
Born-Oppenheimer approximation for the XYZ mesons

Eric Braaten, Christian Langmack, and D. Hudson Smith
Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

(Received 5 February 2014; published 24 July 2014)

Many of the XYZ mesons discovered in the last decade can be identified as bound states in
Born-Oppenheimer (B-O) potentials for a heavy quark and antiquark. They include quarkonium hybrids,
which are bound states in excited flavor-singlet B-O potentials, and quarkonium tetraquarks, which are
bound states in flavor-nonsinglet B-O potentials. We present simple parametrizations of the deepest flavor-
singlet B-O potentials. We infer the deepest flavor-nonsinglet B-O potentials from lattice QCD calculations
of static adjoint mesons. Selection rules for hadronic transitions are used to identify XYZ mesons that are
candidates for ground-state energy levels in the B-O potentials for charmonium hybrids and tetraquarks.
The energies of the lowest-energy charmonium hybrids are predicted by using the results of lattice QCD
calculations to calculate the energy splittings between the ground states of different B-O potentials and
using the Schrödinger equation to determine the splittings between energy levels within a B-O potential.
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I. INTRODUCTION

The XYZ mesons are unexpected mesons discovered
during the last decade that contain a heavy quark-antiquark
pair and are above the open-heavy-flavor threshold. Some
of the more surprising of these XYZ mesons are

(i) Xð3872Þ, discovered by the Belle Collaboration in
2003 [1]. It has comparable branching fractions into
J=ψρ and J=ψω, implying a severe violation of
isospin symmetry.

(ii) Yð4260Þ, discovered by the BABAR Collaboration in
2005 [2]. It has JPC quantum numbers 1−−, but it is
produced very weakly in eþe− annihilation.

(iii) Zþð4430Þ, discovered by the Belle Collaboration in
2007 [3]. It decays into ψð2SÞϕ, which implies that it
must be a tetraquark meson with constituents cc̄ud̄.

(iv) Yð4140Þ, discovered by the CDF Collaboration in
2009 [4]. It decays into J=ψϕ, which suggests that it
might be a tetraquark meson with constituents cc̄ss̄.

(v) Zþ
b ð10610Þ and Zþ

b ð10650Þ, discovered by the
Belle Collaboration in 2011 [5]. They both decay
intoϒπþ, which implies that they must be tetraquark
mesons with constituents bb̄ud̄.

(vi) Zþ
c ð3900Þ, discovered by the BESIII Collaboration in

2013 [6]. It decays into J=ψπþ, which implies that it
must be a tetraquark meson with constituents cc̄ud̄.

An updated list of the XYZ mesons was given in Ref. [7].
In the cc̄ meson sector, the list consisted of 15 neutral and
4 charged states. In the bb̄ meson sector, the list consisted
of 1 neutral and 2 charged states.
More than a decade has elapsed since the discovery of

the Xð3872Þ, and no compelling explanation for the pattern
of XYZ mesons has emerged. Simple constituent models
for the XYZ mesons can be classified according to their
constituents and how they are clustered within the meson.
Those that have been proposed include

(i) conventional quarkonium, which consists of a color-
singlet heavy quark-antiquark pair: ðQQ̄Þ1,

(ii) quarkonium hybrid meson, which consists of a
color-octet QQ̄ pair to which a gluonic excitation
is bound: ðQQ̄Þ8 þ g,

(iii) compact tetraquark [8], which consists of a QQ̄ pair
and a light quark q and antiquark q̄ bound by
interquark potentials into a color singlet: ðQQ̄qq̄Þ1,

(iv) meson molecule [9], which consists of color-singlet
Qq̄ and Q̄q mesons bound by hadronic inter-
actions: ðQq̄Þ1 þ ðQ̄qÞ1,

(v) diquarkonium [10], which consists of a color-anti-
triplet Qq diquark and a color-triplet Q̄ q̄ diquark
bound by the QCD color force: ðQqÞ3̄ þ ðQ̄ q̄Þ3,

(vi) hadroquarkonium [11], which consists of a color-
singlet QQ̄ pair to which a color-singlet light-quark
pair is boundbyresidualQCDforces: ðQQ̄Þ1 þ ðqq̄Þ1.
An essentially equivalentmodel is a quarkonium and a
light meson bound by hadronic interactions.

(vii) quarkonium adjoint meson [12], which consists of a
color-octetQQ̄ pair to which a light quark-antiquark
pair is bound: ðQQ̄Þ8 þ ðqq̄Þ8.

All of these are possible models for neutral XYZ mesons.
The last five are possible models for charged XYZ mesons.
None of these models has proven to be very predictive
for the pattern of XYZ mesons. They are all essentially
phenomenological models whose only connection with the
fundamental field theory QCD is that they use degrees of
freedom from QCD. It would be desirable to have a
theoretical framework based firmly on QCD that describes
all the XYZ mesons. One possibility for such a framework
is the Born-Oppenheimer (B-O) approximation.
The B-O approximation is used in atomic and molecular

physics to understand the binding of atoms into molecules
[13]. It exploits the large ratio of the time scales for the
motion of the atomic nuclei and the motion of the electrons,
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which is a consequence of the large ratio of the mass of a
nucleus to that of the electron. The electrons respond
almost instantaneously to the motion of the nuclei. Their
instantaneous configuration is determined by the positions
of the nuclei, which can be approximated by static sources
for the electric field. The energy of the electrons combined
with the repulsive Coulomb energy of the nuclei defines a
Born-Oppenheimer (B-O) potential. The B-O approxima-
tion to the energy levels of the molecule are the energy
eigenvalues of the Schrödinger equation in that potential.
The B-O approximation for QQ̄ mesons in QCD was

developed by Juge et al. [14]. It exploits the large ratio of
the time scales for the motion of the Q and Q̄ and the
evolution of gluon fields, which is a consequence of the
large ratio of the heavy-quark mass mQ to the nonpertur-
bative momentum scale ΛQCD associated with the gluon
field. The gluon field responds almost instantaneously to
the motion of the Q and Q̄. Its instantaneous configuration
is determined by the positions of theQ and Q̄, which can be
approximated by static color sources. The energy of the
gluon field defines a B-O potential VΓðrÞ that depends on
the separation r of the Q and Q̄ and on the quantum
numbers Γ for the gluon field in the presence of staticQ and
Q̄ sources. The motion of the Q and Q̄ can be described by
the Schrödinger equation with potential VΓðrÞ. In the B-O
approximation, QQ̄ mesons are energy levels of the
Schrödinger equation in the B-O potentials. The energy
levels in the ground-state potential are conventional quar-
konia. The energy levels in the excited-state potentials are
quarkonium hybrids.
Juge et al. calculated many of the B-O potentials using

quenched lattice QCD, in which light-quark loops are
omitted [14]. They calculated the spectrum of bottomonium
hybrids by solving the Schrödinger equation in the B-O
potentials. They also calculated some of the bottomonium
hybrid energies using lattice nonrelativistic QCD
(NRQCD). The quantitative agreement between the pre-
dictions of the B-O approximation and lattice NRQCD
provided convincing evidence for the existence of quarko-
nium hybrids in the hadron spectrum of QCD.
For QCD with light quarks, the B-O potentials can be

defined as the energies of flavor-singlet stationary con-
figurations of the gluon and light-quark fields in the
presence of static Q and Q̄ sources. In Ref. [15], it was
pointed out that B-O potentials can also be defined by the
energies of stationary configurations of light-quark and
gluon fields that have the flavor of a light quark and a light
antiquark. The energy levels of a QQ̄ pair in such a
potential are quarkonium tetraquarks. Several of the simple
constituent models for quarkonium tetraquarks itemized
above can be identified with specific regions of the Born-
Oppenheimer wave function for the QQ̄ pair. When the
separation of the QQ̄ pair is much smaller than the spatial
extent of the light-quark and gluon fields, the system
resembles a quarkonium adjoint meson ðQQ̄Þ8 þ ðqq̄Þ8.

When theQ and Q̄ are well separated, the system resembles
a meson molecule ðQq̄Þ1 þ ðQ̄qÞ1 if the light quark is
localized near the Q̄ and it resembles diquarkonium
ðQqÞ3̄ þ ðQ̄ q̄Þ3 if the light quark is localized near the Q.
In this paper, we apply the B-O approximation for

quarkonium hybrids and tetraquarks to the XYZ mesons.
In Sec. II, we list the XYZ mesons that have been observed
so far. In Sec. III, we discuss the B-O potentials for
quarkonium hybrids and tetraquarks. We present accurate
parametrizations of the deepest hybrid B-O potentials, and
we infer the deepest tetraquark B-O potentials from lattice
QCD calculations of static adjoint mesons. In Sec. IV, we
apply the B-O approximation to quarkonium hybrid and
tetraquark mesons. We derive selection rules for hadronic
transitions between Born-Oppenheimer configurations and
use them to identify XYZ mesons that are candidates for
ground-state energy levels of charmonium hybrids and
tetraquarks. In Sec. V, we describe lattice QCD calculations
of cc̄ and bb̄ mesons and discuss their implications for the
B-O approximation. In Sec. VI, we predict the lowest
energy levels of charmonium hybrids by combining results
from lattice QCD with energy splittings from solutions of
the Schrödinger equation in B-O potentials. The outlook for
developing the B-O approximation into a systematic theory
of the XYZ mesons is discussed in Sec. VII.

II. XYZ MESONS

Lists of the XYZ mesons in both the cc̄ and bb̄ sectors,
with references to all the experiments, are given in Ref. [7].
The list of new neutral cc̄ mesons above the DD̄ threshold
consists of 15 states. The most essential information in that
list, including the mass, width, JPC quantum numbers, and
decay modes, is repeated in Table I. This list includes an
additional state labeled Yð4220Þ. The Yð4220Þ is a narrow
structure in the cross section for eþe− annihilation into
hcð1PÞπþπ− that was recently observed by the BESIII
Collaboration [16]. Table I also includes the additional
decay mode Zcð3900Þπ of the Yð4260Þ observed by the
Belle Collaboration [17].
The list of the charged cc̄ mesons in Ref. [7] consists of

four states. The most essential information in that list is
repeated in Table II. The C in JPC is the charge conjugation
quantum number of the neutral isospin partner. It coincides
with −G, the negative of the G-parity quantum number for
the isospin triplet. Table II gives the JP quantum numbers
of the Zþð4430Þ, which were recently determined to be 1þ
by the Belle Collaboration [18]. Table II includes two
additional states that were observed more recently by the
BESIII collaboration. The Zþ

c ð3885Þ was observed in
the decay channelsD�þD̄0 and DþD̄�0, and its JP quantum
numbers are favored to be 1þ [19]. The Zþ

c ð4020Þ was
observed in the decay channel hcð1PÞπþ [20]. The
Zþ
c ð4025Þ was subsequently observed in the decay channel

ðD�D̄�Þþ with a mass consistent with that of Zþ
c ð4020Þ but

with a larger width [21]. In Table II, they are assumed to be
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the same state. The neutral isospin partner Z0
cð3900Þ of the

Zþ
c ð3900Þ has been observed [22], but it is not included in

the list of neutral mesons in Table I.
The decay modes of the cc̄ mesons listed in Tables I

and II are of four kinds:
(i) a hadronic decay into a pair of charm mesons,

such as DD̄, or a pair of charm baryons, such as
Λþ
c Λ−

c ,
(ii) a hadronic transition to a lighter cc̄ meson through

the emission of light hadrons, such as a single vector
meson ω or ϕ, a single pion, or a pair of pions,

(iii) an electromagnetic transition to a lighter cc̄ meson
through the emission of a photon,

(iv) an electromagnetic annihilation “decay mode”
ðeþe−Þ or ðγγÞ, in which the parentheses indicate
that it has actually been observed as a production
channel. They provide strong constraints on the JPC

quantum numbers: ðeþe−Þ requires 1−− and ðγγÞ
requires either 0þþ or 2þþ.

The list of new bb̄ mesons above the BB̄ threshold in
Ref. [7] consists of one neutral and two charged states.
The most essential information in that list is repeated in

TABLE I. Neutral cc̄ mesons above the DD̄ threshold discovered since 2003. Neutral isospin partners of charged
cc̄ mesons are not listed. The “decay modes” in parentheses, (eþe−) and (γγ), are actually production channels.

State M (MeV) Γ (MeV) JPC Decay modes 1st observation

Xð3823Þ 3823.1� 1.9 <24 ??− χc1γ Belle 2013
Xð3872Þ 3871.68� 0.17 <1.2 1þþ J=ψπþπ−, J=ψπþπ−π0 Belle 2003

D0D̄0π0, D0D̄0γ
J=ψγ, ψð2SÞγ

Xð3915Þ 3917.5� 1.9 20� 5 0þþ J=ψω, (γγ) Belle 2004
χc2ð2PÞ 3927.2� 2.6 24� 6 2þþ DD̄, (γγ) Belle 2005
Xð3940Þ 3942þ9−8 37þ27−17 ??þ D�D̄, DD̄� Belle 2007
Gð3900Þ 3943� 21 52� 11 1−− DD̄, (eþe−) BABAR 2007
Yð4008Þ 4008þ121−49 226� 97 1−− J=ψπþπ−, (eþe−) Belle 2007
Yð4140Þ 4144.5� 2.6 15þ11−7 ??þ J=ψϕ CDF 2009
Xð4160Þ 4156þ29−25 139þ113−65 ??þ D�D̄� Belle 2007
Yð4220Þ 4216� 7 39� 17 1−− hcð1PÞπþπ−, (eþe−) BESIII 2013
Yð4260Þ 4263þ8−9 95� 14 1−− J=ψπþπ−, J=ψπ0π0 BABAR 2005

Zcð3900Þπ, (eþe−)
Yð4274Þ 4274.4þ8.4−6.7 32þ22−15 ??þ J=ψϕ CDF 2010
Xð4350Þ 4350.6þ4.6−5.1 13.3þ18.4−10.0 0=2þþ J=ψϕ, (γγ) Belle 2009
Yð4360Þ 4361� 13 74� 18 1−− ψð2SÞπþπ−, (eþe−) BABAR 2007
Xð4630Þ 4634þ9−11 92þ41−32 1−− Λþ

c Λ−
c , (eþe−) Belle 2007

Yð4660Þ 4664� 12 48� 15 1−− ψð2SÞπþπ−, (eþe−) Belle 2007

TABLE II. Positively charged cc̄ mesons. The C in JPC is that of a neutral isospin partner.

State M (MeV) Γ (MeV) JPC Decay modes 1st observation

Zþ
c ð3885Þ 3883.9� 4.5 24.8� 11.5 1þ? D�þD̄0, DþD̄�0 BESIII 2013

Zþ
c ð3900Þ 3898� 5 51� 19 ??− J=ψπþ BESIII 2013

Zþ
c ð4020Þ 4022.9� 2.8 7.9� 3.7 ??− hcð1PÞπþ, D�þD̄�0 BESIII 2013

Zþ
1 ð4050Þ 4051þ24−43 82þ51−55 ??þ χc1ð1PÞπþ Belle 2008

Zþ
2 ð4250Þ 4248þ185−45 177þ321−72 ??þ χc1ð1PÞπþ Belle 2008

Zþð4430Þ 4443þ24−18 107þ113−71 1þ− ψð2SÞπþ Belle 2007

TABLE III. Neutral and positively charged bb̄ mesons above the BB̄ threshold discovered since 2003. Neutral
isospin partners of charged bb̄ mesons are not listed. For a charged bb̄ meson, the C in JPC is that of the neutral
isospin partner.

