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At leading twist the transverse momentum dependent parton distributions of the pion consist of two
functions, the unpolarized f1;πðx; k2⊥Þ and the Boer-Mulders function h⊥1;πðx; k2⊥Þ. We study both functions
within a light-front constituent model of the pion, comparing the results with different pion models and the
corresponding nucleon distributions from a light-front constituent model. After evolution from the model
scale to the relevant experimental scales, the results for the collinear pion valence parton distribution
function f1;πðxÞ are in very good agreement with available parametrizations. Using the light-front
constituent model results for the Boer-Mulders functions of the pion and nucleon, we calculate the
coefficient ν in the angular distribution of Drell-Yan dileptons produced in pion-nucleus scattering, which
is responsible for the violation of the Lam-Tung relation. We find a good agreement with the data, and
carefully discuss the range of applicability of our approach.
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I. INTRODUCTION

Transverse momentum dependent distribution functions
(TMDs) [1–3] provide unique insights into the 3D hadronic
structure [4–8], by taking into account the transverse motion
of partons and spin-orbit correlations. The Drell-Yan
process (DY) [9,10] is basically the only source for this
type of information for hadrons other than the nucleon, that
are available as secondary beams in high energy experi-
ments, such as the pion which is the main focus of this work.
DY experiments with pions were reported in Refs. [11–16],
see [17] for a compilation of DY data till 1993 and [18–22]
for reviews of later data and theoretical progress. TMDs
describe hard processes like DYon the basis of factorization
theorems [23–26]. The QCD evolution properties of some
of the TMDs were studied in Refs. [3,27–33].
This work is devoted to the study of leading-twist TMDs

of the pion. At leading twist the pion structure is described
in terms of two TMDs, f1;πðx; k2⊥Þ and h⊥1;πðx; k2⊥Þ. The
unpolarized TMD f1;πðx; k2⊥Þ describes the distribution of
unpolarized partons carrying the longitudinal momentum
fraction x of the pion, and the transverse momentum k⊥.
The so-called Boer-Mulders function h⊥1;πðx; k2⊥Þ [7,34]
describes a spin-orbit correlation of transversely polarized
partons, which is chirally and (“naively”) time-reversal
odd. “Chirally odd” means that the operator structure
defining h⊥1;πðx; k2⊥Þ flips the chirality of the partons,
implying that this function can enter the description of a
process only in combination with another chiral-odd
function. “Time-reversal odd” (T-odd) means that under
time-reversal transformations the correlation flips sign,
while the Wilson lines inherent in the TMD operator

definitions are transformed from future to past pointing
or vice versa. This implies that T-odd functions appear with
different signs in deep-inelastic scattering (DIS) and DY
process [35–41]. The different signs of T-odd TMDs in
different processes can be tested experimentally in the case
of the nucleon, though this is not feasible for the pion.
However, the T-odd correlations as described by the

Boer-Mulders functions in the pion and nucleon may be
responsible for the violation of the Lam-Tung relation,
which connects the coefficients in the angular distribution
of the DY lepton pairs [42–44]. The π-nucleus DY data
[13–15] show a significant violation of this relation, which
calls for a nonperturbative leading-twist mechanism
beyond collinear factorization. The Boer-Mulders effect
provides such a mechanism within the TMD factorization
framework [34], though alternative mechanisms have also
been proposed [45–49]. Indications for the violation of
the Lam-Tung relation were also observed in pp- and pd-
induced DY [50].
In order to perform the nonperturbative calculations

of the pion TMDs f1;πðx; k2⊥Þ and h⊥1;πðx; k2⊥Þ we use the
light-front formalism, where hadrons are described in terms
of light-front wave functions (LFWFs). The latter are
expressed as an expansion of various quark, antiquark
and gluon Fock components. In principle, there is an
infinite number of LFWFs in such an expansion.
However, there are many situations where one can success-
fully model hadronic wave functions by confining oneself to
the contribution of the minimal Fock-space configuration
with a few partons. We will refer to this approach as the
light-front constituent model (LFCM). The LFCM was
successfully applied to describe many nucleon properties
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[51–60] including TMDs [61–64]. For the pion, the specific
model we will adopt for the minimal Fock-space compo-
nents of the LFWF has been originally proposed in
Refs. [65,66], and has been applied to study some partonic
properties of the pion in Refs. [67,68]. However, the present
work is the first application to study the TMDs in the pion.
The description of nucleon TMDs within the LFCM was

shown to agree with phenomenology within (10–30)% in
the valence-x region after evolution from the low initial
scale of the model to experimentally relevant scales
[62,64]. This is in particular the case for the Boer-
Mulders function of the nucleon [64].
In this work we derive and calculate the unpolarized

TMD and Boer-Mulders function of the pion, f1;πðx; k2⊥Þ
and h⊥1;πðx; k2⊥Þ, and compute the coefficient ν in π-nucleus
induced DY. We find that the valence distribution function
f1;πðxÞ of the pion obtained from the LFCM agrees well
with available parametrizations. We compare our results for
the pion Boer-Mulder function with previous results from
spectator and bag models Refs. [69–72] as well as with
lattice QCD [73]. We show that h⊥1;πðx; k2⊥Þ, in combination
with the nucleon Boer-Mulders function h⊥1;Nðx; k2⊥Þ from
the LFCM of Ref. [63], gives a good description of the DY
data on the coefficient ν. For other model studies of the
nucleon Boer-Mulders function and phenomenological
work related to the violation of the Lam-Tung relation
we refer to Refs. [34,74–86].
The outline of this work is as follows. In Sec. II we

determine the initial scale of the pion LFCM approach.
In Sec. III we review the classification of the pion LFWF, in
the minimal (qq̄) Fock-space configuration, in terms of
light-front amplitudes describing the different q̄q orbital
angular-momentum components in the pion state. In
Sec. IV we derive the representation of the leading-twist
pion TMDs as overlap of light-front amplitudes. In Sec. V
we use a specific model for the pion LFWFs to obtain
numerical results for pion TMDs at the initial hadronic
scale. We then evolve and discuss our results. Section VI
gives a brief review of the DY formalism at a leading-order
parton-model level. Section VII is dedicated to a discussion
of the unpolarized TMD in the DY process, and establishes
the range of applicability of our approach. In Sec. VIII we
discuss the Boer-Mulders effect in π-nucleus induced DY.
Finally, in Sec. IX we summarize our results and give an
outlook.

II. INITIAL SCALE OF THE PION
CONSTITUENT APPROACH

Parton distribution functions are defined within a certain
regularization scheme at a given renormalization scale. The
results from a constituent approach refer to an assumed low
initial scale μ0, at which a pion is thought to consist of a
“valence” quark-antiquark pair only, while a nucleon is
similarly assumed to consist of three valence quarks only.
The value of μ0 is not known a priori, but it can be

determined in a way independent of the details of the
constituent model. Therefore we shall first address this
point, before embarking with the actual study of TMDs
in LFCM.
It is crucial to determine μ0 for two reasons. First, the

model parton distributions have to be evolved from a well-
defined initial scale μ0 to experimentally relevant scales
Q ∼ few GeV before they can be confronted with data.
Second, the initial scale μ0 determines the value of the
running coupling constant αsðμ20Þ which enters the overall
normalization of the Boer-Mulders function, when the
initial (final) state interaction effects are taken into account
via the one-gluon-exchange mechanism (see the discussion
in Sec. IV B).
To determine μ0 we use the following standard procedure

[53,87–89]. At the initial scale the entire pion momentum
must be carried by valence q̄, q degrees of freedom,
hxiv ¼ 1, while sea-quark and gluon contributions are
set to zero. Similar to Ref. [87] we then require the initial
scale μ0 to be such that after evolution from μ0 to say Q2 ¼
4 GeV2 the phenomenological value for the pion momen-
tum fraction carried by valence quarks is reproduced. We
take

hxiv ¼
Z

1

0

dxx½ðfu
1;πþ − fū

1;πþÞðxÞ þ ðfd̄
1;πþ − fd

1;πþÞðxÞ�

¼ 0.47� 0.02 at Q2 ¼ 4 GeV2 ð1Þ

in leading order (LO) and next-to-leading order (NLO)
from the parametrizations [90,91]. We use αLOðM2

ZÞ ¼
0.13939 and αNLOðM2

ZÞ ¼ 0.12018 in MS scheme for the
strong coupling constant at the Z0 mass MZ ¼ 91.1 GeV
from the global fit of parton distribution functions
(PDFs) to hard-scattering data from Ref. [92]. These
values correspond to ΛLO ¼ 359, 322, 255 MeV and
ΛNLO ¼ 402, 341, 239 MeV for respectively NF ¼
3; 4; 5 flavors in the variable flavor-number scheme
with heavy-quark mass thresholds at mc ¼ 1.4 GeV,
mb ¼ 4.75 GeV, mt ¼ 175 GeV [92].
With these parameters the above described procedure

yields at LO and NLO for the initial scale

μ0;LO ¼ 460 MeV;
αLOðμ20Þ

4π
¼ 0.225; ð2Þ

μ0;NLO ¼ 555 MeV;
αNLOðμ20Þ

4π
¼ 0.0938: ð3Þ

In a different NLO scheme the numerical values in Eq. (3)
would be somewhat different, but it is beyond the scope of
this work to study scheme-dependence effects. In the
following we shall assume that theoretical uncertainties
due to scheme dependence are smaller than the generic
accuracy of (light-front) constituent model approaches.
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At this point it is instructive to compare the LO and NLO
initial scales for pion distribution functions, Eqs. (2) and
(3), with those obtained in the case of the nucleon [64]. In
principle, the constituent model approaches for the pion
and nucleon can be viewed as unrelated models.
Nevertheless, the underlying physical assumption is the
same. At some low “hadronic scale” one deals with
constituent (valence) degrees of freedom carrying the total
hadron momentum: a constituent quark-antiquark pair in
the pion case, or three constituent quarks in the nucleon
case. For the underlying physical picture to be successful
one should expect the initial scale to be “universal,” i.e.
independent of the considered hadron. It is therefore
gratifying to observe how close numerically the results
are for the nucleon case (in [64] it was obtained μ0;LO ¼
420 MeV and μ0;NLO ¼ 508 MeV for the nucleon) as
compared to the pion case in Eqs. (2) and (3). This is

an encouraging indication for the usefulness of the con-
stituent model picture.

