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We study possible multiquark contributions to the charm baryon spectrum by considering higher order
Fock space components. For this purpose we perform two different calculations. In a first approach we do a
coupled-channel calculation of the ND system looking for molecular states. In a second step we allow for
the coupling to a heavy baryon–light meson two-hadron system looking for compact exotic five-quark
structures. Both calculations have been done within the framework of a chiral constituent quark model. The
model, tuned in the description of the baryon and meson spectra as well as the NN interaction, provides
parameter-free predictions for charm þ1 molecular or compact two-hadron systems. Unlike the ND̄
system, no sharp quark-Pauli effects are found. However, the existence of different two-hadron thresholds
for the five-quark system will make the coupled-channel dynamics relevant. Only a few channels are
candidates to lodge molecular or compact hadrons with a five-quark structure, being specially relevant the
ðTÞJP ¼ ð0Þ1=2− and ðTÞJP ¼ ð2Þ5=2− channels. The identification of molecular states and/or compact
hadrons with multiquark components either with or without exotic quantum numbers is a challenge of
different collaborations like PANDA, LHCb, ExHIC or J-PARC.
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I. INTRODUCTION

One of the most basic problems of QCD is to identify all
the clusters of quarks, antiquarks and gluons that are
sufficiently bound by QCD interactions so that they are
either stable particles or appropriately long lived to be
observed as resonances [1]. To this respect, charm hadron
physics has become a cornerstone due to the experimental
findings during the past decade. On the one hand, one
encounters the outstanding discovery in charmonium spec-
troscopy of the flagship of the so-called XYZ states, the
Xð3872Þ [2]. Before this discovery, and based on Gell-
Mann conjecture [3], the hadronic experimental data were
classified either as qq̄ or qqq states according to SUð3Þ
irreducible representations. However, since 2003 more than
20 meson resonances reported by different experimental
collaborations, most of them close to a two-meson thresh-
old, had properties that made a simple quark-antiquark
structure unlikely [4]. Although this observation could be
coincidental due to the large number of thresholds in the
energy region where the XYZ mesons have been reported,
it could also point to a close relation between some
particular thresholds and resonances contributing to the
standard quark-antiquark heavy meson spectroscopy. On
the other hand, a similar situation has arisen in the charm
baryon spectrum during the past years with the advent of a
large set of experimental data (see Refs. [5,6] for a
comprehensive update of the experimental and theoretical
situation of the heavy baryon spectra). The properties of
some excited states show an elusive nature as three-quark
systems. Like the charmonium spectrum, some of them are
rather close to a baryon-meson threshold suggesting a
possible molecular or compact structure [7–13]. It has been

already highlighted within a simple toy model the key role
that Swave meson-baryon thresholds may play in matching
poor light-baryon mass predictions from quark models
with data [14]. Thus, the analysis of possible multiquark
contributions close to meson-baryon thresholds with a
full-fledged quark dynamical model could help in the
understanding of heavy baryon spectroscopy.
The existence of molecular contributions in the charm

baryon spectrum stems primarily on the interaction
between charm mesons and nucleons, which on the other
hand has turned into an interesting subject in several
contexts [15]. It is particularly interesting for the study
of chiral symmetry restoration in a hot and/or dense
medium [16]. It will also help in the understanding of
the suppression of the J=Ψ production in heavy ion
collisions [17]. Besides, it may shed light on the possible
existence of exotic nuclei with heavy flavors [18,19].
Experimentally, it will become possible to analyze the
interaction of charm mesons with nucleons inside nuclear
matter with the operation of the FAIR facility at the GSI
laboratory in Germany [15]. There are proposals for
experiments by the PANDA collaboration to produce D
mesons by annihilating antiprotons on the deuteron. This
could be achieved with an antiproton beam, by tuning the
antiproton energy to one of the higher-mass charmonium
states that decays into open charm mesons. These exper-
imental ideas may become plausible based on recent
estimations of the cross section for the production of
DD̄ pairs in proton-antiproton collisions [20]. There are
also different theoretical estimations about the production
rate at PANDA of Λc baryons through the direct process
pp̄ → ΛcΛ̄c [21,22]. The identification of hadronic molecu-
lar states and/or hadrons with multiquark components either
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with or without exotic quantum numbers is also a challenge
in relativistic heavy ion collisions offering a promising
resolution to this problem [23,24]. Besides the LHCb [25]
and CDF [26] collaborations are providing a huge data set of
new measurements of heavy flavor spectroscopy. In the
coming future, J-PARC also intends to contribute to the
experimental measurement of exotic baryons. Thus, a good
knowledge of the interaction of charm mesons with ordinary
hadrons, like nucleons or Δ0s, is a prerequisite.
Before one can infer in a sensitive manner changes of

