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We present the first unquenched lattice QCD results for the bag parameters controlling the short distance
contribution to D meson oscillations in the standard model and beyond. We have used the gauge
configurations produced by the European Twisted Mass collaboration with Nf ¼ 2 dynamical quarks, at
four lattice spacings and light meson masses in the range 280–500 MeV. Renormalization is carried out
nonperturbatively with the regularization-independent momentum subtraction method. The bag-parameter
results have been used to constrain new physics effects in D0 − D̄0 mixing, to put a lower bound to the
generic new physics scale and to constrain off-diagonal squark mass terms for TeV-scale supersymmetry.
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I. INTRODUCTION

The study of meson oscillations currently represents one
of the most powerful probes in searching for new physics
(NP). The K and BðsÞ systems are well studied experimen-
tally and all the available data are compatible with the
standard model (SM) predictions. Improved theoretical
predictions and future experiments will be important to look
for possible NP effects with higher accuracy. The phenome-
non of D0 − D̄0 mixing has been established only in 2007
[1,2]. As it involves mesons with up-type quarks, it is
complementary to K and BðsÞ oscillations in providing
information on NP. From the theory side, D0 − D̄0 mixing
has the disadvantage of being affected by large long-distance
effects, related to the down and strange quarks circulating in
the box diagrams. Only order of magnitude estimates exist
for the long-distance contributions and they are at the level of
the experimental constraints. However, the SM contribution
to D0 − D̄0 mixing is real to very high accuracy. Therefore,
in spite of the SM uncertainty, significant constraints on NP
can be obtained in this sector fromCP-violating observables
[3–22]. These constraints rely on the lattice computation of
the bag parameters of four-fermion operators describing
D0 − D̄0 mixing beyond the SM.
In this paper we use the Nf ¼ 2 gauge configurations

[23,24], generated by the European Twisted Mass collabo-
ration (ETMC), at four values of the lattice spacing to

obtain continuum limit estimates for the full basis of
ΔC ¼ 2 four-fermion operators. This is the first
unquenched calculation of the whole set of D meson
bag parameters.
The most general ΔC ¼ 2 effective Hamiltonian of

dimension-six operators is

HΔC¼2
eff ¼ 1

4

X5
i¼1

CiðμÞQiðμÞ; ð1Þ

where μ is the renormalization scale and Ci are the
model-dependent Wilson coefficients encoding the short
distance contributions. The operatorsQi involving light (l)
and charm (c) quarks read, in the so-called SUSY basis,

Q1 ¼ ½c̄aγμð1 − γ5Þla�½c̄bγμð1 − γ5Þlb�;
Q2 ¼ ½c̄að1 − γ5Þla�½c̄bð1 − γ5Þlb�;
Q3 ¼ ½c̄að1 − γ5Þlb�½c̄bð1 − γ5Þla�;
Q4 ¼ ½c̄að1 − γ5Þla�½c̄bð1þ γ5Þlb�;
Q5 ¼ ½c̄að1 − γ5Þlb�½c̄bð1þ γ5Þla�; ð2Þ

where a, b are color indices and Dirac indices (understood)
are contracted within brackets. In the SM onlyQ1 enters the
effective Hamiltonian.
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According to the operator product expansion, the
long-distance nonperturbative QCD contributions are
enclosed in the matrix elements of the renormalized
four-fermion operators, which can be written in terms of
bag parameters as

hD̄0jQ1ðμÞjD0i ¼ ξ1B1ðμÞm2
Df

2
D;

hD̄0jQiðμÞjD0i ¼ ξiBiðμÞ
�

m2
DfD

μcðμÞ þ μlðμÞ
�
2

;

for i ¼ 2;…; 5; ð3Þ

where ξi ¼ f8=3;−5=3; 1=3; 2; 2=3g.
For the reader’s convenience we give in Table I our

