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In this work we have employed the Bethe-Salpeter equation (BSE) under covariant instantaneous ansatz
to study electromagnetic decays of ground state equal mass vector mesons ρ, ω, ϕ, ψ , and Y through the
process V → γ → eþ þ e−. We employ the generalized structure of the hadron-quark vertex function Γ that
incorporates all Dirac structures from their complete set order by order in powers of the inverse of the
meson mass. We have explicitly shown the derivation of this general form of this hadron-quark vertex
function Γ (in terms of unknown coefficients) for a vector meson with the incorporation of all the Dirac
structures (i.e., those dependent on external hadron momentum P, as well those dependent on internal
hadron momentum q) as the solution of the full 4 × 4 Bethe-Salpeter equation. The unknown coefficients
multiplying the various Dirac structures are calculated by reducing the 4 × 4 BSE to a determinantal form.
These coefficients thus determined were also employed for the calculation of fV values and gave good
agreement with data, as well as an acceptable solution of the full BSE.
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I. INTRODUCTION

Meson decays provide an important tool for exploring
the structures of these simplest bound states in QCD and for
studies on nonperturbative behavior of strong interactions.
These studies have become a hot topic in recent years.
Flavorless vector mesons play an important role in hadron
physics due to their direct coupling to photons and thus
provide an invaluable insight into the phenomenology of
electromagnetic couplings to hadrons. Thus, a realistic
description of vector mesons at the quark level of com-
positeness would be an important element in our under-
standing of hadron dynamics and reaction processes at
scales where QCD degrees of freedom are relevant. There
have been a number of studies [1–8] on processes involving
strong, radiative, and leptonic decays of vector mesons.
Such studies offer a direct probe of hadron structure and
help in revealing some aspects of the underlying quark-
gluon dynamics.
In this work we study electromagnetic decays of ground

state equal mass vector mesons ρ;ω;ϕ;ψ , and Y (each
comprising equal mass quarks) through the process
V → γ� → eþ e−, which proceeds through the coupling
of the quark-antiquark loop to the electromagnetic current
in the framework of the Bethe-Salpeter equation (BSE),
which is a conventional nonperturbative approach in deal-
ing with relativistic bound state problems in QCD and is
firmly established in the framework of field theory. From
the solutions, we obtain useful information about the inner

structure of hadrons, which is also crucial in high energy
hadronic scattering and production processes. Despite the
drawback of having to input a model dependent kernel,
these studies have become an interesting topic in recent
years since calculations have satisfactory results as more
and more data are being accumulated. We get useful insight
about the treatment of various processes using BSE due to
the unambiguous definition of the four-dimensional (4D)
BS wave function, which provides an exact effective
coupling vertex (hadron-quark vertex) of the hadron with
all its constituents (quarks).
We have employed the QCD motivated Bethe-Salpeter

equation (BSE) under the covariant instantaneous ansatz
(CIA) [9–14] to calculate this process. CIA is a Lorentz-
invariant generalization of the instantaneous ansatz (IA).
What distinguishes CIA from other three-dimensional (3D)
reductions of BSE is its capacity for a two-way intercon-
nection: an exact 3D BSE reduction for a qq̄ system (for
calculation of the mass spectrum), and an equally exact
reconstruction of original 4D BSE (for calculation of
transition amplitudes as 4D quark loop integrals). In these
studies, the main ingredient is the 4D hadron-quark vertex
function Γ, which plays the role of an exact effective
coupling vertex of the hadron with all its constituents
(quarks). The complete 4D BS wave function ΨðP; qÞ for a
hadron of momentum P and internal momentum q com-
prises the two quark propagators (corresponding to two
constituent quarks) bounding the hadron-quark vertex Γ.
This 4D BS wave function is considered to sum up all the
nonperturbative QCD effects in the hadron. Now one of the
main ingredients in the 4D BS wave function (BSW) is its
Dirac structure. The copious Dirac structure of BSW was
already studied by Smith [15] much earlier. Recent studies
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[1,4,5] have revealed that various mesons have many
different Dirac structures in their BS wave functions,
whose inclusion is necessary to obtain quantitatively
accurate observables. It was further noticed that all struc-
tures do not contribute equally for the calculation of various
meson observables [1,7]. Further, it was amply noted in
[16] that many hadronic processes are particularly sensitive
to higher order Dirac structures in BS amplitudes. It was
further noted in [16] that the inclusion of higher order Dirac
structures is also important to obtain simultaneous agree-
ment with experimental decay widths for a range of
processes such as V → eþe−, V → γP, V → PP for a
given choice of parameters.
Toward this end, to ensure a systematic procedure of

incorporating various Dirac covariants from their complete
set in the BSWs of various hadrons (pseudoscalar, vector,
etc.), we developed a naive power counting rule in
Ref. [13], by which we incorporate various Dirac structures
in BSW, order by order in powers of the inverse of the
meson mass.
Using this power counting rule we calculated electro-

magnetic decay constants of vector mesons (ρ;ω;ϕ) using
only the leading order (LO) Dirac structures [iγ · ε and
ðγ · εÞðγ · PÞ=M], where ε is the polarization vector of
vector meson momentum P and mass M. However, in
Ref. [14], we rigorously studied leptonic decays of unequal
mass pseudoscalar mesons π; K;D;Ds; B and calculated
the leptonic decay constants fP for these mesons employ-
ing both the LO and the next-to-leading order (NLO) Dirac
structures. The contributions of both LO and NLO Dirac
structures to fP was worked out. We further studied the
relevance of both the LO and the NLO Dirac structures to
this calculation.
In the present paper, we extended these studies to vector

mesons and have employed both LO and NLO Dirac
structures identified according to our power counting
rule to calculate fV for ground state vector mesons,
ρ;ω;ϕ;ψ ; Y, and in the process we studied the relevance
of various Dirac structures to the calculation of decay
constants fV for vector mesons in the process V → eþe−.
Toward this end, we first explicitly show the derivation of
the general form of the Hadron-quark vertex function Γ (in
terms of unknown coefficients) for a vector meson with the
incorporation of all the Dirac structures (i.e., those depen-
dent on external hadron momentum P as well those
dependent on internal hadron momentum q) as the solution
of the full 4 × 4 Bethe-Salpeter equation. The unknown
coefficients multiplying the various Dirac structures are
calculated by reducing the BSE to a determinantal form.
These coefficients thus calculated are also employed for the
calculation of decay constants of vector mesons, which was
found to give a good agreement with data, as well as an
acceptable solution of the full BSE. We found that con-
tributions from NLO Dirac structures are smaller than those
of LO Dirac structures for all vector mesons. In what

follows, we give a detailed discussion of the derivation of
the full hadron-quark vertex function up to the NLO level in
BSE under CIA and then the detailed calculation of decay
constants fV up to the NLO level after a brief review of our
framework.
The paper is organized as follows: In Sec. II we discuss

the structure of the BSW for vector mesons under CIA
using the power counting rule we proposed earlier. We have
also presented the derivation of the full 4 × 4 hadron-quark
vertex function for a vector meson with the incorporation of
all the Dirac covariants from BSE. In Sec. III we give the
calculation of fV for vector mesons. A detailed presentation
of results and the numerical calculation is given in Sec. IV.
Section V is relegated to discussion.

II. BSE UNDER CIA

We briefly outline the BSE framework under CIA. For
simplicity, let us consider a qq̄ system comprising scalar
quarks with an effective kernel K, with the 4D wave
function ΦðP; qÞ, and with the 4D BSE,

ið2πÞ4Δ1Δ2ΦðP; qÞ ¼
Z

d4qKðq; q0ÞΦðP; q0Þ; ð1Þ

where Δ1;2 ¼ m2
1;2 þ p2

1;2 are the inverse propagators, and
m1;2 are (effective) constituent masses of quarks. The
4-momenta of the quark and antiquark, p1;2, are related
to the internal 4-momentum qμ and total momentum Pμ of
the hadron of mass M as p1;2μ ¼ m̂1;2Pμ � qμ, where
m̂1;2 ¼ ½1� ðm2

1 −m2
2Þ=M2�=2 are the Wightman-

Garding (WG) definitions of masses of individual quarks.
Now it is convenient to express the internal momentum of
the hadron qμ as the sum of two parts, the transverse
component, q̂μ ¼ qμ − ðq · PÞPμ=P2 that is orthogonal to
total hadron momentum Pμ (i.e., q̂ · P ¼ 0 regardless of
whether the individual quarks are on-shell or off-shell) and
the longitudinal component σPμ ¼ ðq · PÞPμ=P2, which is
parallel to Pμ. Thus we can decompose qμ as qμ ¼ ðq̂;MσÞ,
where the transverse component q̂ is an effective 3D vector,
while the longitudinal component Mσ plays the role of the
fourth component and is like the time component. The 4D
volume element in this decomposition is d4q ¼ d3q̂Mdσ.
To obtain the 3D BSE and the hadron-quark vertex, use an
ansatz on the BS kernel K in Eq. (1), which is assumed to
depend on the 3D variables q̂μ, q̂0μ [12], i.e.,

