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We study the single-spin asymmetries of pions produced in semi-inclusive deep-inelastic scattering on
the longitudinally polarized nucleon targets. We particularly consider the effects of the twist-3 transverse-
momentum dependent distribution functions f⊥L and hL to the asymmetry. We calculate the asymmetric
moment Asinϕh

UL for πþ, π−, and π0 produced off the proton target at HERMES and compare the results with
the HERMES data. We also present the prediction of the same asymmetries for different pions at the
kinematics of CLAS 5.5 GeV on a proton target, as well as at COMPASS on a deuteron target.

DOI: 10.1103/PhysRevD.90.014037 PACS numbers: 12.39.-x, 13.60.-r, 13.88.+e

I. INTRODUCTION

Understanding the origins of single-spin asymmetries in
high-energy processes is one of the main goals in QCD and
hadronic physics [1–4]. The longitudinal target spin asym-
metry (LTSA) [5–8], as the first unambiguous single-spin
phenomenon measured in semi-inclusive deep-inelastic
scattering (SIDIS), has attracted a lot of theoretical atten-
tions. Experimentally, the LTSA is usually measured by
using the target longitudinally polarized with respect to the
incoming beam direction, which makes the interpretation of
the asymmetry more complicated. This is because in this
case the measured asymmetry contains contributions from
both the transverse and longitudinal polarization compo-
nents with respect to the virtual photon direction. The small
but nonvanishing transverse polarization component,
although suppressed by a factor of 1=Q compared to the
longitudinal component, can contribute to the measured
asymmetry through the Collins [9] or Sivers [10] effects,
which are leading-twist observables. This feature, espe-
cially the former one, has been considered in several
estimates [11–16] in terms of the transversity distribution
and Collins fragmentation functions [9]. Apart from this,
there are also competing contributions that originate from
the various convolutions of the twist-3 quark distribution
functions or fragmentation functions with their twist-2
counterparts, due to the presence of the large longitudinal
component. Therefore, the asymmetry from those contri-
butions, usually denoted by Asinϕh

UL , where ϕh is the
azimuthal angle of the final hadron around the photon
direction, is the purely twist-3 result, compared to the
leading-twist ones.
In this paper, we will study the LTSA based upon the

contributions from the subleading-twist effects. Although
those effects encode important twist-3 dynamics of the
nucleon, they are barely studied in phenomenology and
have not been fully considered in the previous theoretical

analyses. At the twist-3 level, there are four individual
contributions [17] that can give rise to the LTSA. Two of
them are from the twist-3 fragmentation functions, while
the other two are from the twist-3 distribution functions.
In this work, we will focus on the effects of the twist-3
quark distributions, that is, the distributions f⊥L ðx; k2TÞ and
hLðx; k2TÞ. The former one is a T-odd transverse momentum
dependent (TMD) distribution and can be viewed as the
twist-3 analogy of the Sivers function; it generates the
LTSA through the coupling with the unpolarized fragmen-
tation function D1. The later one is a chiral-odd distribu-
tion; therefore, its contribution to the LTSA involves
another chiral-odd fragmentation function, the Collins
function H⊥

1 [9]. In our study we will consider both the
f⊥LD1 term [18] and the hLH⊥

1 term [11]. Currently the
knowledge on the twist-3 distributions is very limited. In
order to quantitatively predict the LTSA in SIDIS contrib-
uted by the subleading-twist effect, we will employ the
spectator-diquark models to calculate the TMD distribu-
tions f⊥L and hL for the u and d valence quarks inside the
proton. As the asymmetry we calculate, the Asinϕh

UL , corre-
sponds to the case in which the nucleon is longitudinally
polarized with respect to the virtual photon momentum, it is
not easy to compare our result directly with the experiments
in which the longitudinal spin of the target is originally
along the beam direction. Fortunately, there are available
data Asinϕh

UL for πþ and π− production from the HERMES
Collaboration, which are extracted from the original data by
subtracting the contributions from the Sivers effect and the
Collins effect, using the data on the transversely polarized
target [19]. The extraction is valid up to corrections of order
sin θγ� , with θγ� being the polar angle between the incoming
beam direction and the virtual photon direction. New data
on Asinϕh

UL are also coming from the CLAS at the Jefferson
Lab. These make the comparison between theoretical
estimates and experimental measurements possible.
The remaining content of the paper is organized

as follows. In Sec. II, we calculate the twist-3 TMD*zhunlu@seu.edu.cn
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distributions f⊥L and hL using the spectator-diquark models,
and we will use two different models to obtain two sets of
TMD distributions for comparison. In Sec. III, we estimate
the LTSA contributed by the f⊥LD1 and hLH⊥

1 terms at
the HERMES kinematics and compare the results with the
HERMES data. We will also give the prediction on the
LTSA at CLAS and COMPASS. We summarize the paper
in Sec. IV.

