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We consider semi-inclusive diphotonþjet and inclusive diphoton production in high-energy proton-
nucleus collisions, treating the target nucleus as a color-glass condensate and the projectile proton in the
parton model. We obtain the prompt diphoton production cross section in terms of fragmentation and direct
contributions. The fragmentation part is given in terms of single-photon and double-photon fragmentation
functions. We study prompt, direct, and fragmentation diphoton correlations in pþp and pþA collisions at
the LHC and show that at low values of transverse momenta of the produced photon pair these correlations
are sensitive to saturation effects. We show that back-to-back (de)correlations in prompt diphoton
production are stronger in the fragmentation part than in the direct one.
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I. INTRODUCTION

In recent years a lot of attention has been devoted to
understanding of the physics of saturation [1]. Theoretical
developments of the last 15–20 years have put this activity
squarely on the first principle QCD foundations [2–6]. The
saturation regime in hadronic scattering is qualitatively
different from the simple parton model paradigm, and it
would be extremely interesting to find clear signals of it in
observed data. Its tell-tale sign is the appearance of a
dimensional saturation scale in a dense system of gluons
(the color-glass condensate), which should dominate many
bulk observables.
Several pieces of experimental data at HERA [7–9],

RHIC [10–12], and the LHC [13–21] have been indeed
interpreted in the framework of saturation ideas; see also
Refs. [22–25] and references therein. However, one still
cannot point definitively to an experimental verification of
the saturation phenomenon. It is therefore important to
understand what other observables can be sensitive to
saturation [26], and in particular to the existence of the
saturation momentum.
One aspect of saturation that has been discussed at length

in recent literature is its impact on particle correlations in
the final state. This includes the effect on the ridgelike
correlations in rapidity and the azimuthal angle [27–34], as
well as the decorrelation effect in forward dihadron [35],
photon-hadron [36,37], and Drell–Yan lepton-pair-jet [38]
productions in high-energy proton-proton (pþ p) and
proton-nucleus (pþ A) collisions. In this paper we con-
tinue the study of saturation effects on particle correlation.
The main aim of this paper is to investigate diphoton

azimuthal angular correlations at forward rapidity. The
mechanism of diphoton production in the color-glass
condensate (CGC) saturation framework is somewhat

different than that of dihadron production. Soft gluons
are scattered out of the projectile wave function by directly
scattering on a saturated target and via subsequent hadro-
nization produce hadrons. Photons, on the other hand, do
not scatter themselves but rather decohere from the scat-
tered quarks. It is thus interesting to see whether saturation
has any discernible effects on the correlations between
produced photons.
In terms of theoretical description, there are clear

advantages to studying prompt diphoton production as
compared to dihadron production. For final-state photons,
the difficulties involved with description of hadronization
of final-state quarks and gluons do not arise. For hadronic
final states, this stage of the process is usually described in
terms of fragmentation functions, and this description is
valid only at high transverse momentum. Additionally, one
does not need to be concerned with possible initial-state–
final-state interference effects which are present for hadron
production. Within the CGC framework, the theoretical
understanding of observables necessary to describe dipho-
ton production is more robust. Unlike the description of
dihadron correlations, which necessitates the knowledge of
correlators of a higher number of Wilson lines, the diphoton
production cross section depends only on the dipole
amplitude, which is the best understood observable in
terms of high-energy evolution.
The diphoton production in proton-proton and antipro-

ton-proton collisions has been intensively investigated in
the literature; see, for example, Refs. [39–41]. Precise
theoretical understanding of the diphoton production in the
standard model provides valuable guidance for the Higgs
boson signal [42]. In the present paper, for the first time, we
investigate diphoton production in high-energy proton-
nucleus collisions. We obtain the prompt diphoton cross
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section in the leading logarithmic approximation in terms
of fragmentation and direct contributions, where the frag-
mentation part is given in terms of single-photon and
double-photon fragmentation functions. We show that at
low values of transverse momenta of the produced photon
pair back-to-back (de)correlations in diphoton production
are stronger in the fragmentation part than in the direct one.
The plan of this paper is the following. In Sec. II we

