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We present a novel technique for the determination of the topological susceptibility (related to the
variance of the distribution of global topological charge) from lattice gauge theory simulations, based on
maximum-likelihood analysis of the Markov-chain Monte Carlo time series. This technique is expected to
be particularly useful in situations where relatively few tunneling events are observed. Restriction to a
lattice subvolume on which topological charge is not quantized is explored, and may lead to further
improvement when the global topology is poorly sampled. We test our proposed method on a set of lattice
data, and compare it to traditional methods.
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I. INTRODUCTION

Lattice field theory is a powerful technique for the
numerical study of Yang-Mills gauge theories. Recovery
of continuum field-theory results requires extrapolations
in the lattice spacing and volume, which are generally
controlled and well-understood. One effect of working in
a finite volume, V, is that the theory becomes dependent on
the global topological charge Q [1,2]. Locality and cluster
decomposition properties suggest that such effects vanish as
V → ∞, but they must be accounted for in the extrapolation.
In Euclidean Yang-Mills quantum field theory on a torus,

the topological charge Q is quantized, dividing the con-
figuration space into distinct topological sectors. These
sectors are separated by an action barrier, so that the use of
sampling algorithms which favor small changes in the
action (such as the commonly used hybrid Monte Carlo
algorithm) can lead to poor sampling of this distribution.
Since the action barrier can grow with decreasing lattice
spacing [3–5] or an increasing number of flavors, Nf [6,7],
the cost of tunneling to different topological sectors can
vary greatly depending on the details of the calculation.
The “freezing” of topological charge resulting from these

algorithmic problems leads to extremely long autocorrela-
tion times, so that the distribution of Q is poorly sampled.
Correction of the resulting systematic effects on observ-
ables can be done [1,2], but these corrections require as
inputs the cumulants of the topological charge distribution,
particularly the variance hQ2i≡ Vχt, where χt is the

topological susceptibility. Using the standard estimator
for variance requires many independent samples; autocor-
relations can lead to relatively few independent measure-
ments and a biased estimate with a large sampling error.
In this work, we suggest two ways to proceed when

confronted with this problem. First, it is generally
believed that the maximum-likelihood (ML) method (see
Sec. XXXVIA2 of [8]) can produce reliable estimates of
model parameters when there are relatively few indepen-
dent samples of a distribution, provided the functional
form of the underlying distribution is known analytically.
Inspired by the work of Phil Nelson and collaborators [9],
we present such a maximum-likelihood approach (follow-
ing an example by Franco [10] in the context of financial
time series) to analyze the complete time-series information
fQng. The analysis is done without blocking, since the
effect of autocorrelations is built into the model. This
method in principle allows the estimation of χt from even a
handful of tunneling events.
Eventually, if one performs a calculation at a sufficiently

small (but finite) lattice spacing [11], global topological
charge will never change in any finite number of Markov
steps. If we choose a lattice volume, V, such that Vχt ≫ 1,
we can consider the distribution of topological charge Qs
computed only in subvolumes Vs ≫ χ−1t , which by locality
and cluster decomposition should also be distributed
asymptotically as the stationary distribution PðQÞ. In this
scenario, we can employ either our ML method or a more
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standard blocked sample variance (SV) estimate to compute
the susceptibility, depending on the number of independent
samples [12]. Empirically, we find that the calculation of χt
based on a subvolume gives the most robust estimates of χt
in the case that relatively few uncorrelated measurements of
Q are available, although further study of this approach is
needed.
The contents of this manuscript are as follows: in Sec. II

we discuss what is known about the distribution of topo-
logical charge in lattice simulations of Yang-Mills gauge
theories. Section III gives the definition of an Ornstein-
Uhlenbeck (OU) process, which uniquely describes con-
tinuous Markov processes that remain Gaussian distributed.
Section IV describes the maximum-likelihood estimation of
χt based on the OU model. In Sec. V, the implications of
studying calculations with nearly fixed global topological
charge are discussed, and a modification of the maximum-
likelihood estimate using lattice subvolumes is introduced.
Section VI demonstrates the use of the proposed methods
to extract χt on an example set of lattice configurations,
and compares to other standard approaches. Finally, Sec. VII
summarizes our results and discusses future applications and
possible improvements.