final results for the Bi bag parameters, quoting the total
uncertainty (statistical and systematic added in quadra-
ture). From these results one notices moderate deviations
from the vacuum insertion approximation (the size of
which is, of course, scheme dependent) which are much
smaller than in the kaon system but larger than for B
mesons [25].
As in our recent works on K and BðsÞ mixing [27,28],

we use the results obtained for the full set of ΔC ¼ 2
bag parameters to improve the bounds on the NP scale
coming from D-meson mixing, following the method of
Ref. [10]. We also recompute the bounds on off-diagonal
squark masses from gluino-mediated contributions to
D0 − D̄0 mixing in the minimal supersymmetric standard
model (MSSM), updating the analysis presented in
Ref. [5]. As for the experimental results we use the recent
average of D-meson mixing data computed by the UTfit
collaboration [29].
The plan of the paper is as follows. In Sec. II, based

on the results of this work for the ΔC ¼ 2 bag param-
eters, we discuss the bounds coming from D-meson
mixing on the NP scale and on off-diagonal squark
mass terms. In Sec. III we give details about the lattice
simulation and we describe the techniques that have been
used in this paper. In Sec. IV we discuss the continuum
and chiral extrapolation and we present the results for the
bag parameters of the full four-fermion operator basis.
We collect in the Appendix the lattice bare bag param-
eters for all the quark mass combinations and β values
we had available.

II. BOUNDS ON THE NP SCALE AND ON THE
SQUARK MASS TERMS

ΔF ¼ 2 processes provide some of the most stringent
constraints on NP generalizations of the SM. Several
phenomenological analyses of ΔF ¼ 2 processes have
been performed in the past years, both for specific models
and in model-independent frameworks [10,27,30–38].
While the SM prediction for B0

ðsÞ − B̄0
ðsÞ mixing and εK

is theoretically well under control, the SM contribution to
D0 − D̄0 mixing is plagued by long-distance contributions.
However, due to the SM flavor structure, CP violation in
D0 − D̄0 mixing receives negligible SM contributions.
Therefore, significant constraints on NP can be obtained
in this sector from CP-violating observables.
In two previous papers [27,28] we have presented the

first unquenched (Nf ¼ 2) lattice QCD results in the
continuum limit for the matrix elements of the operators
describing K and BðsÞ oscillations in extensions of the SM.
In the same papers we have updated the generalization of
the unitarity triangle analysis including possible NP effects,
improving the bounds coming from K0 − K̄0 and B0

ðsÞ −
B̄0
ðsÞ mixings.

In a similar way, we present here the first unquenched
(Nf ¼ 2) lattice QCD results for the bag parameters of the
full ΔC ¼ 2 four-fermion operators basis and we use them
to improve the bounds coming from D-meson mixing on
the NP scale and on the off-diagonal squark mass terms,
updating the analysis in Refs. [5,10]. As for the exper-
imental results, we use the recent averages of D-meson
mixing data derived by the UTfit collaboration [29]. With
the latest experimental updates, the imaginary part of the D
mixing amplitude is very strongly constrained, leading to
very tight bounds on possible CP-violating NP contribu-
tions to the mixing, as shown in Table II.
Let us first discuss the model-independent analysis.

The most general effective weak Hamiltonian for Dmixing
of dimension-six operators is parametrized by Wilson
coefficients of the form

CiðΛÞ ¼
FiLi

Λ2
; i ¼ 1;…; 5; ð4Þ

where Fi is the (generally complex) relevant NP flavor
coupling, Li is a (loop) factor which depends on the
interactions that generate CiðΛÞ, and Λ is the NP scale,
i.e. the typical mass of new particles mediating ΔC ¼ 2

TABLE I. Results for the bag parameters of D̄0 −D0 mixing, renormalized in the M̄S scheme of Ref. [26] and in
the regularization-independent momentum subtraction (RI-MOM) scheme at 3 GeV.