the interaction in the medium [27,28], a reasonable under-
standing of the interaction in free space is required. However,
here one has to manage with an important difficulty, namely
the complete lack of experimental data at low energies for
the free-space interaction. Thus, the generalization of models
describing the two-hadron interaction in the light flavor
sector could offer insight about the unknown interaction
of hadrons with heavy flavors. This is the main purpose of
this paper, to make use of a chiral constituent quark model
describing the NN interaction [29] as well as the meson
spectrum in all flavor sectors [30] to obtain parameter-free
predictions that may be testable in future experiments. Such
a project was already undertaken for the interaction between
two charm mesons [31] and also for the interaction between
anticharm mesons and nucleons [32] which encourages us in
the present challenge.
The paper is organized as follows. In Sec. II we will

first present a brief description of the quark-model wave
function for the baryon-meson system. We will later revisit
the interacting potential and finally we will summarize
the solution of the two-body problem by means of the
Fredholm determinant. In Sec. III we present and discuss
our results. We will first briefly discuss the baryon-meson
interaction in comparison to hadronic models. We will
analyze the character of the different isospin-spin channels,
looking for the attractive ones that may lodge resonances
either as a molecule or as a compact five-quark state, to
be measured by experiment. We will also compare with
existing results in the literature. Finally, in Sec. IV we
summarize our main conclusions.

II. THE BARYON-MESON SYSTEM

A. The baryon-meson wave function

In order to describe the baryon-meson system we shall use
a constituent quark cluster model, i.e., hadrons are described
as clusters of quarks and antiquarks. Assuming a two-center
shell model the wave function of an arbitrary baryon-meson
system, a baryon Bi and a meson Mj, can be written as

ΨLST
BiMj

ð~RÞ ¼ A
�
Bi

�
123;−

~R
2

�
Mj

�
45̄;þ

~R
2

��LST
; ð1Þ

where A is the antisymmetrization operator accounting
for the possible existence of identical quarks inside the

hadrons. In the case we are interested in, baryon-meson
systems made of N or Δ baryons and D or D� mesons, no
identical quarks can be exchanged between the baryon and
the meson and thus no sharp quark-Pauli effects are expected.
If we assume Gaussian 0s wave functions for the quarks

inside the hadrons, the normalization of the baryon-meson
wave function ΨLST

BiMj
ð~RÞ of Eq. (1) can be expressed as

N LST
BiMj

ðRÞ

¼ 4π exp

�
−
R2

8

�
4

b2
þ 1

b2c

��
iLþ1=2

�
R2

8

�
4

b2
þ 1

b2c

��
;

ð2Þ

where, for the sake of generality, we have assumed different
Gaussian parameters for the wave function of the light
quarks (b) and the heavy quark (bc). In the limit where the
two hadrons overlap (R → 0), the Pauli principle does not
impose any antisymmetry requirement. This can be easily
checked for the L ¼ 0 partial waves, where such effects
would be prominent. Using the asymptotic form of the
Bessel functions, iLþ1=2, we obtain the S wave normaliza-
tion kernel in the overlapping region that behaves like a
constant for R ¼ 0,