Kðq; q0Þ ¼ Kðq̂; q̂0Þ: ð2Þ
Hence, the longitudinal component, σPμ of qμ, does not
appear in the form Kðq̂; q̂0Þ of the kernel. For reducing
Eq. (1) to the 3D form of BSE, we define a 3D wave
function, ϕðq̂Þ, as

ϕðq̂Þ ¼
Z þ∞

−∞
MdσΦðP; qÞ: ð3Þ
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Dividing both sides of Eq. (1) by Δ1Δ2, then integrating
both sides of Eq. (1) overMdσ, and making use of Eqs. (2)
and (3), we obtain a covariant version of the Salpeter
equation, which is in fact a 3D BSE,

ð2πÞ3Dðq̂Þϕðq̂Þ ¼
Z

d3q̂0Kðq̂; q̂0Þϕðq̂0Þ: ð4Þ

Here, Dðq̂Þ is the 3D denominator function defined as
[13,14,17]

1

Dðq̂Þ ¼
1

2πi

Z þ∞

−∞

Mdσ
Δ1Δ2

¼
1

2ω1
þ 1

2ω2

ðω1 þ ω2Þ2 −M2
;

ω2
1;2 ¼ m2

1;2 þ q̂2; ð5Þ

whose value given above is obtained by evaluating the
contour integration over inverse quark propagators in the
complex σ plane by noting their corresponding pole
positions (for details see [13,14]). This 3D BSE is used
for making contact with mass spectra of qq̄ mesons.
Further, making use of Eqs. (2) and (3) on the right-hand

side (RHS) of Eq. (1), we get

ið2πÞ4Δ1Δ2ΦðP; qÞ ¼
Z

d3q̂0Kðq̂; q̂0Þϕðq̂0Þ: ð6Þ

From the equality of the RHSs of Eqs. (4) and (6), we see
that an exact interconnection between the 3D BS wave
function ϕðq̂Þ and the 4D BS wave function ΦðP; qÞ is thus
brought out. We wish to mention that a similar covariant 3D
reduction of the BSE with a (two way) connection between
3D and 4D wave functions similar to this approach was
developed earlier by Sazdjian [18]. The 4D hadron-quark
vertex function for scalar quarks under CIA can be
identified as

Δ1Δ2ΦðP; qÞ ¼
Dðq̂Þϕðq̂Þ

2πi
≡ Γ; ð7Þ

which can in turn be expressed as ΦðP; qÞ ¼ Δ−1
1 ΓΔ−1

2 ,
where Δ−1

1;2 are the scalar propagators of the two quarks
flanking the hadron-quark vertex function, Γ ¼
Dðq̂Þϕðq̂Þ=2πi. It is to be noted that this hadron-quark
vertex function satisfies a 4D BSE and thus can be
profitably employed for the calculation of various transition
amplitudes through various quark-loop diagrams.
Now, to adopt a fermionic system, we wish to mention

that for a two-fermionic BSE, the BS amplitude has 16
components corresponding to the spinor indices of the two
particles and transforms as the outer product of the two
spinors. To formulate BSE for few-quark systems (qq̄, qqq)
within a common framework, it is more convenient to adopt
the 16 × 1 column representation for a two-body (qq̄ or qq)
BS amplitude, instead of the more conventional 4 × 4
representation, though both are completely equivalent

[15,19,20]. Thus the BSE in the 16 × 1 representation
for the qq̄ amplitude ΨðP; qÞ with a gluonic exchange
interaction kernel (i.e., vector type) with a 3D support can
be written as

ið2πÞ4ΨðP;qÞ¼SF1ðp1ÞSF2ð−p2Þ
Z

d4q0Kðq̂; q̂0ÞΨðP;q0Þ;

Kðq̂; q̂0Þ¼F12iγ
ð1Þ
μ γð2Þμ Vðq̂; q̂0Þ: ð8Þ

In the above equation, as stated above, K is one-gluon-
exchange (o.g.e.) as regards color and spin dependence.

Here F12 is the color factor, ðλ1=2Þ · ðλ2=2Þ, and ðγð1Þμ γð2Þμ Þ
denotes the spin dependence, while the potential V involves
the scalar structure of the gluon propagator in the pertur-
bative (o.g.e.) as well as the nonperturbative (confinement)
regimes. As regards the superscripts 1 and 2 on γμ, they
indicate that the corresponding Dirac matrix gamma
operates on particle 1 and particle 2, respectively. Thus,
all γð1Þ’s commute with all γð2Þ’s. The spin dependent

effects arise mainly due to the γð1Þμ γð2Þμ dependence of the

kernel for pairwise interactions. Here, γð1Þμ γð2Þμ ¼ γð1Þ · γð2Þ,
and thus the interaction kernel has a V · V form and is a 4-
scalar.
[Note that in the BSE corresponding to the 4 × 4

representation of ΨðP; qÞ (which is related to its 16 × 1
representation through standard transformations [15] of the
charge conjugation of spinors), no indexing of γμ matrices
is needed in either the two propagators or the kernel (see
[20]). Thus on the left-hand side (LHS) of this equation, the
inverse quark propagators (without the indices 1 or 2)
should flank ΨðP; qÞ, while on the RHS of this equation,
the two γμ matrices coming from the kernel should be read
with one on each side of ΨðP; qÞ, but without the indices 1
or 2.]
The full structure of scalar function Vðq̂; q̂0Þ in the

interaction kernel in Eq. (8), which is a sum of one-gluon
exchange VOGE, and a confining term VC is [9]

Vðq̂ − q̂0Þ ¼ VOGE þ VC;

VOGE ¼ 4παSðQ2Þ
ðq̂ − q̂0Þ2 ;

VC ¼ 3ω2
qq̄

4

Z
d3rfðrÞeiðq̂−q̂0Þ·r;

fðrÞ ¼ r2

ð1þ 4a0m̂1m̂2M2r2Þ1=2 −
C0

ω2
0

: ð9Þ

This confining term simulates an effect of an almost linear
confinement (∼r) for the heavy quark (c, b) sector, while
retaining harmonic form (∼r2) for the light quark (u, d)
sector as is believed to be true for QCD.
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ω2
qq̄ ¼ 4m̂1m̂2M>ω

2
0αSðM2

>Þ;
M> ¼ MaxðM;m1 þm2Þ: ð10Þ

The values of basic constants are C0 ¼ 0.29;ω0 ¼
0.158 GeV, Λ ¼ 0.200 GeV, mu;d ¼ 0.265 GeV, ms ¼
0.415 GeV, mc ¼ 1.530 GeV, and mb ¼ 4.900 GeV
[9,10,14]. However, the form of BSE in Eq. (8) is not
convenient to use in practice since Dirac matrices lead to
several coupled integral equations. However, a consider-
able simplification is effected by expressing them in
Gordon-reduced form, which is permissible on the mass
shells of quarks (i.e., on the surface P · q ¼ 0). Further for
mass spectral calculations, what is important is to bring out
the spin structure of the kernel. The Gordon reduced form
of the fermionic BSE can be written as [9]

Δ1Δ2ΦðP; qÞ ¼ −ið2πÞ−4
Z

d4q0 ~K12ðq̂; q̂0ÞΦðP; q0Þ;

~K12ðq̂; q̂0Þ ¼ F12V
ð1Þ
μ Vð2Þ

μ Vðq̂; q̂0Þ: ð11Þ

Here it is to be mentioned that �Vð1;2Þ
μ is obtained by

multiplying ðm1;2∓iγð1;2Þ:p1;2Þ with γð1;2Þμ . The structure of
this Gordon reduced BSE in Eq. (11) is identical to the
corresponding BSE for scalar quarks in Eq. (1), where the
connection between ΨðP; qÞ in Eq. (8) and the auxiliary
function ΦðP; qÞ is [9,10]
ΨðP; qÞ ¼ ðm1 − iγð1Þ · p1Þðm2 þ iγð2Þ · p2ÞΦðP; qÞ: ð12Þ
To simplify Vð1;2Þ

μ in the expression for pairwise inter-
action kernel ~K12 entering in Eq. (11), we employ Gordon
reduction on mass shells of individual quarks, which
amounts to replacement [9,10]

Vð1;2Þ
μ ¼�2m1;2γ

1;2
μ ¼ðp1;2þp0

1;2Þμþ iσð1;2Þμν ðp1;2þp0
1;2Þν.
ð13Þ

Now to reduce the above BSE in Eq. (11) to the 3D form,
all timelike components σ; σ0 of momenta in Vð1Þ

μ Vð2Þ
μ on the

RHS of Eq. (9) are replaced by their on-shell values giving
us the 3D form V1 · V2. Thus

