its simplest form after a similarity transform with R,

RCPQBR−1 ¼

0
BBBB@

31=6 −1=24 0 0

10 −1=6 0 0

0 0 49=6 5=24

0 0 −2 17=6

1
CCCCA: ðA40Þ

4. Final result for CPQA

Combining Eqs. (A38) and (A40) we find

CPQA ¼

0
BBBB@

13=6 −1=8 0 0

−46=3 3=2 0 0

0 0 67=6 5=8

0 0 38=3 5=2

1
CCCCA: ðA41Þ

Multiplying from the right by RS leads to the results quoted
in Tables I and II.

5. Other operators

We have claimed above that the results given in Ref. [7]
for the matching of operators QCont

1;4;5 are correct, although
the matching was not done completely correctly. Here we
substantiate this claim.
We begin by discussing the BK operator, QCont

1 [see
Eq. (2)], for which the analysis is simplest. First we match
this operator into PQQCD, as in Sec. III B in the main text.
There is an exact matching of matrix elements with those of
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QPQA
1 ¼ QPQ

1;II þQPQ
1;IA; ðA42Þ

QPQ
1;II ¼ 2½s̄a1γμLda1�½s̄b2γμLdb2�; ðA43Þ

QPQ
1;IA ¼ 2½s̄a1γμLda2�½s̄b2γμLdb1�: ðA44Þ

This forms the one-dimensional PQA basis in this case. In
Refs. [7,10,11] it was implicitly assumed that matrix
elements of this operator are equal at one-loop order to
those of the following operators in the PQB basis

QPQB
1 ¼ QPQ

1;II þ 2½s̄a1γμLdb1�½s̄b2γμLda2�; ðA45Þ

as long as one uses the same NDR scheme for both
operators. In other words, it was assumed that D ¼ 4
Fierz transforms in PQQCD commute with the calculation
of one-loop corrections. This is not valid in general.
However, it is correct in this case, when using the projectors
of Ref. [9]. This we have checked by explicit calculation,
using the method of Sec. A 1.8

Given this result, the PQA-PQB matching can be
replaced by matching QPQB

1 regularized in the scheme of
Ref. [9] to the same operator in the NDR0 scheme. It was
this latter calculation that was done (correctly) in
Refs. [7,10,11].
The same result holds true for the operators QCont

4;5 :
Fierzing in the PQ theory commutes with calculating the
finite correction at one loop (as long as one uses the same
NDR scheme). Specifically, these operators are exactly
matched in PQQCD to

QPQA
4 ¼ 2f½s̄a1Lda1�½s̄b2Rdb2� þ ½s̄a1Lda2�½s̄b2Rdb1�g; ðA46Þ

QPQA
5 ¼ 2f½s̄a1γμLda1�½s̄b2γμRdb2� þ ½s̄a1γμLda2�½s̄b2γμRdb1�g:

ðA47Þ

The claim is that, at one loop, these operators are matched
with no finite corrections to

QPQB
4 ¼2f½s̄a1Lda1�½s̄b2Rdb2�−

1

2
½s̄a1γμLdb1�½s̄b2γμRda2�g; ðA48Þ

QPQB
5 ¼2f½s̄a1γμLda1�½s̄b2γμRdb2�−2½s̄a1Ldb1�½s̄b2Rda2�g; ðA49Þ

as long as the regularization of Ref. [9] is used in both
cases. This was implicitly assumed in Refs. [7,10,11].
Because this assumption is correct, the matching calcu-
lations done in these works remain valid. We have double-
checked this by repeating the calculation from scratch.

This result does not hold, however, for QCont
2;3 . Fierzing

does not commute with one-loop correcting when using the
scheme of Ref. [9] in both PQA and PQB bases.9

APPENDIX B: ANOMALOUS DIMENSIONS

We collect here the anomalous dimensions needed to
evolve the B parameters of Eq. (8) and the golden ratios
discussed in Sec. IV B. All anomalous dimensions are in
the NDR scheme, with those for the four-fermion operators
using the choices of evanescent operators given in Ref. [9].
The two-loop anomalous dimension matrices for QCont

2;3

operators are calculated in Ref. [9]. (They are the same as
for theQSLL

1;2 of that work, since the operators differ only by
an overall factor.) For Nc ¼ 3 and Nf ¼ 3, the results are

γð0ÞLL ¼
�−10 1=6

−40 34=3

�
; ðB1Þ

γð1ÞLL ¼
�−1237=9 −37=36
−4580=9 557=3

�
: ðB2Þ

The eigenvalues for γð0ÞLL are 11.0161 and −9.68278.
For QCont

4;5 , the anomalous dimensions are the same as for
QLR

2;1 of Ref. [9]. Taking into account that our ordering of
the operators is opposite to that in Ref. [9], we have

γð0ÞLR ¼
�−16 0

12 2

�
; ðB3Þ

γð1ÞLR ¼
�−1207=6 201=4

154 49=3

�
: ðB4Þ

The eigenvalues of γð0ÞLR are −16 and 2.
The anomalous dimension of the pseudoscalar density

(which is the opposite of that of the quark mass) has
coefficients [24]

γð0ÞP ¼ −8; γð1ÞP ¼ −
364

3
: ðB5Þ

For the golden combinations, we also need the anomalous
dimension of the BK operator QCont

1 , which has coefficients
[25]

γð0Þ ¼ 4; γð1Þ ¼ −17=3: ðB6Þ
Finally, we can use these results in Eq. (75) to obtain the

two-loop anomalous dimensions of the B parameters
themselves. For B2;3 we find8We stress that this PQA-PQB matching is different from that

just discussed for QCont
2 and QCont

3 . Here we are using the scheme
of Ref. [9] for both bases, while in Secs. A 1 and A 2 we use the
scheme of Ref. [9] in the PQA basis and the NDR0 scheme in the
PQB basis.