III. LIGHT-FRONT AMPLITUDES IN THE PION
CONSTITUENT APPROACH

In this section, we review the classification of the light-
front wave function for the pion, considering the minimal
Fock-space configuration, i.e. qq̄. According to the total
quark orbital angular-momentum projection, the qq̄ LFWF
of the pion can be written in terms of two light-front
amplitudes carrying the total quark orbital angular momen-
tum lz ¼ 0 and jlzj ¼ 1, i.e.

jπðpÞiqq̄ ¼ jπðpÞilz¼0
qq̄ þ jπðpÞijlzj¼1

qq̄ : ð4Þ

The different angular-momentum components of the state
in Eq. (4) are given by [93,94]

jπðpÞilz¼0
qq̄ ¼ Tπ

Z
d½1�d½2�ψ ð1Þð1; 2Þ δijffiffiffi

3
p ½q†i↑ð1Þq̄†j↓ð2Þ − q†i↓ð1Þq̄†j↑ð2Þ�j0i; ð5Þ

jπðpÞijlzj¼1
qq̄ ¼ Tπ

Z
d½1�d½2�ψ ð2Þð1; 2Þ δijffiffiffi

3
p ½k−1⊥q†i↑ð1Þq̄†j↑ð2Þ þ kþ1⊥q

†
i↓ð1Þq̄†j↓ð2Þ�j0i; ð6Þ

where k�i⊥ ¼ kxi � kyi , and q†iλ and q̄†iλ are creation operators of a quark and antiquark with flavor q, helicity λ and color i,
respectively. In Eqs. (5) and (6), Tπ is the isospin factor which projects on the different members of the isotriplet of the pion,
and is defined as Tπ ¼

P
τqτq̄

h1=2τq1=2τq̄j1τπi with τq; τq̄ and τπ the isospin of the quark, antiquark and pion state,
respectively. Furthermore, the amplitudes ψ ð1;2Þð1; 2Þ are functions of quark momenta with arguments 1 representing x1 and
k1⊥ and so on. They depend on the transverse momenta only through scalar products, e.g. ki⊥ · kj⊥. Since momentum
conservation implies k1⊥ þ k2⊥ ¼ 0 and x1 þ x2 ¼ 1, ψ ð1;2Þ

qq̄ ð1; 2Þ depend only on the variables x̄ ¼ x1 and κ2⊥, with
κ⊥ ¼ k1⊥. The integration measure in Eqs. (5) and (6) is defined as

d½1�d½2� ¼ dx1dx2ffiffiffiffiffiffiffiffiffi
x1x2

p δ

�
1 −X2

i¼1

xi

�
d2k1⊥d2k2⊥
½2ð2π3Þ� δ2

�X2
i¼1

ki⊥
�

¼ dx̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̄ð1 − x̄Þp d2κ⊥

½2ð2π3Þ� : ð7Þ

In the following, we will describe the above LFWF amplitudes in a light-front constituent model which was already
successfully applied for describing the charge form factor and decay constant of the pion [65,66] and the generalized parton
distributions [67,68].
The qq̄ component of the light-front state of the pion can be written as

jπðpÞiqq̄ ¼ Tπ

X
λi;ci

Z
d½1�d½2�Ψ½f�

qq̄ðfxi; ki⊥; λigÞ
δijffiffiffi
3

p q†iλ1ð1Þq̄
†
jλ2
ð2Þj0i: ð8Þ

In Eq. (8), the LFWF Ψ½f�
qq̄ðfxi; ki⊥; λigÞ satisfies Poincaré

covariance and is an eigenstate of the total angular-
momentum operator in the light-front dynamics. These
properties can be fulfilled by constructing the wave
function as the product of a momentum wave function,
which is spherically symmetric and invariant under per-
mutation of the two constituent partons, and a spin wave

function, which is uniquely determined by symmetry
requirements, i.e.,

Ψ½f�
qq̄ðfxi; ki⊥; λigÞ ¼ ~ψπðx̄; κ⊥Þ ~Φðλ1; λ2Þ: ð9Þ

In the above equation, the spin-dependent part is given by
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~Φðλ1; λ2Þ ¼
X
μ1μ2

h1=2; μ1; 1=2; μ2j0; 0iD1=2�
μ1λ1

ðRMðκÞÞD1=2�
μ2λ2

ðRMð−κÞÞ; ð10Þ

where κ ¼ fκ⊥; κzg, with

κz ¼ M0ðx̄; κ⊥Þ
�
x̄ − 1

2

�
; ð11Þ

and the free mass defined as

M2
0ðx̄; κ⊥Þ ¼

m2 þ jκ⊥j2
x̄ð1 − x̄Þ ; ð12Þ

with m the quark mass. In Eq. (10), D1=2
λμ ðRMðx̄; κ⊥ÞÞ is the

matrix element of the Melosh rotation RM [95]

D1=2
λμ ðRMðκÞÞ ¼ hλjRMðκÞjμi

¼
�
λ

����mþ x̄M0 − iσ · ðẑ × κ⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ x̄M0Þ2 þ κ2⊥

p
����μ
�
: ð13Þ

The Melosh rotation corresponds to the unitary trans-
formation which converts the Pauli spinors of the quark
and antiquark in the pion rest frame to the light-front spinor.
Making explicit the dependence on the quark and antiquark
helicities, the spin wave function of Eq. (10) takes the
following values:

~Φð↑;↑Þ ¼
Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðxi; κ⊥Þ

p κ−⊥ð−a1 þ a2Þ; ð14Þ

~Φð↑;↓Þ ¼
Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðxi; κ⊥Þ

p ða1a2 − κþ⊥κ−⊥Þ; ð15Þ

~Φð↓;↑Þ ¼
Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðxi; κ⊥Þ

p ð−a1a2 þ κþ⊥κ−⊥Þ; ð16Þ

~Φ↑ð↓;↓Þ ¼
Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðxi; κ⊥Þ

p κþ⊥ð−a1 − a2Þ; ð17Þ

where ai ¼ ðmþ xiM0Þ, and Nðxi; κ⊥Þ ¼ ½ðmþ xiM0Þ2þ
κ2⊥�. Taking into account the quark-helicity dependence in
Eqs. (14)–(17), the pion state can be mapped out into
the different angular-momentum components. As a result,
the pion wave function amplitudes in the LFCM read

ψ ð1Þð1; 2Þ ¼ ~ψðx; κ⊥Þ
Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðxi; κ⊥Þ

p 1ffiffiffi
2

p ða1a2 − κ−⊥κþ⊥Þ;

ð18Þ

ψ ð2Þð1; 2Þ ¼ ~ψðx; κ⊥Þ
Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðxi; κ⊥Þ

p 1ffiffiffi
2

p ð−a1 − a2Þ:

ð19Þ

IV. TWIST-2 TMDS IN THE PION
CONSTITUENT APPROACH

The quark TMDs are defined through the following
correlation function [6–8]

Φijðx; k2⊥Þ ¼
Z

dξ−d2ξ⊥
ð2πÞ3 eiξ·khpjψ̄ jð0ÞL†ð0; 0⊥jnÞLðξ−; ξ⊥jnÞψ iðξÞjpijξþ¼0; ð20Þ

where x ¼ kþ=pþ and for a generic four-vector aμ ¼ ðaþ; a−; a⊥Þ we used the light-front components
a� ¼ ða0 � a3Þ= ffiffiffi

2
p

. The Wilson lines L connecting the two quark fields ensure the color gauge invariance of the
correlator in Eq. (20) and are defined as [6–8]

Lðξ−; ξ⊥jnÞ ¼ P exp

�
−ig

Z
n·∞

ξ−
dη− · Aþðη−; ξ⊥Þ

�
P exp

�
−ig

Z
∞

ξ⊥
d2η⊥ · A⊥ðξ− ¼ n ·∞; η⊥Þ

�
; ð21Þ

where the vector n depends on the process under consid-
eration. For instance, the future-pointing Wilson lines with
n ¼ ð0;þ1; 0Þ are appropriate for defining TMDs in semi-
inclusive DIS (SIDIS), whereas in the Drell-Yan process
the Wilson lines are necessarily past pointing with

n ¼ ð0;−1; 0Þ. In particular, this reverses the sign of all
T-odd distribution functions entering the correlator.
For a pion target, the information content of the corre-

lator (20) is summarized at leading twist by two TMDs that
can be projected out from the correlator as follows:
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1

2
Tr½Φγþ� ¼ f1;πðx; k2⊥Þ; ð22Þ

1

2
Tr½Φiσiþγ5� ¼

εijkj⊥
Mπ

h⊥1;πðx; k2⊥Þ: ð23Þ

The function f1;πðx; k2⊥Þ is the unpolarized quark dis-
tribution, which integrated over k⊥ gives the familiar
parton momentum distribution f1;πðxÞ (in the parton
model; in the TMD factorization framework the relation
is more subtle [3]), and h⊥1;πðx; k2⊥Þ is the Boer-Mulders
TMD [7], which is a T-odd function, i.e. it changes sign

under “naive time reversal” defined as usual time
reversal, but without interchange of initial and final
states. In the following, we will present the model
calculation of the Boer-Mulders function for the SIDIS
process denoted as h⊥1;πðx; k2⊥ÞDIS, while for the Boer-
Mulders function in the Drell-Yan process we will use
h⊥1πðx; k2⊥ÞDY ¼ −h⊥1;πðx; k2⊥ÞDIS .