II. CALCULATION OF DISTRIBUTIONS f⊥L AND hL
IN SPECTATOR-DIQUARK MODELS

In this section, we present our calculation on the twist-3
TMD distributions f⊥L ðx; k2TÞ and hLðx; k2TÞ for the u and d
valence quarks. The TMD f⊥L ðx; k2TÞ has been calculated in
a scalar diquark model [18,20], while hLðx; k2TÞ has been
calculated by the spectator model [21] and the bag model
[22]. Although hLðx; k2TÞ has the integrated version hLðxÞ
[11], here we trace its kT dependence in order to calculate
its contribution to Asinϕh

UL .
The gauge-invariant quark-quark correlator for the

longitudinally polarized nucleon can be expressed as

Φ½þ�ðx; kTÞ ¼
Z

dξ−d2ξT
ð2πÞ3 eik·ξhPSLjψ̄ jð0ÞL½0−;∞−�

× L½0T; ξT �L½∞−; ξ−�ψ iðξÞjPSLi; ð1Þ

where ½þ�, corresponding to the SIDIS process, denotes
that the gauge link appearing in Φ is future pointing; k and
P are the momenta of the struck quark and the target
nucleon, respectively. The TMD distributions hL and f⊥L
may be obtained from the correlator via the following
traces:

SL
M
Pþ hLðx; k2TÞ ¼

1

2
Tr½Φ½þ�iσþ−γ5�; ð2Þ

SL
ϵαρT kTρ
Pþ f⊥L ðx; k2TÞ ¼ − 1

2
Tr½Φ½þ�γα�: ð3Þ

The correlator (1) can be calculated from the spectator
models [21,23–25]. Here we consider the contributions of
both the scalar diquark and the axial-vector diquark, and
we use the dipolar form factor for the nucleon-quark-
diquark couplings. The corresponding diagrams used in
the calculation are shown in Fig. 1. In the lowest-order
expansion of the gauge link, which is equivalent to set
L ¼ 1, we apply the diagram in the upper panel of Fig. 1
to obtain the correlator contributed by the scalar diquark
component,

Φð0Þ
s ðx; kTÞ≡ N2

sð1 − xÞ3
16π3Pþ

½ðkþmÞðPþMÞγ5SðkþmÞ�
ðk2T þ L2

sÞ4
;

ð4Þ

and by the axial-vector diquark component,

Φð0Þ
v ðx; kTÞ≡ N2

vð1 − xÞ3
32π3Pþ dμνðP − kÞ

×
½ðkþmÞγμðM − PÞγ5SγνðkþmÞ�

ðk2T þ L2
vÞ4

; ð5Þ

where Ns and Nv are the normalization constants, dμν is
the polarization sum (the propagator) of the axial-vector
diquark, and L2

X (X ¼ s or v) has the form

L2
X ¼ ð1 − xÞΛ2

X þ xM2
X − xð1 − xÞM2; ð6Þ

with ΛX being the cutoff parameters for the quark
momentum and MX the mass for the diquarks.
To calculate the T-odd TMD distribution f⊥L , one has to

consider the nontrivial effect of the gange link [26–28], that
is, the final-state interaction between the struck quark and
the spectator. Following Refs. [23,25], we perform the
calculations initially with Abelian gluons and generalize
the result to QCD at the end. In our calculation we expand
the gauge link to one-loop order, as shown by the diagram
in the lower panel of Fig. 1. We note that in Refs. [29,30],
an eikonal model including a whole ladder of nonpertur-
bative gluon exchanges was used to describe the final state
interactions relevant for T-odd TMDs. After some algebra
we obtain the expressions for the correlator contributed by
the scalar diquark and the axial-diquark component at this
order:

FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper panel) and one-loop level (lower panel). The dashed
lines denote the spectator diquarks that can be scalar diquarks or
axial-vector diquarks.
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Φð1Þ
s ðx;kTÞ≡−ieqN2

s
ð1− xÞ2

64π3ðPþÞ2
−iΓþ

s

ðk2T þ L2
sÞ2

×
Z

d2qT
ð2πÞ2

½k− qþmÞðPþMÞγ5SðkþmÞ�
q2TððkT − qTÞ2 þ L2

sÞ2
;

ð7Þ

Φð1Þ
v ðx; kTÞ≡−ieqN2

v
ð1 − xÞ2

128π3ðPþÞ2
1

ðk2T þ L2
vÞ2

×
Z

d2qT
ð2πÞ2 dραðP − kÞð−iΓþ;αβÞ

× dσβðP − kþ qÞ

×
½ðk − qþmÞγσðM − PÞγ5SγρðkþmÞ�

q2TððkT − qTÞ2 þ L2
vÞ2

;

ð8Þ

where qþ ¼ 0 is understood, eq is the charge for the
quarks, dσβ is the polarization sum of the vector diquark
which will be determined later, and Γμ

s or Γμ;αβ
v is the

vertex between the gluon and the scalar diquark or the
axial-vector diquark:

Γμ
s ¼ iesð2P − 2kþ qÞμ; ð9Þ

Γμ;αβ
v ¼ −iev½ð2P − 2kþ qÞμgαβ − ðP − kþ qÞαgμβ

− ðP − kÞβgμα�; ð10Þ

where es=v denotes the charge of the scalar/axial-vector
diquark. We point out that, although in the calculation we
initially apply Abelian gluons which are very similar to
the case of photons, here eq and eX are not necessarily
the electric charges of the quark and diquark. In fact they
can be viewed as the “color charges” which satisfy the
relation es=v ¼ −eq [31]. This result comes from the fact
that the proton is a color neutral particle; therefore, in an
Abelian theory the charges of the two components (quark
and diquark) should have the same size but opposite sign.
In the following we will calculate hL and f⊥L using two

different spectator models. The first model is the one
developed in Ref. [25], the second model is adopted in
Ref. [23]. There are two differences between these two
models: one is the option for the propagator of the axial-
vector diquark, the other is the relation between the quark
flavors under study and the diquark types. The two models
have also been applied to calculate [32,33] the TMD
distributions g⊥ and e, which are crucial to the under-
standing of the beam spin asymmetry measured [34–37]
in SIDIS.
Substituting (4) into (2) and (7) into (3), we obtain the

contributions from the scalar diquark to hL and f⊥L :

hsLðx; k2TÞ ¼
1

16π3
N2

sð1 − xÞ2
ðk2T þ L2

sÞ4

×

�
ð1 − xÞðxM þmÞðM þmÞ

þ
�
1 − 2x − m

M

�
k2T −

�
xþ m

M

�
M2

s

�
; ð11Þ

f⊥s
L ðx; p2

TÞ ¼ −N2
sð1 − xÞ2
32π3

eseq
4π

1

LðLþ ~p2
TÞ3

× ½ð1 − xÞðð1þ 2xÞM2 þ 2mM − Λ2
sÞ

−ð1þ xÞM2
s �; ð12Þ

and the expressions are the same in the two models.
In the first spectator model [25] we apply here, the

propagator dμν is chosen as

dμνðP − kÞ ¼ −gμν þ
ðP − kÞμn−ν þ ðP − kÞνn−μ

ðP − kÞ · n−
−

M2
v

½ðP − kÞ · n−�2
n−μn−ν; ð13Þ

which is the summation over the light-cone transverse
polarizations of the axial-vector diquark [38] and has been
applied to calculate the leading-twist TMD distributions in
Ref. [25]. With the propagator (13), we arrive at the
following expressions for hL and f⊥L from the axial-vector
diquark component in the first model:

hvLðx; k2TÞ ¼
N2

vð1 − xÞ2
16π3

1

ðk2T þ L2
vÞ4

×

��
xþ m

M

�
ðM2

v −M2ð1 − xÞÞ −m2ð1 − xÞ

−k2T
�
1þ x
1 − x

m
M

− 1

��
; ð14Þ

f⊥v
L ðx; k2TÞ ¼

N2
vð1 − xÞ2
32π3

eveq
4π

�
1

L2
vðk2T þ L2

vÞ3
× ½ð1þ x − 2x2ÞM2 þ 2ð1 − xÞmM

−m2 − ð1þ xÞM2
v þ xΛ2

v�

−
x

ð1 − xÞðk2T þ L2
vÞ2k2T

ln

�
k2T þ L2

v

L2
v

��
:

ð15Þ

Also, in this model, a general relation between quark
flavors and diquark types is adopted [25]:

fu ¼ c2sfs þ c2afa; fd ¼ c2a0f
a0 ; ð16Þ

where a and a0 denote the vector isoscalar diquark aðudÞ
and the vector isovector diquark aðuuÞ, respectively, and
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cs, ca, and ca0 are the parameters of the model. In Ref. [25],
these parameters as well as the mass parameters (such as
the diquark masses MX, cutoff parameters ΛX) are fitted
from the ZEUS [39] and GRSV01 [40] distribution sets.
Particularly, the mass parameters for different vector
diquark types are treated differently; that is, the two isospin
states of the vector diquark are distinguished. Finally, to
connect the “Abelian” version of the gluon interaction to
the QCD color interaction, we apply the replacement [26]

jeqeXj → 4πCFαS; ð17Þ

and we chooseCF ¼ 4=3 and αS ≈ 0.3, following the choice
in Refs. [23,25]. Then we obtain the numerical results of hL
and f⊥L and label them as the Set I TMD distributions. In
Fig. 2 we plot the x dependence (at kT ¼ 0.5 GeV) and kT
dependence (at x ¼ 0.2) of the functions hqLðx; k2TÞ and
f⊥q
L ðx; k2TÞ for q ¼ u and d in Set I.
The second form for the propagator of the vector

diquark is

dμνðP − kÞ ¼ − gμν; ð18Þ

which was applied in Ref. [23]. Then we obtain the
alternative expressions for hvL and f⊥v

L :

hvLðx; k2TÞ ¼
N2

vð1 − xÞ2
16π3

1

Mðk2T þ L2
vÞ4

× ½mðk2T þM2ðx2 − 1Þ þM2
vÞ�; ð19Þ

f⊥v
L ðx; k2TÞ ¼

N2
vð1 − xÞ
64π3

eveq
4π

� ð1 − xÞ
L2
vðk2T þ L2

vÞ3

×

�
ð2þ 2x − 3x2ÞM2 þ 2mMð1 − xÞ −m2

−ð1 − xÞΛ2
v − x

ð1 − xÞ k
2
T − 2þ 2x − x2

1 − x
M2

v

�

−
x

ðk2T þ L2
vÞ2k2T

ln

�
k2T þ L2

v

L2
v

��
: ð20Þ

which are different from the forms obtained in the
first model.
Different from Eq. (16), another way that has been

applied to construct distributions of the u and d valence
quarks can be expressed as follows [21,23]:

fu ¼ 3

2
fs þ 1

2
fa; fd ¼ fa

0
; ð21Þ

here the coefficients 3=2, 1=2, and 1 in front of fXs are
obtained from the SUð4Þ spin-flavor symmetry of the

FIG. 2. The TMD distributions f⊥L ðx; k2TÞ (left panel) and hLðx; k2TÞ (right panel) for u and d quarks in Set I, calculated from the
spectator model in Ref. [25].

FIG. 3. The TMD distributions f⊥L ðx; k2TÞ (left panel) and hLðx; k2TÞ (right panel) for u and d quarks in Set II, calculated from the
spectator model in Ref. [23].
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proton wave function. In this case, the mass parameters for
different axial diquarks are the same. We use the relation in
(21) together with the expressions (11), (12), (19), and (20)
to obtain another set of TMD distributions (labeled as
Set II). In this calculation we apply the values for the
parameters from Ref. [23]. In Fig. 3 we plot the x
dependence (at kT¼0.5GeV) and kT dependence
(at x¼0.2) of hqLðx; k2TÞ and f⊥q

L ðx; k2TÞ for q ¼ u and d
in Set II. Comparing Fig. 2 with Fig. 3, we can see that the
TMD distributions in Set I are very different from those in
Set II. In Set I the TMD distributions peak at the small x
region, while in Set I they peak at the moderate x region.
The kT dependence of the TMD distributions shows that the
kT widths for hqLðx; k2TÞ and f⊥q

L ðx; k2TÞ in Set I are larger
than those in Set II, as the sizes of the TMD distributions in
Set II decrease very quickly with increasing kT .