State M (MeV) Γ (MeV) JPC Decay modes 1st observation

Ybð10890Þ 10888.4� 3.0 30.7þ8.9−7.7 1−− ϒðnSÞπþπ−, (eþe−) Belle 2010
Zþ
b ð10610Þ 10607.2� 2.0 18.4� 2.4 1þ− ϒðnSÞπþ, hbðnPÞπþ B̄�0Bþ, B̄0B�þ Belle 2011

Zþ
b ð10650Þ 10652.2� 1.5 11.5� 2.2 1þ− ϒðnSÞπþ, hbðnPÞπþ B̄�0B�þ Belle 2011
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Table III. Table III includes additional decay modes of
the Zþ

b ð10610Þ and Zþ
b ð10650Þ into pairs of bottom mesons

[23]. The neutral isospin partner Z0
bð10610Þ of the

Zþ
b ð10610Þ has been observed [24], but it is not included

in the list of neutral mesons in Table III.
A theoretical framework for the XYZ mesons should

explain the pattern of all the observed mesons, including
their masses, widths, quantum numbers, and decay modes. It
should also predict other XYZ mesons that await discovery.
The theoretical framework should be based as closely as
possible on the fundamental field theory QCD. It should
involve the fundamental degrees of freedom of QCD, which
are quark and gluon fields, and any interactions should be
derivable from the fundamental QCD interactions, which are
mediated by the exchange of gluons. The B-O approxima-
tion provides such a theoretical framework.

III. BORN-OPPENHEIMER POTENTIALS

In this section, we discuss the behavior of the various
Born-Oppenheimer (B-O) potentials for QQ̄ mesons. We
give simple analytic approximations for the deepest of the
hybrid potentials that have been calculated using lattice
QCD. We also infer the deepest of the tetraquark potentials
from lattice QCD calculations of adjoint mesons.

A. Definitions of Born-Oppenheimer potentials

In QCD without light quarks, the ground-state B-O
potential VΣþ

g
ðrÞ can be defined as the minimal energy

for configurations of the gluon field in the presence of Q
and Q̄ sources separated by a distance r. An excited B-O
potential VΓðrÞ can be defined as the minimal energy for
configurations of the gluon field with quantum numbers
specified by Γ, provided VΓðrÞ is smaller than the sum of
VΣþ

g
ðrÞ and the mass of a glueball with the appropriate

quantum numbers. Otherwise, the minimal-energy con-
figuration is the Σþ

g gluon configuration accompanied by a
zero-momentum glueball. A potential VΓðrÞ that is larger
than the sum of VΣþ

g
ðrÞ and the mass of the glueball may

still be well defined as the energy of a stationary gluon
configuration that is localized near the line connecting the
Q and Q̄. A prescription for the potential might involve
calculating the energies of excited configurations of the
gluon field with quantum numbers Γ in the presence of Q
and Q̄ sources separated by r, and identifying the potential
VΓðrÞ as the energy of one of the excited configurations.
In QCD with light quarks, there are additional compli-

cations in the definitions of the excited flavor-singlet B-O
potentials. We use flavor-singlet to refer to a singlet with
respect to the approximate SUð3Þ symmetry associated with
the u, d, and s quarks. For small r, the minimal-energy
configuration is the Σþ

g configuration accompanied by either
two or three pions, depending on the quantum numbers
of Γ. For large r, the minimal-energy configuration consists
of two static mesons, which are configurations of the

light-quark and gluon fields bound to a staticQ or Q̄ source.
One of the static mesons has the flavor of a light antiquark q̄
and is localized near the Q source, while the other has the
flavor of a light quark q and is localized near the Q̄ source.
The energy of such a configuration defines a B-O potential
that approaches a constant as r → ∞. As r decreases, the
extrapolation of this potential crosses the extrapolations of
the Σþ

g and other potentials. However there are actually
avoided crossings between pairs of potentials that share the
same quantum numbers Γ. If r is not too close to an avoided
crossing, a B-O potential VΓðrÞ may still be well defined as
the energy of a stationary configuration of the gluon and
light-quark fields. A prescription for the potential might
involve calculating the energies of excited configurations of
gluon and light-quark fields with quantum numbers Γ in the
presence of Q and Q̄ sources separated by r, and identifying
the potential VΓðrÞ as the energy of one of the excited
configurations.
Light quarks introduce an additional complication that

is the key to understanding the tetraquark XYZ states. The
gluon and light-quark configurations in the presence of
static Q and Q̄ sources are specified not only by the
traditional quantum numbers Γ of the Born-Oppenheimer
approximation but also by light-quark flavor quantum
numbers. As pointed out in Ref. [15], B-O potentials
can also be defined for isospin-1 configurations of light-
quark and gluon fields. They can also be defined for
isospin-0 configurations and for configurations that contain
a strange quark and a lighter antiquark. The energy levels
in these potentials are tetraquark mesons. Thus the B-O
approximation can be used to describe conventional quar-
konium, quarkonium hybrids, and quarkonium tetraquarks
all within a common framework. The definition of tetra-
quark potentials with light-quarkþ antiquark flavor suffers
from the same complications as the excited-state flavor-
singlet B-O potentials. At large r, the minimal-energy
configuration consists of two static mesons localized near
the Q and Q̄ sources. At small r, the minimal-energy
configuration is the flavor-singlet Σþ

g potential accompa-
nied by one or two pions, depending on the quantum
numbers Γ. Thus the minimal-energy prescription is inad-
equate, and it is necessary to use a more complicated
prescription to define the tetraquark potentials. A prescrip-
tion for the potential might involve calculating the energies
of excited configurations of gluon and light-quark fields
with the Born-Oppenheimer quantum numbers Γ and
the appropriate light-quarkþ antiquark flavor in the pres-
ence ofQ and Q̄ sources separated by r, and identifying the
potential VΓðrÞ as the energy of one of the excited
configurations.

B. Light-field quantum numbers

The B-O potentials can be labeled by quantum numbers
for the gluon and light-quark fields that are conserved in the
presence of static Q and Q̄ sources. We first consider the
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flavor-singlet case. Let r be the separation vector between
the Q and Q̄ sources. There are three conserved quantum
numbers for the light fields in the presence of these sources:

(i) the eigenvalue λ of r̂ · Jlight, where Jlight is the total
angular momentum vector for the light fields, which
includes their spin angular momenta as well as their
orbital angular momenta. The possible values of λ
are 0;�1;�2; …. We denote its absolute value by
Λ: Λ ¼ jλj.

(ii) the eigenvalue η of ðCPÞlight, which is the product of
the charge-conjugation operator Clight for the light
fields and the parity operator Plight that spatially
inverts these fields through the midpoint between the
Q and Q̄ sources. The possible values of η are þ1
and −1.

(iii) for the case λ ¼ 0, the eigenvalue ϵ of a reflection
operator Rlight that reflects the light fields through a
plane containing the Q and Q̄ sources. The possible
values of ϵ are þ1 or −1.

It is traditional to use an uppercase greek letter to specify
the integer Λ: Σ for Λ ¼ 0, Π for Λ ¼ 1, Δ for Λ ¼ 2, etc.
The eigenvalue þ1 or −1 of ðCPÞlight is traditionally
specified by a subscript g or u on the uppercase greek
letter. In the case λ ¼ 0, the value þ1 or −1 of ϵ is
traditionally specified by a superscript þ or − on Σ.
Thus the B-O potentials are traditionally labeled by
Γ ¼ Σþ

η ;Σ−
η ;Πη;Δη;…, where the subscript η is g or u.

The stationary configuration of gluon and light-quark
fields associated with the quantum numbers λ ¼ 0, η, and ϵ
can be represented by the ket j0; η; ϵ; ri. It is an eigenstate
of ðCPÞlight and Plight with eigenvalues η and ϵ, respectively.
The stationary configuration of gluon and light-quark fields
associated with the quantum numbers λ ≠ 0 and η can be
represented by the ket jλ; η; ri. The reflection operator Rlight
can be expressed as the product of the parity operator Plight
and a rotation by angle π around the axis perpendicular to
the reflection plane and passing through the midpoint
between the Q and Q̄ sources. It maps a configuration
jλ; η; ri with jλj ≥ 1 into ð−1Þλj − λ; η; ri. The reflection
symmetry guarantees that the configurations jΛ; η; ri and
j − Λ; η; ri have the same energies. We can form linear
combinations of these states that are eigenstates of Rlight:

jΛ; η; ϵ; ri≡ 1ffiffiffi
2

p ðjΛ; η; ri þ ϵj − Λ; η; riÞ: (1)

They are eigenstates of jr̂ · Jlightj, ðCPÞlight, and Rlight with
eigenvalues Λ, η, and ϵ, where ϵ is þ1 or −1. They are also
eigenstates of Plight with eigenvalue ϵð−1ÞΛ. Thus the
stationary light-field configurations can be labeled by the
quantum numbers Λ, η, and ϵ or alternatively by
Γ ¼ Σϵ

η;Πϵ
η;Δϵ

η;…, where the subscript η is g or u and
the superscript ϵ is þ or −.
For quarkonium tetraquark mesons, the stationary con-

figurations of the gluon and light-quark fields also have

flavor quantum numbers. The flavor quantum numbers can
be identified by specifying the light quark and antiquark:
q1q̄2, where q1, q2 ¼ u, d, s. We proceed to discuss the
conserved quantum numbers for light-field configurations
with flavor quantum numbers q1q̄2 in the presence of static
Q and Q̄ sources. The eigenvalue λ of r̂ · Jlight remains
conserved. If q1 and q2 are distinct flavors, Clight changes
the flavor from q1q̄2 to q2q̄1. Thus ðCPÞlight followed by
the flavor interchange q1↔q2 is a symmetry of the light-
field configurations. Its quantum number η is conserved. If
λ ¼ 0, the reflection quantum number ϵ is also conserved.
Thus the stationary field configurations can be labeled by
q1q̄2, λ, η, and also ϵ if λ ¼ 0. Alternatively, for jλj ≥ 1, we
can form linear combinations jq1q̄2;Λ; η; ϵ; ri analogous to
Eq. (1) that are labeled by Λ ¼ jλj, η, and ϵ. These
configurations are eigenstates of Rlight with the eigenvalue ϵ.
The tetraquark potentials with flavor q1q̄2 are energies of

stationary configurations of light-quark and gluon fields.
For q1, q2 ¼ u, d, it is more convenient to use the isospin
quantum numbers ðI; I3Þ to specify the flavor state:
ð0;0Þ¼ðuūþdd̄Þ= ffiffiffi

2
p

, ð1;þ1Þ¼−ud̄, ð1;0Þ¼ðuū−dd̄Þ=ffiffiffi
2

p
, and ð1;−1Þ ¼ dū. If we ignore small effects from

the difference between the masses of the u and d quarks and
their different electromagnetic charges, the energy of the
configuration depends on the isospin quantum number I,
which is 0 or 1, but not on I3. Within the same approxi-
mation, the flavor configurations us̄ and ds̄, which form an
isospin doublet, and the flavor configurations −sd̄ and sū,
which also form an isospin doublet, all have the same
energies. Thus the only flavor labels required to specify the
distinct energies of the tetraquark configurations are I ¼ 0,
I ¼ 1, sq̄, and ss̄. The tetraquark potentials can be denoted

VðI¼0Þ
Γ ðrÞ, VðI¼1Þ

Γ ðrÞ, Vðsq̄Þ
Γ ðrÞ, and Vðss̄Þ

Γ ðrÞ, where Γ ¼ Λϵ
η.

If we consider only flavor quantum numbers with no net
strangeness (i.e. either q1q̄2 with q1, q2 ¼ u, d or else ss̄),
the stationary light-field configurations with flavors I ¼ 0,
I ¼ 1, and ss̄ are also eigenstates of G parity, which is the
product of the charge conjugation operator Clight and an
isospin rotation by angle π around the I2 axis. Its eigenvalues
are

G ¼ ηϵð−1ÞΛþI: (2)

The neutral members of the isospin multiplets are eigenstates
of Clight with eigenvalue −G.

C. Quarkonium potential

Conventional quarkonia are energy levels of a QQ̄ pair
in the flavor-singlet Σþ

g potential. The limiting behaviors of
the Σþ

g potential at large r and at small r are understood, at
least in the absence of light quarks [25]. At large r, the field
configuration for Σþ

g is a flux tube extending between the Q̄
andQ. The potential approaches the ground-state energy of
a relativistic string of length r with fixed end points [25]:
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VΣþ
g
ðrÞ ⟶ σr

�
1 − π

6σr2

�
1=2

þ E0; (3)

where σ is the string tension, which is the energy per length
of the flux tube, and E0 is an additive constant. At small r,
the Σþ

g potential approaches the attractive color-Coulomb
potential between a Q and Q̄ in a color-singlet state:

VΣþ
g
ðrÞ ⟶ − 4αsð1=rÞ

3r
þ EΣþ

g
; (4)

where αsðμÞ is the running coupling constant of QCD at the
momentum scale μ and EΣþ

g
is an additive constant [25].

A simple phenomenological potential that is qualita-
tively compatible with the limiting behaviors in Eqs. (3)
and (4) is the Cornell potential [26]:

VΣþ
g
ðrÞ ¼ 2mQ þ V0 − κ

r
þ σr: (5)

The parameter κ can be interpreted as an effective value of
ð4=3Þαsð1=rÞ in the small-r region. Alternatively, if the
value of κ is close to π=12 ≈ 0.262, it can be interpreted as a
coefficient in the expansion of Eq. (3) at large r. The
additive constant in Eq. (5) has been separated into 2mQ
and a term V0 that is independent of the heavy quark. The
parameters σ, κ, mc, mb and V0 can all be determined
phenomenologically by fitting the energy levels of conven-
tional charmonium and bottomonium. Such a fit will be
carried out in Sec. VI A.
The Σþ

g potential can be calculated using lattice QCD.
The string tension σ defined by Eq. (3) can be used to set
the length scale in lattice QCD calculations. However
calculations of potentials in lattice QCD are more stable
if the length scale is set instead by the Sommer radius r0
[27] defined by

r20V
0
Σþ
g
ðr0Þ ¼ 1.65; (6)

where V 0ðrÞ represents the derivative of the potential with
respect to r. A phenomenological value of this parameter
obtained by fitting the bottomonium spectrum is r−10 ¼
394� 20 MeV [28], so r0 ≈ 0.50 fm. A fit of the Σþ

g
potential calculated using quenched lattice QCD to the
Cornell potential gives κ ¼ 0.292ð6Þ and ffiffiffi

σ
p

r0 ¼ 1.165ð3Þ
[29], which implies σ ¼ 0.21� 0.02 GeV2. The long-
distance part of the potential calculated in Ref. [14] using
quenched lattice gauge theory is shown in Fig. 1. If the
potential is fit to Eq. (3), the string tension is determined to
be σ ¼ 0.21 GeV2.
The Σþ

g potential has been calculated using lattice
QCD with two flavors of dynamical light quarks [29]. A
fit to the Cornell potential gives κ ¼ 0.368þ20−26 andffiffiffi
σ

p
r0 ¼ 1.133þ11−8 , which implies σ ¼ 0.20� 0.02 GeV2.

The values of κ and
ffiffiffi
σ

p
r0 differ significantly from those

calculated using quenched lattice QCD. The extrapolation
of the Σþ

g potential crosses the threshold defined by
twice the energy of the static meson near r ≈ 2.4r0. For
r > 2.4r0, the minimal-energy prescription cannot be used
to define the Σþ

g potential. Lattice QCD has nevertheless
been used to calculate the Σþ

g potential with high precision
at larger values of r [30]. There is another B-O potential
that approaches the energy of a pair of static mesons as
r → ∞. These two potentials actually have an avoided
crossing. As r increases, the lowest energy configuration
crosses over from a linearly increasing function of r, which
can be identified as the Σþ

g potential, to a function that
approaches a constant at large r. The energy of the first
excited configuration crosses over from a function that
changes slowly with r to one that increases linearly with r
and can be identified with the Σþ

g potential. Lattice QCD
has been used to calculate the two potentials in the region
of the avoided crossing [31].