Vð1Þ
μ Vð2Þ

μ ⇒ V1 · V2 ¼ −4m̂1m̂2M2 − ðq̂ − q̂0Þ2 − 2ðm̂1 − m̂2ÞP · ðq̂þ q̂0Þ
−ið2m̂1Pþ q̂þ q̂0Þiσð2Þij ðq̂ − q̂0Þ þ ið2m̂2P − q̂ − q̂0Þiσð1Þij ðq̂ − q̂0Þj þ σð1Þij σ

ð2Þ
ij : ð14Þ

The 3D form of BSE then works out as [10]

Dðq̂Þϕðq̂Þ ¼ ω2
qq̄

~Dðq̂Þϕðq̂Þ;
~Dðq̂Þ ¼ 4m̂1m̂2M2ð∇2 þ C0=ω2

0Þ þ 4q̂2∇2

þ 8q̂ ·∇þ 18 − 8J · Sþ 4C0

ω2
0

q̂2: ð15Þ

This is reducible to the equation for a 3D harmonic
oscillator with coefficients depending on the mass M
and total quantum number N. The ground state wave
functions [9,10,13] deducible from this equation have a
Gaussian structure and are expressed as

ϕðq̂Þ ¼ e−q̂
2=ð2β2Þ ð16Þ

and is appropriate for making contact with a O(3)-like mass
spectrum (for details see Ref. [9]). It is to be noted that this
3D BSE [in Eq. (15)], which is responsible for the
determination of the mass spectra of mesons in CIA is
formally equivalent (see [9,10,21]) to the corresponding
mass spectral equation deduced earlier using the null-plane
approximation (NPA) [22]. Thus the mass spectral pred-
ications for qq̄ systems in BSE under CIA are identical to
the corresponding mass spectral predictions for these
systems in BSE under NPA [22] (see [9,10] for details).
We further wish to mention that a similar form for the

ground state wave function in the harmonic oscillator basis

using variational arguments has been used in [23]. In
ground state wave function ϕðq̂Þ in Eq. (16), β is the inverse
range parameter that incorporates the content of BS
dynamics and is dependent on the input kernel Kðq; q0Þ.
The inverse range parameter β is determined by the
criterion of minimizing the difference between the LHS
and the RHS of the BSE. The values of β for different
mesons are given in Table I.

A. Dirac structure of hadron-quark vertex function for
vector mesons in BSE with power counting scheme

We now present the derivation of the hadron-quark vertex
function for a vector meson. For transition amplitude
calculations throughquark-loop diagrams,what is important
is to bring out the structure of the full 4D BS wave function
ΨðP; qÞ in a 4 × 4matrix form. The 4 × 4version ofΨðP; qÞ
in Eq. (12) can be written after taking account of standard
transformations [15] of charge conjugation of spinors as [19]

ΨðP; qÞ ¼ ðm1 − iγ · p1ÞΦðP; qÞðm2 þ iγ · p2Þ; ð17Þ

where there is no indexing on gammamatrices andwhere the
spin dependence of ΦðP; qÞ has now to be taken into
account, and Φ should now be a 4 × 4 matrix in spinor
space and should be expanded as a linear superposition of
Dirac gamma matrices. In accordance with our power
counting rule introduced in [13], we write the 4 × 4 form
of ΦðP; qÞ as
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ΦðP; qÞ ¼ ½ΩVðP; qÞ�Φ0ðP; qÞ; ð18Þ

where the entire spinor dependence is contained in
½ΩVðP; qÞ�, while Φ0ðP; qÞ is an auxiliary scalar function.

In our model, the relevant Dirac structures [15] in
ΦðP; qÞ are incorporated in accordance with our recently
proposed power counting rule [13,24], and the Dirac
structure for a vector meson is expressed as [13]

½ΩVðP; qÞ� ¼ iðγ · εÞA0 þ ðγ · εÞðγ · PÞA1

M
þ ½q · ε − ðγ · εÞðγ · qÞ�A2

M

þ i
A3

M2
½ðγ · εÞðγ · PÞðγ · qÞ − ðγ · εÞðγ · qÞðγ · PÞ þ 2ðq · εÞðγ · PÞ�

þ ðq · εÞA4

M
þ iðq · εÞðγ · PÞ A5

M2
− iðq · εÞðγ · qÞ A6

M2
þ ðq · εÞ½ðγ · PÞðγ · qÞ − ðγ · qÞðγ · PÞ� A7

M3
: ð19Þ

But since we take constituent quark masses, where the
quark massM is approximately half the hadron massM, we
can use the ansatz

q ≪ P ∼M ð20Þ

in the rest frame of the hadron. Then each of the eight
terms in the above equation receives suppression by
different powers of 1=M. Thus we can arrange these
terms as an expansion in powers of Oð1=MÞ. We can then
see that in the expansion of ½ΩV � the structures associated
with the coefficients A0; A1 have magnitudes Oð1=M0Þ
and are of LO. Those with A2; A3; A4; A5 are Oð1=M1Þ and

are NLO, while those with A6; A7 are Oð1=M2Þ and are
next to next leading order (NNLO). This naive power
counting rule suggests that the maximum contribution to
the calculation of any vector meson observable should
come from Dirac structures γ · ε and ðγ · εÞðγ · PÞ=M
associated with coefficients A0 and A1, respectively,
followed by the higher order Dirac structures associated
with the other four coefficients, A2; A3; A4; A5, and
then by Dirac structures associated with coefficients
A6; A7.
In this work we are interested in calculations up to next-

to-leading orders. Thus we take the Dirac structure for a
vector meson up to NLO terms as

½ΩLOþNLO
V ðP; qÞ� ¼ iðγ · εÞA0 þ ðγ · εÞðγ · PÞA1

M
þ ½q · ε − ðγ · εÞðγ · qÞ�A2

M

þ i½ðγ · εÞðγ · PÞðγ · qÞ − ðγ · εÞðγ · qÞðγ · PÞ þ 2ðq · εÞðγ · PÞ� A3

M2

þ ðq · εÞA4

M
þ iðq · εÞðγ · PÞ A5

M2
: ð21Þ

which can be decomposed as ½ΩLOþNLO
V ðP; qÞ� ¼

½ΩLO
V ðPÞ� þ ½ΩNLO

V ðP; qÞ�, where ½ΩLO
V � comprises only

the leading order Dirac structures, comprising only the first
two terms in the above expression (with coefficients A0; A1)
that are functions of only the external momentum P, and
are independent of the internal momentum q, while
½ΩNLO

V ðP; qÞ� comprises next-to-leading order Dirac struc-
tures, which are the remaining terms (with coefficients
A2;…; A5) and are dependent on both P and q. The choice
of various Dirac covariants is constrained by required
properties under charge conjugation and parity transforma-
tions [13,15,24], and where Ai are taken as the six dimen-
sionless constant coefficients to be determined as acceptable
solutions of BSE, while Φ0ðP; qÞ is a scalar function.

Thus in 4 × 4 form, we can write Eq. (11) as

ið2πÞ4Δ1Δ2½ΩLO
V ðPÞ þ ΩNLO

V ðP; qÞ�Φ0ðP; qÞ

¼
Z

d4q0 ~K12ðq̂; q̂0Þ½ΩLO
V ðPÞ þ ΩNLO

V ðP; q0Þ�Φ0ðP; q0Þ:

ð22Þ

In the above equation, it is to be noted that the right-hand
side of the above equation can be split into two integrals. In
the first integral, ½ΩLO

V ðPÞ� can be taken out of the integral
sign, being independent of q0, while in the second integral
the integration is only performed over various terms of
½ΩNLO

V ðP; q0Þ�, which has to remain inside the integral with
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various terms, all of which are functions of the integration
variable q0.
Noting that the four-dimensional volume element,

d4q0 ¼ d3q̂0Mdσ0, we integrate over the fourth component
Mdσ0 in both the integrals on the right-hand side of the above
equation. Though integration overMdσ0 in the first integral is
easy to perform, in the second integral we have both ½ΩNLO

V �
and Φ0 under the integral sign, which are functions of
integrating variable q0, and hence are functions of Mdσ0.
Noting that q0 ¼ q̂0 þ σ0P, we perform integration by parts
over Mdσ0. Performing integration over all the terms in the
integrand of the second integral termby term, andmaking use
of the orthogonality condition P · ε ¼ 0, and the obvious
relation connecting the 3D and the 4D BS wave functions,
ϕ0ðq̂0Þ ¼ R

Mdσ0Φ0ðP; q0Þ, we obtain the equation

ið2πÞ4Δ1Δ2½ΩLO
V ðPÞ þ ΩNLO

V ðP; qÞ�Φ0ðP; qÞ

¼
Z

d3q̂0 ~K12ðq̂; q̂0Þ½ΩLO
V ðPÞ þ ΩNLO

V ðP; q̂0Þ�ϕðq̂0Þ:

ð23Þ

Dividing both sides of the above equation by Δ1Δ2, then
integrating both sides overMdσ, andmaking use of Eq. (5) to
carry out the contour integration on the right side, while again
making use of integration by parts overMdσ on the left side,
and once again making use of the orthogonality condition
P · ε ¼ 0, we get

