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In this work corrections to low energy punctual effective quark couplings up to the eighth order are
calculated by considering vacuum polarization effects with the scalar quark-antiquark condensate. The
departing point is a QCD-based Nambu–Jona-Lasinio model. By separating the quark field into two
components, one that condenses and another one for interacting quarks, the former is integrated out with
the help of usual auxiliary fields and an effective action in terms of interacting quark fields is found. The
scalar auxiliary field reduces to the quark-antiquark condensate in the vacuum and the determinant is
expanded in powers of the quark-antiquark bilinears generating chiral invariant effective 2N-quark
interactions (N ¼ 2; 3…). The corresponding coupling constants and effective masses are estimated, and
the general trend is that for increasing the effective gluon mass the values of the effective coupling constants
decrease. All the values are in good agreement with phenomenological fits.
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I. INTRODUCTION AND EXTENDED
NAMBU-JONA-LASINIO MODEL FROM QCD

In spite of spectacular progress in lattice calculations it
still is extremely important to rely on the description of
hadron, and more generally nuclear, processes on QCD-
based hadron effective models. These models are expected
to incorporate the most important symmetries and proper-
ties of the fundamental theory (QCD) such as the chiral
symmetry and its spontaneous breakdown. Many effective
models have been proposed to describe the low energy
regime of QCD phase diagram and the quark Nambu–
Jona–Lasinio (NJL) model [1–4] is one of the most
emblematic. The motivation for that is due to its relative
simplicity and power to describe some aspects of low
energy hadron physics due to the spontaneous chiral
symmetry breakdown by means of the chiral condensate
hψ̄ψi. In spite of the recent controversy on the formation of
the scalar quark condensate [5–7], it is widely recognized
for its contribution, for example, to the nucleon and quark
masses [8–10], even if gluon dressing might also be
important [11]. It is, however, very important to extend
its validity and refine its predictions by including further
effective quark interactions [12–19]. For the high energy
limit of the phase diagram, Polyakov loops were included
to incorporate the deconfinement phase transition [18],
thereby extending the validity of the model. In spite of
being suitable for describing low energy physics, this
punctual effective interaction has also been envisaged for
high energies [20]. Osipov et al. have found that an eighth
order quark interaction term restores the stability of the
vacuum [16,17] that is unfavored by the sixth order SUð3Þ
’t Hooft interaction [21]. Whereas the ’t Hooft interaction

was found a long time ago from QCD grounds [22], the
eighth order term has already been considered in few
approaches which do not necessarily exclude each other
[23–26]. Since one can think about including progressively
higher order effective quark interactions,it is interesting to
note that the longstanding problem of the convergence of
the QCD action in powers of quark currents [27–29] might
also receive some insight from the microscopic calculations
of multiquark interactions. Of course, eventually one might
have to avoid double counting effects, which might be
extremely difficult to assess. Although the emergence of
such higher order interactions has already been addressed
in the last decades, their contribution to the structure and
reactions of the new (heavier) hadrons that were proposed
to have multiquark structure (see, for example, Ref. [30]) is
not really understood. In this work we derive low energy
effective quark couplings due to the vacuum polarization
with the chiral condensate.
A general quark effective action obtained by integrating

out gluons from the QCD action can given by [19,26,31]