D. Hybrid potentials

Quarkonium hybrid mesons are energy levels of a QQ̄
pair in the excited flavor-singlet B-O potentials. Wewill refer
to these potentials as hybrid potentials. Many of the hybrid
potentials were calculated by Juge et al. using quenched
lattice QCD [14,25]. They all have minima at positive values
of r. The deepest hybrid potentials are Πu and Σ−

u .
The limiting behaviors of the hybrid potentials at large r

and at small r are understood, at least in the absence of light
quarks [25]. At large r, the field configuration for the
potential Γ is a flux tube extending between the Q and Q̄.
The corresponding potential approaches an excited energy
level of a relativistic string of length rwith fixed end points:

VΓðrÞ ⟶ σr

�
1þ πð12nΓ − 1Þ

6σr2

�
1=2

þ E0; (7)

FIG. 1 (color online). The Σþ
u , Πu, and Σ−

u Born-Oppenheimer
potentials for conventional quarkonium and quarkonium hybrids.
The dots are the potentials calculated using quenched lattice
gauge theory in Ref. [14]. The curves are fits to those potentials.
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where the excitation number nΓ depends on the B-O
potential, and E0 is the same additive constant as in
Eq. (3). The Σþ

g potential, whose limiting behavior is given
in Eq. (3), is the ground state of the string with nΓ ¼ 0. The
Πu potential is the first excited state with nΓ ¼ 1. The Σ−

u
potential has nΓ ¼ 3. The B-O potentials with nΓ ¼ 2 are
Δg, Πg, and the first excited Σþ

g potential, which is labeled
Σþ0
g . At small r, the hybrid potentials approach the repulsive

color-Coulomb potential between a Q and Q̄ in a color-
octet state:

VΓðrÞ ⟶ þ αsð1=rÞ
6r

þ EΓ; (8)

where EΓ is an additive constant that depends on the B-O
potential.
In the limit r → 0, theQ and Q̄ sources reduce to a single

local color-octet QQ̄ source. In this limit, the conserved
quantum numbers of the gluon and light-quark fields in the
presence of the source are JPClight. The energy levels of flavor-
singlet gluon and light-quark field configurations bound to
a static color-octet source are called static hybrid mesons or
gluelumps. In QCD without light quarks, a gluelump can be
defined as the minimal-energy configuration of the gluon
field with specified quantum numbers JPClight. In QCD with
light quarks, the minimal-energy prescription can still be
used to define the ground-state gluelump with quantum
numbers 1þ−. The minimal-energy prescription can be used
to define an excited gluelump only if its energy relative
to the ground-state gluelump is less than 2mπ or 3mπ,
depending on the quantum numbers. Otherwise, the min-
imal-energy configuration is the ground-state 1þ− glue-
lump accompanied by 2 or 3 pions. In this case, the excited
gluelump would have to be identified as one of the excited
states of the gluon and light-quark fields with the appro-
priate JPClight quantum numbers in the presence of the static
QQ̄ source.
In the limit r → 0, the gluon and light-quark fields in the

presence of the Q and Q̄ sources have additional sym-
metries that require various B-O potentials to become
degenerate in that limit [32]. In the limiting expression
in Eq. (8) for the hybrid potential at small r, the additive
constant EΓ can be interpreted as the energy of a gluelump.
For the two deepest hybrid potentials, Πu and Σ−

u , EΓ must
be equal to the energy of the ground-state 1þ− gluelump.
For the Πg and Σþ0

g potentials, EΓ must be equal to the
energy of the 1−− gluelump. For the Δg potential, the Σ−

g

potential, and the first excitedΠg potential, which is labeled
Π0

g, EΓ must be equal to the energy of the 2−− gluelump.
Given the quantum numbers JPClight of the gluelump, we

can deduce the hybrid potentials whose additive constant
EΓ defined by Eq. (8) is equal to the energy of the
gluelump. A component of the angular momentum vector
for a gluelump with spin Jlight has 2Jlight þ 1 integer values
ranging from −Jlight to þJlight. There must therefore be a

B-O potential for each integer value of Λ from 0 up to Jlight.
The quantum number η for all these potentials equals the
value of ðCPÞlight for the gluelump. One of the B-O
potentials must be a Σ potential with Λ ¼ 0. If we identify
its reflection quantum number as ϵ ¼ Plightð−1ÞJlight , the Σ
potentials associated with the 1þ−, 1−−, and 2−− gluelumps
are correctly inferred to be Σ−

u , Σþ0
g , and Σ−

g , respectively.
The gluelump spectrum was first calculated using

quenched lattice QCD by Campbell et al. [33]. The
ground-state gluelump was found to have quantum num-
bers 1þ−. More accurate results for the gluelump energy
differences were calculated subsequently by Foster and
Michael [34]. The gluelump spectrum was recently calcu-
lated by Marsh and Lewis using lattice QCD with dynami-
cal light quarks [35]. The strange quark had its physical
mass, but the up and down quark masses were unphysically
heavy, corresponding to a pion mass of about 500 MeV.
The first two excited states of the gluelump have quantum
numbers 1−− and 2−−. Their energies relative to that of
the ground-state 1þ− gluelump are given in Table IV. The
energies of the 1−− and 2−− gluelumps are higher by about
300 and 700 MeV, respectively.
The hybrid potentials can be calculated using lattice

QCD. In Ref. [14], quenched lattice QCD was used to
calculate many of these potentials. They interpolate
between the short-distance limit in Eq. (8) and the long-
distance limit in Eq. (7). The Πu and Σ−

u potentials from
Ref. [14] are shown in Fig. 1.
An accurate parametrization of the Πu potential in

Ref. [14] at short and intermediate distances was given
in Ref. [36]:

VΠu
ðrÞ ¼ EΠu

þ 0.11
1

r
þ 0.24

r2

r30
; (9)

where r0 ≈ 0.50 fm is the Sommer radius defined in
Eq. (6). This parametrization provides an excellent fit to
theΠu potential at lattice spacings between 0.3r0 and 2.4r0.
The minimum of the potential is at 0.61r0 ≈ 0.3 fm. TheΠu

TABLE IV. Gluelump and adjoint meson energies (in MeV)
relative to the energy of the 1þ− ground-state gluelump. The
gluelump energies are from the lattice QCD calculations with
dynamical light quarks in Ref. [35]. The adjoint meson energies
are from the quenched lattice QCD calculations in Ref. [33]. The
errors in the adjoint meson energies are statistical only. They do
not take into account systematic errors from omitting light-quark
loops.

Gluelumps Adjoint mesons
JPC g JPC qq̄ ss̄

1þ− (0) 1−− 47� 90 120� 70
1−− 285� 53 0−þ 91� 216 170� 99
2−− 710� 37
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potential has also been calculated for QCD with two flavors
of dynamical light quarks [29]. No statistically significant
differences were found between the Πu potentials with and
without light quarks.
An important feature of the parametrization of the Πu

potential in Eq. (9) is the absence of a linear term in r. The
1=r term can be interpreted as the repulsive color-Coulomb
potential between theQ and Q̄. The remaining terms can be
interpreted as the energy of the gluon field configuration.
According to the parametrization in Eq. (9), the gluon field
energy has zero slope at r ¼ 0, so it increases slowly with r
in the small-r region. At r ¼ 0, the gluon field configu-
ration is the ground-state gluelump. At r ¼ r0, the gluon
field energy has increased by less than 1=3 of the energy
difference for the first excited gluelump. The slow increase
of the gluon field energy with r is consistent with the gluon
field configuration remaining close to the gluelump out to
values of r comparable to r0. At these small values of r, the
configuration is compatible with the simple constituent
model of a quarkonium hybrid meson: ðQQ̄Þ8 þ g. The
constituent gluon g can be identified with the ground-state
gluelump with quantum numbers 1þ−.
We can obtain a global fit to the potential VΠu

ðrÞ by
using the parametrization in Eq. (9) for r below some
matching radius r� and then switching to the string
potential in Eq. (7) with nΓ ¼ 1 for r beyond r�. We
demand continuity of the potentials and their slopes at the
matching point r�:

EΠu
− E0 þ 0.11

1

r�
þ 0.24

r2�
r30

¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2� þ 11π=ð6σÞ

q
; (10a)

−0.11 1

r�
þ 0.48

r2�
r30

¼ σr2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2� þ 11π=ð6σÞ

p : (10b)

These two equations determine r� and EΠu
− E0. If we take

the value
ffiffiffi
σ

p ¼ 0.21 r−10 from the fit to the long-distance
part of the Σþ

g potential in Ref. [25], which is shown in
Fig. 1, the matching point is determined by Eq. (10b) to be
r� ¼ 2.0r0. The difference between the energy offsets is
then determined by Eq. (10a) to be EΠu

− E0 ¼ 2.8r−10 . In
Fig. 1, the resulting parametrization of VΠu

ðrÞ is compared
to the potential calculated using quenched lattice QCD in
Ref. [25]. It gives a good fit over the entire range of r. The
fit could be slightly improved by relaxing the constraint that
the long-distance limits of the ground-state Σþ

g potential in
Eq. (3) and the excited-state potentials Γ in Eq. (7) have the
same additive constant E0.
To obtain a parametrization of the Σ−

u potential, it is most
convenient to fit the difference between the Σ−

u and Πu
potentials. In the quenched lattice QCD calculations in
Ref. [25], that difference appears to be linear in r at small r.
In Ref. [37], the splitting between VΣ−

u
ðrÞ and VΠu

ðrÞ was
calculated in the region r < 1.6r0 using quenched lattice
QCD with a finer lattice. The results are consistent with

those of Ref. [25], but they extend down to smaller values of
r. For r < 0.8r0, the splitting is compatible with quadratic
dependence on r, and it can be fit with 0.92r2=r30. Given
the constraint provided by this leading power of r2, the
difference between the potentials in Ref. [25] can be fit very
well with the simple parametrization

VΣ−
u
ðrÞ ¼ VΠu

ðrÞ þ 0.92r2=r30
1þ 0.63r2=r20

: (11)

The minimum of the Σ−
u potential is near 0.4r0 ≈ 0.2 fm.

In Fig. 1, the parametrization of VΣ−
u
ðrÞ is compared to

the potential calculated using quenched lattice QCD in
Ref. [25]. It gives a good fit over the entire range of r shown
in Fig. 1. It will not give a good fit for r > 2.5 fm, because
the parametrization in Eq. (11) does not take into account
the constraints from the large-r limit given by Eq. (7).

E. Tetraquark potentials

Quarkonium tetraquark mesons are energy levels in B-O
potentials with light-quark+antiquark flavor quantum num-
bers, such as q1q̄2. We will refer to these potentials as
tetraquark potentials. The distinct B-O potentials can be
specified by the flavor labels I ¼ 0, I ¼ 1, sq̄, and ss̄ and
by the B-O quantum numbers Γ ¼ Σþ

η ;Σ−
η ;Πη;Δη;… for

the light-quark and gluon field configuration. None of
the tetraquark potentials have yet been calculated using
lattice QCD.
The only information about the tetraquark potentials that

is known from lattice QCD comes from calculations of
static adjoint mesons, which are energy levels of light-
quark and gluon fields with light-quarkþ antiquark flavor
bound to a static color-octet source. The conserved quan-
tum numbers for the light fields in the presence of the
source are JPlight and the flavor quantum numbers. The
quantum number Jlight specifies the square of the total
angular momentum of the light fields, including their spin
angular momenta as well as their orbital angular momenta.
The charge conjugation operator Clight that changes a q1q̄2
configuration into a q2q̄1 configuration is also a symmetry
operator. Foster and Michael have calculated the adjoint
meson spectrum using quenched lattice QCD with a light
valence quark and antiquark [34]. The adjoint meson
energies were calculated for two values of the common
mass of the light valence quark q and antiquark q̄, one
comparable to the physical mass of the s quark and one
larger. This allowed for an extrapolation to the very small
mass of the u and d quarks. The adjoint mesons with the
lowest energies were found to be a vector with JPClight ¼ 1−−
and a pseudoscalar with JPClight ¼ 0−þ. Their energies
relative to that of the ground-state 1þ− gluelump are given
in Table IV. For ss̄ adjoint mesons, the difference between
the energies of the pseudoscalar and vector was
50� 70 MeV, so the vector is favored to be lower in
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energy. The extrapolation of this energy difference to light
qq̄ had larger error bars. The energy of the ss̄ vector adjoint
meson is larger than that of the qq̄ vector adjoint meson by
73� 55 MeV. The difference between the energies of the
qq̄ vector adjoint meson and the ground-state 1þ− glue-
lump was 50� 90 MeV, favoring the gluelump to be lower
in energy. The statistical errors in the energies of the
ground-state gluelump, the light vector adjoint meson, and
the light pseudoscalar adjoint meson are larger than the
energy differences, so the ordering of their energies in
quenched lattice QCD has not yet been established.
In QCDwith two flavors of very light quarks u and d, the

lightest adjoint mesons form an isospin triplet with I ¼ 1
and an isospin singlet with I ¼ 0. For the isospin singlet
and the neutral member of the isospin triplet, the JPClight
quantum numbers are 1−− for the vector and 0−þ for the
pseudoscalar. The appropriate quantum numbers for the
charged adjoint mesons are IGðJPlightÞ, where G ¼
ð−1ÞIClight and Clight is the charge conjugation quantum
number of the neutral member of the multiplet. The vector
adjoint mesons have quantum numbers 0−ð1−Þ and 1þð1−Þ.
The pseudoscalar adjoint mesons have quantum numbers
0þð0−Þ and 1−ð0−Þ. Calculations of the adjoint meson
spectrum using lattice QCD with dynamical light quarks
are required to determine the ordering in energy of the
ground-state gluelump and the four lowest-energy adjoint
mesons whose quantum numbers are 0−ð1−Þ, 1þð1−Þ,
0þð0−Þ, and 1−ð0−Þ. The energies of these adjoint mesons
can be determined by a simple minimal-energy prescription
if they do not exceed the energy of the ground-state
gluelump by more than 2mπ , mπ , 2mπ , and 3mπ ,
respectively.
The existence of a static adjoint meson bound to a local

color-octet source guarantees the existence of corresponding
tetraquark potentials in the small-r region. Their behavior in
this region is that of the repulsive color-Coulomb potential
for a color-octet QQ̄ pair, analogous to Eq. (8). The additive
constant analogous to EΓ can be interpreted as the energy of
the adjoint meson. Given the quantum numbers JPlight of an
adjoint meson, we can deduce the B-O potentials for which
the additive constant EΓ defined by Eq. (8) is equal to the
energy of the adjoint meson. A component of the angular
momentum vector for an adjoint meson with spin Jlight has
2Jlight þ 1 integer values ranging from −Jlight to þJlight.
There must therefore be a B-O potential for each integer
value of Λ from 0 up to Jlight. The quantum number η for the
B-O potentials is the value of ðCPÞlight for a qq̄ adjoint
meson. One of the B-O potentials is a Σ potential with
Λ ¼ 0. Its reflection quantum number is ϵ ¼ ð−1ÞJlightPlight.
The B-O potentials whose additive constant as r → 0 equals
the energy of the vector adjoint meson with JPlight ¼ 1− are
Πg and Σþ

g . The B-O potential whose additive constant is
equal to the energy of the pseudoscalar adjoint meson with
JPlight ¼ 0− is Σ−

u .

The behavior of the tetraquark potentials as r increases is
not known. If a q1q̄2 B-O potential can be defined at large r,
the light-field configuration could be a flux tube extending
between the Q and Q̄ sources to which an excitation with
the flavor quantum numbers q1q̄2 is bound. In this case,
the B-O potential would increase linearly at large r.
One possibility is that the flavor q1 is localized near the
Q source to form a diquark with color charge 3̄, and that the
flavor q̄2 is localized near the Q̄ source to form an
antidiquark with color charge 3. In this case, the flux tube
between the diquark and the antidiquark would be essen-
tially the same as a flavor-singlet flux tube between Q̄ and
Q sources. At large r, the B-O potential should approach
the energy of a relativistic string as in Eq. (7) for some
appropriate excitation number nΓ and with a different
energy offset to account for the energy difference between
the Qq diquark and a Q source. We will assume that
tetraquark potentials can be defined for all r, and that they
have the same qualitative behavior as the hybrid potentials,
with a minimum at a positive value of r.
We can use the information from quenched lattice QCD

calculations on the lowest-energy adjoint mesons to infer
which tetraquark potentials are likely to be the deepest. The
hybrid potentials that are the lowest at small r are also the
deepest hybrid potentials. We will assume that the tetra-
quark potentials have the same behavior. The tetraquark
potentials that are the lowest at small r are Πg, Σþ

g , and Σ−
u .