B1 B2 B3 B4 B5

M̄S (3 GeV) 0.75(02) 0.66(02) 0.96(05) 0.91(04) 1.10(05)
RI-MOM (3 GeV) 0.74(02) 0.82(03) 1.21(06) 1.09(05) 1.35(06)
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transitions. For a generic strongly interacting theory with
an unconstrained flavor structure, one expects Fi ∼ Li ∼ 1,
so that the phenomenologically allowed range for each of
the Wilson coefficients can be immediately translated into
a lower bound on Λ. Specific assumptions on the flavor
structure of NP correspond to special choices of the Fi
functions.
Following Ref. [10], in deriving the lower bounds on the

NP scale Λ, we assume Li ¼ 1, which corresponds to
strongly interacting and/or tree-level coupled NP. Two
other interesting possibilities are given by loop-mediated
NP contributions proportional to either α2s or α2W. The first
case corresponds for example to gluino exchange in the
MSSM. The second case applies to all models with SM-like
loop-mediated weak interactions. To obtain the lower
bound on Λ entailed by loop-mediated contributions, one
simply has to multiply the bounds we quote in the
following by αsðΛÞ ∼ 0.1 or αW ∼ 0.03.
The results for the upper bounds on the imaginary part

of the Wilson coefficients, ImCD
i , and the corresponding

lower bounds on the NP scale Λ are collected in Table II.
The latter are also shown in Fig. 1. The superscript D is
to recall that we are reporting the bounds coming from the
D-meson sector we are here analyzing.
We remind the reader that the analysis is performed (as in

Ref. [10]) by switching on one coefficient at the time in

each sector, thus barring the possibility of accidental
cancellations among the contributions of different opera-
tors. Therefore, the reader should keep in mind that the
bounds may be weakened if, instead, some accidental
cancellation occurs.
In comparison with the analyses in Refs. [27,28], we

confirm that the most stringent constraints on the NP scale
come from the K0 − K̄0 matrix elements, while the bounds
coming from D0 − D̄0 are more stringent than those
coming from B0 − B̄0.
We now turn to supersymmetry (SUSY), and consider a

general MSSM with arbitrary off-diagonal squark mass
terms. In this framework the dominant contribution to flavor
changing neutral current (FCNC) processes is expected to
come from gluino exchange, since the quark-squark-gluino
vertex is proportional to gs and involves both chiralities,
generating all the operators in Eq. (1). Therefore, we study
the constraints on the off-diagonal mass terms connecting
up- and charm-type squarks of helicities A and B in the
super-Cabibbo-Kobayashi-Maskawa basis, normalized to
the average squark mass, denoted by ðδu12ÞAB. The bounds
scale linearly with the average squarkmass, up to logarithmic
terms due to QCD evolution. For reference, we report the
constraints obtained for gluino and average squark masses
of 1 TeV. As above, we only quote the constraints obtained
from the CP-violating part of the ΔC ¼ 2 amplitude, which
correspond to bounds on the imaginary part of ðδu12Þ2AB.
A constraint on the real part could be obtained by making
an educated guess on the size of the SM contribution;
however, we prefer to stick to model-independent results in
the present analysis.
We use the mass-insertion approximation for degenerate

squarks at the next-to-leading order in QCD [26,39,40] (see
Ref. [41] for the results of the SUSY matching in the mass-
eigenstate basis). The bounds are reported in Table III (see
Refs. [3,5,6,9,12,14,16,17,19,21] for previous analyses).
Since there is no SM contribution, the bounds on the SUSY
ðδu12ÞAB are invariant under the exchange of chiralities.
We cannot compare directly the present bounds in

Table III with our previous results [5] which reported
bounds on the absolute values of the ðδu12ÞAB using an
estimate of the long-distance contributions. For the sake of
comparison, we have checked that following the same
procedure as in Ref. [5] we obtain bounds stronger by a
factor from 3 to 5.