Seff ½ψ̄ ;ψ � ¼
Z
x

�
ψ̄ði∂ −MÞψ

−
1

2

Z
y
jbμðxÞðRμν

bcÞ−1ðx − yÞjcνðyÞ
�
þ SA; ð1Þ

where the color quark current is jμa ¼ ψ̄λaγ
μψ , the sums in

color, flavor, and Dirac indices are implicit, the kernel Rμν
bc

is the gluon propagator that might depend on auxiliary
variables, and the last term, SA, corresponds to terms due
the gluon integration, including the gluon determinant
and ghost integration if needed, and eventually with
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dependence on auxiliary variables [26,32–34]. To inves-
tigate the flavor structure of the model, one might perform
a Fierz transformation in the current-current interaction
from which an NJL emerges. Several QCD condensates
have been proposed besides the quark antiquark, and two
gluon condensates have gained further attention: the order 2
condensate (hA2i) and the order 4 condensate (hFμνFμνi).
The interplay of the second gluon condensate with quark
effective interactions was already considered (for example,
in Ref. [35]). We wish to consider the former since it has
been related to a possible effective gluon mass [36–38] that
has seemingly been found in several other analytical
calculations [39–46] and in numerical and lattice calcu-
lations [37,38,47–51]. Our departure point, therefore, is the
NJL of Ref. [26] with a gluon condensate of order 2,
although the NJL model can be obtained from QCD with
different considerations [52,53]. A different approach was
considered by Simonov within the instanton gas model to
derive effective quark interactions [23–25] and we will not
investigate if and to what extent these two approaches
provide double counting effects.
The work is organized as follows. In Sec. II the Nambu–

Jona-Lasinio model induced by the gluon condensate of
order 2 (hAμAμi ∼ ϕ0) is considered, such that the quark
content is separated into two components: the quasiparticle
sector corresponding to the interacting quarks and the one
corresponding to the condensed quarks, such that
ψ̄ψ → ðψ̄ψÞc þ ψ̄ψ , preserving explicitly chiral symmetry.
The variables ðψ̄ψÞc are integrated out by introducing a set
of usual auxiliary variables Si; Pi that yields the scalar
quark-antiquark condensate and a pseudoscalar variable.
The (coupled) gap equations of the auxiliary variables
(Si;0; Pi;0;ϕ0) are derived and solved in terms of a unique
Euclidean covariant cutoff yielding results in perfect agree-
ment with well-known effective masses from lattice and
phenomenology. In Sec. III the quark determinant is
expanded in powers of the quark field, or quark flavor
currents, yielding polynomial effective quark interactions
whose couplings depend on the two condensates hψ̄ψi and
hA2i. The values of the effective coupling constants are
estimated using the same cutoff, or conversely the same
gluon effective mass, as the one considered for the gap
equations, yielding values comparable to those used in
phenomenological fits in the literature. In the last section
there is a summary.

II. THE NJL AND THE SCALAR
QUARK-ANTIQUARK CONDENSATE

The generating functional of the local SUð3Þ (flavor)
NJL limit of the action (1) is given by [1,26,52]

Z½η̄; η� ¼
Z
D½ψ̄ ;ψ �exp

�
i

�
SNJL½ψ̄ ;ψ � þ

Z
x
ðη̄ψ þ ηψ̄Þ

��
;

ð2Þ

where

SNJL½ψ̄ ;ψ � ¼
Z
x

�
ψ̄ði∂ −MÞψ

þ g4
2
½ðψ̄λiψÞ2 þ ðψ̄γ5λiψÞ2�

�
þ SA ð3Þ

for i ¼ 0;…; N2
f − 1. For the gluon determinant,

SA ¼ − i
2
Tr logðRμν

abÞ, where Tr stands for the sum over
all indices and spatial integration. The following truncated
gluon propagator will be considered:

ðRμν
bcÞ−1ðx − yÞ

¼ δbc

�
ð∂2 þ cϕðxÞÞ

�
gμν −

∂μ∂ν

∂2

�
þ 1

λ
∂μ∂ν

�
−1
δ4ðx − yÞ;

ð4Þ

where λ is the (covariant) gauge fixing parameter. The
transverse effective gluon mass is therefore M2

G ¼ cϕ0,
with ϕ0 being an auxiliary variable for the gluon con-
densate hA2i; g4 has dimension ðmassÞ−2 and is of the order
of N−1

c , at least in the leading order. It is given by

g4 ¼
β

M2
G
; ð5Þ

where β is a numerical factor accounting for the color and

flavor structure of the model for the SUð3Þ β ¼ g2

9
and

where g is the zero momentum QCD running coupling
constant [48].
Let the quark field bilinears be separated into two

components: the one corresponding to the quarks that
condense (ðψ̄ψÞc)and the other to the interacting quasipar-
ticle quarks, analogously to other formalisms; see, for
example, Refs. [54,55]. This is done by considering that
each quark bilinear, as well as the functional measure of the
generating functional, will be written as