II. DISTRIBUTION OF TOPOLOGICAL CHARGE

Numerical lattice computations make use of a Markov
process to sample the configuration space, generating a
sequence of configurations U0 → U1 → � � � → Un with
corresponding topological charges fQng. As the sample
size n increases, the distribution PðQnÞ converges to a
stationary distribution, PðQÞ.
What is known about the distribution PðQÞ? With zero

θ-parameter, all odd cumulants of the distribution must
vanish by parity invariance. Furthermore, analysis of
SUðNcÞ gauge theories at large-Nc shows that the even
cumulants scale as κ2n ∼ N2−2n

c [14–16], suggesting that
the distribution will be approximately Gaussian. Given the
suppression of higher cumulants, it seems reasonable to
express the distribution PðQÞ in terms of its Edgeworth
series [17], truncated to the first non-Gaussian term:

PðQÞ ¼ 32

32þ ϵ
PG

�
Qffiffiffi
σ

p
��

1þ ϵ

4!
He4

�
Qffiffiffi
σ

p
��

; ð1Þ

where PGðxÞ is the Gaussian distribution with zero mean
and unit variance and He4ðxÞ ¼ x4 − 6x2 þ 3 is a Hermite
polynomial. The variance κ2 and fourth-order cumulant κ4
for this distribution are

κ2 ¼ σ2
�
1þ ϵ

4

�
þOðϵ2Þ; κ4

κ22
¼ ϵþOðϵ2Þ: ð2Þ

We identify the variance hQ2i ¼ κ2 ≡ Vχt, which defines
the topological susceptibility χt. As ϵ → 0, this distribution
becomes purely Gaussian; several lattice studies have

empirically found nonzero ϵ in SUðNcÞ gauge theories
[18–22]. We note that the dependence of this non-
Gaussianity on the presence of light fermions is unclear,
and large-Nc arguments may be inapplicable for theories
with many fermions, Nf, unless Nf=Nc is held fixed as
Nc → ∞.

III. ORNSTEIN-UHLENBECK PROCESS

We wish to consider Markov processes that can repro-
duce the approximately Gaussian topological charge dis-
tribution, Eq. (1). In fact, up to linear transformations in
the variables, there is a unique nontrivial example of a
continuous Markov process in which the expected distri-
bution at any point in the stochastic evolution is Gaussian:
the OU process [23,24], which describes the Brownian
motion of a massive particle in the presence of arbitrary
linear friction. This process is described by the stochastic
differential equation

d
dt

xðtÞ ¼ −ηðxðtÞ − x̄Þ þ σ
d
dt

WðtÞ; ð3Þ

where η > 0, σ > 0 and WðtÞ is the stochastic Wiener
process of Brownian motion. The standard solution leads to
the following statistics:

E½xðtÞ� ¼ x̄þ ðxð0Þ − x̄Þe−ηt

Var½xðtÞ� ¼ σ2

2η
ð1 − e−2ηtÞ; ð4Þ

which converge to a Gaussian with mean x̄ and variance
σ2=2η as t → ∞, independent of the starting position xð0Þ.
We will discuss the accuracy of this model in the presence
of small non-Gaussianities in Sec. IV below.
The detailed evolution of topological charge in a lattice

gauge theory calculation is quite complex and dependent
on unphysical details such as the choice of the update
algorithm. Since it is a Markov process and since Q is
distributed as a Gaussian asymptotically (up to corrections
which we will discuss), we will model the evolution of
topological charge as an OU process.
The friction parameter η is sensitive to algorithmic

details and therefore not physically relevant, so it will be
treated as a nuisance parameter. Although we will not
investigate it in detail here, we note that the parameter η
may be of interest in the comparison of different lattice
update algorithms (with the underlying physical parameters
held fixed). In particular, the autocorrelation RðτÞ for the
process xðtÞ from the standard solution is given by

RðτÞ ¼ e−ητ
 

1 − e−2ηðtþτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − e−2ηtÞð1 − e−2ηðtþτÞÞ

q
!
; ð5Þ

which for t ≫ 1=η converges to e−ητ. We can therefore
identify 1=η as the standard autocorrelation time for x.
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Our approach to be described below therefore gives an
alternate way to estimate the autocorrelation time for an
observable which is expected to always be approximately
Gaussian distributed.