TABLE II. 95% probability intervals for the imaginary part of
the Wilson coefficients, ImCD

i , and the corresponding lower
bounds on the NP scale, Λ, for a generic strongly interacting NP
with generic flavor structure (Li ¼ Fi ¼ 1Þ.

95% upper limit (GeV2) Lower limit on Λ (TeV)

ImCD
1 ½−0.9; 2.5� × 10−14 6.3 × 103

ImCD
2 ½−2.8; 1.0� × 10−15 1.9 × 104

ImCD
3 ½−3.0; 8.6� × 10−14 3.4 × 103

ImCD
4 ½−2.7; 8.0� × 10−16 3.5 × 104

ImCD
5 ½−0.4; 1.1� × 10−14 9.5 × 103

FIG. 1 (color online). Lower bounds on the NP scale as
obtained from the constraints on the imaginary part of the Wilson
coefficients, ImCD

i .

TABLE III. Upper bounds at 95% probability on
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jImðδu12Þ2ABj

p
for squark and gluino masses equal to 1 TeV. The three bounds
are respectively obtained assuming: (i) a dominant LL (or RR)
mass insertion, (ii) a dominant LR (or RL) mass insertion,
(iii) ðδu12ÞLL ¼ ðδu12ÞRR.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jImðδu12Þ2LL;RRj
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jImðδu12Þ2LR;RLj
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jImðδu12Þ2LL¼RRj
p

0.019 0.0025 0.0011
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III. LATTICE SETUP AND SIMULATION DETAILS

The Nf ¼ 2 gauge configuration ensembles employed
in the present analysis have been generated by the ETM
collaboration. The four values of the simulated lattice
spacing lie in the interval [0.05, 0.1] fm. Dynamical quark
simulations have been performed using the tree-level
improved Symanzik gauge action [42] and the Wilson
twisted mass action [43] tuned to maximal twist [44]. More
details on the action and our Nf ¼ 2 gauge ensembles can
be found in Refs. [23,24,45,46]. We stress that the use
of maximally twisted fermionic action offers the advantage
of automatic OðaÞ improvement for all the interesting
physical observables computed on the lattice [44].
For the evaluation of the four-fermion matrix elements

on the lattice we use a mixed fermionic action setup where
we adopt different regularizations for sea and valence
quarks as proposed in Ref. [47]. This particular setup
offers the advantage that one can compute matrix elements
that are at the same time OðaÞ improved and free of wrong
chirality mixing effects [48]. These two properties have
already proved to be very beneficial in the study of neutral
K- and B-meson oscillations [27,28,49–52].
We have computed 2- and 3-point correlation functions

with valence quark masses ranging from the light sea
quark mass up to around the physical charm quark mass.
Simulation details are given in Table IV, where μl and μc
indicate the bare light and charmlike valence quark masses
respectively. The values of the light valence quark mass
are set equal to the light sea ones, aμl ¼ aμsea, and
they correspond to light pseudoscalar mesons in the range
280–500 MeV.
Renormalized quark masses are obtained from the bare

ones using the renormalization constant Zμ ¼ Z−1
P [43,47],

whose values have been computed in [28,53] using
RI-MOM techniques. The physical values for the light and
charm quark mass are m̄u=dð2 GeVÞ ¼ 3.6ð2Þ MeV and
m̄cðmcÞ ¼ 1.28ð4Þ GeV, taken from Ref. [24].
We have computed 2- and 3- point correlation functions

by employing smearing techniques on a set of 100–240
independent gauge configurations for each ensemble and

evaluated statistical errors using a bootstrap method.1

Smeared interpolating operators become mandatory in
the presence of relativistic heavy (charmlike and heavier)
quarks. Smearing turns out to reduce the coupling of the
interpolating field with the excited states, thus increasing
its projection onto the lowest energy eigenstate. The usual
drawback, i.e. the increase of the gauge noise due to
fluctuations of the links entering in the smeared fields, is
controlled by replacing thin gauge links with array proc-
essor experiment (APE) smeared ones. With this technical
improvement heavy-light meson masses and matrix ele-
ments can be extracted at relatively small temporal sepa-
rations while keeping noise-to-signal ratio under control.
We employed Gaussian smearing [54,55] for heavy-light
meson interpolating fields at the source and/or the sink.
The smeared field is of the form