A. Unpolarized parton distribution function in the pion

From the definition (22), the f1;π TMD to leading order
in the gauge field is given by

f1;πðx; k2⊥Þ ¼
Z

dξ−d2ξ⊥
ð2πÞ3 eiðξ−kþ−ξ⊥·k⊥ÞhπðpÞjψ̄ð0Þγþψðξ−; ξ⊥ÞjπðpÞi: ð24Þ

By using the canonical expansion of the quark fields in terms of Fock operators and taking into account the qq̄ component
of the light-front state of the pion in Eq. (8), we find the final result

fq1;πðx; k2⊥Þ ¼ fq̄1;πðx; k2⊥Þ ¼ T2
π

Z
d½1�d½2� ffiffiffiffiffiffiffiffiffi

x1x2
p

δðx − x1Þδ2ðk⊥ − k1⊥Þj ~ψπðx1; k⊥1Þj2

¼ T2
π

1

2ð2πÞ3 j ~ψπðx; k⊥Þj2: ð25Þ

The unpolarized TMD involves a matrix element which is diagonal in the quark orbital angular momentum. As a
consequence, it takes the following expression in terms of the wave function amplitudes in Eqs. (5) and (6):

fq1;πðx; k2⊥Þ ¼ T2
π

1

ð2πÞ3 ½j ~ψ
ð1Þðx; k2⊥Þj2 þ k2⊥j ~ψ ð2Þðx; k2⊥Þj2�: ð26Þ

B. Boer-Mulders function of the pion

Using the definitions (20) and (23), the quark Boer-Mulders function of the pion is given by

h⊥1;πðx; k2⊥ÞDIS ¼ ϵijkj
Mπ

2k2⊥

Z
dξ−d2ξ⊥
ð2πÞ3 eiðξ−kþ−ξ⊥·k⊥ÞhπðpÞjψ̄ð0ÞL†ð0; 0⊥jnÞiσiþγ5Lðξ−; ξ⊥jnÞψðξ−; ξ⊥ÞjπðpÞi; ð27Þ

with n ¼ ð0;þ1; 0Þ. The gauge link L is crucial to obtain a nonzero Boer-Mulders function. In the light-front gauge, it
reduces to a transverse gauge link at ξ− ¼ ∞ given by the second term in Eq. (21). Furthermore, we expand the above gauge
link to take into account the first order nonvanishing contribution corresponding to the one-gluon-exchange diagram shown
in Fig. 1. Following the procedure outlined in Ref. [63] for the analogous calculation of the T-odd TMDs of the nucleon, we
obtain the following result for the quark Boer-Mulders function of the pion

h⊥q
1;πðx; k2⊥ÞDIS ¼ −g2Mπ

kx⊥ − iky⊥
k2⊥

1

ð2πÞ11
1ffiffiffiffiffiffiffiffi
2kþ

p
Z

dkþ3 d
2k3⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2kþ3 Þð2kþ4 Þ

p
Z

d2q⊥
2kþ1

×

�
1

q2⊥

X
λ3

X
q̄

X
i:j

X
k;l

Ta
ijT

b
klδabhπðpÞjq†i↑ðk1Þqj↓ðkÞq̄kλ3ðk4Þq̄†lλ3ðk3ÞjπðpÞi

�
; ð28Þ

where the parton momenta are defined as k1 ¼ k − q, k4 ¼ k3 − q. The above equation corresponds to the diagram of Fig. 1
with λ ¼ −λ1 and λ4 ¼ λ3 for the helicity of the interacting and spectator partons, respectively, i.e. the helicity is conserved
at the antiquark-gluon vertex, while the helicity of the struck quark flips from the initial to the final state. For angular-
momentum conservation, the quark-helicity flip must be compensated by a transfer of one unit of orbital angular
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momentum. Inserting in Eq. (28) the LFWF amplitude
decomposition of the pion state introduced in Sec. III, one
finds the following results in terms of the light-front
amplitudes ψ ðiÞ

h⊥q
1;πðx;k2⊥ÞDIS¼

4

3
g2T2

πMπ
kx⊥− iky⊥

k2⊥

Z
d2q⊥
ð2πÞ5

1

q2⊥
H⊥q

π ; ð29Þ

where the function H⊥q
π is

H⊥q
π ¼−k0þ⊥ ψ ð1Þð1;2Þψ ð2Þ�ð10;20Þþkþ⊥ψ ð1Þ�ð1;2Þψ ð2Þð10;20Þ

ð30Þ

with k0⊥ ¼ k⊥ − q⊥ and the parton coordinates 1 ¼ ðx; k⊥Þ,
2 ¼ ð1 − x;−k⊥Þ, and 10 ¼ ðx; k0⊥Þ, 20 ¼ ð1 − x;−k0⊥Þ. In
the model for the light-front amplitudes introduced in
Sec. III, we find the following explicit results

h⊥q
1;πðx; k2⊥ÞDIS ¼

4

3
g2T2

πMπ
kx⊥ − iky⊥

k2⊥

Z
d2q⊥
ð2πÞ5

1

q2⊥
~ψ�ðfx0ig; fk0i⊥gÞ ~ψðfxig; fki⊥gÞ

×
1

2

Y2
i¼1

N−1ðk0iÞN−1ðkiÞ½ ~A1A2 þ ~B1 · B2�; ð31Þ

where we introduced the definitions

~A1 ¼ ðmþ x1M0Þðk0x1 þ ik0y1 Þ− ðmþ x01M
0
0Þðkx1 þ iky1Þ;

~Bx
1 ¼ −iðmþ x01M

0
0Þðmþ x1M0Þ þ iðk0x1 þ ik0y1 Þðkx1 þ iky1Þ;

~By
1 ¼ ðmþ x01M

0
0Þðmþ x1M0Þ þ ðk01;x þ ik01yÞðkx1 þ iky1Þ;

~Bz
1 ¼ iðmþ x01M

0
0Þðkx1 þ iky1Þ þ iðmþ x1M0Þðk0x1 þ ik0y1Þ;

ð32Þ

for the contribution from the active quark, and

A2 ¼ ðmþ x2M0Þðmþ x02M
0
0Þ þ kx2k

0x
2 þ ky2k

0y
2 ;

Bx
2 ¼ −ðmþ x02M

0
0Þkx2 þ ðmþ x2M0Þk0y2 ;

By
2 ¼ ðmþ x02M

0
0Þkx2 − ðmþ x2M0Þk0x2 ;

Bz
2 ¼ k0x2 k

y
2 − k0y2 k

x
2; ð33Þ

for the contribution of the spectator antiquark.
The Boer-Mulders function for the valence antiquark can

be obtained through a similar calculation by replacing the
antiquark spectator with the quark spectator. As a result,
one finds h⊥q̄

1;π ¼ h⊥q
1;π .

V. RESULTS FROM A LIGHT-FRONT
CONSTITUENT MODEL

Up to this point we made only general assumptions. We
have chosen to work in a constituent approach of the pion,
and determined its initial scale in Sec. II. We have then
chosen to use the light-front formalism and presented in

Sec. III a general discussion of light-front amplitudes in the
pion constituent approach. In Sec. IV we derived a model-
independent representation of the leading-twist pion TMDs
as overlap of light-front amplitudes for the qq̄ Fock state of
the pion. In this section we will apply the formalism from
Secs. III and IV to obtain predictions for pion TMDs using
a specific model for the momentum-dependent part of
the LFWF.

A. Model for the momentum-dependent wave function

The formalism described in the previous sections is
applied to a specific choice for the LFCM, namely the
model proposed in Refs. [65,66]. The model is specified by
adopting the following exponential form for the momentum-
dependent part of the pion wave function

~ψπðx̄; κ⊥Þ ¼ ½2ð2πÞ3�1=2
�
M0ðx̄; κ⊥Þ
4x̄ð1 − x̄Þ

�
1=2

×
1

π3=4β3=2
exp ð−κ2=ð2β2ÞÞ: ð34Þ

The wave function in Eq. (34) is normalized as

Z
1

0

dx̄
Z

dκ⊥
2ð2πÞ3 j ~ψπðx̄; κ⊥Þj2 ¼ 1

[recalling that dκz ¼ dx̄ M0ðx̄; κ⊥Þ=½4x̄ð1 − x̄Þ�], and
depends on the free parameter β and the quark mass m,
which have been fitted to the pion charge radius and decay
constant. In particular, we take m ¼ 0.250 GeV and

FIG. 1. The leading contribution from the one-gluon-exchange
mechanism to the T-odd distribution function of the pion.
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β ¼ 0.3194 [65]. As we are considering only the leading
qq̄ Fock-space component in the pion LFWF, the quark
(antiquark) contribution to the pion distribution functions
at the hadronic scale of the model coincides with the
valence quark qv (antiquark q̄v) contribution, while the
sea-quark contribution is vanishing. Furthermore, isospin

symmetry imposes juvπþ ¼ jd̄vπþ ¼ jdvπ− ¼ jūvπ− ¼ 1
2
juv
π0

¼
1
2
jūv
π0

¼ 1
2
jdv
π0

¼ 1
2
jd̄v
π0
, with j ¼ f1; h⊥1 . In the following,

we will refer to distributions of valence quarks and
antiquarks in charged pions, using the notation jqvπ and
jq̄vπ , respectively.

B. Results for f qv1;πðx;k2⊥Þ at the hadronic scale

In Fig. 2, we show the model predictions for the valence-
quark contribution to the unpolarized TMD as a function
of x and k2⊥. The results refer to the low hadronic
scale determined in Sec. II. For the qq̄ component of the
pion state, the distribution of a quark with longitudinal
momentum fraction x is equal to the distribution of an
antiquark with longitudinal momentum fraction 1 − x, i.e.
fqv1;πðx; k2⊥Þ ¼ fq̄v1;πð1 − x; k2⊥Þ. Furthermore, one has the

relation fqv1;πðx; k2⊥Þ ¼ fq̄v1;πðx; k2⊥Þ, which gives as a final
result a momentum distribution symmetric with respect to
x ¼ 1=2. We also observe a rapid falloff with k2⊥, with a
decreasing slope at larger x. This behavior can be better
seen in Fig. 2(b) where we plot the fuv1;π TMD as a function
of k2⊥ at different values of x. We notice that the k2⊥
dependence is definitely not Gaussian, but it can be
approximated by a Gaussian function with reasonable
accuracy. Upon integration over k⊥, we obtain the unpo-
larized PDF. In Fig. 2(c) we compare the unpolarized quark
distribution of the pion f1;πðxÞ with the results of the
unpolarized quark distribution of the proton f1;pðxÞ
obtained from the three-quark LFWF of Ref. [61]. The
shape of the distributions for the pion and proton is quite

different, reflecting the different valence-quark structure of
the hadrons. For the proton, the momentum distribution of
the valence quark is peaked at x ≈ 1=3. Moreover, the
SU(6) symmetry for the spin-flavor structure of the LFWF
in [61] gives fuv1;pðxÞ ¼ 2fdv1;pðxÞ.

