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We derive the one-loop matching condition for nonsinglet quark distributions in the transverse-
momentum cutoff scheme, including unpolarized, helicity and transversity distributions. The matching is
between the quasidistribution defined by static correlation at finite nucleon momentum and the light-cone
distribution measurable in experiments. The result is useful for extracting the latter from the former in a
lattice QCD calculation which uses the lattice spacing as the ultraviolet cutoff.
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I. INTRODUCTION

Parton distributions characterize the structure of nucleons in
terms of partons in high-energy scattering processes. They are
an essential ingredient in making physical predictions for
hadron-hadron or lepton-hadron collision experiments.
Although much effort has been devoted to extracting parton
distributions from various experimental data [1–6], the com-
putation of parton distributions from the underlying theory of
strong interactions, quantum chromodynamics (QCD), has
been a difficult task, due to their nonperturbative nature. One
may wonder whether it is possible to evaluate parton dis-
tributions from lattice QCD, which is so far the only reliable
framework for nonperturbative phenomena in QCD. In the
field-theoretic language, the parton distribution is given in
terms of nonlocal light-cone correlators, which can be
viewed as the density of quarks and gluons in the infinite
momentum limit (before UV cutoffs are imposed) or light-
front correlations of partons at finite nucleon momentum [7].
Such correlations are time dependent and intrinsically
Minkowskian, and thus cannot be readily computed on the
lattice. Past attempts have been mainly focused on the
evaluation of local moments of the distributions. However,
the evaluationof highermoments of partondistributions on the
lattice becomes considerably difficult for technical reasons [8].
Recently, a direct approach to compute parton physics on

a Euclidean lattice has been proposed by one of the present
authors [9]. In this approach one computes, instead of the
light-cone distribution, a related quantity, which may be
called quasidistribution [10]. In the case of unpolarized
quark density, the quasidistribution is defined as

~qðx;Λ; PzÞ ¼
Z

∞

−∞

dz
4π

eizk
zhPjψ̄ð0; 0⊥; zÞγz

× exp

�
−ig

Z
z

0

dz0Azð0; 0⊥; z0Þ
�
ψð0ÞjPi;

ð1Þ

where x ¼ kz=Pz is the longitudinal momentum fraction,
Vz is the z component of four-vector Vμ, γμ is the Dirac
matrix, ψ is the quark Dirac field, and jPi is the nucleon
state with four-momentum Pμ ¼ ðP0; 0; 0; PzÞ. All fields
and coupling constant g appearing in the above expression
are bare ones, and Λ is the momentum cutoff to regulate the
UV divergences. The operator above is time independent
and nonlocal, and its matrix element can be simulated on a
lattice for any Pz ≪ 1=a ∼ Λ, where a is the lattice spacing.
However, the result is not the light-cone distribution
extracted from the experimental data, qðx; μÞ (scheme
dependent, usually in MS and μ indicates the renormaliza-
tion scale). To recover the latter from the former, one needs
to find a matching condition of the type

~qNSðx;Λ;PzÞ¼
Z

dyZ

�
x
y
;
Λ
Pz ;

μ

Pz

�
qNSðy;μÞþOððM=PzÞ2Þ

ð2Þ
for a large Pz, where we have limited ourselves to the
so-called nonsinglet quantities such as up-minus-down
flavors, so that the gluon contribution can be ignored.
The correction terms are in power of M=Pz, where M is a
QCD scale, such as the hadron mass. Since the difference
between ~qNS and qNS is that the former is for finite but
large momentum while the latter is for infinite momen-
tum, the IR behavior of the distribution should not
change when moving from one frame to the other, and
the matching factor Z captures only the UV behavior and
is thus entirely perturbative. The above relation can
actually be viewed as a factorization conjecture: All
the soft divergences are canceled on both sides, and all
the collinear divergences in ~qðx;Λ; PzÞ are the same as
those in the light-cone distributions. Of course one has
yet to prove that this holds to all orders in perturbation
theory. However, as a first step, we will show in the
present paper that it is indeed true at one loop. It is
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worthwhile to point out here that the choice of quasidis-
tributions is not unique; one can define more than one
possible quasidistribution which have similar properties
as ~qðx;Λ; PzÞ, for example by replacing γz by γt (the time
component of the Dirac matrix). Here we will focus on
the type in Eq. (1) that is simple for lattice QCD
calculations.
We will concentrate on the nonsinglet quark distribution

in this paper, and prove the above factorization at one-loop
level. Throughout the process we obtain the one-loop
matching factor Z between the time-independent quasidis-
tribution and light-cone distribution. The result will be
useful for recovering the light-cone distribution from
lattice QCD simulations of the quasidistribution to the
leading-logarithmic accuracy. To obtain the complete
one-loop matching condition useful for lattice calcula-
tions, the calculation shall be done with the same lattice
Lagrangian as for the numerical simulations. However, this
is considerably more complicated, and is not needed for
the purpose of demonstrating one-loop factorization.
Power suppressed corrections of the type ð1=PzÞn with
n ≥ 1 are also ignored and will be considered in separate
publications.
Although we consider here the factorization of the bare

quasidistribution only, it might be useful to study renor-
malized versions of the distribution in certain renormaliza-
tion schemes, such as dimensional regularization. It appears
that the bare distributions we define depend on the UV
cutoffs in two places: one is in the wave-function renorm-
alization associated with the quark fields, and the other is
the renormalization associated with the gauge link.
Although it is trivial to see that both renormalizations
are multiplicative at one-loop level, it may be a nontrivial
exercise to show that the bare quasidistribution can be
renormalized multiplicatively to all orders in perturbation
theory due to overlapping divergences.
The rest of this paper is organized as follows. In Sec. II,

we present the result of one-loop calculation for unpolar-
ized quasi quark distribution. Based on this result, we
propose in Sec. III a factorization theorem valid to one-loop
level and extract the matching factor between quasidistri-
bution and light-cone distribution. In Sec. IV, the results for
quark helicity and transversity distributions are given. We
conclude in Sec. V. The details of one-loop computation are
given in the Appendix.