ΦS ¼ ð1þ 6κGÞ−NGð1þ κGa2∇2
APEÞNGΦL; ð5Þ

where ΦL is a standard local source and ∇APE is the lattice
covariant derivative with APE smeared gauge links char-
acterized by the parameters αAPE ¼ 0.5 and NAPE ¼ 20.
We have taken κG ¼ 4 and NG ¼ 30. We have noticed
that in practice a better signal to noise ratio is found when
the source, rather than the sink, is smeared. Thus 2-point
smeared-local correlation functions yield better improved
plateaux for the lowest energy mass state than local-
smeared or smeared-smeared ones. In a recent paper
[28] ETMC investigated optimized interpolating operators
for both three- and two-point correlation functions both of
which enter in the computation of the bag parameters. It has
been found out that within the statistical uncertainty (which
is at the level of 1% or less) no difference can be seen
between the optimized and the simple smeared interpolat-
ing fields. In the present paper we use the same lattice data
as those in Ref. [28]. For this reason we are confident that
excited states are well suppressed for our plateau choices.

TABLE IV. Simulation details for correlator computation at four values of the inverse gauge coupling β ¼ 3.80,
3.90, 4.05 and 4.20. The quantities aμl and aμc stand for light and charmlike bare valence quark mass values
respectively, expressed in lattice units.

β a−4ðL3 × TÞ aμl ¼ aμsea aμc

3.80 243 × 48 0.0080, 0.0110 0.1982, 0.2331, 0.2742
a ∼ 0.098 fm
3.90 243 × 48 0.0040, 0.0064, 0.0085, 0.0100 0.1828, 0.2150, 0.2529
a ∼ 0.085 fm 323 × 64 0.0030, 0.0040
4.05 323 × 64 0.0030, 0.0060, 0.0080 0.1572, 0.1849, 0.2175
a ∼ 0.067 fm
4.20 323 × 64 0.0065 0.13315, 0.1566, 0.1842
a ∼ 0.054 fm 483 × 96 0.0020

1The bootstrap method also serves the purpose of taking into
account correlations over different time slices.
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In Fig. 2 we show (time-dependent estimators of) the B1

and B5 bare bag parameters at β ¼ 3.80 for the smallest
light quark mass and a charmlike quark around the physical
charm, and compare the cases of smeared versus local
quark sources in both the heavy-light meson interpolating
fields.
The bare bag parameters can be evaluated from ratios

of 3-point, C3;iðx0Þ, and two 2-point, C2ðx0Þ and C0
2ðx0Þ,

correlation functions [for more details see the discussion
that leads to Eqs. (4.10)–(4.13) of Ref. [27]]:

ξiBiðx0Þ ¼
C3;iðx0Þ

C2ðx0ÞC0
2ðx0Þ

; i ¼ 1;…; 5: ð6Þ

To improve the signal-to-noise ratio a sum was performed
over the spatial position of the four-fermion operator in
C3;iðx0Þ, and for each gauge configuration the time slice y0
was randomly chosen. An important reduction of statistical
fluctuations comes also from summing over the spatial
position of both (local or smeared) meson interpolating
fields. These spatial sums were implemented at a reason-
ably low computational cost by means of the stochastic
technique discussed in Sec. 2.2 of Ref. [49].