N L¼0ST
BiMj

→
R→0

4π

�
1 −

R2

8

�
4

b2
þ 1

b2c

��

×

�
1þ 1

6

�
R2

8b2c

�
2
�
1þ 4b2c

b2

�
2

þ � � �
�
: ð3Þ

B. The two-body interactions

The two-body interactions involved in the study of the
baryon-meson system are obtained from the chiral con-
stituent quark model [29]. This model was proposed in the
early 1990’s in an attempt to obtain a simultaneous descrip-
tion of the nucleon-nucleon interaction and the baryon
spectra. It was later generalized to all flavor sectors [30].
In this model hadrons are described as clusters of three
interacting massive (constituent) quarks, the mass coming
from the spontaneous breaking of the original SUð2ÞL ⊗
SUð2ÞR chiral symmetry of the QCD Lagrangian. QCD
perturbative effects are taken into account through the one-
gluon-exchange (OGE) potential [33]. It reads

VOGEð~rijÞ ¼
αs
4
~λci · ~λ

c
j

�
1

rij
−
1

4

�
1

2m2
i
þ 1

2m2
j
þ 2~σi · ~σj

3mimj

�

×
e−rij=r0

r20rij
−

3Sij
4m2

qr3ij

�
; ð4Þ

where λc are the SUð3Þ color matrices, r0 ¼ r̂0=μ is a flavor-
dependent regularization scaling with the reduced mass of the
interacting pair, and αs is the scale-dependent strong coupling
constant given by [30]
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αsðμÞ ¼
α0

ln½ðμ2 þ μ20Þ=γ20�
; ð5Þ

where α0 ¼ 2.118, μ0 ¼ 36.976 MeV and γ0 ¼
0.113 fm−1. This equation gives rise to αs ∼ 0.54 for
the light-quark sector and αs ∼ 0.43 for uc pairs.
Nonperturbative effects are due to the spontaneous

breaking of the original chiral symmetry at some

momentum scale. In this domain of momenta, light
quarks interact through Goldstone boson exchange
potentials,

Vχð~rijÞ ¼ VOSEð~rijÞ þ VOPEð~rijÞ; ð6Þ

where the one-pion exchange (OPE) and one-sigma
exchange (OSE) potentials are given by

VOSEð~rijÞ ¼ −
g2ch
4π

Λ2

Λ2 −m2
σ
mσ

�
YðmσrijÞ −

Λ
mσ

YðΛrijÞ
�
;

VOPEð~rijÞ ¼
g2ch
4π

m2
π

12mimj

Λ2

Λ2 −m2
π
mπ

��
YðmπrijÞ −

Λ3

m3
π
YðΛrijÞ

�
~σi · ~σj

þ
�
HðmπrijÞ −

Λ3

m3
π
HðΛrijÞ

�
Sij

�
ð~τi · ~τjÞ: ð7Þ

g2ch=4π is the chiral coupling constant, YðxÞ is the standard
Yukawa function defined by YðxÞ ¼ e−x=x, Sij ¼
3ð~σi · r̂ijÞð~σj · r̂ijÞ − ~σi · ~σj is the quark tensor operator,
and HðxÞ ¼ ð1þ 3=xþ 3=x2ÞYðxÞ.
Finally, any model imitating QCD should incorporate

confinement. Being a basic term from the spectroscopic
point of view it is negligible for the hadron-hadron inter-
action. Lattice calculations suggest a screening effect on the
potential when increasing the interquark distance [34],

VCONð~rijÞ ¼ f−acð1 − e−μcrijÞgðλc!i · λc
!

jÞ: ð8Þ

Once perturbative (one-gluon exchange) and nonperturba-
tive (confinement and chiral symmetry breaking) aspects of
QCD have been considered, one ends up with a quark-quark
interaction of the form

Vqiqjð~rijÞ

¼
( ½qiqj ¼ nn� ⇒ VCONð~rijÞ þ VOGEð~rijÞ þ Vχð~rijÞ
½qiqj ¼ cn� ⇒ VCONð~rijÞ þ VOGEð~rijÞ;

ð9Þ

where n stands for the light quarks u and d. Notice that for the
particular case of heavy quarks (c or b) chiral symmetry is
explicitly broken and therefore boson exchanges do not
contribute. The parameters of the model are those of
Ref. [32]. The model guarantees a nice description of the
baryon (N andΔ) [35] and themeson (D andD�) spectra [30].
In order to derive the local BnMm → BkMl interaction

from the basic qq interaction defined above, we use a Born-
Oppenheimer approximation. Explicitly, the potential is
calculated as follows:

VBnMmðLSTÞ→BkMlðL0S0TÞðRÞ ¼ ξL
0S0T

LST ðRÞ − ξL
0S0T

LST ð∞Þ; ð10Þ

where

ξL
0S0T

LST ðRÞ

¼ hΨL0S0T
BkMl

ð~RÞ∣P5
i<j¼1 Vqiqjð~rijÞ∣ΨLST

BnMm
ð~RÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hΨL0S0T
BkMl

ð~RÞ∣ΨL0S0T
BkMl

ð~RÞi
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hΨLST
BnMm

ð~RÞ∣ΨLST
BnMm

ð~RÞi
q :

ð11Þ

In the last expression the quark coordinates are integrated
out keeping R fixed, the resulting interaction being a
function of the baryon-meson relative distance. The wave
function ΨLST

BnMm
ð~RÞ for the baryon-meson system has been

discussed in Sec. II A.
We show in Fig. 1 the different diagrams contributing to

the baryon-meson interaction. As compared to the ND̄
case [32] and due to the absence of quark-exchange

FIG. 1. Different diagrams contributing to the baryon-meson
interaction. The vertical thin solid lines represent light quarks, the
vertical thick solid line represents a heavy quark, the vertical
dashed line stands for the light antiquark, and the horizontal solid
line represents the exchanged particle. The number between
square brackets stands for the number of diagrams topologically
equivalent.
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contributions, the number of diagrams is greatly reduced,
getting just purely hadronic interactions.

C. Integral equations for the two-body systems

To study the possible existence of molecular states made
of a light baryon, N or Δ, and a charmed meson, D or D�,
we have solved the Lippmann-Schwinger equation for
negative energies looking at the Fredholm determinant
DFðEÞ at zero energy [36]. If there are no interactions then
DFð0Þ ¼ 1, if the system is attractive then DFð0Þ < 1, and
if a bound state exists then DFð0Þ < 0. This method
permitted us to obtain robust predictions even for zero-
energy bound states, and gave information about attractive
channels that may lodge a resonance in similar systems
[31]. We consider a baryon-meson system BiMj (Bi ¼ N or
Δ and Mj ¼ D or D�) in a relative S state interacting
through a potential V that contains a tensor force. Then, in
general, there is a coupling to the BiMj Dwave. Moreover,
the baryon-meson system can couple to other baryon-
meson states. We show in the first row of each spin cell of
Table I the lowest light baryon—charm meson coupled
channels in the isospin-spin ðT; JÞ basis. They would
contribute to our first approach, a coupled-channel calcu-
lation of the ND system looking for molecular states. As
we have done in Ref. [31], we will later allow for the
rearrangement of quarks at short distances giving rise to a
coupling to a charm baryon—light meson two-hadron
system, through the diagram represented in Fig. 2. For
this case we show in the second row of each spin cell of
Table I, between square brackets, the additional channels
contributing to each ðT; JÞ state. They would contribute to
the second calculation, looking for compact five-quark
states.
Thus, if we denote the different baryon-meson systems

as channel Ai, the Lippmann-Schwinger equation for the
baryon-meson scattering becomes

t
lαsα;lβsβ
αβ;TJ ðpα; pβ;EÞ ¼ V

lαsα;lβsβ
αβ;TJ ðpα; pβÞ þ

X
γ¼A1;A2;���

X
lγ¼0;2

×
Z

∞

0

p2
γdpγV

lαsα;lγsγ
αγ;TJ ðpα; pγÞ

×GγðE;pγÞtlγsγ ;lβsβ
γβ;TJ ðpγ; pβ;EÞ;

α; β ¼ A1; A2;…; ð12Þ

where t is the two-body scattering amplitude, T, J, and E
are the isospin, total angular momentum and energy of the
system, lαsα, lγsγ , and lβsβ are the initial, intermediate,
and final orbital angular momentum and spin, respectively,
and pγ is the relative momentum of the two-body system γ.
The propagators GγðE;pγÞ are given by