They are therefore also likely to be the deepest tetraquark
potentials. There should be Πg, Σþ

g , and Σ−
u potentials for

each of the flavor labels I ¼ 0, I ¼ 1, sq̄, and ss̄.
In Ref. [15], simple assumptions on the behavior of the

isospin-1 B-O potentials were used to estimate masses for
quarkonium tetraquarks. The deepest isospin-1 B-O poten-
tials were assumed to be the same as for the flavor-singlet
case, namely Πu and Σ−

u . This assumption was simply a
guess, with no motivation from QCD. The Σ−

u potential
coincides with one of the three deepest tetraquark potentials
inferred from the lowest-energy adjoint mesons.

IV. BORN-OPPENHEIMER ENERGY LEVELS

In this section, we discuss the energy levels of aQQ̄ pair
in the Born-Oppenheimer potentials, which can be iden-
tified with QQ̄ mesons. We deduce the quantum numbers
of the QQ̄ mesons and we also derive selection rules for
hadronic transitions between them.

A. Angular momenta

When we take into account the motion and spin of the
heavy quark and antiquark, there are several angular
momenta that contribute to the spin vector J of the meson.
In addition to the total angular momentum Jlight of the
gluon and light-quark fields, there is the orbital angular
momentum LQQ̄ of the QQ̄ pair and the spins of the Q and
Q̄. We denote the total spin of the QQ̄ pair by S. It is
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convenient to introduce an angular momentum L that is the
sum of all the angular momenta excluding the spins of the
heavy quark and antiquark. The spin vector of the meson
can then be expressed as

J ¼ Lþ S; (12a)

L ¼ LQQ̄ þ Jlight: (12b)

The condition that LQQ̄ is orthogonal to the separation
vector r of the Q and Q̄ can be expressed as

r̂ · L ¼ r̂ · Jlight ¼ λ; (13)

where λ is the quantum number introduced in Sec. III B.
The constraint in Eq. (13) puts a lower limit on the quantum
number L for L2: L ≥ Λ, where Λ ¼ jλj.
The centrifugal energy of the QQ̄ pair is proportional to

the square of their orbital angular momentum:

L2
QQ̄ ¼ L2 − 2L · Jlight þ J2light: (14)

Imposing the constraint in Eq. (13), this can be expressed as

L2
QQ̄ ¼ L2 − 2Λ2 þ J2light − ðLþJlight;− þ L−Jlight;þÞ;

(15)

where Lþ and L− are raising and lowering operators for
r̂ · L and Jlight;þ and Jlight;− are raising and lowering
operators for r̂ · Jlight.

B. Schrödinger equation

The B-O approximation consists of two distinct approx-
imations. The first approximation is an adiabatic approxi-
mation, in which the instantaneous configuration of the
gluon and light-quark fields is assumed to be a stationary
state in the presence of static sources at the positions of the
Q and Q̄. The stationary states can be labeled by the
quantum numbers Γ ¼ Λϵ

η introduced in Sec. III B and by
light-quark flavor quantum numbers. This approximation
reduces the problem to a multichannel nonrelativistic
Schrödinger equation for the Q and Q̄. The multicomponent
wave function has a component for every B-O configuration
Γ allowed by the symmetries of QCD. The discrete solutions
to the multichannel Schrödinger equation correspond to QQ̄
mesons with definite JP quantum numbers. This adiabatic
approximation ignores effects that are suppressed by powers
of ΛQCD=mQ and by powers of v2, where v is the typical
relative velocity of the QQ̄ pair, so it becomes increasingly
accurate as the heavy-quark mass increases. The second
approximation is a single-channel approximation in which
all components of the wave function are ignored except that
for a single B-O configuration Γ. This approximation breaks
down in regions of r where the B-O potential for Γ has

avoided crossings with other B-O potentials. It can only be a
good approximation if the wave function is sufficiently small
in those regions.
With the combination of the adiabatic approximation and

the single-channel approximation, the Schrödinger equa-
tion for the QQ̄ pair in the presence of a stationary
configuration Γ of the gluon and light-quark fields can
be expressed as

�
− 1

mQ
hD2iΓ;r þ VΓðrÞ

�
ψðrÞ ¼ EψðrÞ; (16)

where the subscript Γ, r on the expectation value implies
that it is evaluated in the configuration Γ for Q and Q̄
sources that are separated by r. The covariant derivative D
has a term with a gluon field that is responsible for
retardation effects. Since retardation effects are suppressed
by powers of v, ignoring these terms is consistent with the
adiabatic approximation. The covariant Laplacian D2 can
therefore be replaced by an ordinary Laplacian, which
includes a centrifugal term proportional to L2

QQ̄:

�
− 1

mQ

�
d
dr

�
2

þ
hL2

QQ̄iΓ;r
mQr2

þ VΓðrÞ
�
rψðrÞ ¼ ErψðrÞ:

(17)

In the expression for L2
QQ̄ in Eq. (15), the last term is a

linear combination of Jlight;þ and Jlight;−. In the multichan-
nel Schrödinger equation, these terms provide couplings
to other components of the wave function with Λ larger by
1 or smaller by 1. The single-channel approximation
eliminates any contribution from these terms. If the wave
function is an eigenstate of L2 with angular momentum
quantum number L, the expectation value of L2

QQ̄ can be
expressed as

hL2
QQ̄iΓ;r ¼ LðLþ 1Þ − 2Λ2 þ hJ2lightiΓ;r: (18)

Since J2light is a scalar operator, the function hJ2lightiΓ;r
depends on r only. A wave function ψðrÞ that is a
simultaneous eigenstate of L2 and Lz with angular momen-
tum quantum numbers L and mL can be expressed in the
form RðrÞYLmL

ðr̂Þ, where RðrÞ is a radial wave function
and YLmL

ðr̂Þ is a spherical harmonic. The Schrödinger
equation in Eq. (17) then reduces to the radial Schrödinger
equation

�−1
mQ

�
d
dr

�
2

þ LðLþ 1Þ − 2Λ2 þ hJ2lightiΓ;r
mQr2

þ VΓðrÞ
�
rRðrÞ

¼ ErRðrÞ: (19)

In the pioneering work on the B-O approximation for
quarkonium hybrids in Ref. [14], the authors assumed
without much justification that hJ2lightiΓ;r was 0 for the
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quarkonium potential Σþ
g and 2 for the quarkonium hybrid

potentials Πu and Σ−
u . There is a lower bound on the

expectation value in a state with r̂ · Jlight ¼ λ: hJ2lighti ≥
ΛðΛþ 1Þ. The authors assumed that this lower bound is
saturated in the case of Σþ

g , for whichΛ ¼ 0, and in the case
ofΠu, for which Λ ¼ 1, but not in the case of Σ−

u , for which
Λ ¼ 0. Their assumption that hJ2lighti ¼ 2 for Πu and Σ−

u is
consistent with a constituent-gluon model in which the
QQ̄ pair is accompanied by a spin-1 constituent gluon
with J2light ¼ 2.
There is a more compelling motivation for setting

hJ2lightiΓ;r ¼ 2 for Πu and Σ−
u . The centrifugal term in the

energy is most important at small r, where it provides a
centrifugal barrier. At r ¼ 0, the light-field configurations
for both Πu and Σ−

u reduce to the ground-state gluelump
with quantum numbers 1þ−. The gluelump is an eigenstate
of J2light with eigenvalue 2. Thus the function hJ2lightiΓ;r must
be equal to 2 at r ¼ 0. In order for hJ2lightiΓ;r ≈ 2 to give a
good approximation to the solution of the Schrödinger
equation, it is not necessary for it to be a good approxi-
mation to the function at all r. It only needs to be a good
approximation in the region of small rwhere the centrifugal
term is important. The same reasoning applied to a potential
VΓðrÞ whose additive constant as r → 0 is the energy
of a gluelump with spin JΓ implies that the appropriate
approximation is

hJ2lightiΓ;r ≈ JΓðJΓ þ 1Þ: (20)

For the Πg and Σþ0
g potentials, whose additive constant as

r → 0 is the energy of the 1−− gluelump, the appropriate
approximation is hJ2lighti ≈ 2. For the Δg, Πg

0, and Σ−0
g

potentials, whose additive constant as r → 0 is the energy
of the 2−− gluelump, the appropriate approximation is
hJ2lighti ≈ 6. Similar logic can be applied to the Schrödinger
equation for QQ̄ mesons with light-quark flavors. In this
case, JΓ would be the spin of the static adjoint meson
whose energy determines the additive constant in the
tetraquark potential as r → 0.
The approximation for hJ2lightiΓ;r in Eq. (20) should be a

good one if the light-field configuration departs slowly
from the gluelump as r increases. Accurate parametriza-
tions of the Πu and Σ−

u potentials are given in Eqs. (9)
and (11). The absence of linear terms in r implies that the
energies of the Πu and Σ−

u configurations remain close to
the energy of the ground-state gluelump until r becomes
comparable to r0. This is consistent with the assumption
that the Πu and Σ−

u configurations themselves remain close
to the gluelump until r becomes comparable to r0. This
suggests that the approximation in Eq. (20) is indeed good
in the short-distance region where the centrifugal term in
the potential is most important.

When the approximation for hJ2lightiΓ;r in Eq. (20) is
inserted into the radial Schrödinger equation in Eq. (19),
the function in the numerator of the centrifugal term
becomes a number:

�
− 1

mQ

�
d
dr

�
2

þLðLþ1Þ−2Λ2þJΓðJΓþ1Þ
mQr2

þVΓðrÞ
�
rRðrÞ

¼ErRðrÞ: (21)

The possible values of the orbital-angular-momentum
quantum number L are Λ;Λþ 1;…. The radial excitations
can be labeled by a principal quantum number
n ¼ 1; 2; 3;….

C. Meson quantum numbers

For each B-O configuration Γ, the solution to the radial
Schrödinger equation in Eq. (21) gives energy levels EnL
and wave functions RnLðrÞYLmL

ðr̂Þ. The hybrid configu-
rations are labeled by Γ ¼ Λϵ

η. The energy levels corre-
spond to configurations of the Q and Q̄ and the light fields
of the form

jnLmLSmS;Λ; η; ϵi

¼
Z

d3rRnLðrÞYLmL
ðr̂ÞjΛ; η; ϵ; rijSmSi; (22)

where jΛ; η; ϵ; ri is the light-field configuration defined in
Eq. (1) and jSmSi is the spin state of the QQ̄ pair, which
can be singlet (S ¼ 0) or triplet (S ¼ 1). The state in
Eq. (22) is an eigenstate of P and C:

P ¼ ϵð−1ÞΛþLþ1; (23a)

C ¼ ηϵð−1ÞΛþLþS: (23b)

The eigenvalue of CP is the product of η for the light-field
configuration and ð−1ÞSþ1 for the spin state of theQQ̄ pair.
The eigenvalue of the parity operator P is the product of
ϵð−1ÞΛ for the light-field configuration, ð−1ÞL for the
spherical harmonic, and −1 for the opposite intrinsic
parities of the Q and Q̄.
Mesons are states with definite quantum numbers for the

angular momentum J ¼ Lþ S. For flavor-singlet QQ̄
mesons, the configurations of the Q and Q̄ and light fields
with definite angular-momentum quantum numbers J and
mJ are linear combinations of those in Eq. (22) with
Clebsch-Gordan coefficients:

jnLSJmJ;Λ; η; ϵi
¼

X
mLmS

hLmL; SmSjJmJijnLmLSmS;Λ; η; ϵi: (24)

In the spin-singlet case (S ¼ 0), J equals L. In the spin-
triplet case (S ¼ 0), J ranges from jL − 1j to Lþ 1 in
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integer steps. The parity and charge conjugation quantum
numbers P and C for the meson are given in Eqs. (23).
The QQ̄ mesons are conveniently organized into spin-

symmetry multiplets consisting of states with the same B-O
configuration Γ ¼ Λϵ

η, radial quantum number n, orbital-
angular-momentum quantum number L, and light-quarkþ
antiquark flavor. The states in these multiplets are related
by heavy-quark spin symmetry. Ordinary quarkonia are
energy levels in the flavor-singlet Σþ

g potential. We set Λ ¼
0 and JΓ ¼ 0 in the Schröedinger equation in Eq. (21). The
possible values of L are 0; 1; 2;… (or equivalently
S; P;D;…). The spin-symmetry multiplets for the ground
state 1S and the first two orbital-angular-momentum
excitations 1P and 1D are given in Table V.
The lowest-energy quarkonium hybrids are energy levels

in the flavor-singlet Πu and Σ−
u potentials, whose short-

distance behaviors are determined by the 1þ− gluelump.
For the deepest hybrid potential Πu, we set Λ ¼ 1 and
JΓ ¼ 1 in the Schrödinger equation in Eq. (21). The
possible values of L are 1; 2; 3;… (or equivalently
P;D;F;…). The spin-symmetry multiplets for the ground
state 1P and the first two orbital-angular-momentum
excitations 1D and 1F are given in Table V for both the
Πþ

u and Π−
u configurations. For the next deepest hybrid

potential Σ−
u , we set Λ ¼ 0 and JΓ ¼ 1 in the Schrödinger

equation in Eq. (21). The spin-symmetry multiplets for the
ground state 1S and the first two orbital-angular-momen-
tum excitations 1P and 1D are given in Table V.
Tetraquark QQ̄ mesons are energy levels in potentials

labeled by B-O quantum numbers Γ ¼ Λϵ
η and by

light-quark+antiquark flavor quantum numbers. The flavor

labels for distinct B-O potentials are I ¼ 1, I ¼ 0, sq̄, and
ss̄. The lowest-energy quarkonium tetraquarks are expected
to be energy levels in the Πg, Σþ

g , and Σ−
u potentials. Their

multiplets are most easily specified by giving the JPC

quantum numbers of qq̄ tetraquark mesons. For the Πg and
Σþ
g potentials, Λ is 1 and 0, respectively, and JΓ ¼ 1,

because the short-distance behavior is determined by the
1−− adjoint meson. For the Σ−

u potential, Λ ¼ 0 and
JΓ ¼ 0, because the short-distance behavior is determined
by the 0−þ adjoint meson. The spin-symmetry multiplets
for the ground state and the first two orbital-angular-
momentum excitations of the Π−

g , Πþ
g , Σþ

g , and Σ−
u

configurations are given in Table V.
The JPC quantum numbers for qq̄ tetraquarks in Table V

apply to the I ¼ 0 tetraquark, the ss̄ tetraquark, and the
neutral member of the I ¼ 1 isospin triplet. The isospin
triplet has spin-symmetry multiplets whose states have
G-parity G ¼ −C and the JP quantum numbers of the qq̄
tetraquarks in Table V. The strange tetraquark mesons
containing us̄ or ds̄ form isospin doublets whose spin-
symmetry multiplets have the JP quantum numbers of the
qq̄ tetraquarks in Table V.