The plateau of the ratio (6), for large source time
separation Tsep, provides an estimate of the (bare) Bi
(i ¼ 1;…; 5) bag parameter multiplied by the correspond-
ing factor ξi in Eq. (3). By employing smeared interpolating
operators for the meson sources we are able to reduce the
source time separation, Tsep. The latter, in order to lead
to safe plateau signals, turns out to be less than half of
the lattice time extension: Tsep=a ¼ f16; 18; 22; 28g for
β ¼ f3.80; 3.90; 4.05; 4.22g, respectively.
For illustration, in Fig. 3 we show an exploratory test of

the effect of locating the source and sink fields at different
time slices. We observe that for both choices, Tsep ¼ 16 and
Tsep ¼ 24, there is a visible plateau. Choosing Tsep ¼ 16,
as in the present analysis, one obtains data that are more
precise than in the Tsep ¼ 24 case.

IV. RESULTS FOR THE BAG PARAMETERS AT
THE PHYSICAL POINT

The bag parameters are renormalized nonperturbatively
by using the RI-MOM [56] renormalization constants
computed in Ref. [27].
For all bag parameters Bi the results are first interpolated

to the physical value of the charm quark mass [24]. Since

FIG. 2 (color online). B1ðtÞ (left) and B5ðtÞ (right) using either smeared or local sources at β ¼ 3.80 and ðaμl; aμcÞ ¼
ð0.0080; 0.2331Þ on a 243 × 48 lattice. The dotted vertical lines delimit the plateau regions.

FIG. 3 (color online). B1ðtÞ (left) and B5ðtÞ (right) at β ¼ 3.80 and ðaμl; aμcÞ ¼ ð0.0080; 0.2331Þ on a 243 × 48 lattice for smeared
sources and sink located at two different time distances (Tsep).
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we have simulated three points around the physical charm
quark mass, the interpolation is under very good control
and a linear interpolation turns out to describe correctly the
smooth mass dependence.
Continuum and chiral extrapolation are carried out in a

combined way. For all bag parameters, we have tried out a
linear fit in the light quark mass, μ̄l, renormalized in M̄S at
2 GeV,

Bi ¼ Ai þ Biμ̄l þDia2; ð7Þ

a quadratic fit

Bi ¼ A0
i þ B0

iμ̄l þ C0
iμ̄

2
l þD0

ia
2; ð8Þ

and a heavy meson chiral perturbation theory (HMChPT)
fit ansatz [57],

B1 ¼Bχ
1

�
1þb1μ̄l −

ð1− 3ĝ2Þ
2

2B0μ̄l
16π2f20

log
2B0μ̄l
16π2f20

�
þ D̂1a2;

Bi ¼Bχ
i

�
1þbiμ̄l∓ ð1∓3ĝ2YÞ

2

2B0μ̄l
16π2f20

log
2B0μ̄l
16π2f20

�
þ D̂ia2;

ð9Þ

FIG. 4 (color online). Combined chiral and continuum extrapolation for the Bi parameters (i ¼ 1, 2, 3, 4, 5) renormalized in the M̄S
scheme of Ref. [26] at 3 GeV. Solid lines represent the linear chiral fit with the continuum curve displayed in black. The dashed black
line represents the continuum curve in the case of the HMChPT ansatz. Open circles and stars stand for the results at the physical point
corresponding to the linear and HMChPT fit, respectively.
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where the sign in front of the logarithmic term is minus for
i ¼ 2 and plus for i ¼ 4, 5. We take the HMChPT based
estimate Y ¼ 1 from Ref. [57] and ĝ ¼ 0.53ð4Þ from the
(Nf ¼ 2) lattice measurement of the gD�Dπ coupling [58].
We observe that the contribution of the ĝ uncertainty to the
error of the chiral fit is less than 0.3% and that of the
uncertainties due to B0 and f0 is less than 0.1%. In HQET
the bag parameter B3 is related to the bag parameters B1

and B2. For Y ¼ 1, which is the only case considered in this
paper, the chiral expansion for B3 is similar to the one of B2