ð2πÞ3Dðq̂Þ½ΩLO
V ðPÞ þ ΩNLO

V ðP; q̂Þ�ϕ0ðq̂Þ

¼
Z

d3q̂0 ~K12ðq̂; q̂0Þ½ΩLO
V ðPÞ þ ΩNLO

V ðP; q̂0Þ�ϕ0ðq̂0Þ:

ð24Þ

It is to be noted that the right sides of Eqs. (23) and (24)
are equal. This again leads to the two way interconnection
between the 3D and the 4D BSE for the realistic case of a
qq̄ meson as well as the expression for the hadron-quark
vertex function for the realistic case of a qq̄ vector meson
with all the Dirac covariants included from their complete
set as

Δ1Δ2½ΩLOþNLO
V ðP; qÞ�Φ0ðP; qÞ

¼ ½ΩLOþNLO
V ðP; q̂Þ�Dðq̂Þϕ0ðq̂Þ

2πi
¼ Γ: ð25Þ

(In the above equation, it is to be noted that the LHS is a
function entirely of q, while the RHS is a function entirely
of q̂.) This 4D hadron-quark vertex Γðq̂Þ as derived above
satisfies a 4D BSE and provides a fully Lorentz-invariant
basis for the evaluation of various transition amplitudes
through various quark loop diagrams. As far as the
expression for 3D BS wave function ϕ0ðq̂Þ is concerned,
as stated above, we notice that we can split the RHS of

Eq. (24) into a sum of two integrals. Then, equating the
terms multiplying ½ΩLO

V ðPÞ� on both sides of Eq. (24)
(where ½ΩLO

V ðPÞ� is just a multiplying factor and can be
canceled out), we get an equation that is exactly of the same
form as the 3D version in Eq. (4). This justifies the solution
ϕ0ðq̂Þ ¼ exp½−q̂2=ð2β2Þ�, which is the same as ϕðq̂Þ in
Eq. (16). Thus from the above equation, we can write

ΦðP; qÞ ¼ Δ−1
1 ½ΩLOþNLO

V ðP; q̂Þ�Dðq̂Þϕðq̂Þ
2πi

Δ−1
2 ; ð26Þ

where it is to be noted that ΦðP;qÞ¼
½ΩLOþNLO

V ðP;qÞ�Φ0ðP;qÞ. Putting ΦðP; qÞ above in
Eq. (17) leads to the full reconstructed 4D BS wave
function for the qq̄ meson expressed as

ΨðP; qÞ ¼ SFðp1ÞΓðq̂ÞSFð−p2Þ ð27Þ

and with the 4D normalized hadron-quark vertex function
for a vector meson identified as

Γðq̂Þ ¼ 1

2πi
½ΩLOþNLO

V ðP; q̂Þ�NVDðq̂Þϕðq̂Þ ð28Þ

and is a 4 × 4matrix in spinor space, with ½ΩLOþNLO
V ðP; q̂Þ�

containing the relevant Dirac structures.
The above expression can be expanded as

Γðq̂Þ ¼
�
iðγ · εÞA0 þ ðγ · εÞðγ · PÞA1

M

þ ½q̂ · ε − ðγ · εÞðγ · q̂Þ�A2

M
þ i½ðγ · εÞðγ · PÞðγ · q̂Þ − ðγ · εÞðγ · q̂Þðγ · PÞ

þ 2ðq̂ · εÞðγ · PÞ� A3

M2

þðq̂ · εÞA4

M
þ iðq̂ · εÞðγ · PÞ A5

M2

�
1

2πi
NVDðq̂Þϕðq̂Þ;

ð29Þ

in which NV is the 4D BS normalizer for the ground state
vector meson with internal momenta q and is worked out in
the framework of the CIA to give explicit covariance to the
full fledged 4D BS wave functions, ΨðP; qÞ, and hence to
the hadron-quark vertex function, Γ, employed for the
calculation of decay constants. In the structure of Γðq̂Þ
above, ϕðq̂Þ is the ground state 3D BS wave function for
the vector meson with internal momenta q and is given in
Eq. (16). This structure of the 4D hadron-quark vertex Γ in
Eq. (29) incorporating all the Dirac covariants is thus
derived from BSE.
Now, to calculate the parameters Ai (in the Dirac

structure ½ΩLOþNLO
V ðP; q̂Þ� that enter into the BSE,

Eq. (24), we first incorporate the kernel ~K12 from
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Eqs. (11) and (14) into Eq. (24) and perform integration over d3q̂0. After a sequence of steps, we arrive at the 3D
equation

Dðq̂Þ½ΩLOþNLO
V ðP; q̂Þ�ϕðq̂Þ ¼ 3

4
ω2
qq̄

�
M2

�
∇2

q̂ þ
C0

ω2
0

�
þQq þ 4þ 4

C0

ω2
0

q̂2
�
½ΩLOþNLO

V ðP; q̂Þ�ϕðq̂Þ: ð30Þ

Here, the operator Qq ¼ 4q̂2∇2
q̂ þ 8q̂·∇q̂ þ 6. Now, it is to

be noted here that the operators ∇2
q̂ and Qq operate on both

ϕðq̂Þ and ½ΩLOþNLO
V ðP; q̂Þ� on the RHS of the above

equation. Here we have taken the eigenvalue equation
for the operator Qq as Qqϕðq̂Þ ¼ −9ϕðq̂Þ [19] for ground
state mesons studied here. Now, to eliminate the polariza-
tion vector ε from LHS and RHS in the above equation, we
first multiply both sides of this by equation ðγ ⋅ εÞ from the
left, and then we make use of the orthonormality relation

for polarization vector εðPÞ for the V meson of 4-momen-
tum P as

εμεν ¼
1

3

�
δμν þ

PμPν

M2

�
: ð31Þ

Further, making use of the orthogonality relations,
P · q̂ ¼ 0 and P · ε ¼ 0, the BSE in Eq. (30) is reduced
to the 4 × 4 form which is independent of ε as

Dðq̂Þ
��

iA01þ γ · P
A1

M

�
−
2

3
γ · q̂

A2

M
þ i

4

3
ðγ · PÞðγ · q̂Þ A3

M2
þ
�
γ:q̂
3

A4

M
þ i

γ · q̂γ · P
3

A5

M2

��
ϕðq̂Þ

¼ 3

4
ω2
qq̄

��
iA01þ γ · P

A1

M

�
−
2

3
γ · q̂

A2

M
þ i

4

3
ðγ · PÞðγ · q̂Þ A3

M2
þ
�
γ:q̂
3

A4

M
þ i

γ · q̂γ · P
3

A5

M2

��

×

�
M2

�
−

1

β2
þ q̂2

β4
þ C0

ω2
0

�
− 5þ 4

C0

ω2
0

q̂2
�
ϕðq̂Þ

þ 3

4
ω2
qq̄½8�

�
−
2

3
γ · q̂

A2

M
þ i2ðγ · PÞðγ · q̂Þ A3

M2
þ
�
γ:q̂
3

A4

M
þ i

γ · q̂γ · P
3

A5

M2

��
ϕðq̂Þ: ð32Þ

It is to be noted that if we carry out the trace operation over gamma matrices on both sides of the above equation, the BSE
is reduced to the simple form

Dðq̂Þϕðq̂Þ¼3

4
ω2
qq̄

�
M2

�
−
1

β2
þ q̂2

β4
þC0

ω2
0

�
−5þ4

C0

ω2
0

q̂2
�
ϕðq̂Þ;

ð33Þ

due to the orthogonality relation q̂ · P ¼ 0. This equation is independent of coefficients Ai’s.
To work out the coefficients, Ai, we explicitly write the BSE in Eq. (32) as a 4 × 4matrix equation for an on-shell hadron

(with −iγ ⋅ P ¼ M). This 4 × 4matrix equation is also expressible as a block diagonal 2 × 2 form in terms of the 2 × 2 unit
matrix I, and Pauli spin matrices multiplying functions fi of coefficients Ai. Taking q̂ vector to point along any arbitrary
spatial direction, we can express this 2 × 2 block diagonal form of Eq. (32) as

Dðq̂Þ
�
IðA0 þ A1Þϕðq̂Þ ðσ ⋅ q̂Þf1ϕðq̂Þ
ðσ ⋅ q̂Þf2ϕðq̂Þ IðA0 þ A1Þϕðq̂Þ

�
¼ 3

4
ω2
qq̄

�
IðA0 þ A1Þ½X�ϕðq̂Þ ðσ ⋅ q̂Þðf1½X� þ 8f3Þϕðq̂Þ

ðσ ⋅ q̂Þðf2½X� þ 8f4Þϕðq̂Þ IðA0 þ A1Þ½X�ϕðq̂Þ

�
; ð34Þ
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where

½X� ¼
�
M2

�
−

1

β2
þ q̂2

β4
þ C0

ω2
0

�
− 5þ 4

C0

ω2
0

q̂2
�
;

f1ðAiÞ ¼
2A2 þ 4A3 − A4 þ A5

3M
;

f2ðAiÞ ¼
−2A2 − 4A3 þ A4 − A5

3M
;

f3ðAiÞ ¼
2A2 þ 6A3 − A4 þ A5

3M
;

f4ðAiÞ ¼
−2A2 − 6A3 þ A4 − A5

3M
: ð35Þ

We now make use of the fact that if a matrix equa-
tion is expressed as LHS ¼ RHS, then DetðLHSÞ ¼
DetðRHSÞ. Thus, if we take the determinant of both sides
of this matrix equation and make use of the fact that
ðσ · q̂Þ2 ¼ q̂2, we get a single algebraic equation in
coefficients Ai as