C. Evolved results for f qv1;πðxÞ in comparison
to parametrizations

As a first test of the applicability of the LFCM to the
description of partonic properties of the pion, we compare
the results for fuv1;πðxÞ evolved from the initial scale of the
model to Q2 ¼ 25 GeV2, with available parametrizations
[90,91,96–100] (for a review of the pion PDF in the
valence-x region see also Ref. [101]). The initial-scale,
LO-evolved and NLO-evolved distributions are shown in
Fig. 3(a). The LO and NLO evolutions are applied starting
from the initial scales μ20;LO and μ20;NLO in Eqs. (2) and (3),
respectively. Remarkably, although the initial scales and
especially the values of αsðμ20Þ at LO and NLO differ, the
evolved results are numerically close. This kind of behavior
has been interpreted in Refs. [90,96,102,103] as an indi-
cation for the “convergence” of perturbation theory down to
low scales.
It is important to keep in mind that the LO and NLO

parametrizations of [90,96,102] differ slightly at their
respective low scales, such that they allow one to describe
data equally well in the combination with the LO or NLO
hard parts in the respective LO or NLO treatments. In
contrast, our model input at the initial scale is identical in
LO and NLO. This inevitably introduces a scheme depend-
ence, when applying the model results beyond LO. But we
feel that such scheme-dependence effects are smaller than
the generic model accuracy, as discussed in Sec. II.
Considering that in the context of parton structure studies
the generic model accuracy is observed to be around
(10–30)% [62], we interpret the result in Fig. 3(a), i.e.
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FIG. 2 (color online). The valence-quark unpolarized TMD of the pion from the LFWF (34) at the hadronic scale. (a) fuv
1;πþðx; k2⊥Þ as a

function of x and k2⊥. (b) f
uv
1;π as a function of k2⊥ for selected values of x (x ¼ 0.1 solid curve, x ¼ 0.3 dotted curve, x ¼ 0.5 dashed

curve). (c) Comparison of the unpolarized PDFs as functions of x in the pion and nucleon from LFCM approaches at their initial
hadronic scales. Solid line: fuv1;πðxÞ in the pion obtained in this work. Dotted (dashed) curve: fuv1pðxÞ [fdv1pðxÞ] in the proton from the light-
front constituent quark model of Ref. [61].
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the “convergence” of the LO and NLO results in the sense
of Refs. [90,96,102,103], as an indication that the issue of
applicability of perturbative evolution equations down to
the low scales in Eqs. (2) and (3) is not the dominant source
of theoretical uncertainty in our approach.
In Fig. 3(b) the LFCM results at LO are compared with

the LO parametrizations of Refs. [96,97] and the calcu-
lation using Dyson-Schwinger equations of Ref. [98]. In
Fig. 3(c) we compare our NLO results with the NLO
phenomenological fits of Refs. [90,91,96] and the results
from the recent analysis of Ref. [99]. The evolution effects
are important, and change the shape of the distribution by
leading to the convex-up behavior near x ¼ 1, typical of the
renormalization group equations which populate the sea-
quark distribution at small x at the expense of the large-x
valence-quark contribution. In particular, the LFCM results
are in good agreement with the recent analysis of Ref. [99]
and the calculation [98] showing a falloff at large x much
softer than the linear behavior obtained from the other
analysis.
We remark that there is a recent extraction [100] of the

pion PDF in the valence region obtained from an updated
NLO analysis of the Fermilab pion DY data. These results
are consistent with the parametrization of Ref. [90] in the
valence-x region and therefore we do not show them
explicitly in Fig. 3(c). In summary, we observe that the
partonic description of the pion works with the same level
of accuracy observed for the LFCM of the nucleon [62].

D. Results for the Boer-Mulders function
at low initial scale

Having convinced ourselves that the pion LFCM
provides a reasonable description of the unpolarized
TMD, we now focus on what this approach predicts for
the Boer-Mulders function.
The overall normalization of the Boer-Mulders function

contains (in leading order of the Wilson line expansion) the

parameter g2 in Eqs. (28), (29) and (31). At first glance it
may appear natural to associate g2 with the strong coupling
at the low initial scale, αðμ20Þ ¼ g2=ð4πÞ, and eventually we
shall do this. But it is worth discussing this choice in some
more detail, because in a nonperturbative calculation this is
a nontrivial step which should be done with care. The
expansion of the Wilson line is certainly appropriate for
demonstrating “matters of principle” such as the existence
of T-odd TMDs in QCD [35,36]. But it is a priori not clear
whether this approach provides an adequate description of
nonperturbative hadronic physics. From this point of view,
one could consider the one-gluon-exchange approximation
as an effective description. Besides the pioneering efforts of
Ref. [71], nothing is known about effects from the Wilson
line beyond one-gluon exchange. One could therefore
understand g2 as a free parameter and choose its value
to “effectively” account for higher order effects, which
would be understood as part of the model. For instance, the
value of g2 could be adjusted to reproduce data. While in
principle perfectly legitimate, we feel that here this would
be an impractical procedure.
In the context of the pion Boer-Mulders function not

much data are available, and at the present state of the art
the analysis of that data bears uncertainties which are
difficult to control. We therefore prefer not to introduce a
free parameter at this point. Instead we fix αðμ20;NLOÞ ¼
g2=ð4πÞ in Eq. (3). One could have also chosen to
reproduce the LO value αðμ20;LOÞ in Eq. (2). However,
the choice of NLO value αðμ20;NLOÞ is preferable over the
LO value αðμ20;LOÞ for two reasons. First, the NLO value
can be associated with higher stability from the perspective
of perturbative convergence [53,87–89], and may be
interpreted as effectively considering higher order effects
in the above explained sense. Second, a smaller value of
αðμ20;NLOÞ helps to better comply with positivity constraints
(see below). However, let us stress that fixing the value of
g2 in the overall normalization of the Boer-Mulders
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FIG. 3. (a) xfuv1;πðxÞ as function of x. Solid line: at initial scale of the model. Dotted line: LO evolved to 25 GeV2. Dashed line: NLO
evolved to 25 GeV2. (b) xfuv1;πðxÞ as function of x after LO evolution to Q2 ¼ 25 GeV2 in comparison to the LO parametrizations from
[97] (dashed curve) and [96] (dotted curve), and the calculation of [98] (long-dashed curve). (c) xfuv1;πðxÞ as function of x after NLO
evolution toQ2 ¼ 25 GeV2 in comparison to the NLO parametrizations from [99] (long-dashed curve), [91] (dashed curve) and [90,96]
(dotted curve).
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function is part of the modeling, and one could revisit this
choice, if it gave unsatisfactory phenomenological results.
Below we shall see that our choice leads to satisfactory
results.
In Fig. 4(a) we show the LFCM results for the Boer-

Mulders TMD as function of x and k2⊥ with the sign as it is
expected to appear in the DY process. The shape of the
distribution is very similar to the unpolarized TMD. It is
symmetric with respect to x ¼ 1=2, with a peak at x ∼ 0.1,
and is rapidly decreasing at larger k2⊥, with a falloff which is
not Gaussian but can be approximated reasonably well by a
Gaussian function. This is evident from Fig. 4(b) which
displays the k2⊥ dependence at selected values of x. The
slope in k2⊥ of the Boer-Mulders function is slightly steeper
than that of the unpolarized TMD, in particular at larger
values of x.
The next important test of the model calculation is posed

by positivity [104] which requires that in the pion the
unpolarized and Boer-Mulders TMD obey the following
positivity relation, which holds flavor by flavor,

Pq
BMðx; k2⊥Þ≡ fq1;πðx; k2⊥Þ − k⊥

Mπ
jh⊥q

1;πðx; k2⊥Þj ≥ 0: ð35Þ

The model results for Pq
BMðx; k2⊥Þ at selected values of x are

plotted in Fig. 4(c).1 We see that the inequality (32) is safely
satisfied for k⊥ ≲ 0.2 GeV but violated for larger k⊥.
Calculations in effective nonperturbative model frame-
works may provide some insights into the properties of
TMDs for k⊥ ≪ μ0, but the description of the region k⊥ ∼
Oðμ0Þ is out of scope. Nevertheless, from the point of view

of internal consistency, the noncompliance with (35) at
large k⊥ is of course unsatisfactory. This happens, to the
best of our knowledge, also in all presently available
calculations of T-odd TMDs [105]. The general reasons
for that can be traced back to an inconsistent treatment:
T-odd TMDs are calculated to “first order of the expansion
of the Wilson line,” whereas T-even TMDs like fq1ðx; k2⊥Þ
are evaluated to “zeroth order” in that expansion. To
preserve positivity the Wilson link expansion should be
truncated consistently at the same order for both T-odd and
T-even TMDs which enter the inequality (35) on the same
footing [64].
From the point of view of practical applications, it is

gratifying to observe that the inequality (35) is violated only
in the region of small x or large k⊥ [64,105], i.e. in a region
of parameter space that is beyond the range of applicability
of effective quark models. In particular, we convinced
ourselves here that in the LFCM of the pion the non-
compliance with inequalities in the extreme regions of the
ðx; k⊥Þ space has no practical consequences for the descrip-
tion of physical processes, provided one uses the model
within its range of applicability. The same observation was
made in the case of the description of nucleon T-odd TMDs
in the constituent quark model framework [64].

E. Comparison to results for Boer-Mulders
functions from different models

It is instructive to compare the Boer-Mulders functions
of a pion and nucleon. Let us define the ð1=2Þ- and (1)-
transverse moments of the pion and proton Boer-Mulders
functions as

h⊥ð1=2Þ
1;h ðxÞ ¼

Z
d2k⊥

k⊥
2Mh

h⊥1;hðx; k2⊥Þ;

h⊥ð1Þ
1;h ðxÞ ¼

Z
d2k⊥

k2⊥
2M2

h

h⊥1;hðx; k2⊥Þ: ð36Þ

10-1

1

10

0 0.02 0.04 0.06 0.08 0.1

h⊥ uv   [GeV-2]
π DY

k2   [GeV2]⊥

0

1

2

3

4

0 0.1 0.2 0.3

Puv   [GeV-2]
BM

k   [GeV]⊥
(a) (b) (c)

FIG. 4 (color online). The Boer-Mulder function of the pion in the DY process from the LFCM at initial scale. (a) h⊥uv
1;π ðx; k2⊥Þ

as a function of x and k2⊥. (b) h
⊥uv
1;π as a function of k2⊥ for selected values of x (x ¼ 0.1 solid curve, x ¼ 0.3 dotted curve, x ¼ 0.5 dashed

curve). (c) The positivity relation (32) for the valence-u quark in the pion as a function of k⊥ at different values of x: x ¼ 0.2
(solid curve), x ¼ 0.35 (dashed curve) and x ¼ 0.5 (dotted curve).

1We remark that if both functions had exactly Gaussian k⊥
behavior (which they have not), the steeper k2⊥ slopes of
h⊥q
1;πðx; k2⊥Þ observed in Fig. 4(b) as compared to fq1;πðx; k2⊥Þ in

Fig. 2(b) would be a necessary (though not sufficient) condition
to satisfy positivity.
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Owing to the appearance of hadron masses in the corre-
lators defining the Boer-Mulders functions in Eq. (23), the
magnitude of the (1) moment of the pion Boer-Mulders
function is artificially enhanced by a factor ∼Mp=Mπ with
respect to the nucleon case. Therefore, in the following
plots, we will rescale the results for the (1) moment of the
proton Boer-Mulders function by that factor, in such a way
that the comparison with the results for the pion is not
distorted by the numerically very different values of pion
and nucleon masses.
Figure 5(a) compares the results for h⊥ð1=2Þuv

1;π ðxÞ obtained
here and h⊥ð1=2Þqv

1;p ðxÞ obtained in [64]. Similarly, Fig. 5(b)
shows the results for the (1)moment of thepionBoer-Mulders
function in comparison with the corresponding results for
valence quarks in the proton rescaled by a factorMp=Mπ. In
both cases, the distributions for thevalence contribution in the
proton and pion have comparable magnitude, but similar to
the case of the unpolarized PDF, the x dependence is quite
different. The sign of the pion Boer-Mulders function is
consistent with the sign of the Boer-Mulders function of the
proton [70], as obtained also in lattice calculations [73], the
MIT bag model [72] and spectator models [71,75].
Interestingly, in comparison with other model calculations
like the spectator model [71,75] andMIT bag model [72], the
shape and the magnitude of h⊥1;π from LFCM are quite
different. Similar differences have been found also in the
comparison of the model results for the proton Boer-Mulders
function [63,64]. The LFCM predictions for the nucleon
Boer-Mulders function favorably describe available SIDIS
data [64]. In Sec. VIII we will see that the LFCM predictions
for the pion Boer-Mulders function provide a similarly
satisfactory description of DY data.