9To see this requires an additional calculation from that
presented above, since the difference quoted above is due both
to the basis change and the change in NDR scheme.
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γð0ÞBLL ¼
�

6 2=5

−50=3 82=3

�
; ðB7Þ

γð1ÞBLL ¼
�

947=9 −37=15
−5725=27 1285=3

�
; ðB8Þ

while the results for B4;5 are

γð0ÞBLR ¼
�

0 0

−18 18

�
; ðB9Þ

γð1ÞBLR ¼
�
83=2 −67=2
−231 259

�
: ðB10Þ

APPENDIX C: NUMERICAL RESULTS FOR
EVOLUTION KERNELS

In our numerical simulations we require the evolution
kernels to run the B parameters we evaluate at the lattice
scales, 1=a, to a canonical scale. We use MILC
Collaboration asqtad ensembles [26] having four nominal
lattice spacings. These are labeled C, F, S, and U for
coarse, fine, superfine, and ultrafine, respectively. Strictly
speaking, the lattice spacings vary slightly within the coarse
ensembles, and similarly for the fine and superfine ensem-
bles. Here we choose a representative ensemble at each
nominal lattice spacing. These are, in the notation of
Ref. [3], the C3, F1, S1, and U1 ensembles, all of which
have sea quarks in the ratioml=ms ¼ 1=5. In our numerical
work, we evaluate the kernels using the appropriate lattice
spacing for each ensemble.
The inverse lattice spacings and corresponding coupling

constants are

a−1C ¼ 1.657 × GeV; αða−1C Þ ¼ 0.3291; ðC1Þ

a−1F ¼ 2.342 × GeV; αða−1F Þ ¼ 0.2734; ðC2Þ

a−1S ¼ 3.353 × GeV; αða−1S Þ ¼ 0.2340; ðC3Þ

a−1U ¼ 4.504 × GeV; αða−1U Þ ¼ 0.2098: ðC4Þ

These lattice spacings are obtained from the results for the
mass-dependent r1=a and using r1 ¼ 0.3117 × fm [26,27].
The coupling constants are in the MS scheme, and are
obtained using four-loop running as described in Sec. IVA.
We take the canonical final scale to be either 2 GeV,

the traditional value, or 3 GeV, which is used, for example,
in Ref. [1]. The values of α at these scales are given in
Sec. IVA. We calculate the evolution kernel assuming

Nf ¼ 3, although some of our scales are higher than the
charm mass. This is appropriate because our simulations
have Nf ¼ 2þ 1 flavors of dynamical quarks.
Results for the evolution kernel for the B parameters, i.e.

WBðμf; μiÞ of Eq. (74), are given in Tables V, VI, and VII.
These are obtained using numerical integration of the
two-loop RG equations, using the method described in
Sec. IVA. The elements of these kernels agree within
∼0.01 with those obtained using the analytic expressions
described in Sec. IVA, and to within ∼0.02 with those
obtained using two-loop running for α.

TABLE V. Results for evolution kernel for BK, W11ðμf; μiÞ.
Note that this is the same as the kernel for the operator QCont

1 .

μi W11ð2 × GeV; μiÞ W11ð3 × GeV; μiÞ
a−1C 0.982 0.948
a−1F 1.014 0.980
a−1S 1.044 1.008
a−1U 1.065 1.030

TABLE VI. Evolution matrices, WB
LLðμf; μiÞ, for B parameters

of LL operators fB2; B3g.
μi WB

LLð2 GeV; μiÞ WB
LLð3 × GeV; μiÞ

a−1C

�
0.956 −0.001
0.100 0.822

� �
0.885 −0.003
0.224 0.584

�

a−1F

�
1.033 0.001
−0.090 1.154

� �
0.956 −0.002
0.101 0.821

�

a−1S

�
1.100 0.005
−0.316 1.522

� �
1.018 0.001
−0.048 1.083

�

a−1U
�

1.147 0.008
−0.519 1.840

� �
1.063 0.003
−0.186 1.310

�

TABLE VII. Evolution matrices,WB
LRðμf; μiÞ, for B parameters

of LR operators fB4; B5g.
μi WB

LRð2 × GeV; μiÞ WB
LRð3 × GeV; μiÞ

a−1C

�
0.994 0.005
0.114 0.882

� �
0.986 0.011
0.281 0.710

�

a−1F

�
1.004 −0.004
−0.094 1.097

� �
0.995 0.004
0.116 0.881

�

a−1S

�
1.013 −0.011
−0.304 1.312

� �
1.002 −0.002
−0.051 1.053

�

a−1U
�

1.019 −0.016
−0.473 1.485

� �
1.007 −0.006
−0.186 1.191

�
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