D. Selection rules

Many of the decay modes of the XYZ mesons listed in
Tables I, II, and III are hadronic transitions to another QQ̄
meson. Selection rules for the hadronic transitions provide
essential constraints on the quarkonium hybrids or quar-
konium tetraquarks that can be considered as candidates for
specific XYZ mesons. The selection rules govern changes
in the angular momentum quantum numbers L, S, and J of
the QQ̄ meson and changes in the quantum numbers Λ, η,
and ϵ that specify the light-field configuration. For sim-
plicity, we will deduce the selection rules for transitions
between neutral QQ̄ mesons with definite JPC quantum
numbers. The corresponding selection rules involving
charged tetraquark mesons that belong to an isospin triplet
with quantum numbers 1GðJPÞ can be inferred from the
selection rules involving the neutral member of the isospin
triplet, whose charge conjugation quantum number is
C ¼ −G.
There are some selection rules that follow from the exact

symmetries of QCD. These symmetries include rotational
symmetry, parity, and charge conjugation. We take the
quantum numbers of the QQ̄ mesons before and after the
transition to be JPC and J0P0C0

. We consider a transition via
the emission of a single hadron h with quantum numbers
JPhCh
h in a state with orbital-angular-momentum quantum

number Lh. The conservation of parity and charge con-
jugation imply the selection rules

P ¼ P0Phð−1ÞLh ; (25a)

C ¼ C0Ch: (25b)

TABLE V. Spin-symmetry multiplets for the ground state and
the first two orbital-angular-momentum excitations in the quar-
konium potential Σþ

g ; the two deepest hybrid potentials Πu and
Σ−
u ; and the Πg, Σþ

g , and Σ−
u potentials for qq̄ tetraquarks. A bold

J indicates that JPC is an exotic quantum number that is not
possible if the constituents are only QQ̄.

Quarkonia and hybrids qq̄ tetraquarks
ΓðnLÞ S ¼ 0 S ¼ 1 ΓðnLÞ S ¼ 0 S ¼ 1

Σþ
g ð1SÞ 0−þ 1−− Π−

g ð1PÞ 1þ− ð0; 1; 2Þþþ

Σþ
g ð1PÞ 1þ− ð0; 1; 2Þþþ Π−

g ð1DÞ 2−þ ð1; 2; 3Þ−−
Σþ
g ð1DÞ 2−þ ð1; 2; 3Þ−− Π−

g ð1FÞ 3þ− ð2; 3; 4Þþþ

Πþ
u ð1PÞ 1−− ð0; 1; 2Þ−þ Πþ

g ð1PÞ 1−þ ð0; 1; 2Þ−−
Πþ

u ð1DÞ 2þþ ð1; 2; 3Þþ− Πþ
g ð1DÞ 2þ− ð1; 2; 3Þþþ

Πþ
u ð1FÞ 3−− ð2; 3; 4Þ−þ Πþ

g ð1FÞ 3−þ ð2; 3; 4Þ−−
Π−

u ð1PÞ 1þþ ð0; 1; 2Þþ− Σþ
g ð1SÞ 0−þ 1−−

Π−
u ð1DÞ 2−− ð1; 2; 3Þ−þ Σþ

g ð1PÞ 1þ− ð0; 1; 2Þþþ

Π−
u ð1FÞ 3þþ ð2; 3; 4Þþ− Σþ

g ð1DÞ 2−þ ð1; 2; 3Þ−−
Σ−
u ð1SÞ 0þþ 1þ− Σ−

u ð1SÞ 0þþ 1þ−

Σ−
u ð1PÞ 1−− ð0; 1; 2Þ−þ Σ−

u ð1PÞ 1−− ð0; 1; 2Þ−þ
Σ−
u ð1DÞ 2þþ ð1; 2; 3Þþ− Σ−

u ð1DÞ 2þþ ð1; 2; 3Þþ−
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Angular momentum conservation requires J to be in the
range between jJ0 − ðJh þ LhÞj and J0 þ ðJh þ LhÞ.
The remaining selection rules for hadronic transitions are

only approximate. There is a spin selection rule that
follows from the approximate heavy-quark spin symmetry:

S ¼ S0; (26)

where S and S0 are the total spin quantum numbers for the
QQ̄ pair before and after the transition. Transitions between
spin-singlet and spin-triplet states have rates that are sup-
pressed by the square of the ratio of a hadronic scale to the
heavy-quark mass. Since mb is about three times larger than
mc, this suppression factor is an order of magnitude smaller
for bb̄ mesons than for cc̄ mesons.
There are also Born-Oppenheimer selection rules that

constrain the quantum numbers Λϵ
η of the light-field

configurations of the QQ̄ mesons involved in the hadronic
transition [38]. Since the time scale for evolution of the
gluon and light-quark fields is much faster than that for the
motion of the Q and Q̄, the emission of light hadrons can
proceed through an almost instantaneous transition of the
light-field configuration, with the positions of the Q and Q̄
remaining essentially fixed. We consider a transition via
the emission of a single hadron h with quantum numbers
JPhCh
h . The light-field configurations can be labeled by the

separation vector r of the Q and Q̄ and by the quantum
numbers introduced in Sec. III B: the eigenvalues Λ, η,
and ϵ of jr · Jlightj, ðCPÞlight, and Rlight, respectively. The
flavor-singlet configurations can be denoted by kets
jΛ; η; ϵ; ri. For Λ ≥ 1, these kets are linear combinations
of eigenstates of r · Jlight with eigenvalues λ ¼ �Λ.
A hadronic transition between flavor-singlet light-field
configurations in which the hadron h is emitted with
momentum q can be expressed as

jΛ; η; ϵ; ri ⟶ jΛ0; η0; ϵ; rijhðqÞi: (27)

The conservation of the component of the total angular
momentum Jlight of the light fields along the QQ̄ axis can
be expressed as

λ ¼ λ0 þ r̂ · ðJh þ LhÞ; (28)

where Jh and Lh are the spin vector and orbital-angular-
momentum vector of the light hadron h. If h is emitted with
orbital-angular-momentum quantum number Lh, the con-
straint in Eq. (28) implies the selection rule

jλ − λ0j ≤ Jh þ Lh: (29)

The quantum numbers η and η0 in Eqs. (27) are the
eigenvalues of ðCPÞlight for the light-field configurations.
Conservation of ðCPÞlight implies the selection rule

η ¼ η0 · ChPhð−1ÞLh: (30)

In the special case λ ¼ λ0 ¼ 0, there is an additional
constraint from invariance under reflection through a plane
containing the QQ̄ axis. The initial and final light-field
configurations j0; η; ϵ; ri and j0; η0; ϵ0; ri are eigenstates of
the reflection operator Rlight with eigenvalues ϵ and ϵ0,
respectively. The effect of the reflection on the emitted
hadron can be deduced by expressing Rlight as the product
of the parity operator Plight and a rotation by angle π around
the axis of the reflection plane. Such a rotation changes the
phase by expðiπr̂ · ðJh þ LhÞÞ, which equals 1 by the
constraint in Eq. (28). The additional constraint imposed
by the reflection symmetry is therefore

ϵ ¼ ϵ0 · Phð−1ÞLh ðλ ¼ λ0 ¼ 0Þ: (31)

The hadronic transitions are also governed by flavor
selection rules associated with conservation of net light-
quark flavors. We will only consider hadronic transitions in
which the final QQ̄ meson is a quarkonium. Since it is a
flavor singlet, the flavor selection rules are trivial.

E. Candidates for XYZ mesons

Many of the hadronic transitions of the XYZ mesons
listed in Tables I, II, and III are to quarkonium states. For cc̄
mesons, the charmonium states are the spin-triplet 1−−
states J=ψ and ψð2SÞ, the spin-triplet 1þþ state χc1ð1PÞ,
and the spin-singlet 1þ− state hc1ð1PÞ. For bb̄ mesons, the
bottomonium states are the spin-triplet 1−− states ϒðnSÞ
and the spin-singlet 1þ− states hc1ðnPÞ.
When applied to the cc̄ mesons listed in Tables I and II,

the spin selection rule implies that the only plausible
candidates for XYZ mesons with transitions to J=ψ ,
ψð2SÞ, or χcJð1PÞ are spin-triplet members of charmonium
hybrid or charmonium tetraquark multiplets. The only
plausible candidates for XYZ mesons with transitions to
hcð1PÞ are spin-singlet members of charmonium hybrid or
charmonium tetraquark multiplets. The spin selection rule
puts strong constraints on the interpretations of the XYZ
mesons in Table I with quantum numbers 1−−. In the
quarkonium hybrid multiplets listed in Table V, the only
1−− states are the spin-singlet members of the Πþ

u ð1PÞ and
Σ−
u ð1PÞmultiplets. In the quarkonium tetraquark multiplets

listed in Table V, there is a spin-singlet 1−− state in the
Σ−
u ð1PÞ multiplet and there are spin-triplet 1−− states in

the Π−
g ð1DÞ, Πþ

g ð1PÞ, Σþ
g ð1SÞ, and Σþ

g ð1DÞ multiplets.
The 1−− cc̄ meson Yð4220Þ in Table I, which decays into
hcð1PÞπþπ− [16], must be a spin singlet. If we assume that
the Yð4220Þ is the ground state of a B-O potential, it can
only be identified with the 1−− state in the Πþ

u ð1PÞ energy
level of the charmonium hybrid. The 1−− cc̄ meson
Yð4260Þ in Table I, which decays into J=ψπþπ− [2], must
be a spin triplet. If we assume that the Yð4260Þ is the
ground state in a B-O potential, it can be identified with the
1−− state in either the Πþ

g ð1PÞ or Σþ
g ð1SÞ energy level of

the isospin-0 charmonium tetraquark.
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When applied to the bb̄ mesons listed in Table III, the
spin selection rule presents a puzzle. The Zþ

b ð10610Þ and
Zþ
b ð10650Þ have hadronic transitions to both the spin-

triplet bottomonium states ϒðnSÞ and the spin-singlet
bottomonium states hbðnSÞ [5]. Thus their decays violate
the spin selection rule. This can be explained by the
Zþ
b ð10610Þ having a large B�B̄ molecular component

and the Zþ
b ð10650Þ having a large B�B̄� molecular com-

ponent [39–41]. Within the Born-Oppenheimer approach,
the large molecular components would arise from energy
levels in B-O potentials that are fortuitously close to the
B�B̄ and B�B̄� thresholds. In this case, the wave function of
the QQ̄ pair has significant support in the region of the
avoided crossing between the tetraquark potential and
the static-meson-pair potential. This results in a breakdown
of the single-channel approximation. To get a reasonable
description of these mesons, it is necessary to solve a
coupled-channel Schrödinger equation for the wave func-
tions in both potentials.
Several of the hadronic transitions for the neutral cc̄

mesons listed in Table I are the emission of a single vector
mesonω or ϕwith JPhCh

h ¼ 1−−. Since the kinetic energy of
the vector meson is small compared to its mass, we assume
it is emitted in an S-wave state. The B-O selection rules in
Eqs. (29), (30), and (31) reduce to jλ − λ0j ≤ 1, η ¼ η0, and
also ϵ ¼ −ϵ0 if λ ¼ λ0 ¼ 0. If the final-state configuration is
Σþ
g corresponding to a quarkonium, the selection rules

reduce further to Λ ≤ 1, η ¼ þ1, and also ϵ ¼ −1 if Λ ¼ 0.
They imply that the only possible initial-state configura-
tions are Π−

g , Πþ
g , and Σ−

g . The quarkonium hybrid
configurations with the deepest potentials are Πþ

u , Π−
u ,

and Σ−
u . None of these can make a transition to quarkonium

through the S-wave emission of a vector meson. The
quarkonium tetraquark configurations with the deepest
potentials are presumably Π−

g , Πþ
g , Σþ

g , and Σ−
u . Of these,

the only ones that can make a transition to quarkonium
through the S-wave emission of a vector meson are Π−

g and
Πþ

g . We first consider the Xð3915Þ, which decays into
J=ψω and has quantum numbers 0þþ [42]. In the Π−

g and
Πþ

g tetraquark multiplets listed in Table V, the only 0þþ

state is a spin-triplet member of Π−
g ð1PÞ. We therefore

identify Xð3915Þ with the 0þþ member of the Π−
g ð1PÞ

multiplet of isospin-0 charmonium tetraquarks. We next
consider the Yð4140Þ, Yð4274Þ, and Xð4350Þ, which have
C ¼ þ and decay into J=ψϕ. The ϕ in the final state
suggests that the meson is an ss̄ tetraquark. In the Π−

g and
Πþ

g tetraquark multiplets listed in Table V, there are spin-
triplet C ¼ þ states in the multiplets Π−

g ð1PÞ, Π−
g ð1FÞ, and

Πþ
g ð1DÞ. If we assume that the lowest of these three states,

Yð4140Þ, is in the ground state of a B-O potential, it must
be the 0þþ, 1þþ, or 2þþ member of the Π−

g ð1PÞ multiplet
of ss̄ charmonium tetraquarks. The energy difference of
about 230 MeV between the Yð4140Þ and the Xð3915Þ is
approximately twice the difference between the constituent

masses of an s quark and a lighter quark. It is therefore
compatible with the identifications of Yð4140Þ and
Xð3915Þ as states in the Π−

g ð1PÞ multiplets of ss̄ and
isospin-0 charmonium tetraquarks, respectively.
The hadronic transitions for the charged cc̄mesons listed

in Table II and for the charged bb̄mesons listed in Table III
are the emission of a single πþ with JPhCh

h ¼ 0−þ. The
Goldstone nature of the pion requires that it be emitted in a
P-wave state. The B-O selection rules in Eqs. (29), (30),
and (31) reduce to jλ − λ0j ≤ 1, η ¼ η0, and also ϵ ¼ ϵ0 if
λ ¼ λ0 ¼ 0. If the final-state configuration is Σþ

g corre-
sponding to a quarkonium, the selection rules reduce
further to Λ ≤ 1, η ¼ þ1, and also ϵ ¼ þ1 if Λ ¼ 0.
They imply that the only possible initial-state configura-
tions are Π−

g , Πþ
g , and Σþ

g . Isospin symmetry provides the
additional selection rule that the initial configuration must
have isospin 1. The quarkonium tetraquark configurations
with the deepest potentials are presumablyΠ−

g ,Πþ
g , Σþ

g , and
Σ−
u . The only ones that can make a transition to quarkonium

through the P-wave emission of a pion areΠ−
g ,Πþ

g , and Σþ
g .

The Zþ
c ð3900Þ decays into J=ψπþ [6]. Its neutral isospin

partner Z0
cð3900Þ has C ¼ −. The Π−

g , Πþ
g , and Σþ

g

tetraquark multiplets listed in Table V include many
spin-triplet C ¼ − states. If we assume the Z0

cð3900Þ is
in the ground state of a B-O potential, it must be the 0−−,
1−−, or 2−− state in theΠþ

g ð1PÞmultiplet or the 1−− state in
the Σþ

g ð1SÞ multiplet of isospin-1 charmonium tetraquarks.
The Zþ

c ð4020Þ decays into hcð1PÞπþ [20]. Its neutral
isospin partner Z0

cð4020Þ has C ¼ −. In the Π−
g , Πþ

g ,
and Σþ

g tetraquark multiplets listed in Table V, the spin-
singlet C ¼ − states are in the Π−

g ð1PÞ, Π−
g ð1FÞ, Πþ

g ð1DÞ,
and Σþ

g ð1PÞmultiplets. If we assume the Z0
cð4020Þ is in the

ground state of a B-O potential, it must be the 1þ− state in
the Π−

g ð1PÞmultiplet of isospin-1 charmonium tetraquarks.
The Zþ

1 ð4050Þ and Zþ
2 ð4250Þ decay into χc1ð1PÞπþ [43].