GγðE;pγÞ ¼
2μγ

k2γ − p2
γ þ iϵ

; ð13Þ

with

E ¼ k2γ
2μγ

; ð14Þ

where μγ is the reduced mass of the two-body system γ.
For bound-state problems E < 0 so that the singularity of
the propagator is never touched and we can forget the iϵ in
the denominator. If we make the change of variables

pγ ¼ d
1þ xγ
1 − xγ

; ð15Þ

where d is a scale parameter, and the same for pα and pβ,
we can write Eq. (12) as

t
lαsα;lβsβ
αβ;TJ ðxα; xβ;EÞ ¼ V

lαsα;lβsβ
αβ;TJ ðxα; xβÞ þ

X
γ¼A1;A2;���

X
lγ¼0;2

×
Z

1

−1
d2
�
1þ xγ
1 − xγ

�
2 2d
ð1 − xγÞ2

dxγ

× V
lαsα;lγsγ
αγ;TJ ðxα; xγÞGγðE;pγÞ

× t
lγsγ ;lβsβ
γβ;TJ ðxγ; xβ;EÞ: ð16Þ

TABLE I. Interacting baryon-meson channels in the isospin-
spin (T; J) basis. See text for details.

T ¼ 0 T ¼ 1 T ¼ 2

J ¼ 1=2 ND − ND� ND − ND� − ΔD� ΔD�
½Σcπ − Λþ

c η� ½Λþ
c π − Σcπ� ½Σcπ�

J ¼ 3=2 ND� ND� − ΔD − ΔD� ΔD − ΔD�
½Σ�

cπ − Λþ
c ω� ½Σ�

cπ − Λþ
c ρ� ½Σ�

cπ�
J ¼ 5=2 � � � ΔD� ΔD�

½Σ�
cρ� ½Σ�

cρ − Σ�
cω� ½Σ�

cρ�

FIG. 2. Diagram representing the coupling between a light
baryon—charm meson channel and a charm baryon—light
meson two-hadron system.
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We solve this equation by replacing the integral from −1 to
1 by a Gauss-Legendre quadrature which results in the set
of linear equations

X
γ¼A1;A2;���

X
lγ¼0;2

XN
m¼1

M
nlαsα;mlγsγ
αγ;TJ ðEÞtlγsγ ;lβsβγβ;TJ ðxm; xk;EÞ

¼ V
lαsα;lβsβ
αβ;TJ ðxn; xkÞ; ð17Þ

with

M
nlαsα;mlγsγ
αγ;TJ ðEÞ¼δnmδlαlγ δsαsγ −wmd2

�
1þxm
1−xm

�
2 2d
ð1−xmÞ2

×V
lαsα;lγsγ
αγ;TJ ðxn;xmÞGγðE;pγmÞ; ð18Þ

and where wm and xm are the weights and abscissas of
the Gauss-Legendre quadrature while pγm is obtained by
putting xγ ¼ xm in Eq. (15). If a bound state exists at an
energy EB, the determinant of the matrix M

nlαsα;mlγsγ
αγ;TJ ðEBÞ

vanishes, i.e., jMαγ;TJðEBÞj ¼ 0.

III. RESULTS AND DISCUSSION

Regarding the ND interaction there are general trends
that can be briefly summarized. It is worth noting the
absence of quark-exchange diagrams, which also prohibits
the OGE contribution, and thus quark-exchange effects are
not present. Thus, the interaction comes determined by
the OPE and OSE. For very-long distances (R > 4 fm) the
dominant term is the OPE potential, since it corresponds to
the longest-range piece. The OPE is also responsible
altogether with the OSE for the long-range part behavior
(1.5 fm< R < 4 fm), due to the combined effect of shorter
range and a bigger strength for the OSE as compared to the
OPE. The OSE gives the dominant contribution in the
intermediate range (0.8 fm < R < 1.5 fm), determining
the attractive character of the potential in this region. The
short-range (R < 0.8 fm) potential is either repulsive or
attractive depending on the balance between the OSE and
OPE. Due to the nonexistence of quark-Pauli correlations
from the norm as well as from the interacting potential, one
gets a genuine baryonic interaction. Thus, dynamical
quark-exchange effects do not play a relevant role in the
ND interaction unlike the ND̄ case.
Using the interactions described above, we have solved