II. ONE-LOOP RESULT FOR UNPOLARIZED
QUASI QUARK DISTRIBUTION

In this section, we consider the one-loop correction in the
case of unpolarized quasi quark distribution ~qðx;Λ; PzÞ.
The one-loop computation for nonsinglet quark distribution
is similar to QED because the non-Abelian property does
not enter in the nonsinglet case. Note that the same
calculation done in Ref. [9] is incomplete and the detailed
result there shall be replaced by the correct one here.

At tree level, the quasidistribution yields the same result
as the light-cone one:

~qð0ÞðxÞ ¼ qð0ÞðxÞ ¼ δð1 − xÞ: ð3Þ

The one-loop calculation can in principle be carried out
in any gauge since the result is gauge invariant. We
choose the axial gauge Az ¼ 0 where the gauge link in
Eq. (1) becomes unity. In the axial gauge, the relevant
Feynman diagrams are shown in Fig. 1, where the
nonlocal operator is depicted as a dashed line. The
diagrams contain UV, soft and collinear divergences.
We use the quark mass m to regulate the collinear
divergence. The soft divergence is expected to cancel
between the diagrams. The UV divergence is regulated
by a transverse-momentum cutoff Λ.
The choice of the axial gauge at one loop here is purely

formal, simplifying the Feynman diagram. In fact the
integrand before momentum integration is exactly the same
as in the Feynman gauge. Various terms have straightfor-
ward Feynman gauge interpretations which we will use in
the discussions below concerning the linear divergence.
Choosing the transverse momentum cutoff as a UV

regulator needs some explanation. As we have indicated in
the Introduction, we intend to find a matching condition
which is useful for lattice QCD. Lattice QCD uses the short
distance cutoff a, and keeps all power-divergent contribu-
tions. As we shall see, the quasidistribution has a linear
divergence from the self-energy of the gauge link (as
calculated in Feynman gauge). Dimensional regularization
would have discarded this; using a momentum cutoff will
allow us keeping track of this divergence. Clearly, the
momentum cutoff scheme is difficult to generalize to more
than one loop, and if a higher order calculation is needed,
one shall directly do it using lattice action. At one-loop
order in Abelian gauge theory, the momentum cutoff can be
done without violating gauge symmetry, as for example, in
the Lamb shift calculation [13]. The transverse-momentum
cutoff also violates the rotational symmetry. Our intention
is to show that the one-loop factorization works and to
obtain the leading-logarithmic and leading-power divergent
contribution in the matching condition; this can be achieved
in any cutoff regularization.
The one-loop diagrams in Fig. 1 generate the following

result:

FIG. 1. One-loop corrections to quasi quark distribution.
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~qðx;Λ; PzÞ ¼ ð1þ ~Zð1Þ
F ðΛ; PzÞÞδðx − 1Þ þ ~qð1Þðx;Λ; PzÞ þ � � � ; ð4Þ

where we have included the tree-level result, ~qð1Þðx;Λ; PzÞ comes from the first diagram, and ~Zð1Þ
F ðΛ; PzÞ comes from the

self-energy diagram. We defer the computational details of ~qð1Þ and ~Zð1Þ
F to the Appendix, and present their results below.

The ~qð1Þ contribution can be written as

~qð1Þðx;Λ; PzÞ ¼ αSCF

2π

8>>><
>>>:

1þx2
1−x ln

xðΛðxÞ−xPzÞ
ðx−1ÞðΛð1−xÞþPzð1−xÞÞ þ 1 − xPz

ΛðxÞ þ xΛð1−xÞþð1−xÞΛðxÞ
ð1−xÞ2Pz ; x > 1;

1þx2
1−x ln

ðPzÞ2
m2 þ 1þx2

1−x ln
4xðΛðxÞ−xPzÞ

ð1−xÞðΛð1−xÞþð1−xÞPzÞ −
4x
1−x þ 1 − xPz

ΛðxÞ þ xΛð1−xÞþð1−xÞΛðxÞ
ð1−xÞ2Pz ; 0 < x < 1;

1þx2
1−x ln

ðx−1ÞðΛðxÞ−xPzÞ
xðΛð1−xÞþð1−xÞPzÞ − 1 − xPz

ΛðxÞ þ xΛð1−xÞþð1−xÞΛðxÞ
ð1−xÞ2Pz ; x < 0

ð5Þ

for finite Pz, where ΛðxÞ is defined in a different way from that in [9] as ΛðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ x2ðPzÞ2

p
, and the logarithm with

collinear divergences is related to the standard Altarelli-Parisi kernel [14]. The wave function renormalization correction
depends on the momentum Pz as well:

~Zð1Þ
F ðΛ;PzÞ

¼αSCF

2π

Z
dy

8>>><
>>>:
−1þy2

1−y ln
yðΛðyÞ−yPzÞ

ðy−1ÞðΛð1−yÞþPzð1−yÞÞ−1− yΛð1−yÞþð1−yÞΛðyÞ
ð1−yÞ2Pz þ y2Pz

ΛðyÞþ yð1−yÞPz

Λð1−yÞ þΛðyÞ−Λð1−yÞ
Pz ; y>1;