Their neutral isospin partners Z0
1ð4050Þ and Z0

2ð4250Þ have
C ¼ þ. The Π−

g , Πþ
g , and Σþ

g tetraquark multiplets listed
in Table V include many spin-triplet C ¼ þ states. If we
assume the Z0

1ð4050Þ is in the ground state of a B-O
potential, it must be the 0þþ, 1þþ, or 2þþ state in the
Π−

g ð1PÞ multiplet of isospin-1 charmonium tetraquarks.
The small difference between the masses of Zþ

c ð4020Þ and
Zþ
1 ð4050Þ is compatible with their being different states

in the Π−
g ð1PÞ multiplet of isospin-1 charmonium

tetraquarks.
Finally, we consider the implications of the B-O selec-

tion rules in Eqs. (29), (30), and (31) for the only neutral bb̄
XYZ meson listed in Table III. The Yð10890Þ has quantum
numbers 1−−, and it has been observed in the decay channel
ϒðnSÞπþπ− [44]. If this state is a ground-state energy level
of a B-O potential, the only bottomonium hybrid option is
the spin-singlet 1−− state in the Πþ

u ð1PÞ multiplet. The
bottomonium tetraquark options are the spin-triplet 1−−
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state in either the Πþ
g ð1PÞ multiplet or the Σþ

g ð1SÞ
multiplet. The decays of Yð10890Þ into ϒðnSÞπþπ− favors
one of the spin-triplet options. However these decays
may have large contributions from direct decays into
Zbð10610Þπ and Zbð10650Þπ, followed by the subsequent
decay of the Zb meson into ϒðnSÞπ. The Zbð10610Þ and
Zbð10650Þ also decay into hbðnPÞπ. Hadronic transitions
of the Zb mesons to both the spin-triplet bottomonium
states ϒðnSÞ and the spin-singlet bottomonium states
hbðnPÞ violate the spin selection rule. In order to determine
the implications of the B-O selection rules for the
Yð10890Þ, we would first need to determine whether its
direct decays obey the spin selection rule.

V. LATTICE GAUGE THEORY

In this section, we describe the existing results on the
spectra of hybrid and tetraquark cc̄ and bb̄ mesons that
have been calculated using lattice gauge theory. They
provide some information about the pattern of deviations
from the Born-Oppenheimer approximation.

A. Charmonium hybrids from lattice QCD

The spectrum of charmonium hybrids can be calculated
directly using lattice QCD. Exploratory calculations of the
cc̄ meson spectrum above the open-charm threshold were
carried out by Dudek et al. [45]. These calculations have
been extended by the Hadron Spectrum Collaboration [46].
The most recent published calculations used an anisotropic
lattice with 243 × 128 sites and a spatial lattice spacing of
about 0.12 fm. Their gauge field configurations were
generated using dynamical u, d, and s quarks, with the
s quark having its physical mass and the u and d quarks
unphysically heavy, corresponding to a pion mass of about
400 MeV. On a cubic lattice, there are 20 channels
analogous to the JPC quantum numbers in the continuum.
For each of the 20 lattice JPC channels, the Hadron
Spectrum Collaboration calculated the cc̄ meson spectrum
from the Euclidean time dependence of the cross correla-
tors for a set of operators whose number ranged from 4 to
26, depending on the channel. The operators included
“hybrid” operators, which are constructed out of the c
quark field and combinations of covariant derivatives that
include the gluon field strength, and “charmonium” oper-
ators, which are constructed out of the c quark field and
other combinations of covariant derivatives.
The Hadron Spectrum Collaboration identified 46 states

in the cc̄ meson spectrum with high statistical precision
[46]. These states had spins J as high as 4 and masses as
high as 4.6 GeV. The states that are more strongly excited
by hybrid operators are plausible candidates for charmo-
nium hybrids. All the charmonium hybrid candidates in the
calculations of Ref. [46] can be organized into four
complete heavy-quark spin-symmetry multiplets:

H1 ¼ f1−−; ð0; 1; 2Þ−þg; (32a)

H2 ¼ f1þþ; ð0; 1; 2Þþ−g; (32b)

H3 ¼f0þþ; 1þ−g; (32c)

H4 ¼ f2þþ; ð1; 2; 3Þþ−g: (32d)

A bold J indicates that JPC is an exotic quantum number
that is not possible if the constituents are only QQ̄. If we
consider only the central values of the energies of the states,
the ordering in energies of the multiplets from lowest to
highest are H1,H2,H3, and H4. If we take into account the
statistical errors in the energies, there may be small over-
laps between some of the multiplets. The calculations in
Ref. [46] are not definitive, because they were not extrapo-
lated to zero lattice spacing or to the physical values of the
u and d quark masses. However since light quarks are not
expected to be important as constituents in charmonium or
in charmonium hybrids, the results of Ref. [46] provide
plausible estimates for the masses of the charmonium
hybrids. The energy splittings between charmonium hybrid
states may be less sensitive to the effects of light quarks
than their masses.
In Ref. [15], the Yð4260Þ was identified as the lowest

1−− charmonium hybrid. The masses of other charmonium
hybrids were then estimated by using the results of
Ref. [46] for the splittings between cc̄ mesons. This
identification was motivated primarily by the very small
cross section for producing the Yð4260Þ in eþe− annihi-
lation, despite it having the appropriate quantum numbers
1−−. The small cross section can be explained by the small
wave function for cc̄ at the origin that is characteristic of a
quarkonium hybrid. The only 1−− state among the char-
monium hybrid multiplets in Eqs. (32) is the spin-singlet
member of H1. But an important decay mode of the
Yð4260Þ is the discovery channel J=ψπþπ−, which is a
spin-triplet decay channel. The identification of the
Yð4260Þ with this state is therefore disfavored by the spin
selection rule, which requires a spin-singlet charmonium
hybrid to decay preferentially into spin-singlet charmonium
states.
The BESIII Collaboration has recently observed the

Yð4220Þ, which has quantum numbers 1−− and decays
into hcπþπ−, which is a spin-singlet decay channel. The
Yð4220Þ can plausibly be identified with the spin-singlet
member of the H1 multiplet. We therefore identify the
Yð4220Þ as the 1−− member of the ground-state charmo-
nium hybrid multiplet. The masses of other charmonium
hybrids are then estimated by using the results of Ref. [46]
for the splittings between cc̄mesons. The results are shown
in Table VI. The errors are statistical uncertainties only.
They do not include the systematic errors associated with
the extrapolation to zero lattice spacing or to the small
physical masses of the u and d quarks.
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The Born-Oppenheimer interpretations of the multiplets
H1, H2, H3, and H4 in Eqs. (32) are the Πþ

u ð1PÞ, Π−
u ð1PÞ,

Σ−
u ð1SÞ, and Πþ

u ð1DÞ energy levels, respectively.
The results in Table VI provide some idea of the size of
corrections to the B-O approximation. In the leading B-O
approximation, the Πu potential is the same for ϵ ¼ þ1 and
−1. However the spin average for the Π−

u ð1PÞ multiplet is
about 100 MeV higher than the spin average for the
Πþ

u ð1PÞ multiplet. In the leading B-O approximation,
the states in each spin-symmetry multiplet are degenerate.
However the range of energies within the H1 multiplet is
about 140 MeV and the ranges of energies within the H2

and H4 multiplets are about 60 MeV. The Πþ
u ð1PÞ and

Πþ
u ð1DÞ energy levels are the ground state and the first

orbital-angular-momentum excitation of the Πþ
u configu-

ration. The splitting of 240 MeV between their spin
averages can be used as an estimate for orbital-angular-
momentum splittings.
An alternative interpretation of the lowest charmonium

hybrid spin-symmetry multiplets can be obtained by
interpreting the 1þ− ground-state gluelump as a constituent
gluon with no orbital angular momentum that is bound to a
color-octet heavy quark-antiquark pair. If the QQ̄ pair is in
an S-wave state, its spin-symmetry multiplet is f0−þ; 1−−g.
The spin-symmetry multiplet of the hybrid meson is
then 1þ− ⊗ f0−þ; 1−−g, which is equivalent to H1 ¼
f1−−; ð0; 1; 2Þ−þg. Thus the ground-state gluelump bound
to an S-waveQQ̄ pair gives rise to the same spin-symmetry

multiplet as the ground-state QQ̄ hybrid. If the QQ̄ pair
is in a P-wave state, its spin-symmetry multiplet is
f1þ−; ð0; 1; 2Þþþg. The spin-symmetry supermultiplet of
the hybrid mesons is then 1þ− ⊗ f1þ−; ð0; 1; 2Þþþg. The
spin-singlet states are ð0; 1; 2Þþþ and the spin-triplet states
are ð0; 1; 1; 1; 2; 2; 3Þþ−. They account for all the states in
H2, H3, and H4. Dudek has argued that the first excited
energy levels of a light-quark hybrid form such a super-
multiplet [47]. For the charmonium hybrid energy levels in
Table VI, the range of energies for the complete super-
multiplet consisting of H2, H3, and H4 is about 200 MeV,
while the ranges of energies within the individual multip-
lets H2, H3, and H4 are about 55, 5, and 56 MeV,
respectively. This suggests that the Bonn-Oppenheimer
interpretation provides a more useful first approximation
than the constituent gluelump interpretation.

B. Bottomonium hybrids from lattice NRQCD

The mass of the bottom quark is too large for lattice
QCD with a conventional isotropic lattice to be applied
directly to bb̄ mesons with currently available computa-
tional resources. One alternative is to use an anisotropic
lattice in which the lattice spacing is much finer in the
Euclidean time direction than in the three spatial direc-
tions. Another alternative is to use a lattice discretization
of an effective field theory called nonrelativistic QCD
in which the b quark is treated nonrelativistically [48].
This method can also be applied to cc̄ mesons, although
the errors associated with the nonrelativistic approxima-
tion are larger.
Quenched lattice NRQCD was used by Juge et al. to

calculate the masses of some of the states in the bb̄ meson
spectrum [14]. They used a lattice NRQCD action that
included only the leading terms in the velocity expansion,
which gives no spin splittings within spin-symmetry
multiplets. They used a lattice with 153 × 45 sites and a
spatial lattice spacing of about 0.12 fm. For each of five
lattice JPC channels, they calculated the bb̄ meson spec-
trum from the Euclidean time dependence of the cross
correlators for either one or four operators. The states that
are more strongly excited by hybrid operators are plausible
candidates for bottomonium hybrids. They identified four
candidate bottomonium hybrid states. The three lowest-
energy states had quantum numbers 1−−, 1þþ, and 0þþ.
They can be identified with the spin-singlet members of the
lowest three spin-symmetry multiplets H1, H2, and H3

defined in Eqs. (32). The fourth state, which has quantum
numbers 1−−, can be interpreted as a radial excitation of the
ground-state quarkonium hybrid. The corresponding multi-
plet is labeledH1

0. Candidates for such a multiplet were not
observed in the lattice QCD calculations of charmonium
hybrids in Ref. [46]. The reason for this could be that the
operators used to excite charmonium hybrids in Ref. [46]
did not couple sufficiently strongly to radial excitations.
The difference of about 440 MeV between the masses of

TABLE VI. Charmonium hybrid energies (in MeV) predicted
using the splittings between states calculated using lattice QCD in
Ref. [46]. The experimental input in parentheses is the measured
mass of the Yð4220Þ, which is identified as the 1−− hybrid in the
ground-state H1 multiplet. The column labeled henergyispin gives
the spin-averaged energies of the multiplets. The error bars take
into account the statistical errors in the lattice calculations. They
do not account for systematic errors associated with the extrap-
olations to zero lattice spacing and to the physical u and d quark
masses.

cc̄ hybrids
Multiplet Γ nL henergyispin JPC Lattice QCD

H1 Πþ
u 1P 4212� 22 1−− ð4216� 7Þ

0−þ 4126� 20
1−þ 4148� 22
2−þ 4265� 23

H2 Π−
u 1P 4314� 32 1þþ 4330� 21

0þ− 4317� 18
1þ− 4275� 41
2þ− 4326� 43

H3 Σ−
u 1S 4407� 22 0þþ 4403� 34

1þ− 4408� 25
H4 Πþ

u 1D 4448� 19 2þþ 4423� 26
1þ− 4428� 42
2þ− 4443� 24
3þ− 4479� 20
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the 1−− states in the H1
0 and H1 multiplets can be used as

an estimate for splittings between radial excitations.
Liao and Manke have calculated the bb̄ meson spectrum

using quenched lattice QCD on an anisotropic lattice [49].
They used a lattice with 163 × 128 sites, with a spatial
lattice spacing of 0.05 fm and a much finer lattice spacing
in the Euclidean time direction. They determined the
masses for three bb̄ hybrid mesons with exotic quantum
numbers from the Euclidean time dependence of the
correlators of appropriate operators. The 1−þ state is a
member of the H1 multiplet, while the 0þ− and 2þ− states
are members of the H2 multiplet.
Since the lattice calculations in Refs. [14] and [49] do not

include the effects of light-quark loops, any quantitative
predictions should be treated with caution. Nevertheless,
we proceed to use the results to estimate the energy levels
for bottomonium hybrids. In the lattice NRQCD calcula-
tions of Ref. [14], the lattice energy scale cancels out in the
ratios of the energy splittings of the bottomonium hybrids
to the 1P − 1S splitting of bottomonium. We therefore
determine the energy splittings by multiplying the ratios by
the observed 1P − 1S splitting of bottomonium. To deter-
mine the absolute energies of the bottomonium hybrids in
the lattice NRQCD calculation, we need an experimental
input to determine the energy offset. We arbitrarily choose
the mass of the 1−− member of the ground-state H1

multiplet to be the BB̄ threshold, which is 10559 MeV.
The splittings from Ref. [14] are then used to estimate
the masses of other bottomonium hybrids, which are given
in Table VII. To determine the absolute energies of the
bottomonium hybrids in the lattice QCD calculation, we
arbitrarily choose the mass of the 1−þ member of the
ground-state H1 multiplet to be the BB̄ threshold.
The splittings from Ref. [49] are then used to estimate
the masses of other bottomonium hybrids, which are given

in Table VII. The error bars in Table VII take into account
the statistical errors in the lattice calculations and the
uncertainties from setting the heavy-quark mass. They
do not account for systematic errors associated with the
extrapolations to zero lattice spacing and with the omission
of light-quark loops. The error bars in the mass splittings
from the lattice QCD calculation are much larger than those
from the lattice NRQCD calculation. They are comparable
to the splitting between the H1 and H3 multiplets.
We can compare the mass splittings for bottomonium

hybrids in Table VII calculated using quenched lattice
NRQCD with the mass splittings for charmonium hybrids
in Table VI calculated using lattice QCD with dynamical
light quarks. The central value of the splitting between the
1þþ state of H2 and the 1−− state of H1 for bottomonium
hybrids is about 1=3 that for charmonium hybrids. The
central value of the splitting between the 0þþ state of H3

and the 1−− state of H1 for bottomonium hybrids is about
twice as large as that for charmonium hybrids. Definitive
calculations of the spectrum of bottomonium hybrids using
lattice NRQCD with dynamical light quarks would be
valuable.

C. Charmonium tetraquarks from lattice QCD

Lattice QCD has not yet provided much information on
quarkonium tetraquarks. Prelovsek and Leskovec have made
a first attempt to observe the charmonium tetraquark
Zcð3900Þ using lattice QCD with dynamical u and d quarks
under the assumption that its IGðJPÞ quantum numbers are
1þð1þÞ [50]. They looked for a signal for the Zc in the cross
correlators of six operators. Three of the operators were
linear combinations of the product of color-singlet cq̄ and qc̄
operators, so they couple most strongly to states that consist
of a pair of charm mesons D�D̄. The other three operators
were linear combinations of the product of color-singlet cc̄
and qq̄ operators, so they couple most strongly to states that
consist of J=ψπ. The only signals they observed were for
scattering states of the meson pairs D�D̄ and J=ψπ.
In the Born-Oppenheimer picture, the component of a

charmonium tetraquark in which the cc̄ pair is close
together can be approximated by a charmonium adjoint
meson, which consists of a light qq̄ pair bound to a color-
octet cc̄ pair. This suggests that the operators that couple
most strongly to charmonium tetraquarks could be linear
combinations of products of a color-octet cc̄ operator and a
color-octet qq̄ operator. Such operators would have sup-
pressed couplings to scattering states consisting of a pair of
mesons. Operators with this structure should be included in
a comprehensive study of charmonium tetraquarks in
lattice QCD.