with the same chiral log.
In Fig. 4 we show the combined chiral and continuum

fit for the renormalized Bi in the M̄S scheme of Ref. [26]
at 3 GeV. Our final results for the Bi bag parameters in
the M̄S and RI-MOM scheme at 3 GeV, obtained by
averaging the estimates from the three chiral fits dis-
cussed above, are collected in Table I. The quadratic fit
results turn out to be very close to those of the linear fit.
The half of the difference between the two more distant
results, i.e. between the results of the linear and
HMChPT fits, has been included as a systematic error,
added in quadrature to the statistical one. In performing
the combined chiral and continuum fits statistical errors
of the (bare) bag parameters and statistical uncertainties
of the renormalization constants of two- and four-fermion
operators have been included and treated altogether

employing the bootstrap procedure. We note that stat-
istical errors of the renormalization constants represent a
significant source of uncertainty. Their contribution in the
final error budget lies between 2% and 3.5%, depending
on Bi. The largest one is noted for B3. Moreover, we
have added in quadrature the systematic error owed to the
way that discretization effects have been estimated in
computing the renormalization constants.2 This system-
atic uncertainty varies from 0.5% to 2.5%.

ACKNOWLEDGMENTS

We acknowledge the computer time available on the
Altix system at the HLRN supercomputing service in
Berlin under the project “B-physics from lattice QCD
simulations.” Part of this work has been completed thanks
to allocation of CPU time on BlueGene/Q–Fermi based on
the agreement between INFN and CINECA within the
specific initiative INFN-RM123. The research leading to
these results has received funding from the European
Research Council under the European Union’s Seventh
Framework Programme (FP/2007-2013)/ERC Grant

TABLE V. Bare ξiBi at each combination of the quark mass pair ðaμl; aμcÞ at β ¼ 3.80 and 243 × 48 volume.

β ¼ 3.80 L3 × T ¼ 243 × 48

aμl ¼ aμsea aμc ξ1B1 ξ2B2 ξ3B3 ξ4B4 ξ5B5

0.0080 0.1982 2.126(30) 1.285(09) 0.289(03) 2.120(10) 0.860(06)
0.2331 2.160(32) 1.307(09) 0.291(03) 2.135(11) 0.884(07)
0.2742 2.193(35) 1.329(10) 0.291(03) 2.148(12) 0.909(08)

0.0110 0.1982 2.196(43) 1.326(24) 0.299(05) 2.153(35) 0.884(15)
0.2331 2.236(44) 1.349(24) 0.301(05) 2.168(36) 0.910(15)
0.2742 2.277(45) 1.373(24) 0.303(05) 2.181(37) 0.936(16)

TABLE VI. The same as in Table V but for β ¼ 3.90 and 243 × 48 volume.

β ¼ 3.90 L3 × T ¼ 243 × 48

aμl ¼ aμsea aμc ξ1B1 ξ2B2 ξ3B3 ξ4B4 ξ5B5

0.0040 0.1828 2.089(28) 1.245(07) 0.284(02) 2.169(14) 0.883(08)
0.2150 2.125(31) 1.269(07) 0.287(03) 2.186(15) 0.910(08)
0.2529 2.157(34) 1.292(08) 0.289(03) 2.202(16) 0.938(10)

0.0064 0.1828 2.152(24) 1.269(08) 0.288(02) 2.159(16) 0.884(07)
0.2150 2.192(26) 1.293(08) 0.290(02) 2.171(16) 0.910(07)
0.2529 2.231(28) 1.317(08) 0.291(03) 2.182(16) 0.936(07)

0.0085 0.1828 2.155(18) 1.274(06) 0.289(01) 2.160(14) 0.881(07)
0.2150 2.196(20) 1.298(07) 0.291(02) 2.178(15) 0.908(07)
0.2529 2.235(21) 1.322(07) 0.293(02) 2.194(16) 0.937(08)

0.0100 0.1828 2.136(12) 1.273(05) 0.288(02) 2.148(11) 0.880(05)
0.2150 2.173(12) 1.295(06) 0.291(02) 2.163(12) 0.907(06)
0.2529 2.209(13) 1.318(06) 0.292(02) 2.176(13) 0.934(06)

2More details on the RI-MOM computation of the renormal-
ization constants and the two possible ways to work out estimates
concerning discretization errors can be found in Refs. [27,53].
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APPENDIX: LATTICE DATA FOR THE BARE BAG PARAMETERS

In this Appendix, in Tables V,VI,VII,VIII,IX,X, we collect the results for the bare bag parameters, for all simulated
values of β and combinations of quark masses.