ψ̄ψ → ðψ̄ψÞc þ ψ̄ψ : ð6Þ

This way chiral symmetry will not be explicitly broken. A
further analysis within a renormalization group approach is
outside the scope of this work. Since tr½γ5� ¼ 0 and then
hψ̄γ5λiψi ¼ 0, only even powers of the pseudoscalar
bilinear will contribute. The resulting interaction term
can be written as LI ¼ Lq þ Lc þ I int, where

Lq ¼ g4½ðψ̄λiψÞ2 þ ðψ̄iγ5λiψÞ2�;
Lc ¼ g4½ðψ̄λiψÞ2c þ ðψ̄iγ5λiψÞ2c�;
I int ¼ g4½ψ̄λiψ · ðψ̄λiψÞc þ ψ̄iγ5λiψ · ðψ̄ iγ5λiψÞc

þ ðψ̄λiψÞc · ψ̄λiψ þ ðψ̄iγ5λiψÞc · ψ̄iγ5λiψ �: ð7Þ
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The quark component ðψ̄ψÞc can be integrated out by
introducing the usual SUð3Þ auxiliary variables Sa; Pa. For
that, the above generating functional is multiplied by the
following unity integrals:

1 ¼ N0
Z

D½Si; Pi� exp
�
−

i
2cs

Z
x
½S2i þ P2

i �
�
; ð8Þ

where cs is a constant to be fixed and N0 a normalization
constant. The fourth order quark interaction Lc cancels
out if the following variable shifts with corresponding unit
Jacobian are done: Si → Si þ 2g4ðψ̄λiψÞc and Pi → Piþ
2g4ðψ̄iγ5λiψÞc, where we consider cs ¼ 2g4. One is left
with the following linearized action for the component
ðψ̄ψÞc in terms of the auxiliary variables:

SNJL →
Z
x

�Z
y
ψ̄cðS−1ðx− yÞÞψc −

1

4g4
ðS2i þP2

i Þ

þ ψ̄ði∂ −MÞψ þ g4½ðψ̄λiψÞ2 þ ðψ̄iγ5λiψÞ2�
�
þ SA:

ð9Þ

In this equation,

S−1ðx − yÞ ¼ ½i∂ −M� þ 2g4ðλiðψ̄λiψÞ
þ λiiγ5ðψ̄iγ5λiψÞÞ�δ4ðx − yÞ; ð10Þ

being that the effective mass (matrix) already receives the
contribution from the auxiliary variables Si that will not
vanish in the vacuum, i.e.,

M� ¼ M þ Siλi: ð11Þ

By integrating out the component ðψ̄ψÞc, the resulting
effective action for the quasiparticle quarks with the
auxiliary variables reads

Seff ¼ iTr ln ½−iS−1ðx − yÞ� þ
Z
x

�
−

1

4g4
ðS2i þ P2

i Þ

þ ψ̄ðiγμ∂μ −M�Þψ þ g4½ðψ̄λiψÞ2 þ ðψ̄iγ5λiψÞ2�
�

þ SA: ð12Þ

Before expanding this expression in terms of the quark
bilinears, it is desirable to derive a set of gap equations to
determine the ground state by extremizing this effective
action with respect to the auxiliary variables, ϕ0; Si; Pi.