−1þy2

1−y ln
ðPzÞ2
m2 − 1þy2

1−y ln
4yðΛðyÞ−yPzÞ

ð1−yÞðΛð1−yÞþð1−yÞPzÞþ 4y2

1−yþ1− yΛð1−yÞþð1−yÞΛðyÞ
ð1−yÞ2Pz þ y2Pz

ΛðyÞþ yð1−yÞPz

Λð1−yÞ þΛðyÞ−Λð1−yÞ
Pz ; 0<y<1;

−1þy2

1−y ln
ðy−1ÞðΛðyÞ−yPzÞ

yðΛð1−yÞþð1−yÞPzÞþ1− yΛð1−yÞþð1−yÞΛðyÞ
ð1−yÞ2Pz þ yð1−yÞPz

Λð1−yÞ þ y2Pz

ΛðyÞþΛðyÞ−Λð1−yÞ
Pz ; y<0:

ð6Þ

Both ~qð1Þ and ~Zð1Þ
F involve singularities at x ¼ 1ðy ¼ 1Þ and

a linear divergent term, a detailed discussion of which will
be given in the next section when we present the one-loop
factorization formula. From Eqs. (5) and (6) one can check
the vector current conservation condition

Z þ∞

−∞
dx ~qðx;Λ; PzÞ ¼ 1 ð7Þ

to one-loop order. Since the constituent of the quark in a
quasidistribution does not have a parton interpretation, the
parton momentum fraction extends from −∞ toþ∞. The y
integration is logarithmically divergent; in the above result

we leave it unintegrated, in order to see the match between

the structures of ~Zð1Þ
F and ~qð1Þ. If one chooses to perform the

y integration, a momentum cutoff is also needed in the z
direction. It is interesting to see that the collinear diver-
gence exists only for 0 < x < 1, which is the basis for
factorization.
In field theory calculations, the ultraviolet cutoff shall be

larger than any other scale in the problem. In other words,
one shall take the limit Λ → ∞ and keep only the leading
contribution and ignore the power-suppressed ones. This in
principle shall also be the case in lattice QCD calculations.
Thus for a fixed x, the actual field-theoretical result for the
quasidistribution shall be

~qð1Þðx;Λ; PzÞ ¼ αSCF

2π

8>>><
>>>:

1þx2
1−x ln

x
x−1 þ 1þ Λ

ð1−xÞ2Pz ; x > 1;

1þx2
1−x ln

ðPzÞ2
m2 þ 1þx2

1−x ln
4x
1−x −

4x
1−x þ 1þ Λ

ð1−xÞ2Pz ; 0 < x < 1;

1þx2
1−x ln

x−1
x − 1þ Λ

ð1−xÞ2Pz ; x < 0;

ð8Þ

and

~Zð1Þ
F ðΛ; PzÞ ¼ αSCF

2π

Z
dy

8>>><
>>>:

− 1þy2

1−y ln
y

y−1 − 1 − Λ
ð1−yÞ2Pz ; y > 1;

− 1þy2

1−y ln
ðPzÞ2
m2 − 1þy2

1−y ln
4y
1−y þ 4y2

1−y þ 1 − Λ
ð1−yÞ2Pz ; 0 < y < 1;

− 1þy2

1−y ln
y−1
y þ 1 − Λ

ð1−yÞ2Pz ; y < 0:

ð9Þ
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Equation (8) is valid for x well below Λ=Pz. In a nucleon
with large but finite momentum Pz, the fraction of partons
with momentum fraction x ∼ Λ=Pz is expected to be
negligible. To ensure vector current conservation, the

momentum fraction in ~Zð1Þ
F shall be understood in the

same way, which means the cutoff in y is well below Λ=Pz.
One shall note several interesting features of the above
result: (1) There are contributions in the regions x > 1 and
x < 0. The physics behind this is transparent: when the
parent particle has a finite momentum Pz, the constituent
parton can have momentum larger than Pz, and even
negative. This is very different from the infinite momentum
frame result, where the momentum fraction is restricted to
−1 < x < 1. (Note that at one-loop level, one has just
0 < x < 1 in a quark target; however, there are contribu-
tions for −1 < x < 0 at two-loop level.) (2) There is a
linear divergence associated with an axial gauge singularity
1=ð1 − xÞ2. It comes from the last term of the axial gauge
gluon propagator numerator in Eq. (A2). If one works in a
covariant gauge like the Feynman gauge, this term will
come from the gauge link self-energy. We will give a more
detailed discussion on this issue in the next section when
we present the one-loop factorization formula. (3) There is
no logarithmic UV divergence in ~qð1Þ. Instead there is a
logarithmic dependence on Pz in the region 0 < x < 1. We
will see later on that this logarithmic dependence can be
transformed into the renormalization scale dependence of

the light-cone parton distribution by a matching condition.
It is worthwhile to comment on the difference between the
UV behavior of the light-cone distribution and quasidis-
tribution. Unlike the light-cone distribution where the
quark and gluon propagator are linear in k− when written
in light-cone coordinates, and one therefore gets a UV

divergent ~k⊥ integral upon integration over k−, in the
quasidistribution one integrates over k0, on which the
propagator is quadratically dependent; therefore one gets

a UV convergent ~k⊥ integral in dimensional regularization.
(The reason there is a linear divergence in the above results
is because we used a cutoff regulator. In dimensional
regularization the linear divergence is absent due to the
lack of a large scale other than Pz, but it is present in
the cutoff or lattice regularization.) However, note that the
momentum fraction is not restricted to [0,1] any more; the
integration over y therefore has a logarithmic divergence,
and this yields the usual UV divergence in the wave
function renormalization constant. (4) All soft divergences
are canceled. However, there are remaining collinear
divergences reflected by the quark-mass dependence.
On the other hand, with the same regularization, one can

calculate the light-cone parton distribution by taking the
limit Pz → ∞. This is done following the spirit of Ref. [15]
and the result is (for details of the computation see the
Appendix)

qðx;ΛÞ ¼ ð1þ Zð1Þ
F ðΛÞ þ � � �Þδðx − 1Þ þ qð1Þðx;ΛÞ þ � � � ð10Þ

with

qð1Þðx;ΛÞ ¼ αSCF

2π

�
0; x > 1 or x < 0;
1þx2
1−x ln

Λ2

m2 − 1þx2
1−x ln ð1 − xÞ2 − 2x

1−x ; 0 < x < 1;
ð11Þ

and

Zð1Þ
F ðΛÞ ¼ αSCF

2π

Z
dy

(
0; y > 1 or y < 0;