the coupled-channel problem of the baryon-meson systems
made of a baryon, N or Δ, and a meson, D or D�, as
explained in Sec. II C. The existence of bound states or
resonances will generate baryonic states with charm þ1
that could be identified as some of the excited states
measured in the charm baryon spectrum. In Table II we
summarize the character of the interaction in the different
ðT; JÞ channels. It can be observed that due to the absence
of quark-Pauli correlations and the contribution of the OSE
the interaction is in general attractive, giving rise to states

that appear close to different thresholds. We have repre-
sented in Fig. 3 the masses and quantum numbers of the
possible molecular ND states. The strongest interaction is
obtained in the ND� ðTÞJP ¼ ð0Þ1=2− channel that it is
coupled to the ND ðTÞJP ¼ ð0Þ1=2− partial wave (see
Table I), generating the best candidate to lodge a molecule.
The expectation value of the isospin operator, −3 for
isosinglet and þ1 for isotriplet states, would reduce the
attraction of isotriplet channels as compared to attractive
isosinglet channels with the same spin J and vice versa, as
can be easily checked in the first two columns of Table II.
Our results may be compared to those of Ref. [10] where

the ND system has been analyzed by means of a hadronic
model using Lagrangians satisfying heavy quark symmetry
and chiral symmetry. They arrive at the same conclusion
that the ðTÞJP ¼ ð0Þ1=2− channel is the most attractive
one. In Ref. [10] this channel presents a bound state
of around 14.4 MeV for the model including only pion
exchanges. The main difference of our results with those of
Ref. [10] stems from the contribution of the scalar
interaction and the consideration of explicit Δ degrees of
freedom in our calculation. In a hadronic theory without
explicit Δ degrees of freedom only a few channels survive
and the coupled-channel dynamics would become simpler
(see Table I). As a consequence, for example, one could not
get T ¼ 2 channels. In the chiral constituent quark model
the importance of the Δ degrees of freedom is known since

TABLE II. Character of the interaction in the different
ND ðT; JÞ channels.

T ¼ 0 T ¼ 1 T ¼ 2

J ¼ 1=2 Attractive Weak Weakly attractive
J ¼ 3=2 Weak Attractive Attractive
J ¼ 5=2 � � � Weakly attractive Attractive

FIG. 3. Masses and quantum numbers of molecular DN states.
The dashed lines stand for the different two-hadron thresholds.
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long time ago [37,38]. It provides us with an isospin
dependent mechanism that allows to correctly describe the
low-energy NN S wave phase shifts through a coupled-
channel effect, giving an important attractive contribution
for the 1S0NN partial wave. To emphasize the importance
of coupled-channel dynamics [39], we have repeated the
calculation explained in Sec. II C for the ðTÞJP ¼ ð1Þ1=2−
channel but suppressing the states containing Δ0s. As can

be seen in Fig. 4, neglecting the Δ degrees of freedom the
Fredholm determinant gets larger, indicating a loss of
attraction. For the single channel calculation the ðTÞJP ¼
ð1Þ1=2− bound state does not appear, in agreement with the
conclusions of Ref. [10].
TheDN molecular states appearing in Fig. 3 could be an

important ingredient of the charm baryon spectrum. It has
been recently suggested [12] the possibility of the Σcð2800Þ
being an S wave DN molecular state with JP ¼ 1=2− and
the Λcð2940Þþ an S wave D�N state with JP ¼ 3=2−,
which would agree rather well with the picture shown in
Fig. 3. One may also find an experimental candidate for the
ðTÞJP ¼ ð2Þ5=2− resonance in one of the states recently
reported by the BABAR collaboration [40], an unexplained
structure with a mass of 3250 MeV=c2 in the Σþþ

c π−π−

invariant mass. This state has also been recently suggested
as a possible pentaquark [11], something that would be
relevant in the second part of our discussion. In spite of this
agreement, one should note that the assignment of quantum
numbers to baryon resonances on the charm baryon
spectrum [41] and the identification of their internal
structure [7–13,39] is still an open issue that needs of
further experimental analysis and also theoretical efforts.
Such uncertainty has been recently revitalized by empha-
sizing the potential importance of the relativistic kinematics
of the light quark pair [42] casting doubts even on the
assignment of quantum numbers to experimental states just
based on the nonrelativistic quark model.
One could also find contributions to the charm baryon

spectrum with a more involved structure such as compact

FIG. 4. Fredholm determinant of the ðTÞJP ¼ ð1Þ1=2− channel
considering all ND contributions of Table I (solid line) and
neglecting the Δ degrees of freedom (dashed line).