A. Ground state: Gluon condensate of order 2 and the
chiral scalar quark-antiquark condensate

The gluon sector of the effective action (3) will be
replaced by

SA ¼ −
Z
x

�
c
4
ϕ2

�
−
i
2
Tr ln ½Rμν

bcðx − yÞ�; ð13Þ

so that the effective action (12) can be written as

Seff ¼ iTr ln ½S−1ðx − yÞ� − i
2
Tr ln ½Rμν

bcðx − yÞ�

þ
Z
x

�
−

1

4g4
ðS2i þ P2

i Þ −
c
2
ϕ2 þ ψ̄ðiγμ∂μ −MÞψ

þ g4½ðψ̄λiψÞ2 þ ðψ̄ iγ5λiψÞ2�
�
: ð14Þ

In the ground state, quasiparticle fields are zero ψ̄ ;ψ → 0
and the effective potential for the gluon and quark-
antiquark condensates (ϕ0; Si, besides the pseudoscalar
variable Pi) can be extremized. These equations are the
following:

∂Seff
∂ϕ

����
ϕ¼ϕ0;Si¼Si

0

¼ 0;

∂Seff
∂Si

����
Si¼Si

0
;ϕ¼ϕ0

¼ 0;

∂Seff
∂Pi

����
Si¼Si

0
;ϕ¼ϕ0

¼ 0; ð15Þ

being that in all these equations Pi
0 ¼ 0 is a trivial and

necessary solution. These gap equations, in the Euclidean
momentum space, will be regularized by a covariant cutoff
yielding

ϕ0 ¼ 3ðN2
c − 1Þ

Z
d4kE
ð2πÞ4

�
1

k2E þM2
G

�

þ 9

4g2
ðS2u þ S2d þ S2sÞ;

S0f ¼ 16g2Nc

9cϕ0

Z
d4kE
ð2πÞ4

�
M�

f

k2E þM�
f
2

�
;

P0
f ¼ 0; ð16Þ

where f ¼ u; d; s stands for up, down, strange quarks and
the effective mass can be written for each quark flavor
as M�

f ¼ Mf þ S0f.
In these equations, the only free parameters are the QCD

coupling constant, which will be given by the zero
momentum running coupling αs ≡ g2

4π ¼ 8.92
Nc

[48], and the
current quark masses, mu ¼ 3 MeV, md ¼ 6 MeV, and
ms ¼ 91 MeV [56]. With these four Lagrangian parame-
ters there is one covariant cutoff that solves the four gap
equations, fixingNc ¼ 3. Solutions for typical values of the
effective gluon mass, found in lattice calculations, are
shown in Table I with the resulting effective quark masses.
For example, with MG ≃ 650 MeV [37,39,48,50] it yields
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M�
u ¼ 297 MeV, M�

d ¼ 303 MeV, and M�
s ¼ 419 MeV

for Λ ¼ 706 MeV. As expected, this cutoff is the usual
NJL cutoff [2–4] and certainly higher than the ΛQCD
[47–49]. In Ref. [35] a similar model was developed by
considering the order 4 gluon condensate (hF2

μνi) with
similar reasonably good results.

III. EFFECTIVE QUARK INTERACTIONS AND
COUPLING CONSTANTS

In this section the effective quark model (12) will be
expanded in the lowest order derivative expansion [57] in
powers of bilinears ψ̄Γψ (where Γ is any combination of
flavor λi and γ5) and the gluon sector SA of the model plays
no role from here on. While on one hand an expansion of
this kind might impose certain limitations on the resulting
values of the effective couplings since it is a perturbative
treatment, on the other hand it might require instead a
weak strength of the quark fields to assure its validity.
Nevertheless, it might be a safe starting point for inves-
tigating higher order quark effective interactions. The
expansion has the following shape:

Seff ≃ Seff;ð0Þ½ϕ0; Si; Pi�

þ 1

1!1!

Z
x1;x2

δ2Seff
δψ̄ðx1Þδψðx2Þ

����
ψ¼ψ̄¼0

ψ̄ðx1Þψðx2Þ

þ 1

2!2!