− 1þy2

1−y ln
Λ2

m2 þ 1þy2

1−y ln ð1 − yÞ2 þ 2y
1−y ; 0 < y < 1;

ð12Þ

where the integrand of Zð1Þ
F ðΛÞ is exactly opposite to that of

qð1Þðx;ΛÞ, indicating the quark number conservation at one
loop. If dimensional regularization is used for the UV

divergence, the results qð1Þðx; μÞ and Zð1Þ
F ðμÞ (with μ the

renormalization scale) are slightly different, and can be
obtained from the above ones by making the replacement
lnΛ2 → 1=ϵUV − γE þ ln 4πμ2. This result agrees with that
derived from the light-cone definition of parton distribu-
tion. Also the collinear or mass singularity is the same as in
the quasi parton distribution. This shows that at one-loop
level, the quasi parton distribution captures all the collinear
physics in the infinite momentum frame. Moreover, the

contribution comes only from the diagram in which the
intermediate gluon has a cut, which has a parton inter-
pretation.

III. ONE-LOOP FACTORIZATION

Now we are ready to construct a factorization formula at
one-loop order. In the infinite momentum frame or on the
light cone, the momentum fraction in parton distributions
and splitting functions is limited to ½−1; 1�. However, in the
present case, the splitting in the quasidistribution is not
constrained to this region; it can be in ½−∞;∞�. Thus the
connection of the two distributions is reflected through the
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following factorization theorem up to power corrections in
the large Pz limit

~qðx;Λ; PzÞ ¼
Z

1

−1

dy
jyjZ

�
x
y
;
Λ
Pz ;

μ

Pz

�
qðy; μÞ

þOðΛ2
QCD=ðPzÞ2;M2=ðPzÞ2Þ; ð13Þ

where the integration range is determined by the support of
the quark distribution qðyÞ on the light cone (at one loop
one has just 0 < y < 1 for a quark target), and the
momentum fraction x is defined in the finite momentum
frame. We define the light-cone distribution qðy; μÞ in the
MS subtraction scheme with μ the renormalization scale.
The Z factor has a perturbative expansion in αs:

Z

�
ξ;
Λ
Pz ;

μ

Pz

�
¼δðξ−1Þþ αs

2π
Zð1Þ

�
ξ;
Λ
Pz ;

μ

Pz

�
þ��� ð14Þ

Beforewe present the results of the Z factor, it is worthwhile
to comment on the linear divergence coupled to the double
pole 1=ð1 − ξÞ2 in the quasidistribution, as can be seen from
Eqs. (8) and (9) above. In the previous section weworked in
the axial gauge, and the linear divergence comes from the
last term in the numerator of the axial gauge gluon
propagator Eq. (A2) (for the treatment of this double pole
in axial gauge computations see e.g. Ref. [16]). If one
chooses a covariant gauge like the Feynman gauge, one has,
in addition to those in Fig. 1, extra diagrams involving the
gauge link, and the linear divergence will come from the
gauge link self-energy diagram. In dimensional regulariza-
tion, the linear divergence is absent due to the lack of a cutoff
scale, and the term leading to the linear divergence becomes,
after k0 and ~k⊥ integration, a term linear inPz which reduces
the double pole coupled to it to a single pole. The
combination of the two contributions in Fig. 1 then leads
to the usual plus distribution. However, the lattice simu-
lations of quasidistributions require a momentum cutoff.
From our one-loop computation a linear divergence asso-
ciated with the double pole cannot be avoided in the cutoff

scheme. The prescription for the double pole is given as
1=ðð1 − ξÞ2 þ ϵ2Þ, which can be clearly seen in a nonaxial
gauge like Feynman gauge. In Feynman gauge, this pre-
scription follows from the requirement of well-defined
Wilson line propagators. Then after combining the real
and virtual contributions, the double pole reduces to a single
one prescribed by its principal value. From the renormal-
ization point of view, a revised definition of the quasidis-
tribution is preferred such that the gauge link self-energy is
subtracted in a gauge invariant way (for a similar case in
transverse-momentum-dependent parton distribution see
discussions e.g. in [7]). This is also preferred by lattice
simulations of the quasidistribution. We will explore this
possibility in a forthcoming paper.
Now we are ready to write down the matching factor

connecting the quasi quark distribution to the light-cone
quark distribution. For ξ > 1, one has

Zð1ÞðξÞ=CF ¼
�
1þξ2

1−ξ

�
ln

ξ

ξ−1
þ1þ 1

ð1−ξÞ2
Λ
Pz ; ð15Þ

whereas for 0 < ξ < 1

Zð1ÞðξÞ=CF ¼
�
1þ ξ2

1− ξ

�
ln
ðPzÞ2
μ2

þ
�
1þ ξ2

1− ξ

�
ln½4ξð1− ξÞ�

−
2ξ

1− ξ
þ 1þ Λ

ð1− ξÞ2Pz ; ð16Þ

and for ξ < 0

Zð1ÞðξÞ=CF ¼
�
1þ ξ2

1 − ξ

�
ln
ξ − 1

ξ
− 1þ Λ

ð1 − ξÞ2Pz : ð17Þ

Near ξ ¼ 1, one has an additional term coming from the
self-energy correction

Zð1ÞðξÞ ¼ δZð1Þð2π=αsÞδðξ − 1Þ ð18Þ
with

δZð1Þ ¼ αSCF

2π

Z
dy

8>>><
>>>:

− 1þy2

1−y ln
y

y−1 − 1 − Λ
ð1−yÞ2Pz ; y > 1;

− 1þy2

1−y ln
ðPzÞ2
μ2

− 1þy2

1−y ln½4yð1 − yÞ� þ 2yð2y−1Þ
1−y þ 1 − Λ

ð1−yÞ2Pz ; 0 < y < 1;

− 1þy2

1−y ln
y−1
y þ 1 − Λ

ð1−yÞ2Pz ; y < 0;

ð19Þ

which is extracted fromEqs. (9) and (12) above, and provides
a plus distribution for the singularity in the single pole term
1=ð1 − ξÞ at ξ ¼ 1, as well as a principal value prescription
for the double pole. The large logarithmic dependence onPz

in ~qðx;Λ; PzÞ can be transformed into the renormalization
scale dependence through the above matching condition. On
the lattice, the matching can be recalculated up to a constant

accuracy using the standard approach,where the longitudinal
and transverse momentum cutoffs are done in a way
consistent with lattice symmetry [17].
So far,wehaveconsideredonly thequarkcontribution.One

can start with an antiquark to do the one-loop calculation. In
this case, one also has a contribution to ~qðx;Λ; PzÞ from q̄ðxÞ.
However, the antiquark distribution has the property
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q̄ðxÞ ¼ −qð−xÞ; ð20Þ
which is related to quark distribution at negative x.
Moreover, the Z factor has the same property. After
including both quark and antiquark contributions, the
factorization Eq. (13) still applies, but now the quantities
on the rhs include also the antiquark contribution reflected
by the negative y region. The above is the complete
one-loop factorization theorem, which replaces Eq. (11)
and the Z factor in Ref. [9].
We have constructed at one-loop level a factorization

formula connecting the quasi parton distribution to the
light-cone parton distribution. Of course it remains to be
shown that there exists such a formula to all-loop orders.
The factorization formula then allows one to extract
the parton distribution qðx; μÞ from calculating the

quasi parton distribution on the lattice by measuring
the time-independent, nonlocal quark correlator
ψ̄ð0; 0⊥; zÞγz exp ð−ig

R
z
0 dz

0Azð0; 0⊥; z0ÞÞψð0Þ in a state
with increasingly large Pz (maximum ∼1=a with a
denoting lattice spacing).

IV. HELICITY AND TRANSVERSITY
DISTRIBUTIONS

In previous sections, we have considered the matching
condition for unpolarized quark distribution. Here we
present the results for the quark helicity and transversity
distribution. For the quark helicity distribution in a longi-
tudinally polarized quark, the quasidistribution Δ ~qð1ÞðxÞ
can be obtained by replacing γz with γzγ5 in Eq. (1). The
one-loop result then reads

Δ ~qð1ÞðxÞ ¼ αSCF

2π

8>>><
>>>:

1þx2
1−x ln

xðΛðxÞ−xPzÞ
ðx−1ÞðΛð1−xÞþPzð1−xÞÞ þ 1 − xPz

ΛðxÞ þ xΛð1−xÞþð1−xÞΛðxÞ
ð1−xÞ2Pz ; x > 1;

1þx2
1−x ln

ðPzÞ2
m2 þ 1þx2

1−x ln
4xðΛðxÞ−xPzÞ

ð1−xÞðΛð1−xÞþð1−xÞPzÞ −
4

1−x þ 2xþ 3 − xPz

ΛðxÞ þ xΛð1−xÞþð1−xÞΛðxÞ
ð1−xÞ2Pz ; 0 < x < 1:

1þx2
1−x ln

ðx−1ÞðΛðxÞ−xPzÞ
xðΛð1−xÞþð1−xÞPzÞ − 1 − xPz

ΛðxÞ þ xΛð1−xÞþð1−xÞΛðxÞ
ð1−xÞ2Pz ; x < 0:

ð21Þ

Taking the limit Λ → ∞ yields

Δ ~qð1ÞðxÞ ¼ αSCF

2π

8>>><
>>>:

1þx2
1−x ln

x
x−1 þ 1þ Λ

ð1−xÞ2Pz ; x > 1;

1þx2
1−x ln

ðPzÞ2
m2 þ 1þx2

1−x ln
4x
1−x −

4
1−x þ 2xþ 3þ Λ

ð1−xÞ2Pz ; 0 < x < 1;

1þx2
1−x ln

x−1
x − 1þ Λ

ð1−xÞ2Pz ; x < 0:

ð22Þ

The result for the light-cone distribution is again given by taking Pz → ∞

Δqð1ÞðxÞ ¼ αSCF

2π

(
0; x > 1 or x < 0;
1þx2
1−x ln

Λ2

m2 − 1þx2
1−x ln ð1 − xÞ2 − 2

1−x þ 2x; 0 < x < 1:
ð23Þ

Note that as in the unpolarized case, the collinear singularity in the quasi quark helicity distribution is exactly the same as in
the light-cone distribution.
Similarly, for the transversity distribution in a transversely polarized quark, the quasidistribution δ ~qð1ÞðxÞ is obtained by

replacing γz with γzγ⊥γ5 in Eq. (1). The one-loop result is

δ ~qð1ÞðxÞ ¼ αSCF

2π

8>>><
>>>:

2x
1−x ln

xðΛðxÞ−xPzÞ
ðx−1ÞðΛð1−xÞþPzð1−xÞÞ þ xΛð1−xÞþð1−xÞΛðxÞ

ð1−xÞ2Pz ; x > 1;