derive the basic formulas for calculating the cross section of
semi-inclusive diphotonþ jet and inclusive diphoton pro-
duction in high-energy proton-proton and proton-nucleus
collisions in the CGC framework. The CGC approach is a
first-principle effective field theory approach that describes
the high-energy limit of QCD. In this formalism quantum
corrections enhanced by large logarithms of 1=x are
systematically resummed incorporating high gluon density
effects at small x and for large nuclei [2–4]. In Sec. II we
also discuss the soft limit, in which the expressions simplify
and become amenable to numerical calculations. As an
illustrative example, in Sec. II, we also obtain the cross
section of single inclusive prompt photon production in the
soft approximation. In Sec. III we present the results of
numerical calculations for correlations in direct, fragmen-
tation, and prompt diphoton production, together with a
short discussion. We summarize our main results in Sec. IV.

II. SEMI-INCLUSIVE DIPHOTONþJET
PRODUCTION IN PROTON-NUCLEUS

COLLISIONS

In this section we introduce the basic formulas for
calculating the cross section for the process hþ A →
γ1 þ γ2 þ X, where a dilute projectile hadron interacts
coherently with a dense target A and produces two photons
γ1 and γ2. In the leading-order approximation, at forward
rapidity, a valence quark of the projectile hadron emits two
photons via bremsstrahlung, and the produced diphotonþ
jet is then put on shell by interacting coherently over the
whole longitudinal extent of the target. The cross section
for production of a quark with momentum q and two
prompt photons with momenta k1 and k2 in the scattering of
an on-shell quark with momentum p off a hadronic target
(either a proton or a nucleus),

qðpÞ þ A → γðk1Þ þ γðk2Þ þ jetðqÞ þ X; ð1Þ

can be written in the general form

dσq→qγγ ¼ d3k1
ð2πÞ32k−1

d3k2
ð2πÞ32k−2

d3q
ð2πÞ32q−

1

2p− ð2πÞjM

× ðpjq; k1; k2Þj2δðp− − q− − k−1 − k−2 Þ; ð2Þ

where the matrix element M is related to the scattering
amplitude by

hqðqÞ; γðk1Þ; γðk2ÞjqðpÞi
¼ ð2πÞδðp− − q− − k−1 − k−2 ÞMðpjq; k1; k2Þ: ð3Þ

In the CGC approach, we assume that the small-x gluon
modes of the nucleus have a large occupation number so
that it can be described in terms of a classical color field.
This should be a good approximation for large enough
nucleus at high energy.1 This color field emerges from the
classical Yang–Mills equation with a source term provided
by faster partons. The renormalization group equations
which govern the separation between the soft and hard
models are then given by the nonlinear Jalilian-Marian,
Iancu, McLerran, Weigert, Leonidov, and Kovner
(JIMWLK) evolution equations [3] (see below). We further
assume that the projectile proton is in the dilute regime and
can be described in the ordinary perturbative approach, in
terms of parton distribution functions. In this framework,
the scattering amplitude of diphotonþ jet production in
quark-nucleus scatterings in momentum space in lowest
order in the electromagnetic αem and the strong αs coupling
constants can be written in the formal form

hqðqÞ; γðk1Þ; γðk2ÞjqðpÞi
¼ −ie2qūðqÞ½T Fðq;p − k1 − k2ÞG0

Fðp − k1 − k2Þ
× ϵðk2ÞG0

Fðp − k1Þϵðk1Þ þ ϵðk2ÞG0
Fðqþ k2Þϵðk1Þ

×G0
Fðqþ k1 þ k2ÞT Fðqþ k1 þ k2;pÞ þ ϵðk2Þ

×G0
Fðqþ k2ÞT Fðqþ k2;p − k1ÞG0

Fðp − k1Þϵðk1Þ
þ ðk1↔k2Þ�uðpÞ; ð4Þ

where eq is the fractional electric charge of the projectile
quark, G0

F is the free Feynman propagator of a quark, and u
and ϵμ denote the quark free spinor and the photon
polarization vector, respectively. In the above, the operator
matrix T F contains the interaction between the quark and
the colored-glass condensate target, which resums multiple
interactions with the background CGC field [43,44].
Assuming that the target is moving in the positive z
direction, we have [45]