F. Estimating the x evolution for the
Boer-Mulders function

For phenomenological applications we will need the
pion Boer-Mulders function from the LFCM evolved to

experimentally relevant scales. This requires both, evolution
in x and transversemomentum. In this sectionwe discuss the
x evolution (the evolution of the transverse momentum
dependence will be discussed in the next section.)
Recently, substantial progress on the evolution of TMDs

has been achieved [3,28–32]. However, the exact evolution
equations for the Boer-Mulders function are still under study.
At the present stage we have to resort to approximations in
order take into account effects of scale dependence. To this
aim, we will follow the same strategy as we adopted for the
Boer-Mulders function of the proton [64], and approxi-
mate the evolution of transverse moments of the Boer-
Mulders function by using the evolution equations of the
chiral-odd transversity distribution function in the nucleon
(in a spin-zero hadron, like the pion, there is of course no
transversity distribution, but the pion Boer-Mulders origi-
nates from the same unintegrated chiral-odd correlator).
To be more precise, we will evolve the (1) moments of

the Boer-Mulders functions. Such transverse moments
appear naturally in transverse momentum weighted azimu-
thal asymmetries, and it was argued that asymmetries
weighted in this way are less affected by Sudakov effects
[106]. It will be possible to ultimately judge the quality of
this approximation only after the exact evolution equations
are known. But we feel confident that the uncertainty
introduced by this step in our theoretical study is not larger
than the generic accuracy of the LFCM.
Figure 5(c) show the results for (1) moment xh⊥ð1Þ

1DY after
approximate (transversity) LO evolution from the initial
scale in Eq. (2) to Q2 ¼ 25 GeV2. For comparison we
include also the results for the nucleon Boer-Mulders
functions rescaled by a factor Mp=Mπ. As in the case of
the unpolarized PDF, the effects of the evolution are
sizable, producing a shift of the peak position towards
smaller x and reducing the magnitude of the distribution.
In Sec. VI we will use the model predictions to describe

azimuthal asymmetries in DY in a LO treatment. For this

⊥ ⊥ ⊥

(a) (b) (c)

FIG. 5. (a) Comparison of xh⊥ð1=2Þqv
1 ðxÞ in the DY process as functions of x in the pion and nucleon from LFCM approaches at initial

scales. Solid line: uv distribution in the pion, this work. Dotted (dashed) curve: uv (dv) distribution in the proton, Ref. [61]. (b) The
results for xh⊥ð1Þ

1DY as a function of x . Solid curve: uv distribution in the pion. Dotted (dashed) curve: uv (dv) distribution in the proton,
from the LFCM of Ref. [64]. The proton results are rescaled by a factor Mp=Mπ. (c) The same as in Fig. 5(b) but at Q2 ¼ 25 GeV2

obtained with approximate LO evolution from the LFCM results at the hadronic scale.
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purpose, we will use the results for f1;πðxÞ and h⊥ð1Þ
1;π ðxÞ LO

evolved in x to experimental scales—exactly and approx-
imately, respectively, as described in Sec. V C and the
present Sec. V F. Before applying the model results to
phenomenology, in the following section we will estimate
the broadening of transverse momenta at the large scales
typically probed in DY experiments.

VI. THE DRELL-YAN PROCESS WITH
UNPOLARIZED HADRONS

In this section we introduce the concepts required to
describe the Drell-Yan process in the parton model taking
into account transverse momentum effects. Our treatment
will be pragmatic and phenomenological.

A. Kinematics, variables, conventions

Let p1;2 denote the momenta of the incoming hadrons
h1;2, and let l, l0 be the momenta of the outgoing lepton pair.
The kinematics of the process is described by the center-of-
mass energy square s, invariant mass of the lepton pair Q,
rapidity y or the Feynman variable xF, and the variable τ
which are defined and related to each other as

s ¼ ðp1 þ p2Þ2; q ¼ lþ l0; Q2 ¼ q2;

y ¼ 1

2
ln
p2 · q
p1 · q

¼ 1

2
ln
x1
x2

; xF ¼ x1 − x2;

τ≡Q2

s
¼ x1x2: ð37Þ

In the parton model the xi denote the fractions of the hadron
momenta pi carried by (respectively) the annihilating
parton or antiparton, and are given by (the þ signs refer
to x1, the − signs x2)

x1;2 ¼ � xF
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2F
4
þ τ

r
¼ ffiffiffi

τ
p

e�y: ð38Þ

In the lab frame, where one hadron is a target or where
both hadrons are beam particles, the produced lepton pair
will in general have a three-momentum q ¼ l þ l0 ≠ 0. It is

often convenient to analyze the data in a dilepton rest
frame. There are various frames, including several dilepton
rest frames, that are routinely used for data analyses, see
Refs. [18–22] for an overview. The differences between the
different frames are of order OðqT=QÞ. In the following we
will work in the Collins-Soper frame, which is defined in
Fig. 6, and use only data analyzed in that frame.
In this work we will consider pion-nucleus collisions.

The used convention is such that x1 describes the momen-
tum fraction of the parton from π−, while x2 describes the
momentum fraction of the parton from the nucleon bound
in the nucleus. In order to describe nuclei with proton
number Z and neutron number N we will neglect nuclear
binding effects and assume that, for instance, fu1= nucleus ¼ðZ=AÞfu1= proton þ ðN=AÞfu1= neutron, where A ¼ N þ Z
denotes the mass number of the nucleus. The neglect of
nuclear binding effects is a justified step for qT ≲ 3 GeV
[14,16], which includes the kinematic region of interest for
our study.

B. Structure functions in unpolarized DY

The angular distribution of the DY lepton pairs origi-
nating from collisions of unpolarized hadrons is given in
the Collins-Soper frame by (see Fig. 6 for the definition of
angles),

dN
dΩ

≡ dσ
d4qdΩ

=
dσ
d4q

¼ 3

4π

1

λþ 3

�
1þ λcos2θ þ μ sin 2θ cosϕþ ν

2
sin2θ cos 2ϕ

�
: ð39Þ

In the notation of Ref. [20] the coefficients λ, μ, ν can
be expressed in terms of DY structure functions as
follows:

λ¼F1
UU−F2

UU

F1
UUþF2

UU
; μ¼ Fcosϕ

UU

F1
UUþF2

UU
; ν¼ 2Fcos2ϕ

UU

F1
UUþF2

UU
:

ð40Þ

The so-called Lam-Tung relation claims λþ 2ν ¼ 1,
which reads in terms of structure functions F2

UU ¼
2Fcos 2ϕ

UU . This relation is exact if one treats the DY process
to OðαsÞ in the standard collinear factorization QCD
framework [42,43]. At Oðα2sÞ the Lam-Tung relation is
violated, though at a numerically negligible rate [44].
However, DY data from pion-nucleus collisions show
that it is strongly violated, calling for a nonperturbative
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ax

is φ

θ
l

l′ h1
h2

α α
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ha
dr

on
 p

la
ne

FIG. 6 (color online). The definition of the angles θ and ϕ in the
Collins-Soper frame. This frame is the center-of-mass frame of
the produced leptons in which the hadrons are incoming
symmetrically with respect to the z axis (at an angle α in the
figure) with the transverse momentum qT .
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leading-twist mechanism beyond collinear factorization.
The Boer-Mulders effect provides such a mechanism [34].
Alternative nonperturbative mechanisms to explain this
observation have been proposed in [45–49].

C. Parton-model treatment

In a tree-level parton-model approach including trans-
verse parton momenta in the region qT ≪ Q the structure

functions F1
UU and Fcos 2ϕ

UU are leading twist, Fcosϕ
UU is

subleading twist, and F2
UU is a power-suppressed higher-

twist effect proportional to q2T=Q
2. In such a treatment the

transverse dilepton momenta qT arise from the convolutions
of (“intrinsic”) transverse momenta of the partons as
described through TMDs. The leading-twist structure func-
tions in the unpolarized DY process are expressed in terms
of TMDs through the following convolution integrals [20]

F1
UUðx1; x2; qTÞ ¼

1

Nc

X
a

e2a

Z
d2k1⊥d2k2⊥δð2ÞðqT − k1⊥ − k2⊥Þfa1;πðx1; k21⊥Þfā1;Nðx2; k22⊥Þ; ð41Þ

Fcosð2ϕÞ
UU ðx1; x2; qTÞ ¼

1

Nc

X
a

e2a

Z
d2k1⊥d2k2⊥δð2ÞðqT − k1⊥ − k2⊥ÞωBMh⊥a

1;πðx1; k21⊥ÞDYh⊥ā
1;Nðx2; k22⊥ÞDY;

ωBM ¼ 2ðqT · k1⊥ÞðqT · k2⊥Þ − q2Tðk1⊥ · k2⊥Þ
MπMNq2T

; ð42Þ

where the sums go over a ¼ u; ū; d; d̄, and, in principle,
heavier flavors.
At this point it is important to recall that the parton-

model description is adequate and works reasonably well
for some observables, but not for all. For instance, in order
to describe absolute cross sections (even if averaged over
transverse dilepton momenta), it is necessary to go to the
NLO QCD treatment of the process. We will work in a LO
(“tree-level”) formalism and consider ratios of cross sec-
tions where “overall normalizations” tend to cancel out.
Indeed, experience in various processes shows that different
types of corrections may significantly affect absolute cross
sections, but tend to cancel in cross section ratios. To quote
just a few examples, we mention in this context the weak
scale dependence of longitudinal spin asymmetries in DIS
[107], or the near cancellation of resummation effects of
large double logarithmic QCD corrections in longitudinal
spin asymmetries in SIDIS [108]. In longitudinal and
transverse spin asymmetries in DY higher order QCD
corrections also tend to cancel [109–111], and the same
tendency is found for partonic threshold corrections [112].
QCD corrections to polarization effects in eþe− annihila-
tion tend also to cancel [113]. This is encouraging, but of
course does not prove that higher order corrections will
tend to cancel also for the cross section ratios considered in
this work, and more theoretical work is needed to attest this
point. We finally remark, that our parton-model treatment
does not consider the color entanglement effects discussed
in Ref. [114].