Z
x1;x2;x3;x4

δ4Seff
δψ̄ðx1Þδψðx2Þδψ̄ðx3Þδψðx4Þ

����
ψ¼ψ̄¼0

× ψ̄ðx1Þψðx2Þψ̄ðx3Þψðx4Þ þ h:o:; ð17Þ

where
R
x1;x2

¼ R
dx1

R
dx2; h:o. stands for (even) higher

order derivatives, and the odd powers must disappear since
they are calculated for ψ ; ψ̄ → 0 at the end.
The second order term produces the following

contribution:

Sð2Þeff ¼ g4

Z
x
tr½ðS0ðx − yÞλiÞðψ̄λiψÞ

þ ðS0ðx − yÞiγ5λiÞðψ̄iγ5λiψÞ�; ð18Þ

where S0ðx − yÞ ¼ Sðx − yÞjψ̄ ;ψ→0 and tr stands for the
traces of discrete indices. The operatorial coefficients of
the quark bilinears will be resolved separately from the
quark-antiquark bilinears. Those operators when resolved

in momentum space will contribute to the effective cou-
pling constants. This way, expression (18) can then be
rewritten as

Sð2Þeff ¼
Z
x
tr

�
−g4λ0

�Z
d4k
ð2πÞ4

1

γ · k −M�

��
ψ̄ðxÞλ0ψðxÞ;

ð19Þ

where the local limit was considered and tr½γ5� ¼ 0, tr½λi� ¼
0 for i ≠ 0. The traces were calculated yielding one mass
term for each of the quark flavors. Therefore this second
order term of the expansion produces a correction to the
quark masses that can be written, in the Euclidean
momentum space, as

Δmf ¼ 16g4Nc

Z
d4kE
ð2πÞ4

M�
f

k2E þM�
f
2
: ð20Þ

It is interesting to emphasize that this expression is different
from the effective mass given by expression (11), although
it was calculated in terms of the same parameters and cutoff
considered in the last section for the gap equations. It is
worth remembering that we adopt the model in which the
NJL coupling constant is inversely proportional to the
gluon effective mass, expression (5), and the resulting
effective quark masses m� (and M�) are shown in Table I
for different values of MG. Although the departing point
was a Uð3Þ NJL model, from here on the calculations will
be restricted to the SUð3Þ model.
The fourth order term in expression (17) is calculated

next for zero momentum exchange. The operators which
are not contracted with the quark fields will be resolved,
yielding the coupling constant. This guarantees the chiral
invariance of the original interaction. In the limit of zero
momentum transfer, this term can be written as

Sð4Þeff ¼ −16g24Nctr
Z
x

�Z
d4k
ð2πÞ4

�
1

γ · k −M�

�
2

λ2j

�

× fðψ̄λiψÞ2 þ ðψ̄iγ5λiψÞ2g

¼ ~g4

Z
x
fðψ̄λiψÞ2 þ ðψ̄ iγ5λiψÞ2g; ð21Þ

where γ25 ¼ I and trðλiλjÞ ¼ 2δij. This is a one-loop
correction to the NJL coupling constant which will be

TABLE I. Values of the mass correction calculated with the parameters fitted from the gap equations (16)—MG, Λ, and quark current
masses mu ¼ 3 MeV, md ¼ 6.6 MeV, ms ¼ 90.6 MeV—and gauge coupling g from Ref. [48], considering the NJL coupling constant
(g4) obtained from the effective model.

MG½Λ� ðMeVÞ Δmu½M�
u� ðMeVÞ Δmd½M�

d� ðMeVÞ Δms½M�
s � ðMeVÞ g4ðGeV−2Þ ~g4ðGeV−2Þ ~g6ðGeV−5Þ gð8Þ1 ðGeV−8Þ gð8Þ2 ðGeV−8Þ

600 [651] 271 [274] 273 [281] 303 [395] 12 2.8 −1100 6526 1957
650 [706] 294 [297] 296 [303] 328 [419] 10 2.5 −748 3469 1041
700 [760] 312 [319] 319 [326] 352 [352] 8 2.2 −520 1930 579
800 [870] 359 [365] 366 [372] 401 [492] 6 1.7 −278 670 201
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calculated by regularizing the integral for a Euclidean four-
momenta cutoff. This coupling constant can be written as

~g4 ¼ 4g24Nc

Z
d4kE
ð2πÞ4

X
f

k2E −M�
f
2

ðk2E þM�
f
2Þ2 : ð22Þ

In Table I values for this coupling for different values
of the effective gluon mass from the gap equation
are shown.
The sixth order terms of the expansion will similarly be

given by

Sð6Þeff ¼
1

3!3!