III. NUMERICAL RESULTS FOR LTSA
AT HERMES, CLAS, AND COMPASS

In this section, we will perform the phenomenological
analysis on the LTSA for pions in SIDIS scattering on a
longitudinally polarized nucleon target,

lðlÞ þ p→ðPÞ → l0ðl0Þ þ πðPhÞ þ XðPXÞ; ð22Þ

at the kinematics of HERMES, CLAS, and COMPASS.
The kinematics of SIDIS can be expressed by the following
invariant variables:

x ¼ Q2

2P · q
; y ¼ P · q

P · l
; z ¼ P · Ph

P · q
; γ ¼ 2Mx

Q
;

Q2 ¼ −q2; s ¼ ðPþ lÞ2; W2 ¼ ðPþ qÞ2; ð23Þ

here q ¼ l − l0 is the momentum of the virtual photon and
W is the invariant mass of the hadronic final state. The
reference frame we adopt in this work is shown in Fig. 4,
where the momentum of the virtual photon is along the z
axis. The longitudinal polarization of the target is along the
−z axis. In this frame the transverse momentum of pion is
denoted by PT, while the azimuthal angle of the pion

around the momentum of the virtual photon is defined
as ϕh.
The differential cross section of SIDIS scattering on a

longitudinally polarized target can be expressed as [17]

dσ
dxdydzhdP2

Tdϕh
¼ 2πα2

xyQ2

y2

2ð1 − εÞ
�
1þ γ2

2x

�
fFUU

þ S∥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞ

p
sinϕhF

sinϕh
UL þ � � �g;

ð24Þ
where FUU and Fsinϕh

UL are the spin-averaged and spin-
dependent structure functions, respectively. The ellipsis
stands for the leading-twist contribution to the sin 2ϕh
moment, which will not be considered in this paper. The
ratio of the longitudinal and transverse photon flux is
given as

ε ¼ 1 − y − γ2y2=4
1 − yþ y2=2þ γ2y2=4

: ð25Þ

In the parton model, based on the tree-level factorization
adopted in Ref. [17], the two structure functions in Eq. (24)
can be expressed as the convolutions of twist-2 and twist-3
TMD distribution and fragmentation functions. With the
help of the notation

C½wfD� ¼ x
X
q

e2q

Z
d2kT

Z
d2pTδ2ðzkT − PT þ pTÞ

× wðkT; pTÞfqðx; k2TÞDqðz; p2TÞ ð26Þ
and the reference frame we choose, FUU and Fsinϕh

UL have
the following forms [17]:

FUU ¼ C½f1D1�; ð27Þ

Fsinϕh
UL ¼ 2M

Q
C
�
P̂T · pT
zMh

�
xhLH⊥

1 þMh

M
g1L

~G⊥

z

�

þ P̂T · kT
M

�
xf⊥LD1 −Mh

M
h⊥1L

~H
z

��
; ð28Þ

where P̂T ¼ PT
PT

with PT ¼ jPT j and Mh is the mass of the
final-state hadron.
The asymmetry Asinϕ

UL as a function of PT therefore can
be expressed as

Asinϕh
UL ðPTÞ

¼
R
dx

R
dy

R
dz 1

xyQ2

y2

2ð1−εÞ
�
1þ γ2

2x

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵð1þ εÞp

Fsinϕh
ULR

dx
R
dy

R
dz 1

xyQ2

y2

2ð1−εÞ
�
1þ γ2

2x

	
FUU

:

ð29Þ

The x-dependent and the z-dependent asymmetries can be
defined in a similar way.

FIG. 4. The kinematical configuration for the SIDIS process.
The initial and scattered leptonic momenta define the lepton plane
(x-z plane), while the detected hadron momentum together with
the z axis identify the hadron production plane; the longitudinal
spin of the nucleon is along the −z axis.
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To obtain Eq. (28), we have assumed that the TMD
factorization can be generalized to the twist-3 level.
However, when dealing with higher-twist observables in
the TMD framework, one should keep in mind that it is not
at all clear from a theoretical point of view if TMD
factorization is valid. In fact, even the tree-level parton
model results at twist-3 were questioned, as shown in
[41,42]. Nevertheless, we would like to adopt a more
phenomenological way, i.e., to use the tree-level result in
Ref. [17] to perform the estimate, since there is no
alternative theoretical approach for the LTSA so far.
Equation (28) shows that Fsinϕh

LU receives four contribu-
tions from the convolutions of the twist-3 TMD distribution
and fragmentation functions with the twist-2 ones. In the
following calculation, we will apply the Wandzura-Wilczek
approximation [43] to neglect the contributions from the
twist-3 T-odd fragmentation functions ~G and ~H; that is, we
assume that the sizes of the functions with a tilde are small.
Therefore in our analysis we restrict the scope on the f⊥LD1

term and the hLH⊥
1 term.