T Fðq;pÞ ¼ 2πδðq− − p−Þγ−signðp−Þ

×
Z

d2zT½UðzTÞ − 1�eiðqT−pTÞ·zT ; ð5Þ

where UðzTÞ is a unitary matrix in the fundamental
representation of SUðNcÞ—the scattering matrix of a quark
on the colored-glass condensate target:

UðzTÞ ¼ T exp

�
−ig2

Z
dx−

1

∇2
T
ρaðx−;xTÞta

�
: ð6Þ

1Note that proton at high energy and specially at very forward
rapidity is a dense system, and in principle the same approxi-
mation also applies there; see, for example, Refs. [7–21].
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Here ρ is the density of the color sources in the target, and
ta is the generator of SUðNcÞ in the fundamental repre-
sentation. The expression in Eq. (4) accounts for all
processes illustrated in Fig. 1 for diphotonþjet production
of a quark interacting with the CGC background field at
lowest order in αem and αs in the leading-log approxima-
tion. Note that the lower diagram on the right panel in Fig. 1

does not contribute at high energy. Conceptually this is
because the nucleus is moving with speed of light in theþz
direction. By the time the diphoton is emitted from the
quark, the nucleus has already moved far away from the
quark, and no further interactions are allowed by causality.
Using the definition of T F in Eq. (5), one can rewrite the

amplitude as

hqðqÞ; γðk1Þ; γðk2ÞjqðpÞi ¼ ie2qūðqÞ
�
γ−ðp − k1 − k2Þϵðk2Þðp − k1Þϵðk1Þ

ðp − k1 − k2Þ2ðp − k1Þ2
þ ϵðk2Þðqþ k2Þϵðk1Þðqþ k1 þ k2Þγ−

ðqþ k2Þ2ðqþ k1 þ k2Þ2

þ ϵðk2Þðqþ k2Þγ−ðp − k1Þϵðk1Þ
ðqþ k2Þ2ðp − k1Þ2

þ ðk1↔k2Þ
�
uðpÞ

× 2πδðq− þ k−1 þ k−2 − p−Þ
Z

d2zT½UðzTÞ − 1�eiðqTþk1Tþk2T−pTÞ·zT : ð7Þ

The semi-inclusive diphotonþ jet cross section defined in Eq. (2) can be readily obtained by squaring the amplitude and
averaging over the color charge distribution. To this end, one needs to perform the color charge averaging of the expression
hU†ðxTÞUðyTÞiρ with the CGC weight

W½ρ� ¼ T exp

�
−
Z

dx−d2xT
ρaðx−;xTÞρaðx−;xTÞ

2μ2ðx−Þ
�
: ð8Þ

Note that the averaging procedure does not affect the spin dependence in Eq. (2). Therefore, one can rewrite the final
expression in term of the dipole-target forward scattering amplitude NF and a spin trace,

dσq→qγγ ¼ e4q
2

d3k1

ð2πÞ32k−1
d3k2

ð2πÞ32k−2
d3q

ð2πÞ32q−
1

2p− ð2πÞδðp− − q− − k−1 − k−2 ÞhtrðS†SÞispin

× d2rTd2bTeiðpT−qT−k1T−k2TÞ·rTNFðbT; rT; xgÞ; ð9Þ
where the factor 1=2 is due to averaging over flavor SU(2) and NF is the imaginary part of the (quark-antiquark) dipole-
target forward scattering amplitude defined as

NFðbT; rT; xgÞ ¼
1

Nc
hTr½1 −U†ðxTÞUðyTÞ�i: ð10Þ

Here Nc is the number of colors, the vector bT ≡ ðxT þ yTÞ=2 is the impact parameter of the dipole relative to the target,
and rT ≡ xT − yT is the dipole transverse vector. The dependence of the dipole scattering probability on Bjorken xg is
determined by the JIMWLK renormalization group equations (see Sec. III). The explicit expression for the trace in Eq. (3) is