D. Quarkonium hybrids from QCD sum rules

Numerous papers have been written in which QCD sum
rules are used to postdict the masses of individual XYZ
mesons in Tables I, II, and III. A global analysis of the

TABLE VII. Bottomonium hybrid energies (in MeV) predicted
using the splittings between states calculated using quenched
lattice NRQCD in Ref. [14] and using quenched lattice QCD in
Ref. [49]. The inputs in parentheses for the Πþ

u ð1PÞ energy levels
have been chosen arbitrarily to be the BB̄ threshold. The error
bars take into account the statistical errors in the lattice calcu-
lations and the uncertainties from setting the heavy-quark mass.
They do not account for systematic errors associated with
extrapolations to zero lattice spacing and from the omission of
light-quark loops.

bb̄ hybrids bb̄ hybrids
Multiplet Γ nL JPC Lattice NRQCD Lattice QCD

H1 Πþ
u 1P 1−− (10559)

1−þ (10559)
H2 Π−

u 1P 1þþ 10597� 65
0þ− 10159� 362
2þ− 11323� 257

H3 Σ−
u 1S 0þþ 10892� 36

H1
0 Πþ

u 2P 1−− 10977� 41
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pattern of XYZ states predicted by QCD sum rules would
be more useful. Such an analysis has been carried out for
charmonium hybrids and bottomonium hybrids by Chen
et al. [51]. They identified a total of ten hybrid states, with
the same pattern of masses for charmonium hybrids and
bottomonium hybrids. The states with the four lowest
masses are those in the multiplet H1 in Eq. (32a). The
five states with the next highest masses have quantum
numbers that correspond to five of the eight states in the
multiplets H2, H3, and H4 in Eqs. (32). The highest-mass
state identified in Ref. [51] had the exotic quantum
numbers 0−−. In the Born-Oppenheimer approach, the
lowest 0−− quarkonium hybrid could be a spin-triplet state
in the first orbital-angular-momentum excitation of the Σ−

g
hybrid potential. It is useful to compare the QCD sum rule
predictions for charmonium hybrids with those from lattice
QCD in Table VI. The lowest-mass state is predicted by
QCD sum rules to be the 1−− state ofH1, while lattice QCD
predicts it to be the 0−þ state of H1. Lattice QCD predicts
that the higher-mass states can be arranged into multiplets
H2,H3, and H4 with increasing masses. QCD sum rules do
not predict any such ordering of the masses in the three
multiplets. A 0−− charmonium hybrid was not observed in
the lattice QCD calculations of Ref. [46].

VI. PHENOMENOLOGICAL ANALYSIS

In this section, we present predictions for energy levels
of charmonium hybrids and bottomonium hybrids using the
Born-Oppenheimer approximation in conjunction with
inputs from lattice gauge theory. We also present a
speculative illustration of some of the energy levels of
charmonium tetraquarks.

A. Quarkonium

A crucial parameter in the B-O approximation is the
heavy-quark mass mQ, which appears in the radial
Schrödinger equation in Eq. (21). If there were a rigorous
derivation of the B-O approximation as the leading term in
a systematically improvable approximation to QCD, it
would be possible to determine the appropriate value of
mQ from the parameters of QCD. In the absence of such a
derivation, an alternative is to treat the charm quark mass
mc and the bottom quark mass mb as phenomenological
parameters. Since we wish to determine the energy levels of
quarkonium hybrids and quarkonium tetraquarks by solv-
ing the Schrödinger equation, we choose to determine mc
and mb by fitting the quarkonium energy levels predicted
by the Schrödinger equation in the Σþ

g potential to the
measured energy levels of charmonium and bottomonium.
The energy levels EnL for quarkonium are eigenvalues of

the radial Schrödinger equation in Eq. (21) with potential
VΣþ

g
ðrÞ and with Λ ¼ 0 and JΓ ¼ 0. The Σþ

g potential has
been calculated using lattice QCD. An obvious way to
determine mQ is to solve the Schrödinger equation for that

potential and then fit the single parameter mQ to the
observed quarkonium energy levels. One problem with
this procedure is that there are strong correlations between
mQ and the parameters of the potential. These parameters
include the string tension σ, which determines the flavor-
singlet B-O potentials at large r by Eq. (7). The value of σ
from lattice QCD has a 10% error, and this limits the
accuracy of the determination of mQ. To deal with this
problem, we will approximate the Σþ

g potential by the
Cornell potential in Eq. (5) and determine the quark masses
mc and mb as well as the parameters of the potential,
including σ, by fitting the observed energy levels of
charmonium and bottomonium. The fitted value of σ will
then be used in the parametrization of the hybrid potentials.
The energy levels of quarkonium hybrids will be obtained
by solving the Schrödinger equation for those potentials
with the fitted values of mc and mb.
The quarkonium energy levels in the Σþ

g potential are
labeled by a radial quantum number n ¼ 1; 2; 3;… and
by an orbital-angular-momentum quantum number L ¼
0; 1; 2;… (or S; P;D;…). For each energy level nL, there
are multiple states with different JPC quantum numbers that
are related by heavy-quark spin symmetry. The spin-
symmetry multiplets for the Σþ

g ð1SÞ, Σþ
g ð1PÞ, and

Σþ
g ð1DÞ energy levels are given in Table V. Three complete

charmonium multiplets below the DD̄ threshold have been
observed: 1S, 1P, and 2S. Four complete bottomonium
multiplets below the BB̄ threshold have been observed: 1S,
1P, 2S, and 2P.
The Schrödinger equation in the Σþ

g potential predicts
that the spin states in the multiplet for an energy level nL
are all degenerate. Spin splittings arise from additional
terms in the Hamiltonian that can be treated as perturba-
tions. The energy levels in the Σþ

g potential can be
interpreted as averages over the multiplet weighted by
the number of spin states. The spin-averaged mass for the
1S energy level of charmonium, fηcð1SÞ; J=ψg, is

Mcc̄ð1SÞ ¼ ðMηcð1SÞ þ 3MJ=ψ Þ=4: (33)

For all the observed P-wave multiplets, the mass of the
spin-singlet 1þ− state is consistent with the spin-weighted
average of the masses of the spin-triplet states 0þþ, 1þþ,
and 2þþ. A more precise value for the spin-weighted
average mass for the multiplet can therefore be obtained
by just using the spin-triplet states. Thus the spin-averaged
mass for the 1P energy level of charmonium, fhcð1PÞ;
ðχc0ð1PÞ; χc1ð1PÞ; χc2ð1PÞÞg, can be approximated by

Mcc̄ð1PÞ ¼ ðMχc0ð1PÞ þ 3Mχc1ð1PÞ þ 5Mχc2ð1PÞÞ=9: (34)

The spin-averaged masses for the 1S, 1P, and 2S charmo-
nium multiplets and the 1S, 1P, 2S, and 2P bottomonium
multiplets are given in Table VIII.
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The Schrödinger equation for Q and Q̄ interacting
through the Cornell potential in Eq. (5) can be solved to
obtain the energy levels EnL as functions of the quark mass
mQ and the parameters σ, κ, and V0. By dimensional
analysis, the energy levels have the form

EðQÞ
nL ¼ 2mQ þ V0 þ ðσ2=mQÞ1=3ζnLðκðm2

Q=σÞ1=3Þ; (35)

where ζnLðxÞ is a dimensionless function of its argument.
The additive constant has been assumed to be the sum of
2mQ and a term V0 that is independent of the heavy quark.

The splittings EðQÞ
n0L0 − EðQÞ

nL between energy levels depend
only on the combinations of parameters σ2=mQ and
κðm2

Q=σÞ1=3. Thus if we only fit the observed energy
splittings, the heavy-quark mass is completely arbitrary.
Any change in mQ can be compensated for all the energy
splittings simultaneously by changes in σ and κ. One can
determine 2mQ þ V0 by subsequently fitting one of the

energy levels, such as the ground-state energy EðQÞ
1S .

However, because 2mQ þmQ is determined by a single
measurement only, it is more sensitive to the choice of the
fitting observable than the combinations σ2=mQ and
κðm2

Q=σÞ1=3.
By fitting observed splittings between charmonium

energy levels and between bottomonium energy levels
simultaneously, one can determine the combinations
σ2=mb and κðm2

b=σÞ1=3 and the ratio mb=mc of the quark
masses, but the individual quark mass mb remains com-
pletely arbitrary. The individual quark masses and V0 can
be determined by subsequently fitting one of the charmo-
nium energy levels and one of the bottomonium energy

levels, such as the ground-state energies EðcÞ
1S and EðbÞ

1S .
However, because it is determined by two measurements
only, mb is more sensitive to the choice of the fitting
observables than mb=mc, σ2=mb, and κðm2

b=σÞ1=3.
One way to decrease the sensitivity to the choice of

fitting observables is to impose additional constraints on
the quark masses. One such constraint is motivated by
heavy-quark symmetry, which implies that the mass of a

heavy-light meson has an expansion in powers of 1=mQ.
The leading term in the expansion is mQ. The next-to-
leading term of order m0

Q can be interpreted as the
constituent mass of the light quark. This constituent quark
mass cancels in the difference between the masses of a
bottom meson and a charm meson with the same light
flavor, leaving the difference between the quark masses. We
choose to determine the quark mass difference from the
difference between the average of the Bþ and B0 masses
and the average of the D0 and Dþ masses:

mb −mc ¼ mB −mD ¼ 3412.2� 0.2 MeV: (36)

We determine the parameters of the Cornell potential
model by minimizing the χ2 for the 7 spin-averaged energy
levels for charmonium and bottomonium given in
Table VIII, with the 7 energy levels equally weighted.
The constraint in Eq. (36) is imposed on the quark masses,
so there are only four independent parameters: σ, κ, V0, and
mb. The resulting values of the parameters are given in
Table VIII. The heavy-quark masses are mc ¼ 1.48 GeV
and mb ¼ 4.89 GeV. The constituent mass for the u and d
quarks can be defined by the difference betweenmB andmb
or between mD and mc, which are equal according to the
constraint in Eq. (36). Using the fitted values for mc or mb,
the constituent mass of the light quarks is 390 MeV.
Solving the Schrödinger equation for the Cornell potential
with the parameters given in Table VIII, we obtain
predictions for all the energy levels of charmonium and
bottomonium. The resulting predictions are compared with
the observed energy levels in Table IX. For the spin-
averaged energy levels used in the fit, the differences
between the predicted and observed energy levels are at
most 22 MeV. The highest energy levels in both the
charmonium and bottomonium spectrum are underpre-
dicted by about 100 MeV. The fitted value of the string
tension in Table VIII, σ ¼ 0.187 GeV2, is compatible to
within errors with the value 0.20� 0.02 GeV2 determined
by fitting lattice QCD calculations of the Σþ

g potential for
two flavors of dynamical light quarks [29]. The fitted value
κ ¼ 0.489 in Table VIII is significantly larger than the value
0.368 obtained by fitting the lattice QCD calculations.
Heavy-quark spin symmetry implies that the mass

splitting between the ground-state spin-triplet and spin-
singlet mesons enters at order 1=mQ. This suggests that a
more accurate constraint on the quark masses could be
obtained by replacing mD in Eq. (36) by the spin-weighted
average of the spin-triplet mesons D� and the spin-singlet
mesons D and similarly for mB. This would constrain the
quark mass difference to be 3340.5 MeV. If this constraint
is imposed instead of Eq. (36), the Cornell potential model
gives a slightly better fit to the charmonium spectrum and a
slightly worse fit to the bottomonium spectrum. However it
gives much less reasonable values for the heavy-quark
masses: mc ¼ 2.60 GeV and mb ¼ 5.94 GeV. Given these

TABLE VIII. Spin-averaged energy levels (in MeV) for char-
monium and bottomonium multiplets and the parameters of the
Cornell potential obtained by fitting those energies with the
constraint mb −mc ¼ 3412.2 MeV.

Charmonium Bottomonium

1S 3067.9� 0.3 9445.0� 0.7
1P 3525.3� 0.1 9899.9� 0.4
2S 3674.3� 0.3 10017.2� 1.1
2P 10260.2� 0.5
mQ (GeV) 1.48 4.89
σ (GeV2) 0.187
κ 0.489
V0 (GeV) −0.242
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fitted values of the heavy-quark masses, the constituent
mass for the light quarks is negative. In light of this
difficulty, we choose to use instead the constraint on the
heavy-quark masses in Eq. (36).

B. Hybrids

The energy levels of quarkonium hybrids in the B-O
approximation can be calculated by solving the radial
Schrödinger equation in Eq. (21) for the hybrid potentials.
An accurate parametrization for the Πu hybrid potentials
calculated using quenched lattice QCD in Ref. [14] is given
by Eq. (7) with nΓ ¼ 1 for r > r� and by Eq. (8) for r < r�,
along with the matching conditions at r ¼ r� in Eqs. (10).
An accurate parametrization of the difference between the
Σ−
u and Πu hybrid potentials for r < 2.4 fm is given by

Eq. (11). The parameter r0 that appears in Eqs. (8) and (11)
and in the matching conditions in Eqs. (10) is the Sommer
radius defined by Eq. (6), which is determined from
bottomonium spectroscopy to be r0 ¼ 0.50 fm. The string
tension σ enters both potentials through the parametrization
of the Πu potential for r > r� in Eq. (7) and through the
matching conditions at r ¼ r� in Eqs. (10). We use the
value σ ¼ 0.187 GeV2 in Table VIII, which was obtained
by fitting the charmonium and bottomonium spectra. The
matching point is then determined by Eq. (10b) to be
r� ¼ 1.5r0. The difference between the energy offsets is
determined by Eq. (10a) to be EΠu

− E0 ¼ 2.6r−10 .
Given our parametrizations of the Πu and Σ−

u potentials
and given the quark masses mc ¼ 1.48 MeV and mb ¼
4.89 MeV listed in Table VIII, the quarkonium hybrid
energy levels can be obtained by solving the radial
Schrödinger equation in Eq. (21). For charmonium hybrids,
the ground-state Πuð1PÞ energy level is predicted to be
4246 MeV, and the Σ−

u ð1SÞ energy level is predicted to be
higher by 320 MeV. For bottomonium hybrids, the ground-
state Πuð1PÞ energy level is predicted to be 10864 MeV,

and the Σ−
u ð1SÞ energy level is predicted to be higher by

233 MeV.
It is useful to compare the energy levels of charmonium

hybrids in the B-O approximations with the spin-averaged
energy levels from lattice QCD in Table VI. In the B-O
approximation, the Πþ

u and Π−
u configurations have the

same potential VΠu
ðrÞ, so they have the same energy levels.

However the lattice QCD result in Table VI for the spin-
averaged energy of the H2 ¼ Π−

u ð1PÞ multiplet is about
100 MeV larger than that for the H1 ¼ Πþ

u ð1PÞ multiplet.
With our parametrizations of the Πu and Σ−

u potentials, the
Σ−
u ð1SÞ energy level for charmonium hybrids is predicted

to be higher than the Πuð1PÞ energy level by 320 MeV.
However the lattice QCD result in Ref. [46] for the spin-
averaged energy of the H3 ¼ Σ−

u ð1SÞ multiplet is about
195 MeV higher than that for the H1 ¼ Π−

u ð1PÞ multiplet.
The spectra of charmonium hybrids and bottomonium

hybrids are illustrated in Figs. 2 and 3, respectively. Only
the energy levels for the ground state, the first two orbital-
angular-momentum excitations, and the first radial
excitation in each potential are shown. To facilitate the
comparison with later results, we have adjusted the energy
offsets for the charmonium hybrids and bottomonium
hybrids separately. For charmonium hybrids, we choose
the offset so the Πuð1PÞ energy level is equal to 4212 MeV,
which is the central value of the spin-averaged energy for
the H1 multiplet from lattice QCD given in Table VI. For
bottomonium hybrids, we arbitrarily choose the offset so
theΠuð1PÞ energy level is equal to the BB̄ threshold, which
is 10.559 GeV. The pattern of the energy levels for
charmonium hybrids and bottomonium hybrids in
Figs. 2 and 3 are quite similar. The orbital-angular-
momentum splittings are smaller than the radial splittings.
The energy splittings relative to the Πuð1PÞ energy level
are smaller for bottomonium hybrids than for charmonium
hybrids. For the energy levels shown in Figs. 2 and 3,
the splittings for bottomonium hybrids are less than 3=4

TABLE IX. Energy levels (in MeV) for charmonium and bottomonium. The energy levels predicted by the
Cornell potential with the parameters given in Table VIII are compared to the central values of the observed energy
levels from Ref. [52]. The observed energy levels labeled nL are spin averaged. They are enclosed in parentheses,
indicating that they were used as inputs to determine the parameters of the Cornell potential. The observed energy
levels labeled n2Sþ1LJ are for individual spin states.