2x
1−x ln

ðPzÞ2
m2 þ 2x

1−x ln
4xðΛðxÞ−xPzÞ

ð1−xÞðΛð1−xÞþð1−xÞPzÞ −
4x
1−x þ xΛð1−xÞþð1−xÞΛðxÞ

ð1−xÞ2Pz ; 0 < x < 1;

2x
1−x ln

ðx−1ÞðΛðxÞ−xPzÞ
xðΛð1−xÞþð1−xÞPzÞ þ xΛð1−xÞþð1−xÞΛðxÞ

ð1−xÞ2Pz ; x < 0:

ð24Þ

The limit Λ → ∞ gives

δ ~qð1ÞðxÞ ¼ αSCF

2π

8>>><
>>>:

2x
1−x ln

x
x−1 þ Λ

ð1−xÞ2Pz ; x > 1;

2x
1−x ln

ðPzÞ2
m2 þ 2x

1−x ln
4x
1−x −

4x
1−x þ Λ

ð1−xÞ2Pz ; 0 < x < 1;

2x
1−x ln

x−1
x þ Λ

ð1−xÞ2Pz ; x < 0;

ð25Þ
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and the result in the infinite momentum frame is

δqð1ÞðxÞ ¼ αSCF

2π

(
0; x > 1 or x < 0;
2x
1−x ln

Λ2

m2 − 2x
1−x ln ð1 − xÞ2 − 2x

1−x ; 0 < x < 1:
ð26Þ

One can construct similar matching conditions as in
Eq. (12) for the helicity and transversity distributions. We
just list the results for the matching factors here, noting that
the quark self-energy is the same. For the quark helicity
distribution, one has for ξ > 1

ΔZð1ÞðξÞ=CF ¼
�
1þ ξ2

1 − ξ

�
ln

ξ

ξ − 1
þ 1þ 1

ð1 − ξÞ2
Λ
Pz ;

ð27Þ
whereas for 0 < ξ < 1

ΔZð1ÞðξÞ=CF ¼
�
1þ ξ2

1 − ξ

�
ln
ðPzÞ2
μ2

þ
�
1þ ξ2

1 − ξ

�
ln½4ξð1 − ξÞ�

−
2

1 − ξ
þ 3þ Λ

ð1 − ξÞ2Pz ; ð28Þ

and for ξ < 0

ΔZð1ÞðξÞ=CF ¼
�
1þ ξ2

1 − ξ

�
ln
ξ − 1

ξ
− 1þ Λ

ð1 − ξÞ2Pz :

ð29Þ
The linearly divergent term is the same as in the unpolar-
ized case.
Finally, in the factorization theorem for transversity

distribution, one has the matching factor for ξ > 1,

δZð1ÞðξÞ=CF ¼
�

2ξ

1 − ξ

�
ln

ξ

ξ − 1
þ 1

ð1 − ξÞ2
Λ
Pz ; ð30Þ

whereas for 0 < ξ < 1

δZð1ÞðξÞ=CF ¼
�

2ξ

1 − ξ

�
ln
ðPzÞ2
μ2

þ
�

2ξ

1 − ξ

�
ln½4ξð1 − ξÞ�

−
2ξ

1 − ξ
þ Λ
ð1 − ξÞ2Pz ; ð31Þ

and for ξ < 0

δZð1ÞðξÞ=CF ¼
�

2ξ

1 − ξ

�
ln
ξ − 1

ξ
þ Λ
ð1 − ξÞ2Pz : ð32Þ

One again has a linearly divergent contribution. Near ξ ¼ 1,
one needs to include an extra contribution from self-energy
as before.

V. CONCLUSION

We have derived one-loop matching conditions for non-
singlet quark distributions, including unpolarized, helicity
and transversity distributions. The matching condition,
which can also be viewed as a factorization, connects the
quasi quark distribution to the light-cone distribution meas-
urable in experiments, and therebyallowsanextractionof the
latter from the former, which is defined as a time-indepen-
dent correlation at finite nucleon momentum and therefore
can be evaluated on the lattice. To carry out a lattice
simulation of the quasi quark distribution, one employs
themomentumcutoff regulator forUVdivergences.ThisUV
regulator generates a linear divergence multiplied by a
singular factor, as can be seen from our one-loop calculation
in the axial gaugeAz ¼ 0. In a nonaxial gauge like Feynman
gauge, this structure arises from the self-energyof theWilson
line. Although in our one-loop factorization formula this
divergence can be treated with a suitable prescription, to
eventually achieve a factorization to all-loop orders, it is
important to investigate how this divergence structure affects
the matching between quasidistribution and light-cone dis-
tribution beyond one-loop level.
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APPENDIX: ONE-LOOP COMPUTATION
IN THE AXIAL GAUGE

In this Appendix we give the details of the one-loop
computation in the axial gauge. Let us start with the self-
energy diagram in Fig. 1, which can be written as

−iΣðpÞ ¼
Z

d4k
ð2πÞ4 ð−igt

aγμÞ i
k−m

ð−igtbγνÞ−iD
ab
μνðp− kÞ

ðp− kÞ2

¼−g2CF

Z
d4k
ð2πÞ4

γμðkþmÞγνDμνðp− kÞ
ðk2 −m2Þðp− kÞ2 ; ðA1Þ

where
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DμνðkÞ ¼ gμν −
nμkν þ nνkμ

n · k
þ n2

kμkν
ðn · kÞ2 ðA2Þ

and n · k ¼ kz, n2 ¼ −1.
The numerator of Eq. (A1) gives

− 2kþ 4m −
2n · kp − 2n · pkþ 2k · ðp − kÞnþ 2mn · ðp − kÞ

n · ðp − kÞ þ n2
2k · ðp − kÞðp − kÞ − kðp − kÞ2 þmðp − kÞ2

½n · ðp − kÞ�2 :