FIG. 5. Different two-body channels contributing to each set of ðT; JÞ quantum numbers as shown in Table I.
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five-quark states beyond simple ND resonances [43]. The
study of these contributions requires from a full coupled-
channel approach including all possible physical states
contributing to a given set of quantum numbers ðT; JÞ, as
has been demonstrated in Ref. [44] for the charmonium
spectrum. Standard mesons (qq̄) and baryons (qqq) are the
only clusters of quarks where it is not possible to construct
a color singlet using a subset of their constituents. Thus, qq̄
and qqq states are proper solutions of the two- and three-
quark Hamiltonian, respectively, corresponding in all cases
to bound states. This, however, is not the case for multi-
quark combinations, and in particular for five-quark states
addressing the baryon spectrum. Thus, when dealing with
higher order Fock space contributions to baryon spectros-
copy, one has to discriminate between possible five-quark
bound states or resonances and simple pieces of the baryon-
meson continuum. For this purpose, one has to analyze the
two-hadron states that constitute the possible thresholds for
each set of quantum numbers. These thresholds have to be
determined assuming quantum number conservation within
exactly the same scheme (parameters and interactions)
used for the five-body calculation. Working with strongly
interacting particles, a baryon-meson state should have
well-defined total angular momentum (J) and parity (P).
If noncentral forces are not considered, orbital angular
momentum (L) and total spin (S) are also good quantum
numbers. We have represented in Fig. 5 the different two-
hadron thresholds contributing to each set of ðT; JÞ
quantum numbers.
Given a general five-quark state contributing to the ND

wave function, (nnnQn̄) (in the following n stands for a
light quark and Q for a heavy c or b quark), two different
thresholds are allowed, ðnnnÞðQn̄Þ and ðnnQÞðnn̄Þ. A very
simple property [45] of the ground state solutions of
the Schrödinger (q1q̄2) two-body problem is that they
are concave in ðm−1

q1 þm−1
q2 Þ, and hence MQn̄ þMQ̄n ≥

MQQ̄ þMnn̄. This property is enforced both by nature1

and by all models in the literature unless forced to do
otherwise. It implies that in all relevant cases the lowest
two-meson threshold for any ðQnQ̄ n̄Þ state will be the one
made of quarkonium-light mesons, i.e., ðQQ̄Þðnn̄Þ (see
Fig. 1 of Ref. [46]). A straightforward generalization of
this property to the five-quark system could be obtained
within a quark-diquark model if mq1 ≤ mq2 ≤ mq3 . Then

Mq3q̄2 þMq1q̄1 ≤ Mq3q̄1 þMq1q̄2 , because the intervals in
1=μ of the left-hand side and right-hand side have the same
middle, but the left-hand side one is wider that the right-
hand side one. Now, in a crude quark-diquark model, one
can translate this asMq3q1q1 þMq1q̄1 ≤ Mq3q̄1 þMq1q1q1 , as
it is observed in Fig. 5 except for the higher spin states
where the angular momentum coupling rules impose
further restrictions.2

Hence, as we have already illustrated in Fig. 4 an
important source of attraction might be the coupled-channel
effect of the two thresholds, ðnnnÞðQn̄Þ↔ðnnQÞðnn̄Þ [39].
Thus, to check the efficiency of this mechanism, we have
repeated the calculation of Sec. II C but considered all
physical states reflected in Table I. We have represented in
Fig. 5 the lowest baryon-meson thresholds contributing to
each set of ðT; JÞ quantum numbers. In Table III we have
summarized the character of the interaction in the different
ðT; JÞ channels. When the ðnnnÞðQn̄Þ and ðnnQÞðnn̄Þ
thresholds are sufficiently far away, the coupled-channel
effect is small, and bound states are not found. However,
when the thresholds move closer, the coupled-channel
strength is increased, and bound states may appear for a
subset of quantum numbers. Hence, threshold vicinity is a
required but not sufficient condition to bind a five-quark
state. Under these conditions, the channels with high spin
JP ¼ 5=2− are the only ones that may lodge a compact
five-quark state for all isospins as it is shown in Fig. 6. The
reason stems on the reverse of the ordering of the thresh-
olds, being the lowest threshold ðnnnÞðQn̄Þ the one with
the more attractive interaction. In the other cases, the break

TABLE III. Character of the interaction in the different baryon-
meson ðT; JÞ channels.