For the twist-3 TMD distributions f⊥L and hL, we apply
the results obtained in the previous section. As for the
Collins functions for different pions, we adopt the follow-
ing relations:

H⊥πþ=u
1 ¼ H⊥π−=d

1 ≡H⊥
1fav; ð30Þ

H⊥πþ=d
1 ¼ H⊥π−=u

1 ≡H⊥
1unf ; ð31Þ

H⊥π0=u
1 ¼ H⊥π0=d

1 ≡ 1

2
ðH⊥

1fav þH⊥
1unfÞ; ð32Þ

where H⊥
1fav and H⊥

1unf are the favored and unfavored
Collins functions, for which we use the standard para-
metrization set from Ref. [44].
For the TMD fragmentation function Dq

1ðz; p2TÞ that
couples with the distribution f⊥L , we assume its pT
dependence has a Gaussian form

Dq
1ðz; p2TÞ ¼ Dq

1ðzÞ
1

πhp2
Ti

e−p2T=hp2
Ti; ð33Þ

where hp2
Ti is the Gaussian width for p2

T. Following the
fitted result in Ref. [45], we choose hp2

Ti ¼ 0.2 GeV2 in the
calculation. For the integrated fragmentation function
Dq

1ðzÞ, we will adopt the leading order set of the DSS
parametrization [46]. Finally, throughout the paper, we
consider the following kinematical constraints [47] on the
intrinsic transverse momentum of the initial quarks in our
calculation:

(
k2T ≤ ð2 − xÞð1 − xÞQ2 for 0 < x < 1

k2T ≤ xð1−xÞ
ð1−2xÞ2 Q

2 for x < 0.5:
ð34Þ

The first constraint in Eq. (34) is obtained by requiring the
energy of the parton to be less than the energy of the parent
hadron, while the second constraint arises from the require-
ment that the parton should move in the forward direction
with respect to the parent hadron [47]. For the region
x < 0.5, there are two upper limits for k2T applied in the
region x < 0.5 at the same time; it is understood that the
smaller one should be chosen.
We adopt the following kinematics to calculate numeri-

cally the SSAs Asinϕh
UL at HERMES [5]:

0.023 < x < 0.4; 0.1 < y < 0.85; 0.2 < z < 0.7;

W2 > 10 GeV2; Q2 > 1 GeV2;

4 GeV < Pπ < 13.8 GeV;

where Pπ is the momentum of the final-state pion. In the
left, central, and right panels of Fig. 5, we show the results
of the LTSAs for πþ, π−, and π0 as functions of x and z. The
thick and thin curves correspond to the asymmetries
calculated from the TMD distributions in Set I and Set
II, respectively. The dashed curves show the asymmetries
contributed by the f⊥LD1 term, while the solid curves
denote the total contribution of the f⊥LD1 and hLH⊥

1 terms.
The difference between the solid curve and the dashed
curve gives the asymmetry from the hLH⊥

1 term. In the case
of πþ, π− production, we compare our results with the
HERMES data [5], which have been obtained by

FIG. 5 (color online). The asymmetry Asinϕh
UL at HERMES for πþ (left panel), π− (central panel), and π0 (right panel) as functions of x

and z. The thick lines and the thin lines are calculated from the Set 1 and Set 2 TMD distribution functions, respectively. The solid lines
represent the total asymmetries, while the dashed lines show the asymmetries from the f⊥LD1 term; the difference between them gives the
asymmetries from the hLH⊥

1 term. Data are from Ref. [5].
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subtracting the contribution from the transverse spin
component.
The results calculated from both sets of TMD distribu-

tions show that the asymmetry for πþ is positive, while that
for π− is negative, consistent with the HERMES data. In the
case of πþ production, the asymmetry calculated from Set I
agrees with the data better than from the Set II TMD
distributions. In the case of π− production, the asymmetry
contributed by the f⊥LD1 term is positive, while that
contributed by the hLH⊥