TABLE VII. The same as in Table V but for β ¼ 3.90 and 323 × 64 volume.

β ¼ 3.90 L3 × T ¼ 323 × 64

aμl ¼ aμsea aμc ξ1B1 ξ2B2 ξ3B3 ξ4B4 ξ5B5

0.0030 0.1828 2.099(28) 1.238(12) 0.279(04) 2.165(16) 0.881(07)
0.2150 2.134(30) 1.262(13) 0.282(04) 2.179(17) 0.908(08)
0.2529 2.168(32) 1.286(14) 0.284(05) 2.193(19) 0.937(09)

0.0040 0.1828 2.119(25) 1.239(06) 0.281(02) 2.128(16) 0.868(05)
0.2150 2.165(26) 1.262(07) 0.282(02) 2.142(17) 0.895(05)
0.2529 2.212(27) 1.285(07) 0.283(02) 2.155(18) 0.923(06)

TABLE VIII. The same as in Table V but for β ¼ 4.05 and 323 × 64 volume.

β ¼ 4.05 L3 × T ¼ 323 × 64

aμl ¼ aμsea aμc ξ1B1 ξ2B2 ξ3B3 ξ4B4 ξ5B5

0.0030 0.1572 2.058(29) 1.213(08) 0.277(03) 2.183(16) 0.881(07)
0.1849 2.088(32) 1.234(10) 0.279(03) 2.202(17) 0.910(07)
0.2175 2.114(36) 1.255(12) 0.280(04) 2.219(19) 0.940(08)

0.0060 0.1572 2.115(23) 1.221(08) 0.279(03) 2.144(15) 0.875(07)
0.1849 2.151(25) 1.243(09) 0.281(03) 2.160(16) 0.904(08)
0.2175 2.185(28) 1.265(10) 0.282(04) 2.175(18) 0.933(09)

0.0080 0.1572 2.121(20) 1.223(08) 0.279(02) 2.149(11) 0.877(05)
0.1849 2.158(22) 1.245(08) 0.280(02) 2.165(12) 0.904(06)
0.2175 2.195(25) 1.266(09) 0.281(03) 2.179(12) 0.931(07)

TABLE IX. The same as in Table V but for β ¼ 4.20 and 323 × 64 volume.

β ¼ 4.20 L3 × T ¼ 323 × 64

aμl ¼ aμsea aμc ξ1B1 ξ2B2 ξ3B3 ξ4B4 ξ5B5

0.0065 0.13315 2.128(32) 1.205(12) 0.278(04) 2.157(20) 0.878(10)
0.1566 2.174(33) 1.229(13) 0.280(05) 2.178(20) 0.908(11)
0.1842 2.220(33) 1.253(15) 0.282(05) 2.199(21) 0.940(12)

TABLE X. The same as in Table V but for β ¼ 4.20 and 483 × 96 volume.

β ¼ 4.20 L3 × T ¼ 483 × 96

aμl ¼ aμsea aμc ξ1B1 ξ2B2 ξ3B3 ξ4B4 ξ5B5

0.0020 0.13315 2.068(33) 1.187(12) 0.275(04) 2.130(28) 0.853(12)
0.1566 2.100(33) 1.211(13) 0.278(05) 2.143(29) 0.879(13)
0.1842 2.131(34) 1.234(15) 0.280(06) 2.156(31) 0.905(14)
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