ðA3Þ
We now calculate these contributions separately. The contribution of the first part is

I1 ¼
Z

d4k
ð2πÞ4

−2kþ 4m
ðk2 −m2Þðp − kÞ2

¼
Z

d4k
ð2πÞ4

Z
1

0

dy
−2kþ 4m

½ðk − ypÞ2 þ yð1 − yÞp2 − ð1 − yÞm2�2

¼
Z

d4k
ð2πÞ4

Z
1

0

dy
−2ðyp0γ0 − kzγzÞ þ 4m

½ðk0Þ2 − ðkz − ypzÞ2 − ~k2⊥ þ yð1 − yÞp2 − ð1 − yÞm2�2

¼
Z

1

0

dy
Z

dkz

2π

d2k⊥
ð2πÞ2

i
2

−yp0γ0 þ kzγz þ 2m

½~k2⊥ þ ðkz − ypzÞ2 − yð1 − yÞp2 þ ð1 − yÞm2�32

¼ i
8π2

Z
1

0

dy
Z

dkz
−yp0γ0 þ kzγz þ 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkz − ypzÞ2 − yð1 − yÞp2 þ ð1 − yÞm2
p

¼ i
8π2

Z
dxpz

Z
1

0

dy
−ypþ ðx − yÞpzγz þ 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððy − xÞpzÞ2 − yð1 − yÞp2 þ ð1 − yÞm2
p ; ðA4Þ

where we have used the fact that the external momentum p is along the z direction, and kz ¼ xpz. Note that the integration
of x is not limited to [0, 1].
The second part gives

I2 ¼
Z

d4k
ð2πÞ4

−2kzpþ 2pzk − 2k · ðp − kÞγz − 2mðpz − kzÞ
ðk2 −m2Þðp − kÞ2ðpz − kzÞ

¼
Z

d4k
ð2πÞ4

�
−2kzpþ 2pzk − 2k · pγz þ 2m2γz − 2mðpz − kzÞ

ðk2 −m2Þðp − kÞ2ðpz − kzÞ þ 2γz

ðp − kÞ2ðpz − kzÞ
�

¼ i
8π2

Z
dxpz

Z
1

0

dy
ðy − xÞpzp − yp2γz −mð1 − xÞpz þm2γzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððy − xÞpzÞ2 − yð1 − yÞp2 þ ð1 − yÞm2
p

ð1 − xÞpz

−
i

4π2

Z
dxpzγz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ ð1 − xÞ2ðpzÞ2

p
− pz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xÞ2

p
ð1 − xÞpz ; ðA5Þ

where Λ is the ultraviolet cutoff on the ~k⊥ integration.
The third part yields

I3 ¼ −
Z

d4k
ð2πÞ4

2k · ðp − kÞðp − kÞ − ðk −mÞðp − kÞ2
ðk2 −m2Þðp − kÞ2ðpz − kzÞ2

¼ i
8π2

Z
dxpzγz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ ð1 − xÞ2ðpzÞ2

p
− pz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xÞ2

p
ð1 − xÞpz

−
i

16π2

Z
dxpz

Z
1

0

dy
ðp2 −m2Þp − ðp2 −m2Þðypþ ðy − xÞpzγzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððy − xÞpzÞ2 − yð1 − yÞp2 þ ð1 − yÞm2
p

ð1 − xÞ2ðpzÞ2

−
i

8π2

Z
dxpzðp −mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ x2ðpzÞ2

p
− pz

ffiffiffiffiffi
x2

p

ð1 − xÞ2ðpzÞ2 : ðA6Þ
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The quark wave function renormalization factor can be
extracted by making use of the Ward identity [16]. To this
end, let us consider the limit

nμΓμ ¼ lim
λ→0

1

λ
qμΓμjqμ¼λnμ : ðA7Þ

At tree level, this gives

nμΓð0Þ
μ ¼ nμγμ ¼ lim

λ→0

1

λ
qμΓð0Þ

μ jqμ¼λnμ

¼ lim
λ→0

1

λ
½ðpþ q −mÞ − ðp −mÞ� ¼ n: ðA8Þ

At one-loop level, one has

nμΓð1Þ
μ ¼ lim

λ→0

1

λ
qμΓð1Þ

μ jqμ¼λnμ ¼ −lim
λ→0

1

λ
½Σðpþ qÞ − ΣðpÞÞ�;

ðA9Þ
or

nμΓð1Þ
μ ¼ −nμ

∂Σ
∂pμ : ðA10Þ

We therefore have

nμūðpÞΓð1Þ
μ uðpÞ ¼ −nμūðpÞ ∂Σ

∂pμ uðpÞ: ðA11Þ

The general structure of ūΓð1Þ
μ u in the axial gauge is

ūΓð1Þ
μ u ¼ ūðΓ1γμ þ Γ2nμ þ Γ3σμνnνÞu: ðA12Þ

Clearly Γ3 does not contribute when dotted with nμ. The
second structure will be proportional to the quark mass m
when sandwiched between spinors, and can be neglected if
we keepm as a regulator for collinear divergence only. This

can be seen from taking a spin sum in Eq. (A11).
Consequently, only the first structure contributes, and the
one-loop correction is proportional to the tree-level struc-
ture. One can see this from the result of vertex correction
below. From the self-energy computation, the rhs of
Eq. (A11) is proportional to the tree-level structure as well.
Now the lhs of Eq. (A11) gives the vertex renormaliza-

tion factor; we can find from the rhs the wave function
renormalization factor, which is given by