IV. MAXIMUM-LIKELIHOOD ESTIMATE

We assume that we have N þ 1 computations of the
topological charge Qi at steps ni in the Markov chain,
where the ni need not be equally spaced. Due to parity
invariance of Yang-Mills theory, all odd moments are
identically zero, including the mean hQi ¼ 0. The second
moment, or equivalently the variance, gives the topological
susceptibility

hQ2i ¼ Vχt: ð6Þ

In the OU model, we identify the susceptibility in terms of
the model parameters, Vχt ¼ σ2=2η. The conditional prob-
ability of finding Qi at step ni givenQi−1 was found at step
ni−1 is Gaussian with mean and variance given by Eq. (4)
with appropriate asymptotic values:

PðQijQi−1Þ ¼ ð2πÞ−1
2½Vχtð1 − e−2ηðni−ni−1ÞÞ�−1

2

× exp

�
−
½Qi −Qi−1e−ηðni−ni−1Þ�2
2Vχt½1 − e−2ηðni−ni−1Þ�

�
: ð7Þ

The log-likelihood function (dropping additive constants)
given the time series is

Lðη; VχtÞ ¼ −
N
2
logVχt −

1

2Vχt
SðηÞ

−
1

2

XN
i¼1

log ½1 − e−2ηðni−ni−1Þ�; ð8Þ

where for later convenience we have defined the sum

SðηÞ≡XN
i¼1

½Qi −Qi−1e−ηðni−ni−1Þ�2
1 − e−2ηðni−ni−1Þ

: ð9Þ

The ML estimates η̂ and χ̂t minimize the log-likelihood
function Lðη; VχtÞ. At the minimum,

∂Lðη; VχtÞ
∂Vχt

����
Vχ̂t

¼ 0; ð10Þ

which leads to

Vχ̂t ¼
1

N
Sðη̂Þ: ð11Þ

If we substitute SðηÞ=N for Vχt in the log-likelihood
function we now need to solve the one-dimensional
problem to find η̂ that minimizes

LðηÞ ¼ −
N
2
logSðηÞ − 1

2

XN
i¼1

log ½1 − e−2ηðni−ni−1Þ�; ð12Þ

where we have dropped further additive constants. Once η̂
is known then Vχ̂t is known as well.
Since the OU model assumes the underlying distribution

is Gaussian, it is interesting to understand how well the
OU-model ML estimates can reproduce the variance of the
nearly Gaussian distribution in Eq. (1) for ϵ ≈ 0.2 [21]. As a
simple test, we generated 100,000 samples of the distri-
bution for σ2 ¼ 2 and ϵ ¼ 0–0.24 and used both the
OU ML method and the standard sample variance to
estimate hQ2i. Both estimates agree well with the analytic
value, as shown in Fig. 1. In addition, near-perfect agree-
ment is seen between the OU model and the standard
sample variance, for this test in which the underlying true
distribution is near-Gaussian and well-sampled.

V. NEARLY FIXED TOPOLOGY

For lattice calculations in which the topological charge
tunnels frequently, the distribution of Q will be well-
sampled, and χt can be estimated simply from the empirical
sample variance, or from a least-squares (LS) fit of a
Gaussian to the Q distribution. The advantage of the ML
method is that it should still yield robust estimates of χt
even when the distribution is relatively poorly sampled.
However, in extreme cases where the number of observed
tunneling events is Oð10Þ or less, the uncertainty in χt can
become very large, as a lack of tunneling events can be
explained by either large χt and small η, or vice versa.
Marginalizing over η leads to essentially a lower bound
on χt.
Recently, it has been suggested that the use of Neumann

boundary conditions along one of the directions of the
lattice would eliminate the barrier to changing topology
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FIG. 1 (color online). Monte Carlo test of variance extracted
from an Edgeworth distribution, Eq. (1), as a function of non-
Gaussianity parameter ϵ. The dashed line (black) shows the
analytic variance vs ϵ. The points with error bars (blue) and the
shaded band (red) show estimated variance using the sample
variance and OU maximum-likelihood estimate, respectively.
Both methods show good agreement with the expected variance.
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[25]. One can think rather informally of this scenario as
topological charge being allowed to flow freely through the
boundaries between the lattice and an infinite reservoir.
This physical picture suggests an alternative approach to
estimation of χt.
Consider a periodic lattice with volume V ¼ L3 × T and

T ≫ L, and then select some contiguous interval of length
Ts ≪ T, such that V ≫ Vs ≡ L3 × Ts ≫ χ−1t . The total
topological charge Qs contained within this subvolume Vs
will be a continuous variable, since charge is no longer
conserved; it can move freely into the complement of Vs,
which we can think of as a reservoir.
The existence of a nonzero global topological charge, Q,

on the full volume may bias the distribution of charge
within the subvolume; in particular, if Q is fixed, then the
mean charge contained within Vs will be equal to QVs=V.
We therefore define a “subtracted” subvolume charge,

Qs;sub ¼
Z
x∈Vs

d4x

�
qðxÞ −Q

V

�
; ð13Þ

where qðxÞ is the topological charge density at lattice site x.
We then carry out the analysis exactly as before, but with
the substitutions V → Vs and Q → Qs;sub.
It seems reasonable, although not proven, that χt

computed this way is an acceptable estimator of topological
susceptibility when using the methods suggested in [1],
given that V was periodic and translationally invariant and
Vs was chosen at random. Thus, we can apply our sameML
method to a time series in Qs to get an estimate of Vsχt.
Even with nearly fixed Q, it may be possible for Qs to
fluctuate frequently enough to allow a reliable LS fit. In this
case, we can check that ML and sample variance methods
produce compatible results for Vsχt.