htrðS†SÞispin ¼
1

2
tr

�
p

�
ϵ�ðk1Þðp − k1Þϵ�ðk2Þðp − k1 − k2Þγ−

ðp − k1 − k2Þ2ðp − k1Þ2
þ γ−ðqþ k1 þ k2Þϵ�ðk1Þðqþ k2Þϵ�ðk2Þ

ðqþ k2Þ2ðqþ k1 þ k2Þ2

þ ϵ�ðk1Þðp − k1Þγ−ðqþ k2Þϵ�ðk2Þ
ðqþ k1Þ2ðp − k2Þ2

þ ϵ�ðk2Þðp − k2Þϵ�ðk1Þðp − k1 − k2Þγ−
ðp − k1 − k2Þ2ðp − k2Þ2

þ γ−ðqþ k1 þ k2Þϵ�ðk2Þðqþ k1Þϵ�ðk1Þ
ðqþ k1Þ2ðqþ k1 þ k2Þ2

þ ϵ�ðk2Þðp − k2Þγ−ðqþ k1Þϵ�ðk1Þ
ðqþ k2Þ2ðp − k1Þ2

�

× q

�
γ−ðp − k1 − k2Þϵðk2Þðp − k1Þϵðk1Þ

ðp − k1 − k2Þ2ðp − k1Þ2
þ ϵðk2Þðqþ k2Þϵðk1Þðqþ k1 þ k2Þγ−

ðqþ k2Þ2ðqþ k1 þ k2Þ2

þ ϵðk2Þðqþ k2Þγ−ðp − k1Þϵðk1Þ
ðqþ k2Þ2ðp − k1Þ2

þ γ−ðp − k1 − k2Þϵðk1Þðp − k2Þϵðk2Þ
ðp − k1 − k2Þ2ðp − k2Þ2

þ ϵðk1Þðqþ k1Þϵðk2Þðqþ k1 þ k2Þγ−
ðqþ k1Þ2ðqþ k1 þ k2Þ2

þ ϵðk1Þðqþ k1Þγ−ðp − k2Þϵðk2Þ
ðqþ k1Þ2ðp − k2Þ2

��
; ð11Þ
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where the factor 1=2 is due to averaging over the spin of the
projectile quark. The trace in Eq. (11) can be somewhat
simplified by summing over the photon polarization and
using the relation ϵμðkÞϵ�νðkÞ ¼ −gμν (note that terms
proportional to kμ do not contribute due to Ward identities).

Moreover, half of the terms in Eq. (11) are symmetric under
the replacement of k1 → k2; k2 → k1. Nevertheless, even
after these simplifications, the exact expression for the trace
in Eq. (11) is rather complicated and very difficult for a
numerical evaluation. However, one can simplify it sig-
nificantly by restricting to the soft limit, which is relevant
for the high-energy collisions (see below).

A. Single-inclusive prompt photon
production: Soft limit

The calculation of the photonþ jet and diphotonþ jet
production in the CGC approach in the soft limit is rather
similar. Therefore, it is instructive to first derive the cross
section of semi-inclusive photonþ jet production.
Let us consider production of a single prompt photon and

a quark with 4-momenta k and q, respectively, in scattering
of a on-shell quark with 4-momentum p on a nuclear
(or proton) target in the CGC approach in the soft
approximation, namely, when jkj < jp − qj. To this end,
one can calculate the amplitude from diagrams similar to
those shown in the upper panel of Fig. 1 replacing two
photon lines by a single one with momentum k [45]:

hqðqÞ;γðkÞjqðpÞi¼−ieqūðqÞ
�
γ−ðp−kÞϵ
ðp−kÞ2 þ ϵðqþkÞγ−

ðqþkÞ2
�
uðpÞ2πδðq−þk− −p−Þ

Z
d2zT ½UðzTÞ−1�eiðqTþkT−pTÞ·zT ;

≈−ieqūðqÞγ−uðpÞ
�
q · ϵ
q ·k

−
p · ϵ
p ·k

�
2πδðq−þk− −p−Þ

Z
d2zT ½UðzTÞ−1�eiðqTþkT−pT Þ·zT : ð12Þ

In the above equation’s second line, we implemented the soft limit approximation and used

pϵuðpÞ ¼ 2p · ϵuðpÞ; ūðqÞϵq ¼ ūðqÞ2q · ϵ; ðp − kÞ2 ≈ −2p · k: ð13Þ

The spinor averaged matrix element can be then immediately obtained,

htrðS†SÞisingle-photon;softspin ¼ 1

2
trfqγ−pγ−g

���� q · ϵðkÞ
q · k

−
p · ϵðkÞ
p · k

����
2

¼ 16p−q−
� ðp · qÞ
ðq · kÞðp · kÞ

�
; ð14Þ

¼ 32p−q−k−2q2
T

k2
Tðk−qT − q−kTÞ2

: ð15Þ

In Eq. (14) summations over the spin of the final quark and over the polarization of the photon were performed. The cross
section of single inclusive prompt photon production, similar to Eq. (9), can be written as