Charmonium Bottomonium
n2Sþ1LJ Predicted Observed Difference n2Sþ1LJ Predicted Observed Difference

1S 3077 (3068) þ9 1S 9442 (9445) −3
1P 3503 (3525) −22 1P 9908 (9900) þ8
2S 3687 (3674) þ13 2S 10009 (10017) −8
13D1 3802 3773 þ29 13D2 10155 10164 −9
23P2 3976 3927 þ49 2P 10265 (10260) þ5
33S1 4138 4039 þ99 33S1 10356 10355 þ1
23D1 4218 4153 þ65
43S1 4525 4421 þ104 43S1 10638 10579 þ59

53S1 10885 10876 þ9
63S1 11110 11019 þ91
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of those for the corresponding charmonium hybrids.
The bottomonium hybrids are smaller than the correspond-
ing charmonium hybrids. One measure of the size is the
outer classical turning radius at which the potential is equal
to the energy of the state. For the energy levels shown in
Figs. 2 and 3, the outer classical turning radii for the
bottomonium hybrids are less than 3=4 of those for the
corresponding charmonium hybrids.
We can probably get better estimates for the energies of

charmonium hybrids by using lattice QCD to determine the
ground-state energy for each B-O configuration and using
the Schrödinger equation only to calculate the differences
between the energy levels nL for that B-O configuration.
As the inputs to determine the ground-state energy levels
Πþ

u ð1PÞ,Π−
u ð1PÞ, and Σ−

u ð1SÞ for charmonium hybrids, we
choose the lattice QCD results for the spin-averaged
energies of the H1, H2, and H3 multiplets in Table VI.

As the inputs to determine the ground-state energy levels
Πþ

u ð1PÞ, Π−
u ð1PÞ, and Σ−

u ð1SÞ for bottomonium hybrids,
we choose the lattice NRQCD results for the energies of
the 1−−, 1þþ, and 0þþ states in Table VII. The resulting
predictions for the energy levels of charmonium hybrids
and bottomonium hybrids are given in Table X.

C. Tetraquarks

If the tetraquark potentials were known, we could
calculate the energy levels of quarkonium tetraquarks in
the B-O approximation by solving the radial Schrödinger
equation in Eq. (21). Unfortunately, our only information
about the tetraquark potentials from QCD is that the lowest-
energy adjoint mesons in quenched lattice QCD are a
vector 1− and a pseudoscalar 0−. In Sec. III E, we inferred
from the existence of these adjoint mesons that the deepest
tetraquark B-O potentials are Πg and Σþ

g , which are equal at
r ¼ 0, and Σ−

u . We have no information from QCD about
the behavior of these potentials at nonzero r. In order to
illustrate the B-O approximation for quarkonium tetra-
quarks, we will make the simple assumption that the
tetraquark Πg and Σþ

g potentials have the same shapes as
the hybrid Πu and Σ−

u potentials, which are shown in Fig. 2.
Under this assumption, the splittings between energy levels
in the tetraquark Πg potential are the same as those in the
hybrid Πu potential, and the splittings between energy
levels in the tetraquark Σþ

g potential are the same as those in
the hybrid Σ−

u potential. The splittings in the hybrid
potentials are given in Table X. If the ground-state energy
level for a tetraquark B-O configuration were known, then
all the higher energy levels would be determined.

FIG. 2 (color online). Lowest energy levels for charmonium
hybrids in the Πu and Σ−

u potentials. The charm quark mass is
mc ¼ 1.48 GeV. The energy offset has been chosen so that the
ground-state Πuð1PÞ energy level is 4.212 GeV.

FIG. 3 (color online). Lowest energy levels for bottomonium
hybrids in the Πu and Σ−

u potentials. The bottom quark mass is
mb ¼ 4.89 GeV. The energy offset has been chosen so that the
ground-state Πuð1PÞ energy level is 10.559 GeV.

TABLE X. Energy levels (in MeV) for charmonium and
bottomonium hybrids in the Πu and Σ−

u potentials. For each
configuration Γ, the ground-state energy level in parentheses is an
input. The inputs for the charmonium hybrids are the spin-
averaged energies of the H1, H2, and H3 multiplets from the
lattice QCD results in Table VI. The inputs for the bottomonium
hybrids are the energies of the 1−−, 1þþ, and 0þþ states from the
lattice NRQCD results in Table VII. The energy splittings for the
first orbital-angular-momentum excitation and the first radial
excitation are calculated by solving the radial Schrödinger
equation in the Πu and Σ−

u potentials. A boldfaced J indicates
an exotic quantum number.

Multiplet Γ nL cc̄ hybrid bb̄ hybrid S ¼ 0 S ¼ 1

H1 Πþ
u 1P (4212) (10559) 1−− ð0; 1; 2Þ−þ

H4 1D 4394 10659 2þþ ð1; 2; 3Þþ−
H1

0 2P 4562 10766 1−− ð0; 1; 2Þ−þ
H2 Π−

u 1P (4314) (10597) 1þþ ð0; 1; 2Þþ−
1D 4496 10697 2−− ð1; 2; 3Þ−þ
2P 4664 10804 1þþ ð0; 1; 2Þþ−

H3 Σ−
u 1S (4407) (10892) 0þþ 1þ−

1P 4544 10979 1−− ð0; 1; 2Þ−þ
2S 4822 11171 0þþ 1þ−
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In Sec. IV D, selection rules for hadronic transitions
were used to identify some of the XYZ mesons listed in
Tables I and II with ground-state energy levels of charmo-
nium hybrids and charmonium tetraquarks. The Zþ

c ð4020Þ
and Zþ

2 ð4050Þ were identified as spin-singlet and spin-
triplet energy levels in the isospin-1 Π−

g ð1PÞ multiplet,
respectively. The Xð3915Þ and Yð4140Þ were identified as
spin-triplet states in the isospin-0 and ss̄ Π−

g ð1PÞ multip-
lets, respectively. Two possible identifications were pro-
posed for both the Zþ

c ð3900Þ and Yð4260Þ. The Zþ
c ð3900Þ

could be a spin-triplet state in either the isospin-1 Πþ
g ð1PÞ

multiplet or the isospin-1 Σþ
g ð1SÞ multiplet. The Yð4260Þ

could be a spin-triplet 1−− state in either the isospin-0
Πþ

g ð1PÞ multiplet or the isospin-0 Σþ
g ð1SÞ multiplet. The

hybrid Πu potential is deeper than the hybrid Σ−
u potential.

If the tetraquark Πg potential is similarly deeper than the
tetraquark Σþ

g potential, the more plausible identifications
are Zþ

c ð3900Þ as the spin-triplet state in the isospin-1
Πþ

g ð1PÞ multiplet and Yð4260Þ as the spin-triplet 1−− state
in the isospin-0 Σþ

g ð1SÞ multiplet.
A speculative illustration of the spectrum of charmo-

nium tetraquarks is given in Table XI. The masses of the
Zþ
c ð4020Þ, Xð3915Þ, and Yð4140Þ are used as the inputs

for the Π−
g ð1PÞ energy levels of the isospin-1, isospin-0,

and ss̄ tetraquarks, respectively. The mass of the
Zþ
c ð3900Þ is used as the input for the Πþ

g ð1PÞ energy

level of the isospin-1 tetraquark. The inputs for the
Πþ

g ð1PÞ energy levels of the isospin-0 and ss̄ tetraquarks
are then obtained by assuming that the differences
between the Πþ

g ð1PÞ and Π−
g ð1PÞ energies are the same

for isospin 1, isospin 0, and ss̄. The mass of the Yð4260Þ is
used as the input for the Σþ

g ð1SÞ energy level for the
isospin-0 tetraquark. The inputs for the Σþ

g ð1SÞ energy
levels of the isospin-1 and ss̄ tetraquarks are then obtained
by assuming that the differences between the Σþ

g ð1SÞ and
Π−

g ð1PÞ energies are the same for isospin 1, isospin 0, and
ss̄. In Table XI, the energies of the first orbital-angular-
momentum excitation and the first radial excitation for
each B-O configuration were obtained by assuming that
their splittings from the ground state are the same as the
analogous splittings for charmonium hybrids in Table X.
The splittings between the Π−

g energy levels in Table XI
and those between theΠþ

g energy levels in Table XI are the
same as those between the Πþ

u energy levels or between
the Π−

u energy levels in Table X. The splittings between
the Σþ

g energy levels in Table XI are the same as those
between the Σ−

u energy levels in Table X. No results are
given in Table XI for the energy levels in the Σ−

u potential,
because there are no XYZ mesons that are plausible
candidates for any of the Σ−

u ð1PÞ energy levels. The
energy levels in Table XI are based on very naive
assumptions about the tetraquark potentials, so they
should be treated as illustrative only.

VII. OUTLOOK

The Born-Oppenheimer (B-O) approximation provides a
starting point for a coherent description of all the XYZ
mesons that is based firmly on QCD. The basis for the B-O
approximation is that an XYZ meson contains a heavy QQ̄
pair, and the time scale for the evolution of the gluon
and light-quark fields is small compared to that for the
motion of the Q and Q̄. The B-O approximation was first
developed by Juge et al. for flavor-singletQQ̄mesons [14],
which are quarkonium and quarkonium hybrids. However,
it can also be applied to QQ̄ mesons with light-quarkþ
antiquark flavors, which are quarkonium tetraquarks [15].
Most of the constituent models for the XYZ mesons that
have been proposed can be interpreted as different regions
of the QQ̄ wave function in the B-O approximation.
The B-O approximation involves an adiabatic approxi-

mation that reduces the aspects of the problem that involve
gluon and light-quark fields to the simpler problem of
calculating B-O potentials, which are the energy levels of
the light fields in the presence of static Q and Q̄ sources.
The B-O potentials can be calculated using lattice QCD.
In order to develop quantitative phenomenology of the
XYZ mesons based on the B-O approximation, it is
important to have calculations of all the most relevant
B-O potentials using lattice QCD with dynamical light
quarks. Juge et al. calculated many of the hybrid potentials

TABLE XI. Energy levels (in MeV) for charmonium tetra-
quarks in the Πg, Σþ

g , and Σ−
u potentials. The boldfaced

experimental inputs in parentheses are the measured masses of
the Zþ

c ð4020Þ, Xð3915Þ, Yð4140Þ, Zþ
c ð3900Þ, and Yð4260Þ. The

other inputs in parentheses are obtained by assuming that the
splittings between ground-state energy levels are the same for
isospin 1, isospin 0, and ss̄. The energy splittings for the first
orbital-angular-momentum excitation and the first radial excita-
tion are calculated by solving the Schrödinger equation in the
tetraquark Πg and Σþ

g potentials under the assumption that they
have the same shapes as the hybrid Πu and Σ−

u potentials. For an
isospin-1 tetraquark, the JPC’s are those of the neutral member of
the isospin multiplet. A boldfaced J indicates an exotic quantum
number.

Γ nL Isospin 1 Isospin 0 ss̄ S ¼ 0 S ¼ 1

Π−
g 1P ð4023Þ ð3918Þ ð4145Þ 1þ− ð0; 1; 2Þþþ

1D 4205 4100 4327 2−þ ð1; 2; 3Þþþ
2P 4373 4268 4495 1þ− ð0; 1; 2Þþþ

Πþ
g 1P ð3898Þ (3793) (4020) 1−þ ð0; 1; 2Þ−−

1D 4080 3975 4201 2þ− ð1; 2; 3Þþþ
2P 4248 4143 4370 1−þ ð0; 1; 2Þ−−

Σþ
g 1S (4368) ð4263Þ (4490) 0−þ 1−−

1P 4505 4400 4627 1þ− ð0; 1; 2Þþþ
2S 4783 4678 4905 0−þ 1−−

Σ−
u 1S 0þþ 1þ−

1P 1−− ð0; 1; 2Þ−þ
2S 0þþ 1þ−
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using quenched lattice QCD [14]. There have been some
calculations of the two deepest hybrid potentials using
lattice QCD with dynamical light quarks [29,31]. There
have been no calculations of tetraquark potentials using
lattice QCD. However there have been calculations of the
energies of static adjoint mesons using quenched lattice
QCD [34]. We have inferred the Λϵ

η quantum numbers of
the deepest tetraquark potentials from the JPC quantum
numbers of the lowest-energy static adjoint mesons.
Calculations of the deepest tetraquark potentials are needed
to confirm their Λϵ

η quantum numbers and to determine
their behavior as functions of r.
The adiabatic approximation reduces the QCD problem of

determining the spectrum of QQ̄ mesons to solving the
multichannel Schrödinger equation for a QQ̄ pair with
infinitely many coupled channels. The B-O approximation
involves a further single-channel approximation that reduces
the problem to solving the Schrödinger equation for a single
radial wave function. This single-channel approximation
may be adequate for many of the XYZ mesons. However it
breaks down if the mass of the meson is too close to a
threshold for a pair of heavy mesons. In this case, it is
necessary to take into account the coupling to the meson-pair
scattering channel. Near the meson-pair threshold, there
will be an avoided crossing between a B-O potential that
increases linearly at large r and one that approaches a
constant equal to twice the static-meson energy. Lattice QCD
calculations of B-O potentials in regions near their avoided
crossings are needed in order to determine the effects of
the couplings between the channels.
The B-O approximation can be used to describe hadronic

transitions between XYZ mesons. The spin selection rule
and the B-O selection rules provide strong constraints on
the XYZ mesons that are plausible candidates for specific
energy levels in the hybrid and tetraquark potentials [38].
If these potentials are calculated as functions of r, a much
more detailed phenomenology of the hadronic transitions
can be developed. Given an observed hadronic transition
between energy levels in two B-O potentials, the rate for
the same hadronic transition between any other pair of
energy levels can be estimated using overlap integrals of
radial wave functions and the group theory for angular
momentum.

To understand the XYZ mesons in detail, it will be
necessary to develop a framework in which corrections to
the B-O approximation can be calculated systematically.
There is an effective field theory for the QQ̄ sector of QCD
called potential NRQCD in which the QCD interactions
are reduced to interaction potentials between the Q and Q̄
and multipole couplings of the QQ̄ pair to soft gluons [32].
Unfortunately, this effective field theory seems to be
applicable only to the most deeply bound quarkonium
states and it may be quantitatively useful only for the ground-
state bottomonium states ϒð1SÞ and ηbð1SÞ. The develop-
ment of an effective field theory in which the adiabatic
approximation emerges as a first approximation would
provide a powerful framework for describing the XYZ
mesons.
The B-O approximation predicts that the observed XYZ

mesons are only the tip of an iceberg. There are many more
XYZ mesons waiting to be discovered. The selection rules
for hadronic transitions can provide some guidance for
searches for additional XYZ mesons. New XYZ mesons
could be discovered in existing data from the B-factory
experiments Belle and BABAR and from the LHC experi-
ments ATLAS, CMS, and LHCb. The BESII Collaboration
is continuing to discover additional cc̄ XYZ mesons at
BEPC-II. Even more XYZ mesons should be discovered
at the upcoming high-luminosity B factory SuperBelle
and at the upcoming higher-luminosity runs of the LHC.
Precision measurements of some of the properties of XYZ
mesons should be possible at both SuperBelle and even-
tually at the PANDA detector at GSI. All these additional
data will make the elucidation of the nature of the XYZ
mesons almost inevitable. It will deliver a definitive verdict
on whether the Born-Oppenheimer approximation provides
a coherent theoretical framework for understanding the
XYZ mesons.
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