½Dðq̂Þ�2½ðA0 þ A1Þ2 − q̂2f1ðAiÞf2ðAiÞ�½ϕðq̂Þ�2

¼
�
3

4
ω2
qq̄

�
2

½ðA0 þ A1Þ2½X�2 − q̂2ðf1ðAiÞ½X�

þ 8f3ðAiÞÞðf2ðAiÞ½X� þ 8f4ðAiÞÞ�½ϕðq̂Þ�2: ð36Þ

However, if we do not take the determinant of both
sides of Eq. (34), and instead, make use of equality
LHSij ¼ RHSij in Eq. (34), we get four equations—
discussion on this is relegated to the numerical
section. We will now work out the coefficients Ai’s
using Eq. (36), so that they not only correspond to the
solutions of the BSE, but also simultaneously lead to
the calculation of decay constants of vector mesons,
studied in the next section. In the process we will try to
verify that the hadron-quark vertex function Γðq̂Þ (which
involves Ais), indeed corresponds to the solution of the
BSE above. This study is relegated to the numerical
section.

III. ELECTROMAGNETIC DECAYS
OF VECTOR MESONS THROUGH THE

PROCESS V → γ� → eþþ e−

A. Transition amplitude

The vector meson decay proceeds through the quark-
loop diagram shown below (see Fig. 1).
The coupling of a vector meson of momentum P and

polarization εμ to the photon is expressed via dimensionless
coupling constant gV , which can be described by the matrix
element,

M2

gV
εμðPÞ ¼ h0jQ̄ Θ̂ γμQjVðPÞi ð37Þ

(where Q is the flavor multiplet of the quark field and Θ̂ is
the quark electromagnetic charge operator), which can in
turn be expressed as a loop integral,

M2

gV
εμðPÞ ¼

ffiffiffi
3

p
eQ

Z
d4qTr½ΨVðP; qÞiγμ�: ð38Þ

Here eQ arises from the flavor configuration of individual
vector mesons and has values eQ ¼ 1=

ffiffiffi
2

p
; 1=3; 1=

ffiffiffiffiffi
18

p
;

2=3, and 1=3 for ρ;ϕ;ω;ψ, and Y, respectively, and the
polarization vector εμ of the V meson satisfies ε · P ¼ 0.
Defining the leptonic decay constant fV as fV ¼
M=ðeQgVÞ [13], we can express

fVεμðPÞ ¼
ffiffiffi
3

p

M

Z
d4qTr½ΨVðP; qÞiγμ�: ð39Þ

Plugging the 4D BS wave function ΨVðP; qÞ for a
vector meson, which involves the 4D hadron-quark vertex
function, Γ [in Eq. (29)] flanked by the Dirac propagators
of the two quarks as in Eq. (27), into the above equation,
evaluating the trace over the gamma matrices, and
noting that only the components of terms on the right-
hand side in the direction of εμ will contribute to the
integral, we multiply both sides of the above integral by
Pμ=M2, and we can then express the leptonic decay
constant fV as

fV ¼ f0V þ f1V þ f2V þ f3V þ f4V þ f5V; ð40Þ

where f0V; f
1
V;…; f5V are contributions to fV from the six

Dirac structures associated with A0; A1;…; A5 in the
expression for hadron-quark vertex function Γ and are
expressed analytically in terms of dσ integrations over the
poles Δ1;2 of the quark propagators as

FIG. 1. Quark loop diagram for V → γ� → eþ þ e− showing
the coupling of electromagnetic current to the quark loop.
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f0V ¼
ffiffiffi
3

p
NV

A0

M

Z
d3q̂Dðq̂Þϕðq̂Þ

Z
Mdσ

2πiΔ1Δ2

4

��
M2

6
þ 2

3
m2

�
þ Δ1 þ Δ2

6

�
;

f1V ¼
ffiffiffi
3

p
NV

A1

M

Z
d3q̂Dðq̂Þϕðq̂Þ

Z
Mdσ

2πiΔ1Δ2

ð−4mMÞ;

f2V ¼
ffiffiffi
3

p
NV

A2

M

Z
d3q̂Dðq̂Þϕðq̂Þ

Z
Mdσ

2πiΔ1Δ2

�
−
4

3
mðΔ1 − Δ2Þ

�
;

f3V ¼
ffiffiffi
3

p
NV

A3

M

Z
d3q̂Dðq̂Þϕðq̂Þ

Z
Mdσ

2πiΔ1Δ2

�
−
8

3
ðΔ1 þ Δ2Þ þ

�
16

3
m2 −

4

3
M2

��
;

f4V ¼
ffiffiffi
3

p
NV

A4

M

Z
d3q̂Dðq̂Þϕðq̂Þ

Z
Mdσ

2πiΔ1Δ2

�
−
2m
3M

ðΔ1 þ Δ2Þ þ
�
4m3

3M
−
1

3
mM

��
;

f5V ¼
ffiffiffi
3

p
NV

A5

M

Z
d3q̂Dðq̂Þϕðq̂Þ

Z
Mdσ

2πiΔ1Δ2

��
4

3
m2 −

2

3
M2

�
ðΔ1 − Δ2Þ

�
: ð41Þ

In deriving the above expressions, we have made use of the
relation showing the orthonormaity of the polarization
vector, εðPÞ for the V meson of 4-momentum, P as in
Eq. (31) to express the quantities involving dot products of
ε with various momenta like ðp1 · εÞðp2 · εÞ, ðp1 · εÞðq · εÞ,
and ðp2 · εÞðq · εÞ (where it is to be noted that q̂ · ε ¼ q · ε
on account of the orthogonality condition, P · ε ¼ 0) in
terms of dot products of momenta as

ðp1 · εÞðp2 · εÞ ¼
1

3
p1 ·p2þ

ðp1 ·PÞðp2 ·PÞ
3M2

;

ðp1 · εÞðq · εÞ ¼
1

6
ðp2

1−p1 ·p2Þþ
ðp1 ·PÞðp1 ·P−p2 ·PÞ

6M2
;

ðp2 · εÞðq · εÞ ¼
1

6
ðp1 ·p2−p2

2Þþ
ðp2 ·PÞðp1 ·P−p2 ·PÞ

6M2
:

ð42Þ

These dot products of momenta were in turn expressible
in terms of the inverse propagators Δ1;2 as

p1 · P ¼ 1

2
ðΔ1 − Δ2 −M2Þ;

p2 · P ¼ 1

2
ð−Δ1 þ Δ2 −M2Þ;

p1 · p2 ¼ m2 −
1

2
ðΔ1 þ Δ2 þM2Þ;

p2
1;2 ¼ Δ1;2 −m2;

p1 · q ¼ 3

4
Δ1 þ

1

4
ðΔ2 þM2Þ −m2;

p2 · q ¼ −
3

4
Δ2 −

1

4
ðΔ1 þM2Þ þm2;

P · q ¼ 1

2
ðΔ1 − Δ2Þ: ð43Þ

Thus all expressions for fiV above were expressible in
terms of Δ1;2. Then carrying out integrations over the off-
shell variable dσ by the method of contour integrations by
noting the pole positions in the complex σ plane,

Δ1 ¼ 0 ⇒ σ�1 ¼ �ω1

M
− m̂1∓iϵ;

Δ2 ¼ 0 ⇒ σ∓2 ¼ ∓ω2

M
− m̂2 � iϵ;

ω2
1 ¼ ω2

2 ¼ m2 þ q̂2 ð44Þ
(where m̂1 ¼ m̂2 ¼ 1=2 for equal mass quarks), we get the
following integrals:

Z
Mdσ
Δ1Δ2

ðΔ1 þ Δ2Þ ¼ D0ðq̂Þ;Z
Mdσ
Δ1Δ2

¼ 1

Dðq̂Þ ; ð45Þ

where

Dðq̂Þ ¼ ωD0ðq̂Þ;
D0ðq̂Þ ¼ 4ω2 −M2: ð46Þ

Thus we can express the various components fiV ði ¼
0;…; 5Þ of fV in Eq. (41) as

f0V ¼
ffiffiffi
3

p
NV

A0

M

Z
d3q̂ϕðq̂Þ4

�
M2

6
þ 2

3
m2 þD0ðq̂Þ

6

�
;

f1V ¼
ffiffiffi
3

p
NV

A1

M

Z
d3q̂ϕðq̂Þð−4mMÞ;

f2V ¼ 0;

f3V ¼
ffiffiffi
3

p
NV

A3

M

Z
d3q̂ϕðq̂Þ

�
−
8

3
D0ðq̂Þ þ

16

3
m2 −

4

3
M2

�
;

f4V ¼
ffiffiffi
3

p
NV

A4

M

Z
d3q̂ϕðq̂Þ

�
−
2m
3M

D0ðq̂Þ þ
4m3

3M
−
1

3
mM

�
;

f5V ¼ 0: ð47Þ

Note that the components f2V and f5V are 0 on account of
equal mass kinematics. Also note that each of the fiV
involves the BS normalizer NV. This is evaluated using the
current conservation condition [13,14,17]
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2iPμ ¼ ð2πÞ4
Z

d4qTr

�
Ψ̄ðP; qÞ

� ∂
∂Pμ

S−1F ðp1Þ
�

×ΨðP; qÞS−1F ð−p2Þ
�
þ ð1⇌2Þ: ð48Þ

UsingEqs. (17), (21), and (29) towrite the BSwave function
ΨVðP; qÞ for a vector meson in the above equation, carrying
out derivatives of inverse quark propagators of constituent
quarks with respect to total hadron momentum Pμ, evalu-
ating trace over products of gamma matrices, following the
usual steps, and multiplying both sides of the equation by
Pμ=ð−M2Þ to extract out the normalizer NV from the above
equation, we then express the above equation in terms of the
integration variables q̂ and σ. Noting that the 4D volume
element d4q ¼ d3q̂Mdσ, we then perform the contour
integration in the complex σ plane by making use of the
corresponding pole positions. For details of these math-
ematical steps involved in the calculations ofBSnormalizers
for vector and pseudoscalarmesons see [13,14], where in the

present calculation, we take both the LO and the NLODirac
structures for vector mesons in their respective 4D BS wave
functions ΨVðP; qÞ. Then integration over the variable q̂ is
finally performed to extract out the numerical results forNV
for different vector mesons. The calculation of NV is quite
complex due to the six Dirac structures involved in the
calculation. The structure of the BS normalizer is of the form

N−2
V ¼ ið2πÞ2

Z
d3q̂D2ðq̂Þϕ2ðq̂Þ

X
ij

AiAjIijðm;M; q̂; SÞ:

ð49Þ
Here, A ¼ ðA0; A1; A2; A3; A4; A5Þ. The NV depend on
parameters Ai and Iijðm;M; q̂; SÞ. The Iijðm;M; q̂; SÞ are
extremely involved functions of m;M; q̂, and S, where the
elements Si, i ¼ ð1;…; 6Þ are analytic results of contour
integrations over the off-shell parameter dσ in the complex σ
plane. Explicit expressions ofS and Iij are listed at the end of
the manuscript in the Appendix.
The final expression for the BS normalizer has the form

N−2
V ¼ π5=2

72M7β3
em

2=ð2β2Þ
�
½G13ðm;M;AÞ þG11ðm;M;AÞβ2 þG9ðm;M;AÞβ4�K0

�
m2

2β2

�

þ ½G13ðm;M;AÞ þ G11ðm;M;AÞβ2 þ G9ðm;M;AÞβ4 þ G7ðm;M;AÞβ6�K1

�
m2

2β2

�

þ
�
H5ðm;MÞβ6U

�
1

2
;−3;

m2

β2

�

þH7ðm;MÞβ4U
�
1

2
;−2;

m2

β2

�

þH11ðm;MÞU
�
1

2
; 0;

m2

β2

��
β2A3A5

�
: ð50Þ

Here, KnðxÞ is the second class modified Bessel
function, Uða; b; xÞ is the confluent hypergeometric func-
tion, Gn and Hn are polynomials of the nth degree in m
and M, and the Gn are quadratic functions of the Ai
coefficients.

In these expressions, ϕðq̂Þ is a decaying function of q̂2.
Thus despite the fact that the integrands contain growing
factors like q̂2, the overall integrals converge and can be
analytically integrated. Then, the fiV ði ¼ 0;…; 5Þ can be
expressed in the following analytic form:

f0V ¼ A0

M
NV16

ffiffiffi
2

3

r
π3=4β3=2ð2m2 þ 3β2Þ;

f1V ¼ −A1NV8
ffiffiffi
6

p
π3=4β3=2m;

f2V ¼ 0;

f3V ¼ A3

M2
NV

2π1=4ffiffiffi
3

p ffiffiffi
β

p �
3M

ffiffiffiffiffiffi
2π

p
βð−4m2 þM2 − 28β2Þ

þ 2em
2=ð4β2Þm2

�
2m2K0

�
m2

4β2

�
þ ð2m2 −M2 þ 16β2ÞK1

�
m2

4β2

���
;

f4V ¼ −
A4

M3
NV

4π1=4ffiffiffi
3

p ffiffiffi
β

p �
m2M2em

2=ð4β2ÞK1

�
m2

4β2

�
þ 2

ffiffiffi
π

p
β3
�
3

ffiffiffi
2

p
M − 8βU

�
−
3

2
;−2;

m2

2β2

���
;

f5V ¼ 0; ð51Þ
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with NV given in the previous equation.

IV. RESULTS

A. Numerical calculation

Equation (51), which expresses decay constants fiV
of vector mesons in terms of the parameters A≡
ðA0; A1; A2; A3; A4; A5Þ, is a nonlinear function of the Ai’s.
It is to be noted that these parameters Ai are contained in the
expression for the hadron-quark vertex Γ in Eq. (29), which
originates as a solution of 4D BSE. There are two ways to
numerically choose those parameters: (i) to adjust the two
sides of BSE in order to minimize their difference, or (ii) to
adjust amplitude Γ (with choice of parameters Ai) in such a
way that decay constants (supplemented by the BS normal-
izer) give a very good fitting to experimental results.
To find the coefficients, Ai, we calculated the difference

½q̂2ðLHS-RHSÞ� for the determinantal form of BSE in
Eq. (36) at several chosen values of q̂, together with
differences between ½fV − fEXPV �, and then we found values
of coefficients Ai that minimize those differences for all the
five vector mesons studied.
Thus, we obtained a number of sets of unknown

parameters Ai’s. Our approach gives no unique solution,
but we chose the best set of values of Ai that not only gave a
reasonable agreement with the experimental fV values, but
also a good agreement between the numerical values of
the LHS and RHS of the BSE in Eq. (36) as well as the
agreement between the plots of their integrands for all
the five vector mesons studied. Only this would ensure that
the hadron-quark vertex Γ given by Eq. (29) (with unknown
coefficients Ai) is indeed a solution of the BSE, though
the general form of Γ has been shown to be derivable from
BSE [given in details in Eqs. (17)–(29)].
Using this twin criterion we selected the best set of

coefficients that should respectively be A0 ¼ 1, A1 ¼
0.0064, A2 ¼ 0.0048, A3 ¼ −0.453, A4 ¼ −0.79, and
A5 ¼ −2.08474 to predict the decay constant values
fρ ¼ 0.192 GeV, fω ¼ 0.194 GeV, fϕ ¼ 0.220 GeV,
fψ ¼ 0.406 GeV, and fY ¼ 0.7097 GeV. These decay
constant values have an average error with respect to the
experimental data of 3.58%. Table I contains numerical
values of decay constants for all the five mesons and are

compared with data. Comparison of calculated decay
widths ΓTH: under BSE-CIA with the experimental decay
widths, ΓEXP is given in Table II. The plots of integrands
of fV for all the five mesons are given in Fig. 2. In
Fig. 3, the amplitudes fV for all the five studied mesons
are represented on a vertical scale in units of GeV.
These coefficients Ai’s selected from the twin criterion

above also gave a good agreement between the numerical
values of the LHS and RHS of the BSE as well as the plots
of their integrands. The numerical values for the LHS and
RHS along with their percentage errors for various mesons
are given in Table III. The behavior of the plots of
integrands for the LHS and RHS of the BSE in Eq. (36)
with q̂ for the above set of coefficients Ai is given in Fig. 4.
It is seen that for ρ and ω mesons, the percentage error
between numerical values of the LHS and RHS is 7.04%
and 8.7%, respectively. This drops to 4.9% for the ϕmeson
and is 5.84% for the Ψ meson. But for the Y meson, this
disagreement is 0.27%. Thus the average error between the
numerical values of the LHS and RHS of the BSE for the
above set of parameters for all the five mesons is 5.34%.
However, if we do not use the determinant form of BSE

in Eq. (36), and instead equate the ðijÞth elements of the
block diagonal 2 × 2 form of BSE in Eq. (34), we get four
equations of which two equations corresponding to ele-
ments on main diagonal of Eq. (34) are identical. Now
minimizing the difference for the elements of the LHS and
RHS of this block diagonal 2 × 2 form of BSE in Eq. (34)
means minimizing the difference for all (LHSij − RHSij) in
this equation. Interestingly, we found that coefficients Ai’s

TABLE I. Decay constant fTH.V values (in GeV) for ρ, ω, ϕ, ψ , and Y mesons in BSE-CIAwith the individual contributions f0V , f
1
V , f

2
V ,

f3V , f
4
V , f

5
V from various Dirac covariants along with the contributions from LO and NLO covariants and also their % contributions for

the parameter set: A0 ¼ 1, A1 ¼ 0.0064, A2 ¼ 0.0048, A3 ¼ −0.453, A4 ¼ −0.79, A5 ¼ −2.08474 (with average error with respect to
the experimental data of 3.58%).