dσq→qγ ¼ e2q
2

d3k
ð2πÞ32k−

d3q
ð2πÞ32q−

1

2p− ð2πÞδðp− − q− − k−ÞhtrðS†SÞisingle-photonspin d2rTd2bTeiðpT−qT−kT Þ:rTNFðbT; rT; xgÞ:

ð16Þ
Using Eq. (15) and the definitions of the rapidities of the produced photon ηγ ¼ logð

ffiffi
2

p
k−

kT
Þ and quark ηh ¼ logð

ffiffi
2

p
q−

qT
Þ, the

above equation can be simplified in the soft limit to yield

FIG. 1. The diagrams contributing to diphoton production of a
quark in the background of the CGC field. The black blob denotes
the interaction of a quark to all orders with the background field
via multiple gluon exchanges. See the Appendix for the definition
of kinematics.
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dσqðpÞ→qðqÞγðkÞX

dk2Tdηγdq
2
Tdηhdθ

¼ 2αeme2q
ð2πÞ3 ffiffiffiffiffi

2s
p q−k−2q2T

k2Tðk−qT − q−kTÞ2
δ

�
xq −

kTffiffiffi
s

p eηγ −
qTffiffiffi
s

p eηh
�
×
Z

d2rTd2bTeiðqTþkTÞ:rTNFðbT; rT; xgÞ;

ð17Þ

where θ is the angle between the produced jet and photon.
The parameter xq is the ratio of energies of the incoming
quark to nucleon, xq ¼ p−=

ffiffiffiffiffiffiffi
s=2

p
with

ffiffiffi
s

p
being the

nucleon-nucleon center-of-mass energy.
To relate the above partonic production cross section to

the cross section of photon-hadron production in proton-
nucleus collisions, one needs to convolute the partonic
cross section with the quark and antiquark distribution
functions of a proton and the quark-hadron fragmentation
function,

dσqðpÞ→hðq0ÞγðkÞ

d2kTdηγd2q0
Tdηhdθ

¼
Z

1

zmin
h

dzh
z2h

Z
dxqfðxq; μ2I Þ

×
dσqðpÞ→qðqÞγðkÞ

d2kTdηγd2qTdηhdθ

×Dh=qðzh; μ2FÞ; ð18Þ

where q0T is the transverse momentum of the produced
hadron and fðxq; μ2I Þ is the parton distribution function
(PDF) of the incoming proton, which depends on the light-
cone momentum fraction xq and the hard-scale μI .
Summation over the quark and antiquark flavors in the
above expression is understood. The function Dh=qðzf; μ2FÞ
is the quark-hadron fragmentation function (FF) where zh is
the ratio of energies of the produced hadron and quark and
μF is the fragmentation scale. The produced hadrons
are assumed here to be massless. The light-cone momen-
tum fractions xq; xg; zh are related to the transverse
momenta and rapidities of the produced hadron and prompt
photon via

xq ¼ xq̄ ¼
1ffiffiffi
s

p
�
kTeηγ þ

q0T
zh

eηh
�
;

xg ¼
1ffiffiffi
s

p
�
kTe−ηγ þ

q0T
zh

e−ηh
�
;

zh ¼ q0T=qT with zmin
h ¼ q0Tffiffiffi

s
p

�
eηh

1 − kTffiffi
s

p eηγ

�
: ð19Þ

To obtain the cross section for the single inclusive prompt
photon production, we integrate over the outgoing quark
momentum in Eq. (17). Using dηh ¼ dq−=q− we obtain

dσqðpÞ→γðkÞX

d2kTdηγ
¼ 2αeme2q

ð2πÞ3k2T

Z
d2qT

k−2q2
T

ðk−qT − q−kTÞ2
× NFðjqT þ kT j; xgÞ: ð20Þ

In terms of the photon fragmentation parameter z ¼ k−=p−,
the light-cone fraction variable xg in Eq. (20) is then
expressed as