VII. THE UNPOLARIZED TMDS IN DY

The LFCM was shown to describe the x dependence of
f1;h with an accuracy of (10–30)% within the range of
applicability of the model. (For the pion see Sec. V, for the

nucleon see Ref. [60].) In this section we will therefore
focus entirely on the k⊥ dependence.

A. Gaussian approximation and estimate of k⊥
broadening for f a1;hðx;k2⊥Þ

The LFCM predictions for the k⊥ dependence of TMDs
presented in Sec. V refer to a low scale of ∼0.5 GeV, and
cannot be applied directly to describe DY data which are
typically taken in the region Q ∼ ð4–9Þ GeV between the
J=ψ andϒ resonances, or above theϒ resonance region. In
order to estimate the k⊥-evolution effects we shall resort
to the Gaussian ansatz, and proceed phenomenologically.
The procedure is motivated and outlined below.
The DY cross section behaves like dσ=dq2T ∝

expð−q2T=hq2TiÞ for qT ≪ Q [115–117]. This observation
is the basis for the popularity of the Gaussian ansatz to
model the distributions of transverse parton momenta in
hadrons. Although certainly oversimplifying, the phenom-
enological success of the Gaussian ansatz indicates that it is
a useful working assumption. We shall therefore recast the
model predictions for TMD as follows:

fa1;hðx; k2⊥Þ ¼ fa1;hðxÞ
expð−k2⊥=hk2a=h⊥;unpðxÞiÞ

πhk2a=h⊥;unpðxÞi
;

hk2a=h⊥;unpðxÞi ¼
R
d2k⊥k2⊥fa1;hðx; k2⊥ÞR
d2k⊥fa1;hðx; k2⊥Þ

; ð43Þ

where fa1;hðxÞ is the unpolarized collinear parton distribu-
tion function.
Before describing in detail how we estimate k⊥-

evolution effects, let us comment on a feature concerning
Eq. (43). In Sec. V we have seen that the model results for
pion TMDs exhibit an approximate Gaussian behavior. The
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same was demonstrated in [62,64] for the nucleon case. In
contrast to Refs. [62,64] (where predictions from the
LFCM of the nucleon were applied to SIDIS phenomenol-
ogy) in this work we do not take the Gaussian widths to be
x-independent constants. Rather, in Eq. (43) we allow a
more flexible parametrization with x-dependent Gaussian
widths. This has the advantage of further improving the
quality of the Gaussian approximation.
The exact evolution of the k⊥ dependence of the

unpolarized TMD is known in the Collins-Soper-
Sterman (CSS) formalism, which provides a framework
for a quantitative description of transverse momentum
broadening effects with increasing energies. The under-
lying physical picture is that with increasing energy gluon
radiation broadens the “initial” (or “intrinsic”) parton
transverse momentum. There is no practical or theoretical
way to separate “nonperturbative intrinsic” and “perturba-
tive gluon-radiation” effects. However, from a phenom-
enological point of view, there is no need for that: both
effects are collectively parametrized in the effective param-
eters in Eq. (43), provided one pays due attention to apply
this effective description to the region of low transverse
momenta qT ≪ Q [116,117]. In order to estimate this
effective broadening of the Gaussian widths we shall use
the results from [117].
In principle one could directly work within the CSS

formalism. However, the CSS formalism has not yet been
established for the Boer-Mulders effect. Moreover, even in
the unpolarized case, it has not yet been studied whether
one can use the CSS formalism starting from a scale as low
as in Eqs. (2) and (3). In this work we therefore prefer to use
the effective description of [117] to estimate k⊥-evolution
effects, which requires us to use the Gaussian ansatz,
as done in Eq. (43). The details of this step will be
described below.
Let us now turn our attention to the description of the

transverse parton momenta in DY. We discuss first the
mean transverse momenta of the produced lepton pairs [see
Eqs. (37) and (38) for the relation of xF with x1;2] defined as

hq2TðxF; sÞi ¼
R
d2qTq2TF

1
UUðx1; x2; qTÞR

d2qTF1
UUðx1; x2; qTÞ

: ð44Þ

It is important to notice that in a LO formalism the energy
(or scale) dependence is introduced by using parton
distributions (LO) evolved to the relevant scale, and using
appropriately broadened Gaussian widths. We also notice
that hq2TðxF; sÞi is a ratio of observables, i.e. amenable to
the description in a parton-model approach thanks to the
approximate cancellation of higher order QCD effects, as
argued in Sec. VI C.
When using the Gaussian ansatz in a tree-level parton-

model approach, the hq2Ti is given by the sum of the
Gaussian widths of the unpolarized TMDs of the nucleon
and pion. (In general this would hold only if the Gaussian

widths were flavor independent. In the LFCM, where sea
quarks are absent, it also holds because only one flavor
contributes to the production of the lepton pair, namely a
valence ū from the π− and a valence u in the proton
annihilate.)
If we used the model results discussed in Sec. V at their

face value to estimate hq2Ti we would strongly under-
estimate the data. This is not surprising as the model results
have to be evolved. In order to estimate evolution effects,
we add an energy-dependent constant hδk2⊥ðsÞi such that

hq2TðxF; sÞi ¼ hk2ū=π−⊥;unp ðx1Þi þ hk2u=N⊥;unpðx2Þi þ hδk2⊥; unpðsÞi:
ð45Þ

The energy dependence of hq2Ti enters only through
hδk2⊥; unpðsÞi which provides the amount of transverse
momentum broadening at given s. The variation of dilepton
momenta with s was investigated phenomenologically in
[115,117]. These studies allow us to estimate the amount of
k⊥ broadening required in our approach to be

hδk2⊥; unpðsÞi ¼ δAunp þ Bunps; δAunp ¼ 0.4 GeV2;

Bunp ¼ 2.6 × 10−3: ð46Þ

It is important to stress that hδk2⊥;unpðsÞi constitutes the
accumulated k⊥ broadening in both the pion and nucleon.
Notice that hδk2⊥;unpðsÞi could also depend on xF or
other variables besides s, but we disregard this possibi-
lity here. Finally, one should stress that the linear broad-
ening indicated in (46) is valid only in a narrow s range
[115,117]. When considering broader energy ranges up to
collider energies the increase is log s [118] rather than
linear.

B. Comparison to the data

With the empirical estimate of k⊥-broadening effects in
Sec. VII A, the model results yield a good description of
DY data in the region s ∼ ð50–600Þ GeV2 studied in
Refs. [115,117]. We present two examples to illustrate this.
Figure 7 shows how our approach describes Fermilab

E615 data on hq2TðxFÞi of Drell-Yan lepton pairs produced
in collisions of 80 and 252 GeV π− beams impinging on
tungsten targets [12,15], which corresponds respectively to
s≃ 150 and 473 GeV2. We obtain a good description of
the 80 GeV data [12] in the region 0.2 ≤ xF ≲ 0.8. The
252 GeV data are well described for 0 ≤ xF ≲ 0.5.
Considering the generic accuracy ∼ð10–30Þ% of the
LFCM, the description of these data in the region 0.5≲
xF ≲ 0.7 can be still considered satisfactory. However,
beyond xF ≳ 0.7 the approach breaks down. This is not
a failure of the model (which admittedly is not applicable at
small or large x), but of the TMD approach in general. The
reason is as follows. At large xF the breakdown of the
description of the DY process in terms of parton
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distribution functions is expected. The limit xF → 1 cor-
responds to large x1 in the pion (and small x2 in the
nucleon). As x1 → 1 the ū from the π− is far off shell, and
more appropriately described in terms of the pion distri-
bution amplitude [119]. While this so-called Berger-
Brodsky effect provides a unique opportunity to access
information on the pion distribution amplitude [120], from
the point of view of the TMD description of the DY process
it is a power correction, which dominates as one approaches
the limit xF → 1 of the available phase space. Interestingly
the Gaussian ansatz itself still works even for xF ≳ 0.7
[117]. In principle one could continue using the TMD
description, at least in some parts of the large-xF region.
This would require narrower hq2TðxFÞi. The xF dependence

of hq2TðxFÞi implied by the LFCM through the x depend-
ence of the Gaussian widths in Eq. (43) is not sufficient for
that, but one could introduce an adequate xF dependence of
the transverse momentum broadening hδk2⊥;unpðsÞi in addi-
tion to its s dependence. In this work we shall refrain from
such attempts, stick to our xF-independent description of
transverse momentum broadening in Eqs. (45) and (46),
and keep in mind that this description has limitations at
large xF.
The observable hq2TðxFÞi shown in Fig. 7 is the result of

averaging over DY pair momenta. It is of importance to
demonstrate that our approach works also for observables
depending on qT . For that we consider the data from the
E615 experiment [15] shown in Fig. 8 on the normalized
cross sections, which we define for brevity as

1

σ

dσðqTÞ
dqT

≡ d2σðqT; xFÞ
dqTdxF

=
dσðxFÞ
dxF

¼ 2πqThF1
UUðx1; x2; qTÞi

hF1
UUðx1; x2Þi

; ð47Þ

where h� � �i denote averages over xF in certain bins, and σ
in the first term of Eq. (47) is a shortcut notation for the
differential cross section dσ=dxF. The normalization is
such that one obtains unity after integrating over qT in
Eq. (47). Using the Gaussian ansatz, the structure functions
are given by

F1
UUðx1; x2; qTÞ

¼ 1

Nc

X
a

e2afa1;πðx1Þfā1;Nðx2Þ
expð−q2T=hq2TiÞ

πhq2Ti
; ð48Þ

〈 〉 〈 〉(a) (b)

FIG. 7 (color online). The mean dimuon transverse momentum
square hq2Ti vs xF from the Fermilab E615 experiment taken with
respectively (a) 80 GeV [12] and (b) 252 GeV [15] π− beams
impinging on tungsten targets. The theoretical curves are the
result from LFCM obtained in this work with a phenomenologi-
cal estimate for transverse momentum broadening, see Eqs. (45)
and (46).
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FIG. 8 (color online). The normalized cross section ð1=σÞðdσðqTÞ=dqTÞ as functions of qT in different xF bins. The data are from
Ref. [15]. The theoretical curves are from the LFCMwith transverse momentum broadening effects estimated according to Eqs. (45) and
(46). The description of the data is very good in the region 0 ≤ xF ≤ 0.5, and it is still acceptable for 0.5 ≤ xF ≲ 0.7. For xF ≳ 0.7 the
description breaks down, because the TMD approach is not applicable and higher twist effects become relevant.
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F1
UUðx1; x2Þ ¼