T ¼ 0 T ¼ 1 T ¼ 2

J ¼ 1=2 Weakly attractive Weak Strongly repulsive
J ¼ 3=2 Weak Weak Weak
J ¼ 5=2 Attractive Attractive Attractive

FIG. 6. Masses and quantum numbers of compact five-quark
states. The dashed lines stand for the different two-hadron
thresholds.

1MD� þMD̄� ¼ 4014 MeV ≥ MJ=ψ þMω ¼ 3879 MeV.

2We thank J. M. Richard for this simple and nice argument that
does not make any assumption on the shape of the interaction,
linear or not, although it assumes a quark-diquark ansatz.
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apart threshold ðnnQÞðnn̄Þ, weakly interacting, is the
lowest one destroying the possibility for any resonance.
This is illustrated in Fig. 7 where we show the Fredholm
determinant for the ðTÞJP ¼ ð0Þ1=2− channel. When one
only considers ND channels (solid line) the interaction is
attractive and it has a bound state. However, when the
lowest break apart threshold is considered (dashed line) the
bound state does not appear any more.
As already advertised in the first part of our discussion,

of particular interest is the ðTÞJP ¼ ð2Þ5=2− state that
survives the consideration of the break apart thresholds. It
may correspond to the Θcð3250Þ pentaquark found by the
QCD sum rule analysis of Ref. [11] when studying the
unexplained structure with a mass of 3250 MeV=c2 in
the Σþþ

c π−π− invariant mass reported recently by the
BABAR collaboration [40]. Such state could be also
detected by the propagation of D mesons in nuclear matter
as an SwaveΔD� system and it thus constitutes a challenge
for the PANDA collaboration.

IV. SUMMARY

Summarizing, we have studied higher order Fock space
components on the charm baryon spectrum. For this

purpose we have used two different approaches. In a first
step we did a coupled-channel calculation of the ND
system looking for molecular states. In a second step we
allowed for the coupling to a heavy baryon—light meson
system looking for compact exotic five-quark states. Both
calculations have been done within the framework of a full-
fledged chiral constituent quark model. This model, tuned
in the description of the baryon and meson spectra as well
as the NN interaction, provides parameter-free predictions
for charm þ1 molecular or compact two-hadron systems.
Unlike the ND̄ system, no sharp quark-Pauli effects are
found due to the nonexistence of quark-exchange diagrams
and thus of the OGE contribution. The importance of the
coupled-channel dynamics has been emphasized to connect
with the result of other hadronic models. We have found
several close to threshold resonances in the ND system that
could be traced back to some of the measured charm baryon
excited states. If the full dynamics of the five-quark system
is considered the number of resonances is reduced and
their energies augmented. Of particular interest is the
prediction of a ðTÞJP ¼ ð2Þ5=2− baryonic state that sur-
vives the consideration of the break apart thresholds. It may
correspond to the Θcð3250Þ pentaquark found by the QCD
sum rule analysis of Ref. [11] when studying the unex-
plained structure with a mass of 3250 MeV=c2 in the
Σþþ
c π−π− invariant mass reported recently by the BABAR

collaboration [40].
The advent of new experimental data on charm baryon

spectroscopy will shed light about the structure of some of
the already observed states that, otherwise, will also help us
in understanding the short-range dynamics of many-quarks
systems (confinement), either confirming the existence of
ND resonances close-to-threshold or not. The first scenario
will point to a two-hadron resonance while the second may
be a hint for the presence of many-quark states. This
objective may be attainable in several current and future
collaborations like PANDA, LHCb, ExHIC or J-PARC.
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