VI. EXAMPLES

As a trial of this method, we take a few time series of
topological charge on a set of three 163 × 32 lattice
ensembles with Nf ¼ 2þ 1 domain wall fermions, gen-
erated by the RBC and UKQCD collaborations [26]. The
relevant data and empirical distributions of Q are plotted
in Fig. 2. For the analysis to follow we take a thermalization
cut of 200 molecular dynamics (MD) time units on all three
ensembles. The topological charge is measured every 5 MD
time units.
In Fig. 3, for the lightest mass ml ¼ 0.01 ensemble we

show the 2ΔL ¼ 1; 4; 9 contours appropriate for estimating
the 1, 2, 3 σ confidence intervals on Vχt while marginal-
izing over the friction parameter η. The resulting 1σ
confidence interval on Vχt is found to be in good agreement
with the standard sample variance estimate.
The negative correlation between Vχt and η is expected,

since they are inversely related through the asymptotic
variance of the model distribution, Vχt ¼ σ2=2η. For data
sets with relatively few tunneling events, we expect the

ellipsoid will become elongated and follow a hyperbolic
curve due to this relation.
We would now like to test the proposed subvolume

analysis of Sec. V, in conjunction with both the sample
variance and ML methods. The use of only a fixed
subvolume from all configurations would reduce the
available statistics, so we make use of a bootstrap procedure
in order to improve our statistical precision. We draw Nb ¼
1000 bootstrap replications from the distribution of pairs
fQi;Qiþ1g in the topological charge time series, allowing
us to resample while preserving the information on tran-
sitions required by the ML method. We fix the subvolume
size Ts ≤ T, and then within each bootstrap replication
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FIG. 2 (color online). From [26], Markov-chain Monte Carlo
time series (left) and cumulative distributions (right) of global
topological charge Q, as measured by the RBC and UKQCD
collaborations. Three ensembles are shown, differing by the light-
quark mass: ml ¼ 0.01 (top), 0.02 (middle), and 0.03 (bottom).

FIG. 3 (color online). Confidence contours for maximum-
likelihood analysis of the RBC/UKQCD ml ¼ 0.01 ensemble,
shown at 1σ, 2σ, and 3σ levels.
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choose a random starting position, t ∈ ½0; Nt − 1�, for the
subvolume on each configuration in the time series; the
choice is randomized for each bootstrap replication. This
procedure imposes the expected translation invariance in
the t-direction.
For the sample variance procedure, the data are blocked

before drawing bootstrap samples, in order to deal with
autocorrelation effects. Empirical tests on the data show
stability of error estimates on χt for a block length of
roughly ∼100 trajectories or 20 configurations. No block-
ing is used for the ML analysis, which includes autocorre-
lation effects in the model. For both the sample variance
and ML subvolume analyses, the central value and error
estimates correspond to the median and one-sigma
quantiles of the bootstrap distribution, respectively.
In Fig. 4 and Table I, we summarize our determination of

Vχt for the three ensembles shown in Fig. 2 using the
various methods described. The subvolume results here are
for fixed Ts ¼ 8. As expected from a time series with many
independent samples of PðQÞ, the ML result agrees closely
with the SV estimate of Vχt.

We further investigate the subvolume estimates, and in
particular their dependence on the choice of subvolume
size, by varying the temporal extent Ts and repeating the
analysis. The results are shown for all three ensembles in
Fig. 5. A strong variation is seen at small Ts, setting in
approximately where Vsχt ≈ 1, which is where our assump-
tions about the simplicity of the distribution PðQÞ are
anticipated to break down. For large Ts the dependence on
subvolume size is nearly flat, but with a small systematic
trend evident, particularly on the ml ¼ 0.03 ensemble. We
have no immediate physical explanation for the origin of
this subleading effect, but plan to investigate further in a
future work.
It is apparent that the ML method does not offer any