1

Nc

X
a

e2afa1;πðx1Þfā1;Nðx2Þ: ð49Þ

Notice that F1
UUðx1; x2; qTÞ in Eq. (48) depends on the

Gaussian model, but after integrating out transverse
momenta one obtains the model-independent structure
function F1

UUðx1; x2Þ ¼
R
d2qTF1

UUðx1; x2; qTÞ in Eq. (49).
The data refer to 4.05 ≤ Q=GeV ≤ 8.55 and were taken
with a 252 GeV π− beam impinging on a nuclear (tungsten)
target [15]. Thus s≃ 473 GeV2 in this experiment. Strictly
speakingwe could only retrieve E615 data on d2σ=ðdqTdxFÞ
from Ref. [17], and estimated the differential cross sections
dσ=dxF ourselves, to obtain the normalized data in Fig. 8.
We are confident that the data shown in Fig. 8 are normalized
with an accuracy of 10%, which is comparable or better than
the accuracy of the LFCM. [We recall that we work in a LO
approach. Thus, we could have alternatively studied the qT
dependence of the differential cross sections d2σ=ðdqTdxFÞ
fixing the overall normalizations “by hand,” or estimating
“K factors.”Both alternatives are not more rigorous than our
treatment.]
Figure 8 shows that the description of the qT dependence

of the normalized cross sections works very well in the
region 0 ≤ xF ≤ 0.5, and is still reasonably good for
0.5 ≤ xF ≲ 0.7, but for xF ≳ 0.7 it clearly breaks down,
which is not surprising given our earlier findings concluded
from Fig. 7 and the expectations from QCD for xF → 1
[119]. It is important to stress that we do not only expect
limitations of the approach at large xF, but in particular also
at large qT , where the Gaussian ansatz is at variance with
QCD which predicts a powerlike decay [121]. These
limitations cannot be seen in Fig. 8. We therefore present
a logarithmic plot of the E615 data [15] on the normalized
cross section in Fig. 9 which demonstrates that the

Gaussian description is applicable for qT ≲ ð2–3Þ GeV
but not beyond that. Since 4.05 ≤ Q=GeV ≤ 8.55 and
we need qT ≪ Q for the TMD factorization to be appli-
cable, one certainly cannot expect the approach to work
beyond qT ≲ ð2–3Þ GeV. In Fig. 9 we limit ourselves to
showing the data in the bin 0.2 ≤ xF ≤ 0.3 only, because
this xF bin shows the limitations of the qT description most
clearly. The data sets from [15] in the other xF bins shown
in Fig. 8 happen to be less accurate at larger qT and show
deviations from the Gaussian ansatz less clearly.
Depending on the energy, the Gaussian model was shown
to work satisfactorily in DY up to qT ≲ ð2–3Þ GeV also
in [117].
At this point it is worth recalling that we neglect nuclear

binding effects, which is justified for qT ≲ 3 GeV [14,16].
Thus, nuclear effects become important only beyond the
range of qT we are interested in. Moreover, since in the
LFCM the hk2⊥;unpðxÞi are equal for u and d quarks in
protons and neutrons, we do not need to distinguish protons
and neutrons in the tungsten target.
To summarize, a parton-model description of cross

section ratios in DY with the LFCM predictions for pion
and nucleon unpolarized TMDs with the phenomenological
estimate of transverse momentum broadening effects in
Eqs. (45) and (46) works well for s ∼ ð50–600Þ GeV2 in
the regions of qT ≲ ð2–3Þ GeV and xF ≲ ð0.7–0.8Þ.
Although the LFCM has its own limitations, this is the
range of applicability of the TMD approach expected on
general grounds, and we shall keep it in mind when
embarking on the description of the Boer-Mulders effect
in DY in the next section.

VIII. BOER-MULDERS EFFECT IN DY

In this section we describe the Boer-Mulders effect in the
DY process. The treatment is in a large part parallel to the
discussion of the unpolarized TMDs in Sec. VII.

A. Gaussian approximation and estimate of k⊥
broadening for h⊥a

1;hðx;k2⊥Þ
In analogy to the unpolarized TMDs in Eq. (50), also in

the case of the Boer-Mulders functions it is convenient to
recast the model predictions in terms of a Gaussian ansatz
as follows:

h⊥a
1;hðx; k2⊥Þ ¼ h⊥a

1;hðxÞ
expð−k2⊥=hk2a=h⊥;BMðxÞiÞ

πhk2a=h⊥;BMðxÞi
;

hk2a=h⊥;BMðxÞi ¼
R
d2k⊥k2⊥h⊥a

1;hðx; k2⊥ÞR
d2k⊥h⊥a

1;hðx; k2⊥Þ
: ð50Þ

The model results for h⊥a
1;hðx; k2⊥Þ at the initial scale exhibit

an approximate Gaussian k⊥ behavior, see Fig. 4(b) in
this work for the pion and [62] for the nucleon. This is
well approximated by Eq. (47) thanks to the flexible
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FIG. 9 (color online). The normalized cross section
ð1=σÞðdσðqTÞ=dqTÞ as a function of qT for 0.2 ≤ xF ≤ 0.3.
The data are from Ref. [15]. The theoretical curves are from
the LFCM with transverse momentum broadening effects esti-
mated according to Eqs. (45) and (46). The logarithmic plot
shows the limitation of the Gaussian description which works
well for qT ≲ ð2–3Þ GeV.
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x-dependent Gaussian width. Moreover, also in the case of
the Boer-Mulders functions the Gaussian ansatz will
facilitate the estimate of transverse momentum broadening
effects, as described below.
We remark that h⊥a

1;hðxÞ ¼
R
d2k⊥h⊥a

1;hðx; k2⊥Þ, though well
defined in models, would have an involved QCD definition
because one should “divide out” a power of transverse
momentum from the correlator in Eq. (23). However, this
quantity appears here merely as an “intermediate-step
construct” and will be eliminated in favor of the (1) moment

of the Boer-Mulders function in the final expression. We
remark that treatments of the Boer-Mulders effect in DY in
the Gaussian ansatz were reported e.g. in Refs. [79,81],
though from our point of view the used Gaussian widths
were sometimes chosen unacceptably small.
Using the Gaussian ansatz (50), one can analytically

evaluate the convolution integral in the structure function
(42). There are “infinitely many” possible ways to express
the result. We choose to write it in terms of (1) moments of
the Boer-Mulders function as follows:

Fcosð2ϕÞ
UU ðx1; x2; qTÞ ¼

1

Nc

X
a

e2ah
⊥ð1Þa
1;π ðx1ÞDYh⊥ð1Þā

1;N ðx2ÞDY
4MπMN

hq2TiBM
q2T expð−q2T=hq2TiBMÞ

πhq2Ti2BM
; ð51Þ

Fcosð2ϕÞ
UU ðx1; x2Þ ¼

1

Nc

X
a

e2ah
⊥ð1Þa
1;π ðx1ÞDYh⊥ð1Þā

1;N ðx2ÞDY
4MπMN

hq2TiBM
; ð52Þ

hq2Tðx1; x2; sÞiBM ¼ hk2a=π⊥;BMðx1Þi þ hk2ā=N⊥;BMðx2Þi þ hδk2⊥; BMðsÞi: ð53Þ

One could also use h⊥a
1;hðxÞ or h⊥ð1=2Þa

1;h ðxÞ, or any other
moment h⊥ðnÞa

1;h ðxÞ defined analogously to Eq. (36), in order
to express the structure functions in Eqs. (51) and (52).
From the point of view of the Gaussian model, all such
expressions would be equally acceptable. From phenom-
enological point of view, our choice in Eqs. (51) and (52) is
preferred in the sense that this is the only case, where one
deals with a single parameter hδk2⊥; BMðsÞi describing the
accumulated k⊥ broadening of the pion and nucleon Boer-
Mulders functions. All other choices would require us to
explicitly estimate the k⊥ broadenings of the separate pion
and nucleon Gaussian widths hk2a=h⊥;BMðxÞi.
We find a good description of the data [14,15] on the qT

dependence of the Boer-Mulders effect in DY with

hδk2⊥;BMðsÞi ¼ 1.3 GeV2 at s ≈ ð470–540Þ GeV2 ð54Þ

in the range of qT up to (2–3) GeV in which the Gaussian
ansatz was shown to be applicable for unpolarized TMDs in
Sec. VII B. DY data on the Boer-Mulders effect are
available also for smaller center-of-mass energies s
[11–15]. But we observe that we cannot describe these
data using Eqs. (51) and (52). More precisely, descriptions
of the data at smaller s are possible, but in a more limited
range qT ≲ 1 GeV. We also found that different prescrip-
tions to describe the structure function, say in terms of
h⊥a
1;hðxÞ or h⊥ð1=2Þa

1;h ðxÞ, do not yield better descriptions.
These observations should not come as a surprise. None

of such Gaussian ansatz descriptions can be expected to
adequately describe the true QCD scale dependence of the
Boer-Mulders functions. However, as we will show in the
next section, the Gaussian ansatz is useful in a specific

range of s and qT with the understanding that qT ≪ Q. Only
after the full CSS evolution for the Boer-Mulders functions
become available will it be possible to undertake an attempt
to describe Boer-Mulders data at all energies. Furthe-
rmore, it is important to compare the value of hδk2⊥; BMðsÞi
in Eq. (51) with the broadening hδk2⊥;unpðsÞi ¼
ð1.6–1.8Þ GeV2 of unpolarized TMDs in the same range
of s. The accumulated k⊥ broadening of the unpolarized
TMDs is larger than that of the Boer-Mulders functions.
This is a necessary (cf. footnote 1) and, in our case,
numerically also sufficient condition to comply with
positivity.