Z
xi¼1;2…;6

δ6Seff
δψ̄ðx6Þδψðx5Þδψ̄ðx4Þδψðx3Þδψ̄ðx2Þδψðx1Þ

����
ψ¼ψ̄¼0

ψ̄ðx6Þψðx5Þψ̄ðx4Þψðx3Þψ̄ðx2Þψðx1Þ: ð23Þ

After the factorization of the operators that yield the effective coupling constant, similar to the previous terms, the following
identity is used:

trðλiλjλkÞ ¼ Dijk; ð24Þ

being that in the SUð3Þ case it reduces to Dijk ¼ 2ðdijk þ ifijkÞ, where dijk and fijk are the symmetric and antisymmetric
SUð3Þ tensors. Expression (23) can then be written as

Sð6Þeff ¼ 32g34Nc

Z
x

Z
d4k
ð2πÞ4

X
f¼u;d;s

�
1

ðγ · k −M�
fÞ3

�

×

�
dijk
18

½ðψ̄λiψÞðψ̄λjψÞðψ̄λkψÞ − 3ðψ̄iγ5λiψÞðψ̄ iγ5λjψÞðψ̄λkψÞ�
�
; ð25Þ

where the antisymmetric component is zero. This
term has exactly the flavor structure of the SUð3Þ
determinantal ’t Hooft interaction [2–4] that can be
written as

Sð6Þeff ¼ ~g6

Z
x

dijk
18

½ðψ̄λiψÞðψ̄λjψÞðψ̄λkψÞ

− 3ðψ̄iγ5λiψÞðψ̄iγ5λjψÞðψ̄λkψÞ�; ð26Þ

where the effective coupling, with the same covariant
Euclidean momentum cutoff, is given by

~g6 ¼ −32g34Nc

Z
d4kE
ð2πÞ4

X
f¼s;d;u

3k2EM
�
f −M�

f
3

ðk2E þM�
f
2Þ3 : ð27Þ

This coupling constant is related to the usual definition of
the ’t Hooft term (κ in Refs. [2,3,16,21]) by ~g6 ¼ 9

16
κ.

Numerical values for this coupling constant, with the same
parameters as before, are shown in Table I. They are all
negative in agreement with phenomenological values.
The eighth order term is calculated from the following

derivative:

Z
xi¼1…8

δ8Seff
δψ̄ðx8Þδψðx7Þδψ̄ðx6Þδψðx5Þδψ̄ðx4Þδψðx3Þδψ̄ðx2Þδψðx1Þ

����
ψ¼ψ̄¼0

ψ̄ðx8Þψðx7Þψ̄ðx6Þψðx5Þψ̄ðx4Þψðx3Þψ̄ðx2Þψðx1Þ:

ð28Þ

This term will be also resolved in the limit of zero momentum exchange. With the same factorization of the traces, it can be
written as

Sð8Þeff ¼ −16
ð2g4Þ4Nc

4!4!

Z
d4x

Z
xi¼1…8

tr½λiλjλkλl�
�X

f

1

ði∂ −M�
fÞ4

�

×
X

a≠b≠c≠d¼1;3;5;7;e≠f≠g≠h¼2;4;6;8

½ðψ̄Ni
aeψÞðψ̄Nj

bfψÞðψ̄Nk
cgψÞðψ̄Nl

dhψÞ�; ð29Þ

where different combinations of the operators Ni
ae ≡ ðλi þ iγ5λiÞae were found; they are defined below. The traces over

ðγ5Þ2n (n integer) were calculated for these coefficients. Only two types of terms in expression (29) are nonzero, namely
those for which the flavor structure of the quark bilinears arranges in the following forms:
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K1 → trðN14N32ÞðN56N78Þ; ð30Þ