significant advantage in the determination of Vχt over a
simple calculation of the sample variance when the under-
lying distribution PðQÞ is well-sampled, as is the case
for the full time series on each of the RBC ensembles.
However, we expect the ML technique to be a robust
approach even when a small number of independent
samples are available. Furthermore, even when the distri-
bution is well-sampled, the ML method has the advantage
of including autocorrelation effects automatically, into the
friction parameter η, whereas the SV analysis requires an
autocorrelation analysis and blocking to be carried out first.
We can test what might happen in a case with poor

sampling by analyzing a restricted subset of the RBC time
series. Figure 6 shows the results of this test on the ml ¼
0.01 ensemble, with the analysis considered on the
restricted time series with MD time τ ≤ τmax; as a reminder,
Q is measured every 5 MD time units. For the SVanalysis,
we adjust the blocking when only a small number of
configurations are available; specifically, we use a block
length of τ ¼ 50 when less than 200 time units are

TABLE I. Comparison of various methods for determination of
Vχt on the three RBC/UKQCD example ensembles studied. SV
denotes use of the sample variance of Q, while ML indicates the
maximum-likelihood method described in the text. Rows labeled
“subvol” apply the same techniques on a subvolume with full
spatial extent and Ts ¼ 8.

Vχt ml ¼ 0.01 0.02 0.03

SV 5.68ðþ91
−84 Þ 9.19ðþ1.23

−1.16 Þ 16.86ðþ3.10
−2.96 Þ

ML 5.64ðþ82
−66 Þ 9.40ðþ1.47

−1.14 Þ 17.18ðþ3.73
−2.70 Þ

SV subvol 7.44ðþ43
−41 Þ 10.26ðþ71

−66 Þ 13.32ðþ1.30
−1.20 Þ

ML subvol 7.38ðþ1.16
−0.87 Þ 10.24ðþ1.71

−1.22 Þ 13.38ðþ2.38
−1.75 Þ
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ML
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FIG. 4 (color online). Comparison of various methods for
determination of Vχt on the three RBC/UKQCD example
ensembles studied. SV denotes use of the sample variance of
Q, while ML indicates the maximum-likelihood method de-
scribed in the text. Subvol indicates analysis restricted to a
subvolume with full spatial extent and Ts ¼ 8.
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FIG. 5 (color online). Dependence of ML subvolume estimates
of Vχt on the temporal extent of the L3 × Ts subvolume used, for
the three RBC/UKQCD example ensembles: from bottom to top,
ml ¼ 0.01 (green), 0.02 (red), and 0.03 (blue). The vertical lines
show the point at which Vsχt ≈ 1 on each ensemble (based on the
ML estimate at Ts ¼ 8), beyond which our method is expected to
break down.

MAXIMUM-LIKELIHOOD APPROACH TO TOPOLOGICAL … PHYSICAL REVIEW D 90, 014503 (2014)

014503-5



available, and τ ¼ 25 for less than 100 time units available.
With only a subset of the configurations, the full-volume
methods show a clear bias with respect to the best estimate
of Vχt from the full ensemble. On the other hand, both
the ML and SV subvolume approaches converge rapidly
to cover the asymptotic estimate, with the ML being
particularly effective at small τmax where a simple block-
ing analysis cannot adequately account for the known
autocorrelation effects.

VII. DISCUSSION

We have introduced a new maximum-likelihood
approach to estimation of the topological susceptibility
χt in lattice calculations, based on maximum-likelihood
analysis of the full time-series information. This approach
can give an advantage over more traditional methods such
as calculation of the sample variance of Q, particularly in
the case that autocorrelation times are long and relatively
few independent samples are available, due to the inclusion
of autocorrelation effects within the ML model. The
autocorrelation time of Q can also be estimated as a
byproduct of the analysis.

In addition, we have explored the analysis of topological
charge fluctuations on lattice subvolumes. This technique
may be necessary in cases where the global topological
charge goes through few or even no tunneling events within
a lattice calculation. Even when Q fluctuates adequately,
the subvolume method (in conjunction with the ML
analysis) was found to give the most robust estimates of
χt, with confidence intervals rapidly converging to cover
the asymptotic estimates of this quantity even on small
amounts of data. Stability of the estimate with respect to
the subvolume size was observed empirically down to
Vsχt ≈ 1, at which point our physical assumptions about
the fluctuations should break down.
A modification of the ML approach to a more complex

model than the OU process, which might be able to deal
with non-Gaussian distributions and therefore extract
higher moments by the maximum-likelihood approach,
would be interesting to study in a future work. The
modeling of higher-order systematic dependence on the
subvolume size, as hinted at by our current analysis, also
merits further study.
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