β f0V f1V f3V f4V fLOV fNLOV fLOV ð%Þ fNLOV ð%Þ fTH.V fEXPV

ρð770Þ 0.246 0.1014 −0.0006 0.0782 0.01298 0.1008 0.0912 53% 47% 0.192 0.220
ωð782Þ 0.249 0.1025 −0.0006 0.0790 0.0129 0.1019 0.0919 53% 47% 0.194 0.195
ϕð1020Þ 0.294 0.1261 −0.0008 0.0787 0.0154 0.1253 0.0941 57% 33% 0.220 0.228
ψð1SÞ 0.612 0.2884 −0.00225 0.0989 0.0214 0.286 0.1203 71% 29% 0.406 0.410
Yð1SÞ 1.33 0.559 −0.004 0.125 0.0293 0.555 0.1543 79% 21% 0.7097 0.708

TABLE II. Calculated decay widths ΓTH. for the process V →
γ� → eþ þ e− (in keV) for ρ, ω, ϕ, ψ , and Y mesons in BSE-CIA
along with their experimental values [25] for the set of parameters
A0 ¼ 1, A1 ¼ 0.0064, A2 ¼ 0.0048, A3 ¼ −0.453, A4 ¼ −0.79,
and A5 ¼ −2.08474 (giving fV values with average error with
respect to experimental data of 3.58%).

ΓTH: (keV) ΓEXP (keV)

ρð770Þ 5.342 7.04� 0.06
ωð782Þ 0.596 0.60� 0.02
ϕð1020Þ 1.1766 1.27� 0.04
ψð1SÞð3096Þ 5.281 5.5� 0.1
Yð1SÞð9460Þ 1.320 1.312� 0.02
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(A0 ¼ 1, A1 ¼ 0.0064, A2 ¼ 0.0048, A3 ¼ −0.453,
A4 ¼ −0.79, and A5 ¼ −2.08474) obtained by minimizing
Det LHS − Det RHS [as in Eq. (36)] also lead to an
element-by-element minimization ðLHS11 − RHS11Þ,
ðLHS12−RHS12Þ, ðLHS21−RHS21Þ and ðLHS22−RHS22Þ
in Eq. (34) for all the fivemesons, ρ,ω,ϕ,ψ , andY.We have
checked this fact by drawing plots of all these differences for
all the fivemesons, which, in fact, have very similar forms to
the plots of Fig. 4.
The normalization factors NV were found to be Nρ ¼

0.204 GeV−3, Nω ¼ 0.199 GeV−3, Nϕ ¼ 0.1022 GeV−3,

Nψ ¼ 0.00913 GeV−3, and NY ¼ 0.00054 GeV−3. Values
of fV along with the contributions from various
covariants and experimental results are listed in Table I.
We wish to mention that the decay widths of mesons are

related to our decay constants fV by formula

Γ ¼ 4πα2e2QjfV j2
3M

: ð52Þ

Here, M is the meson mass, α is the QED coupling
constant (i.e., the fine structure constant), eQ plays the
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FIG. 2 (color online). Plots of integrand functions that give rise to fLOV , fNLOV , and fV , as functions of q̂, for the five vector mesons
ρ,ω,ϕ,ψ , andY, respectively, for the set of coefficients,A0 ¼ 1,A1 ¼ 0.0064,A2 ¼ 0.0048,A3 ¼ −0.453,A4 ¼ −0.79, andA5 ¼ −2.08474.
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role of effective electric charge of the meson with
values [listed after Eq. (39)] for different vector
mesons. From formula (52) were obtained the data
for fEXPV . A comparison of our results with those of
other models and data is presented in Table IV.

B. The results

Formulas found in Sec. II express decay constants fV of
vector mesons in terms of the constant parameters A0, A1,
A2, A3, A4, A5 as

fV ¼
X5
i¼0

fiV ≡X5
i¼0

fVi

NV
Ai; ð53Þ

where the expression for normalizer (50) has the form

1

N2
V
¼

X5
i¼0

X5
j¼i

IijAiAj; ð54Þ

with matrix elements Iij given in Eq. (A2). It can thus be
seen that the expression for fV in Eq. (51) due to the

presence of BS normalizer NV is a highly nonlinear
function of the Ai’s (for i ¼ 0, 1, 2, 3, 4, 5). Analytical
expressions for the Ai’s as functions of quark masses and
other parameters corresponding to each of the vector
mesons cannot be obtained. However, numerical methods
mentioned above give acceptable solutions of the problem.
With the parametersAi weworked out using the procedure

of calculating thedifference q̂2½LHS–RHS� ofBSE inEq. (36)
at several chosen values of q̂, together with differences
between ½fV − fEXPV �, and then finding values of coefficients
Ai that minimize those differences, our model should be
capable of predicting the values of the decay constants for the
ρ, ω, ϕ, ψ , ψ 0, and Y mesons. We made different checks and
selected the parameter set giving the results shown in Table I,
which predicts the decay constantsfV’s for all the fivemesons
that match approximately with data.
This set of parameters A0 ¼ 1, A1 ¼ 0.0064, A2 ¼

0.0048, A3¼−0.4530, A4 ¼ −0.7900, and A5 ¼ −2.0847
is also responsible for the simultaneous matching of numeri-
cal values of LHS and RHS of the BSE in Eq. (36), as well as
the plots of their integrands at all values of q̂, and thus they are
to a good approximation also the solutions of BSE as well.
The results of this matching of the LHS andRHS is presented
inTable III,which shows the numerical values of theLHSand
RHS and the errors between them from the ρ to Y meson. It is
seen that for ρ and ω mesons, the percentage error between
numerical values of the LHS and RHS is 7.04% and 8.73%,
respectively. This drops to 4.9% for theϕmeson and is 5.84%
for the Ψ meson. But for the Y meson, this disagreement is
0.27%. Thus the average error between the numerical values
of the LHS and RHS of the BSE for the above set of
parameters for all the five mesons is 5.34%.

0 Y

fV
NLO

fV
LO

fV
EXP fV

LO fV
NLO

0.0

0.2

0.4

0.6

FIG. 3 (color online). Amplitudes fV for all studied mesons are represented. Vertical scale is in units of GeV. Short horizontal lines are
values obtained from experimental data. Lower sets of points are the NLO contributions obtained from ourmodel. Intermediate sets of points
are our LO results. Upper sets of points are our theoretical values of fV ¼ fLOV þ fNLOV . It is concluded that the same set of Ai
coefficients predicts simultaneously the fV for all five studied mesons and that uncertainties in the Ai are strongly “amplified” for Y and ψ0.

TABLE III. Numerical values of the LHS and RHS of BSE
[in Eq. (34)], along with the percentage error for the five mesons
for the set of parameters A0 ¼ 1, A1 ¼ 0.0064, A2 ¼ 0.0048,
A3 ¼ −0.453, A4 ¼ −0.79, and A5 ¼ −2.08474.

LHS RHS % Error

ρð770Þ 0.1608 0.1730 7.04%
ωð782Þ 0.1758 0.1926 8.73%
ϕð1020Þ 1.156 1.216 4.9%
ψð1SÞ 1.210 × 103 1.285 × 103 5.84%
Y 4.089 × 106 4.078 × 106 0.277%
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Similarly if one notices the plots of the integrands of the
LHS and RHS (vs q̂) of the BSE in Eq. (36), one can notice
the complete similarity of patterns for all the five mesons.
And this trend in numerical values mentioned above is also
displayed by these plots, and their difference (DIFF) as a
function of (q̂) for the five mesons.