Zð1Þ
F ¼ nμū

∂Σ
∂pμ u=ūnu: ðA13Þ

Actually Eq. (A11) can be easily shown to hold even before
the momentum integration, thereby ensuring the cancella-
tion between vertex and self-energy correction, if the UV
regulator preserves shift invariance of the integral. The shift
invariance is preserved by dimensional regularization, but
not by the momentum cutoff, which is exactly what we are
using here. This might lead to a problem in the exact
cancellation between vertex and self-energy corrections. In
general, one can add extra terms to restore gauge invari-
ance. However it turns out that, in the present one-loop
computation the vector current is conserved without intro-
ducing such terms.
Applying Eq. (A13) to the quark self-energy above, we

obtain the wave function renormalization constant. Note
that we leave the momentum fraction x unintegrated; taking
the derivative on the integrand ignores a surface term,
which is momentum independent and can therefore be
absorbed by the mass counterterm. However, in our
calculation we need the wave function renormalization
constant only. Moreover, since we keep the quark mass as a
collinear regulator only, the mass counterterm simply drops
out because it is proportional to the quark mass.
The contribution of the first diagram in Fig. 1 can be

written as

Γ1 ¼
Z

d4k
ð2πÞ4 ūðpÞð−igt

aγμÞ iðkþmÞγziðkþmÞ
ðk2 −m2Þ2 ð−igτaγνÞuðpÞ−iDμνðp − kÞ

ðp − kÞ2 δ

�
x −

kz

pz

�

¼ −ig2CF

Z
d4k
ð2πÞ4

ūðpÞγμðkþmÞγzðkþmÞγνuðpÞDμνðp − kÞ
ðk2 −m2Þ2ðp − kÞ2 δ

�
x −

kz

pz

�

¼ −ig2CF

Z
d4k
ð2πÞ4 ūðpÞ

�
2γz

ðk2 −m2Þðp − kÞ2 þ
8mkz − 4kzk

ðk2 −m2Þ2ðp − kÞ2

þ 2ð2kzγz þ k −mÞ
ðk2 −m2Þðp − kÞ2ðpz − kzÞ −

γz

ðp − kÞ2ðpz − kzÞ2
�
uðpÞδ

�
x −

kz

pz

�
: ðA14Þ

The above integrals can be computed in the same way as in Eqs. (A4), (A5) and (A6), and lead to Eq. (8). From Eqs. (8)
and (9), we find Z

dxð ~qð1ÞðxÞ þ ~Zð1Þ
F δð1− xÞÞ ¼ αSCF

2π

Z
1

0

dxð2− 4xÞ ¼ 0; ðA15Þ
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which indicates the quark number conservation at
one-loop level.
Now let us look at the result in the infinite momentum

frame. Following the spirit of old-fashioned perturbation
theory, the result in the infinite momentum frame can be
obtained by first integrating over the zero component of
loop momentum, and then taking the limit pz → ∞ before
integrating over the transverse momentum. To illustrate the
procedure, let us look at the first integral in the last two
lines of Eq. (A14), which is

Γ11 ¼
Z

d4k
ð2πÞ4

2γz

ðk2 −m2Þðp − kÞ2 δ
�
x −

kz

pz

�
: ðA16Þ

By integrating over k0, one picks up residues in the upper-
or lower-half k0 plane by enclosing the contour in the same
half plane. If we enclose the contour in the upper-half
plane, the residues at the following poles contribute to the
integral:

k0 ¼ p0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2⊥ þ ðkz − pzÞ2

q
;

k0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2⊥ þ ðkzÞ2 þm2

q
: ðA17Þ

Summing over the residues at these poles, we then let
pz → ∞ and keep only terms that are not suppressed by pz;
this gives the following contribution

δΓ11 ¼
i
2π

(
0; x > 1 or x < 0;R d2k⊥

ð2πÞ2
−1

~k2⊥þm2ð1−xÞ2 ; 0 < x < 1:

ðA18Þ

Similarly, the remaining three terms yield

δΓ12 ¼
i
2π

(
0; x > 1 or x < 0;R d2k⊥

ð2πÞ2
xð~k2⊥þm2ð3−4xþx2ÞÞ
ð~k2⊥þm2ð1−xÞ2Þ2 ; 0 < x < 1;

δΓ13 ¼
i
2π

(
0; x > 1 or x < 0;R d2k⊥

ð2πÞ2
−2x

ð~k2⊥þm2ð1−xÞ2Þð1−xÞ ; 0 < x < 1;

δΓ14 ¼ 0; for all x: ðA19Þ

The sum of these contributions gives Eq. (11) upon

integration over ~k⊥. The computation of quark self-energy
is similar, and gives the wave function renormalization
factor Eq. (12).
In the above results, we have made different expansions in

finite and infinite momentum frames (Λ → ∞ in the former
and pz → ∞ in the latter); therefore one cannot get the
correct infinite momentum result by simply setting pz → ∞
in the finite momentum one. If we keep all Λ and pz

dependence in the calculation of the finite momentum result,
we have Eqs. (5) and (6). We can then take Λ → ∞ or
pz → ∞ to reproduce the correct finite and infinite momen-
tum results in previous sections. We still have quark number
conservation for the complete results Eqs. (5) and (6)Z

dxð ~qð1ÞðxÞ þ ~Zð1Þ
F δð1 − xÞÞ

¼ αSCF

2π

�Z
1

0

dxð2 − 4xÞ

þ
Z

dx

�ðx2 − xÞPz

ΛðxÞ þ xð1 − xÞPz

Λð1 − xÞ

þ ΛðxÞ − Λð1 − xÞ
Pz

��
¼ 0; ðA20Þ

since the two integrals on the rhs vanish, respectively.
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