B. Comparison to the data

With the descriptions of the unpolarized structure func-
tion in Eqs. (45) and (49) and the Boer-Mulders structure
function in Eqs. (51)–(54) we are now in the position to
evaluate the coefficient ν in the angular distribution of the
DY cross section in the Collins-Soper frame as defined
through Eqs. (39) and (40).
We will compare to the data from the NA10 CERN

experiment [14] and the E615 Fermi Lab experiment [15].
In both experiments secondary π− beams were collided
with nuclear targets. In the NA10 experiment [14] several
beam energies were used. We will focus on the NA10 data
taken with 286 GeV π− beams impinging on tungsten or
deuterium targets. The covered range of Q was 4.0 < Q <
8.5 GeV and Q > 11 GeV to remove the influence of the
J=ψ - and Υ-resonance regions. In order to discard the
Berger-Brodsky higher twist effect [119] the cut x1 < 0.7
was imposed. In the E615 Fermi Lab experiment [15] a
252 GeV π− beam was collided with a tungsten target, and
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the kinematic region 4.05 < Q < 8.55 GeV between the
J=ψ and Υ resonances was covered with 0.2 < x1 < 1. For
our theoretical calculation we assume for simplicity hQ2i ¼
25 GeV2 as typical hard scale in both experiments.
Let us first discuss the qT dependence of the coefficient

ν. In the observable νðqTÞ the model input determines the
overall normalization, while the qT dependence is dictated
by the Gaussian ansatz with the estimated k⊥ broadening of
the Boer-Mulder functions in Eqs. (51) and (54). In fact,
more than testing the LFCM predictions, this comparison
shows that the use of the Gaussian ansatz for the Boer-
Mulders function with the estimated broadening (54) is
compatible with the data, as can be seen in Fig. 10.
Several comments are in order. First, the NA10 tungsten

data shown in Fig. 10(a) have a 10-times larger statistics
than the NA10 deuterium data in Fig. 10(b). Within the
statistical uncertainty of the data, no significant nuclear
dependence was observed [14]. We exploited this obser-
vation when we defined our simplistic approach to estimate
nuclear TMDs in Sec. VI A. Second, there seems to be a
tendency in our approach to slightly overestimate the
tungsten data from NA10 in Fig. 10(a), and to slightly
underestimate the tungsten data from E615 in Fig. 10(c).
The effect is not statistically significant. If it was, an
explanation for that could be the fact that in the E615 data
the Berger-Brodsky effect was included (x1 < 1) but not in
the NA10 data (x1 < 0.7). Indications for the Berger-
Brodsky effect were seen in the E615 experiment [15].
The slightly different energies in the two experiments could
also play a role. Third, in Sec. VII B we learned that a
Gaussian ansatz for unpolarized TMDs works well in the
region qT ≲ ð2–3Þ GeV, but breaks down beyond that. Our
descriptions of νðqTÞ in Fig. 10 are therefore certainly not
valid for qT ≳ 3 GeV and we have emphasized this region
with dotted lines. Clearly, in the region qT ≲ ð2–3Þ GeV
(indicated by solid lines) our description of νðqTÞ is
compatible with the data. Fourth, it should be noted that
the TMD approach in general requires qT ≪ Q. Thus, our

results in Fig. 10 indicate that in the range s ≈
ð470–540Þ GeV2 νðqTÞ can be well described in the
TMD approach with the Gaussian ansatz. Finally,
we remark that our results safely comply with the
model-independent positivity bound j ν

2
j ≤ 1.

Next, we turn our attention to the x1 dependence of the
coefficient ν shown in Fig. 11. We recall that x1 corre-
sponds to the momentum fraction carried by the parton
which originates from the pion. We use this variable here,
because it is the only common kinematical variable
(besides qT) used to analyze data in both experiments
[14,15]. The observable νðx1Þ provides a more stringent
test of the model results, in the sense that the shapes of the
theoretical curves in Fig. 11 are directly dictated by the
LFCM predictions, although their overall normalizations
are influenced through Eq. (52) by the choice of the
parameter hδk2⊥; BMðsÞi in Eq. (54).
The comparison with the data in Fig. 11 is satisfactory.

The most precise data set, namely the NA10 tungsten data
in Fig. 11(a), may indicate that our model results somewhat
overshoot the data in the region around x1 ∼ 0.6, but the
effect is not significant. Even if it was, one should recall
that the typical accuracy of the LFCM in applications to
TMD phenomenology is (10–30)% [62,64]. The NA10
deuterium data [14] in Fig. 11(b) and the E615 tungsten
data [14,15] in Fig. 11(c) have larger error bars, and our
model results are compatible with them in the entire region
of x1.
It is important to keep in mind that the TMD approach is

not applicable in the full range of x1. In Sec. VII B we have
seen that we can describe well the E615 data [15] on the
(normalized) DY cross sections for xF ≲ 0.7, but not in the
region xF ≳ 0.7, where the Berger-Brodsky effect becomes
increasingly significant. In the kinematics of the NA10 and
E615 experiments this xF region corresponds to x1 ≳ 0.76,
and we have indicated this region by dotted lines in Fig. 11.
The Berger-Brodsky effect is not prominent in the NA10
data shown in Figs. 11(a) and 11(b). (Notice that the region
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FIG. 10 (color online). The coefficient ν in the π−-nucleus DY angular distribution as a function of qT . The data are from the NA10
CERN experiment with Ebeam ¼ 286 GeV using tungsten (a) and deuterium (b) targets [14], and the E615 Fermi Lab experiment with
Ebeam ¼ 252 GeV using a tungsten target [15]. The theoretical curves are obtained using the LFCM predictions for the pion Boer-
Mulders function obtained here, and the analog nucleon predictions from [64]. The solid (dotted) lines indicate where the TMD
approach is applicable (not applicable).
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of x1 > 0.7 was excluded in the NA10 analysis of ν as
function of qT which we discussed in Fig. 10.) However,
there is an indication of this effect in the E615 data shown
in Fig. 11(c).
To conclude, we observe that the predictions from the

LFCM for the pion Boer-Mulders functions from this work
and the nucleon from [64] are in good agreement with the
NA10 and E615 data taken at s ≈ ð470–540Þ GeV2

[14,15]. The good agreement is based also on our use of
the Gaussian ansatz in the TMD factorization approach,
and the chosen method to estimate k⊥-broadening effects,
which corresponds to estimating CSS-evolution effects.

IX. SUMMARY AND OUTLOOK

In this work we studied the structure of the pion, as
described in terms of the leading-twist TMDs f1;πðx; k2⊥Þ
and h⊥1;πðx; k2⊥Þ, using a light-front constituent model where
the pion is described in terms of the minimal Fock-state
component consisting of a quark and antiquark. In a first
step we determined the initial scale of this constituent
approach to the pion, following a similar procedure
commonly used in hadronic models with effective valence
degrees of freedom. The resulting initial scale is about μ0 ∼
0.5 GeV and numerically similar to the initial scale in the
case of the of constituent approach of the nucleon [62],
supporting the validity of the constituent approach.
The qq̄ LFWF of the pion was shown to involve two

independent amplitudes describing the different orbital
angular momentum components of the constituent quark
and antiquark in the pion state [93,94]. In this work we
derived a model-independent representation of leading-
twist pion TMDs in terms of overlaps of light-front
amplitudes which reveals the role of the different orbital
angular-momentum components for the structure of the
pion. We applied these expressions to a specific model,
which has been successfully employed to describe the pion
electromagnetic form factor [65,66]. Our predictions for the

pion TMDs are in qualitative agreement with results from
spectator and bag models [69–72] and lattice QCD [73].
We then evolved the model result for the collinear valence
pion distribution function from the low hadronic scale to
experimentally relevant scales, and demonstrated that it is
in good agreement with available parametrizations. We
observed that the k⊥ dependence of the model TMDs is not
exactly Gaussian, but can be usefully approximated by a
Gaussian ansatz. In comparison with the model results for
the nucleon Boer-Mulders function [63,64], we confirm
that in LFCM approaches “all Boer-Mulders functions are
alike,” in the qualitative sense of Ref. [70].
As a phenomenological application, we studied the pion-

nucleus induced Drell-Yan process. We reexpressed the
model results in terms of an effective Gaussian ansatz for
the k⊥ dependence of TMDs, which is well supported
(in the model and by the data), and incorporated phenom-
enologically the energy-dependent transverse momentum
broadening effects. We have shown that the model pre-
dictions obtained in this way for the (normalized) cross
sections, given in terms of the unpolarized pion and
nucleon TMDs, compare very well with the data up to qT ≲
ð2–3Þ GeV for xF ≲ 0.7, which is basically the general
range of applicability of the TMD factorization approach
in DY.
We studied also the coefficient ν in the dilepton angular

distribution in the Collins-Soper frame, which is described
in the parton model [20,34] in terms of the pion and
nucleon Boer-Mulders functions. We obtained a satisfac-
tory description of available experimental data for s ≈
ð470–540Þ GeV2 and in the range of applicability of the
TMD factorization approach established in our study of
(normalized) cross sections.
The primary goal of this work was to extend the

successful LFCM phenomenology of the nucleon to the
pion case. The LFCM of the nucleon was shown to describe
effects related to nucleon TMDs in SIDIS in the valence-x
region within an accuracy of (10–30)% [62,64]. In this
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FIG. 11 (color online). The coefficient ν in the π−-nucleus DY angular distribution as function of x1. The data are from the NA10
CERN experiment with Ebeam ¼ 286 GeV using tungsten (a) and deuterium (b) targets [14], and the E615 Fermi Lab experiment with
Ebeam ¼ 252 GeV using a tungsten target [15]. The theoretical curves are obtained using the LFCM predictions for the pion Boer-
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work we demonstrated that the pion LFCM (in combination
with the nucleon LFCM results) yields a similarly good
description of pion-induced DY.
There are also several model-independent conclusions of

our study. First, it is a remarkable fact that valence degrees
of freedom are capable of successfully catching the main
features of the pion-induced DY process, including (nor-
malized) cross sections differential in qT ≲ ð2–3Þ GeV and
xF ≲ 0.7 and the coefficient ν. This may indicate that the
color entanglement effects discussed in [114] are not large,
though more work is needed to shed further light in this
respect. Second, the Gaussian ansatz is well capable of
describing the Boer-Mulders effect in DY in the region
qT ≪ Q, at least if one works in a limited range of energies.
This point will be further clarified, when the CSS-evolution
equations for the Boer-Mulders functions will be available
and make possible a more comprehensive analysis of data
at all energies.
Forthcoming or proposed pion-induced DY experiments

will open new windows. The forthcoming COMPASS DY
experiment [122,123], where a 190 GeV pion beam is
available, is scheduled to start data taking this year and will
include also polarized targets. The SPASCHARM experi-
ment [124], where (10–70) GeV pion beams would be
available, is in preparation at the IHEP facility in Protvino.
The main focus of these experiments is to measure the
single spin asymmetry in DY due to the other (besides

Boer-Mulders function) T-odd TMD of the nucleon,
namely the Sivers function [125], and test the predicted
sign change between DIS and DYof this TMD [36] which
was estimated to be feasible, see [126] for an early estimate.
The sign change for the nucleon Boer-Mulders function can
also be tested, but this requires measurements of several
single spin asymmetries in DY, and it is less clear whether
the measurements are feasible. In any case, these experi-
ments will also give new insights into the structure of the
pion. The present study in the LFCM will be extended to
provide model predictions for these experiments.
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