V. DISCUSSION

In this paper we have calculated the decay constants fV of
vector mesons ρ, ω, ϕ, ψ , and Y in BSE under CIA using the
hadron-quark vertex function that incorporates various Dirac

covariants order by order in powers of inverse of meson mass
within its structure in accordance with a recently proposed
power counting rule from their complete set. This power
counting rule suggests that the maximum contribution to any
meson observable should come from Dirac structures asso-
ciated with LO terms alone, followed by Dirac structures
associated with NLO terms in the vertex function.
Incorporationof all these covariants is found tobringcalculated
fV values much closer to results of experimental data [25] and
some recent calculations [1–8] for ρ, ω, ϕ, ψ , and Y mesons.
For calculating the coefficients Ai, we calculated the

difference q̂2½LHS-RHS� for the BSE in Eq. (36) at several
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FIG. 4 (color online). Plots of integrand functions of the LHS and RHS of BSE and the absolute value of their difference (DIFF) as
functions of q̂, for the five vector mesons ρ, ω, ϕ, ψ , and Y, respectively, for the set of coefficients A0 ¼ 1, A1 ¼ 0.0064, A2 ¼ 0.0048,
A3 ¼ −0.453, A4 ¼ −0.79, and A5 ¼ −2.08474.
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chosen values of q̂, together with differences in ½fV − fEXPV �,
and then we found values of coefficients Ai that minimize
those differences for all the five mesons studied. Our
approach gives no unique solution, but we chose the best
set of values ofAi that not only gave a reasonable agreement
with the experimental fV values, but also a good agreement
between the numerical values of the LHS and RHS of the
BSE inEq. (36) aswell as the agreement between the plots of
their integrands, since only this would ensure that the
hadron-quark vertex Γ given by Eq. (29) is indeed a solution
of the BSE, though the general form of Γ (in terms of
unknown parameters Ai) has been shown to be derivable
from BSE [given in detail in Eqs. (17)–(29)]. This set of
values of coefficientsAi isA0¼1,A1¼0.0064,A2¼0.0048,
A3¼−0.453, A4¼−0.79, and A5 ¼ −2.08474, to
predict the decay constant values, fρ ¼ 0.192 GeV,
fω¼0.194GeV, fϕ¼0.220GeV, fψ ¼ 0.406 GeV, and
fY ¼ 0.7097 GeV. These decay constant values have an
average errorwith respect to the experimental data of 3.58%.
These coefficients Ai deduced above are also the

solutions of the BSE. The results of numerical values of
the LHS and RHS of the BSE in Eq. (36) for all the five
mesons and the percent error between them is presented in
Table III, while the plots of the integrands of the LHS and
RHS as a function of q̂ for all the five mesons is presented
in Fig. 4. It is seen from Table III that for ρ and ω mesons,
the error between numerical values of LHS and RHS is
7.02% and 8.7%, respectively. This drops to 4.9% for the ϕ
meson and is 5.84% for theΨmeson. And for the Y meson,
this error is 0.27%. Thus the average error between the
numerical values of the LHS and RHS of the BSE for the
above set of parameters for all the five mesons is 5.34%.
The plots of integrands of the LHS and RHS of the BSE are
presented in Fig. 4, which show a lot of similarity between
the patterns for all values of q̂.
All this suggests that the coefficients Ai deduced above,

and hence the hadron-quark vertex function Γðq̂Þ in
Eq. (29), are to a good approximation also the solutions
of BSE, besides giving us fV values in reasonable agree-
ment with data.
The results for fV values for ρ, ω, ϕ, ψ , and Y mesons

with parameter set A0 ¼ 1, A1 ¼ 0.0064, A2 ¼ 0.0048,
A3 ¼ −0.453, A4 ¼ −0.79, and A5 ¼ −2.08474 (giving

fV values with average error with respect to experimental
data of 3.58%) are presented in Table I. A comparison with
experimental data and other models is shown in Table III.
The results of our fV values for all the mesons from ρ to Y
show reasonably good agreement with data.
In Fig. 2 we are plotting vs q̂, the integrands of fLOV , fNLOV ,

and fV for each of the studiedmesons. Those plots show that
the contribution to fV from NLO covariants is smaller than
the contribution from LO covariants for ρ, ω, ϕ, ψ , and Y
mesons. And for ψ and Y mesons, the NLO contribution is
much less in comparison than the LO contribution. We
conclude from Table I that as far as the various contributions
to decay constants fV are concerned, for ρ andωmesons, the
LO terms contribute 53%,whileNLO terms contribute 47%.
However, as one goes to the ϕ meson, the LO contribution
increases to 57%,while theNLOcontribution is 43%.But as
one goes to heavy (cc̄ and bb̄) mesons, for the ψ meson, the
LO contribution is 71%,while theNLOcontribution is 29%,
and for the Y meson the LO contribution is 79%, while the
NLO contribution reduces to 21%. Thus the drop in the
contribution to decay constants from NLO covariants vis-à-
vis LO covariants is more pronounced for heavy mesons ψ
and Y. And among the two LO covariants, it can be seen that
the most leading covariant iγμ contributes the maximum for
all vectormesons from ρ toY. The same trend in the behavior
of decay constants is found in Fig. 3, where the decay
constants fV along with the contributions fLOV from LO
covariants and the contributions fNLOV from the NLO
covariants are represented on a vertical scale in units of
GeV for all the fivemesons. These results on decay constants
fV for vector mesons are completely in conformity with the
corresponding results on decay constants fP for pseudo-
scalar mesons K;D;DS, and B done recently [14] where it
was also noticed that the NLO contribution is much smaller
than the LO contribution for heavier mesons likeD;DS, and
B, and the most leading covariant was found to be γ5. This is
in conformity with the power counting rule according to
which the leading order covariants γ5 and iγ5ðγ · PÞð1=MÞ
(associated with coefficients A0 and A1) should contribute
the maximum to decay constants followed by the next-to-
leading order covariants −iγ5ðγ · qÞð1=MÞ and −γ5½ðγ ·
PÞðγ · qÞ − ðγ · qÞðγ · PÞ�ð1=M2Þ (associated with coeffi-
cients A2 and A3) in the BS wave function.

TABLE IV. Decay constant fV values (in GeV) for ρ, ω, ϕ, ψ , and Y mesons in BSE-CIA and their comparison
with other models and data for the set of parameters, A0 ¼ 1, A1 ¼ 0.0064, A2 ¼ 0.0048, A3 ¼ −0.453,
A4 ¼ −0.79, and A5 ¼ −2.08474.

fρ fω fϕ fψ fY

BSE-CIA 0.192 0.194 0.220 0.406 0.7097
BSE [4] 0.215 0.224
SDE [2] 0.163
SDE [7] 0.207 0.259
BSE [8] 0.459 0.498
Exp. [22] 0.2201� 0.0009 0.195� 0.003 0.228� 0.003 0.410� 0.003 0.708� 0.005
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We observe in Fig. 2 that though the LO and NLO Dirac
covariants are nearly sufficient to correctly predict amplitudes
forψ0 andY vectormesons, for ρ,ω, andϕmesons the LO and
NLO Dirac covariants are not sufficient to predict accurately
their amplitudes, and it might be necessary to include even
higher order NNLO Dirac covariants in their hadron-quark
vertex functions. This can also be seen from Fig. 3.
However, thenumerical results forfV for equalmass vector

mesons, obtained in our framework with the use of leading
order Dirac covariants along with the next to leading order
Dirac covariants, along with a similar calculation for fP done
recently [14] for pseudoscalar mesons demonstrates the
validity of our power counting rule, which also provides a
practical means of incorporating various Dirac covariants in
the BS wave function of a hadron. By this rule, we also get to
understand the relative importance of various covariants to the
calculation of meson observables. This would in turn help in
obtaining a better understanding of the hadron structure.
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APPENDIX: FORMULAS FOR THE Iijðm;M; q̂;RÞ
IN BS NORMALIZER

In Eq. (49) for the BS normalizer, the elements
Iijðm;M; q̂; RÞ depend on S ¼ ðD1; D2; D11; D12; D22; RÞ,
where the elements of S are the analytic results of contour
integrations over the off-shell parameter dσ in the complex σ
plane, whose results are given in Eq. (A1),

D1 ¼
Z

Mdσ
Δ2

1Δ2

Δ1 ¼ 2πi
1

Dðq̂Þ ;

D2 ¼
Z

Mdσ
Δ2

1Δ2

Δ2 ¼ 2πi
2

ð2ωÞ3 ;

D11 ¼
Z

Mdσ
Δ2

1Δ2

Δ2
1 ¼ 2πi

1

2ω
;

D12 ¼
Z

Mdσ
Δ2

1Δ2

Δ1Δ2 ¼ 2πi
1

2ω
;

D22 ¼
Z

Mdσ
Δ2

1Δ2

Δ2
2 ¼ 2πi

2ω2 −M2

2ω3
;

R ¼
Z

Mdσ
Δ2

1Δ2

¼ 2πi
M2 − 12ω2

4ω3ðM2 − 4ω2Þ2 ; ðA1Þ

Function Dðq̂Þ was defined in Eq. (5).
The Iij have the following explicit form:

I00 ¼
1

3

�
1

M2

�
1 − 12

m2

M2

�
D11 þ

3

M2

�
−1þ m2

M2

�
D12 þ

1

M2
ð7m4 − 3m2M2ÞR

þ 1

M2

�
M2 þ 13m4

M2
− 5m2

�
D1 −

13m4D2
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þ 9m2D22

M4

�
;

I11 ¼
2

3

�
−
4D11

M2
þ 3D12
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−
4D22

M2
−
8M2D1

M2
þ ð8m2 þM2ÞD2

M2
þ 2ð4m2 þM2ÞR

�
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I22 ¼
2

3

�
D11

M2
þ 3D12
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M2
−
8m2D1

M2
þ ð8m2 þM2ÞD2
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