K2 → trðN16N74N52N38Þ: ð31Þ

All the other terms either disappear since tr½γ5� ¼ tr½λi� ¼
tr½γ35� ¼ 0 or reduce to one of these two terms.
To rewrite expression (29), the following SUð3Þ relations

were used:

trðλiλjλkλlÞ ¼ 16

�
1

12
δijδkl þ 1

8
hijahakl

�

for hija ¼ dija þ ifija;

hijahakl ¼ dijadakl − fijafakl þ iðdijafakl þ fijadaklÞ;
trλiλj ¼ 2δij; ð32Þ

as well as the SUð3Þ Jacobi identity and the (anti)symmetry
of the tensor dija (fija). By considering a simplified
notation with si ¼ ψ̄λiψ and pi ¼ ψ̄λiγ5ψ , the first struc-
ture, expression (30), can be written as

K1 →
16

12
½s2i þ p2

i �2; ð33Þ

where hiia ¼ 0 and tr½γ5� ¼ tr½γ35� ¼ 0.
For the second term, it follows that

K2 → 4
16

12
ðs2i þ p2

i Þ2 þ
16

8
½dijadaklðsisjsksl þ pipjpkpl

þ 2sisjpkplÞ − 4fijafaklsipjskpl� ð34Þ

Now the chiral projectors, PR;L ¼ 1
2
ð1� γ5Þ, can be used to

rewrite the terms above. By resolving all the traces (Dirac,
flavor and color) of the corresponding coefficients, back to
expression (29), it yields

Sð8Þeff ¼ ~g8

Z
x

��
16

12
þ 4

16

12

�
ðψ̄PRψψ̄PLψÞ2

þ 16

8
ðψ̄PRψψ̄PLψψ̄PRψψ̄PLψÞ

�
; ð35Þ

where the following effective coupling constant was
defined, using Euclidean momenta with the same cutoff
as before:

~g8 ¼ 16 × 16
ð2g4Þ4Nc

4!4!

Z
d4kE
ð2πÞ4

×

�X
f

k4E − 6k2EM
�
f
2 þM�

f
4

ðk2E þM�
f
2Þ2ðk2E þM�

f
2Þ2

�
: ð36Þ

The two terms in expression (35) are precisely the most
general SUð3Þ chiral invariant Lagrangian interactions con-
sidered by Osipov et al. [16,17], which can be rewritten as

Leff;8 ¼ gð8Þ2 ðψ̄PRψψ̄PLψψ̄PRψψ̄PLψÞ
þ gð8Þ1 ðψ̄PRψψ̄PLψÞ2: ð37Þ

The couplings gð8Þ1 ¼ ~g8 80
12

and gð8Þ2 ¼ ~g8 16
8
have different

relative weights in expression (35) which behave in the
way suggested in Refs. [16,17] for the stability of the

ground state, i.e., gð8Þ1 > gð8Þ2 . In Table I, some values for

the effective coupling constants gð8Þ1 and gð8Þ2 are given as
functions of the same values for free parameters and
gluon effective mass (or cutoff) from the gap equations.
The values of the masses and effective coupling

constants shown in Table I are in very good agreement
with phenomenological fits in the investigation of the
spontaneously broken chiral symmetry and light hadron
structure [2,16,17]. The effective quark masses m�

f are very
close to the values for the effective masses M�

f obtained
from the scalar quark condensates Sf, but a little smaller
for the strange quark mass. This seems to justify the use of
M�

f as equivalent to m�
f. The NJL effective coupling

constants g4 and ~g4 are of the order of the usual coupling
considered in different versions of the model [2,3,16,17].
The sixth order coupling constant is slightly smaller than
the phenomenological fits for the ’t Hooft coupling
(κ ≃ −770 → −1100 GeV−5) as it was considered in
Refs. [16,17,21], since κ ¼ 16

9
~g6. Finally, the eight order

terms are also slightly higher than the values considered in
the phenomenological fits by Osipov and collaborators
[16,21], following nearly the systematics for the two
different coupling constants, i.e., g1 > g2, which is
required by the vacuum stability conditions analysis

found in those references. Both gð8Þ1 and gð8Þ2 are positive,
although they compare well with the phenomenological
fits in the ranges of g1 ∼ 1000 → 6000 GeV−8 and
g2 ∼ −130 → 320 GeV−8.