1 term is largely negative, leading
to a negative asymmetry in total. In the case of π0

production, the asymmetries are positive, similar to the
case of πþ, but the size is smaller. An important feature in
the π0 asymmetry is that the contribution from the f⊥LD1

term dominates and that the one from the hLH⊥
1 term is

almost negligible, especially in the x-dependent asymme-
try. This is very different from the case of charged pions, for
which the contributions from the f⊥LD1 term and the hLH⊥

1

term are comparable. Therefore the measurement on the
asymmetry Asinϕh

UL for π0 at HERMES will provide a great
opportunity to access the distribution f⊥L .
The asymmetry Asinϕh

UL for all three pions is also being
measured at CLAS [48] by using an electron beam
(Ee ¼ 5.5 GeV) scattered off the longitudinally polarized
proton target. The kinematic cuts at CLAS applied in our
calculation are

0.1 < x < 0.6; 0.4 < z < 0.7; Q2 > 1 GeV2;

PT > 0.05 GeV; W2 > 4 GeV2:

In Fig. 6, we show the asymmetry Asinϕh
UL for πþ, π−, and π0

at CLAS. For all three pions the asymmetries are sizable
and could be measured at CLAS. For πþ and π0 production,
the asymmetries calculated from Set I TMD distributions
are larger than those from Set II distributions, while for π−
production, the size of the asymmetry from Set II TMD
distributions is slightly larger than that from Set I. In the
case of π0 production, again the fLD1 term dominates the
asymmetries as functions of x and PT , although there is a
sizable contribution from the hLH⊥

1 term at the high z
region.
COMPASS has measured [49] the sinϕ azimuthal

asymmetries of charged hadrons produced off the longi-
tudinally polarized deuteron target with a 160 GeV muon
beam, where ϕ is the azimuthal angle of the final-state
hadron around the momentum of the lepton beam. The
azimuthal asymmetry Asinϕh

UL at COMPASS might be
extracted by the method in Ref. [5]. Thus, we calculate
the asymmetry Asinϕh

UL of charged and neutron pions
produced off a deuteron target at COMPASS. We adopt
the following kinematics in the estimation:

0.004 < x < 0.7; y > 0.1; 0.2 < z < 0.9;

xF > 0; Q2 > 1 GeV2; 0.1 GeV < PT < 1 GeV;

5 GeV < W < 18 GeV:

In Fig. 7, we plot the asymmetry Asinϕh
UL for πþ, π−, and π0

vs x, z, and PT . We find that in the case of deuteron target,
again, for π0 production the dominant contribution comes

FIG. 6 (color online). The asymmetry Asinϕh
UL for πþ, π−, and π0 vs x, z, and PT at CLAS 5.5 GeV.

FIG. 7 (color online). The asymmetry Asinϕh
UL for πþ, π−, and π0 at COMPASS.
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from the f⊥LD1 term, while the contribution from the hLH⊥
1

term is consistent with zero. Therefore, it would be feasible
to extract the flavor dependence of f⊥L by combining the
asymmetries for π0 using a deuteron target together with a
proton target.

IV. CONCLUSION

In this work, we studied the subleading-twist effect on
the azimuthal asymmetry of pions produced in SIDIS with
longitudinal polarized nucleon targets. We considered the
contributions from the twist-3 TMD distributions f⊥L and
hL simultaneously. In our calculation, two different sets of
twist-3 distribution functions are employed to analyze the
asymmetry Asinϕh

UL for πþ, π−, and π0 at HERMES, CLAS,
and COMPASS. By comparing our results with the
HERMES measurement in which a proton target is used,
we find that the sign of the asymmetries for πþ and π− is
consistent with the HERMES data, and the f⊥LD1 and
hLH⊥

1 terms both give substantial contributions to Asinϕh
UL .

In the case of π− production, the hLH⊥
1 term is largely

negative, leading to the negative sign of the total asym-
metry. We also find that the f⊥LD1 term dominates in the
asymmetry for π0, especially at HERMES and COMPASS
where the beam energies are higher. Thus the measurement
of Asinϕh

UL for π0 on the proton target, as well as on the
deuteron target, will provide a great opportunity to access
f⊥L , including its flavor separation. Future data on A

sinϕh
UL for

charged and neutral pions from CLAS at 5.5 GeV may be
used to clarify the role of twist-3 TMD distribution
functions on the longitudinal target spin asymmetry.
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