IV. SUMMARY AND CONCLUSIONS

In this work, low energy effective quark interactions
were derived by considering vacuum polarization for a
QCD-based Nambu–Jona-Lasinio model, where the NJL
coupling is proportional to the zero momentum QCD
coupling constant g2 and inversely proportional to the
effective gluon mass [26]. The quark field was separated
into two components, one that condenses into scalar quark-
antiquark condensate and another one corresponding to
interacting quarks, the quasiparticles of the model. By
integrating out the first component with the introduction of
the usual scalar/pseudoscalar variables, an effective model
for the interacting quarks in terms of the vacuum values of
three auxiliary variables, ϕ0; S0i ; P

0
i , was obtained. Since

these variables can be associated with typical condensates
of the QCD vacuum, their gap equations were calculated
and solved by extremizing the effective potential at zero
quark field and by considering a unique covariant
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Euclidean cutoff, as usually done. The resulting quark and
gluon effective masses, M�

f and MG, are basically the
same as those obtained in different approaches. The quark
determinant was expanded in powers of bilinears ψ̄Γψ ,
yielding corrections to the interacting quark (quasiparticles)
masses and effective multiquark couplings. The resulting
quark effective coupling constants were calculated by
factorizing each term of the determinant expansion follow-
ing nearly the lines of the lowest order derivative expan-
sion, yielding chiral invariant multiquark interactions in
terms of the same covariant cutoff fixed in the solution of
the gap equations, with the model being nonrenormaliz-
able. Besides, if on one hand this calculation might be seen
as a first analysis to be supplemented by a renormalization
group investigation, on another hand, the values for the
masses and effective coupling constants shown in Table I
are in very good agreement with phenomenological fits in
the investigation of the spontaneously broken chiral sym-
metry and light hadron structure [2,16]. The vacuum
polarization corrections for the effective interacting quark
masses (m�

f) are very close to the values for the effective
masses M�

f from the scalar quark condensates S0;f, but a
little smaller for the strange quark mass. This seems to
allow the identification of both masses, m�

f ∼M�
f. The

correction to the NJL coupling constant ~g4 is smaller than
the usual coupling considered in different versions of the
model but of the same order of magnitude [2,16]. The sixth
order coupling constant has a slightly smaller modulus than
the phenomenological fits for the ’t Hooft coupling as
considered in Refs. [16,21], κ ≃ −770 → −1100 GeV−5,

by identifying κ ¼ 16
9
~g6. Finally the eighth order term is in

good agreement with the values considered in the phe-
nomenological fits by Osipov and collaborators [16,21],
following nearly the systematics for the two different
coupling constants, i.e., g1 > g2, which is required by
the vacuum stability conditions analysis found in those
references. They have values g1 ∼ 1000 → 6000 GeV−8
and g2 ∼ −130 → 320 GeV−8. It is interesting to note that
some of the resulting effective quark interactions corre-
spond to the ones obtained from other derivations based on
instanton physics, in particular the sixth order interactions
and seemingly the eighth order one [22,23]. Although these
two different calculations might provide a sort of double
counting of QCD effects, i.e., from instanton physics and
QCD condensates, the discussion of this issue is outside the
scope of the present work. The approach considered in this
work is a systematic framework which allows for improve-
ments and accounts for further effects, in particular from
the QCD vacuum. Therefore it might be valuable for the
analysis of the stability of the QCD expansion in quark
currents. Moreover, it allows for computing corrections to
different effective quark interactions other than those found
here, such as those derivative couplings neglected above.
This program would help to pin down the correct physical
value for the effective couplings at the desired energy scale.
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