xg ¼
1

xqs

�
k2T
z
þ q2T
1 − z

�
: ð21Þ

The collinear singular part in Eq. (20) is naturally attributed
to the fragmentation contribution. Shifting the momentum
qT → qT þ kT=z and breaking the integral into two parts
by introducing a hard cutoff, the cross section of the single
inclusive prompt photon can be written as a sum of the
fragmentation and the direct photon (finite) part,

dσqðpÞ→γðkÞX

d2kTdηγ
¼ αeme2q

πð2πÞ3
2

k2T

Z
q2T>μ

2
F

d2qT
jqT þ kT=zj2

q2T

× NFðjqT þ kTð1þ 1=zÞj; x1gÞ

þ 1

ð2πÞ2
1

z
Dγ=hðz; μ2FÞNFðkT=z; x2gÞ; ð22Þ

where the fragmentation scale μF used to separate the soft
from the hard contribution. The first term is the direct
photon contribution, whereas the second term is the
fragmentation photon contribution, corresponding to the
kinematics where the photon is emitted almost collinearly
with the outgoing quark. The photon fragmentation func-
tion extracted from Eq. (20) in the soft approximation is
given by

Dγ=hðz; μ2FÞ ¼
αeme2q
2π

2

z
log ðμ2F=Λ2

QCDÞ: ð23Þ

The light-cone fraction variables x1g and x2g in Eq. (22) are
obtained via Eq. (21) by replacing qT → qT þ kT=z and
qT → kT=z, respectively. The above expression for the
single-inclusive photon fragmentation function agrees with
the corresponding expression obtained in the standard
perturbative QCD calculation in the leading-log approxi-
mation in the soft limit [36,46]. Note that in the soft photon
approximation we assumed z ≪ 1 and kT ≪ qT . The cross
section given in Eq. (22) is also in accordance with
expression obtained in Refs. [36,45,47] in the soft limit.
Note that both the direct and fragmentation cross section

for single inclusive photon production are explicitly pro-
portional to the dipole amplitude. Thus, in principle they
probe the small-x dynamics and saturation physics in the
appropriate kinematics [36,37] (see also Ref. [48]).
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B. Semi-inclusive diphotonþ jet production: Soft limit

We now turn to the problem of diphotonþ jet production in proton-nucleus collisions assuming that the radiated photons
are soft, namely, jk1;2j < jp − qj. In this case we can simplify the expression in Eq. (7) by ignoring k1;2 in the numerators of
the propagator and using similar relations given in Eq. (13). In the soft-photon approximation, the amplitude of diphotonþ
jet production in quark-nucleus collisions becomes

hqðqÞ; γðk1Þ; γðk2ÞjqðpÞi ≈ ie2qūðqÞ
�
γ−p · ϵðk2Þp · ϵðk1Þ
p · ðk1 þ k2Þðp · k1Þ

þ γ−q · ϵðk2Þq · ϵðk1Þ
ðq · k2Þq · ðk1 þ k2Þ

−
γ−q · ϵðk2Þp · ϵðk1Þ
ðq · k2Þðp · k1Þ

þ ðk1↔k2Þ
�
uðpÞ

× 2πδðq− þ k−1 þ k−2 − p−Þ
Z

d2zT ½UðzTÞ − 1�eiðqTþk1Tþk2T−pTÞ·zT : ð24Þ

Using the above expression for the amplitude, after some algebra one can significantly simplify the spinor trace in Eq. (11)
to obtain

htrðS†SÞidiphoton; softspin ¼ 1

2
trfqγ−pγ−gj p · ϵðk2Þp · ϵðk1Þ

p · ðk1 þ k2Þðp · k1Þ
þ q · ϵðk2Þq · ϵðk1Þ
ðq · k2Þq · ðk1 þ k2Þ

−
q · ϵðk2Þp · ϵðk1Þ
ðq · k2Þðp · k1Þ

þ ðk1↔k2Þj2;

¼ trfqγ−pγ−gðp · qÞ2
�

1

p · ðk1 þ k2Þðp · k1Þðq · k2Þq · ðk1 þ k2Þ

þ 1

p · ðk1 þ k2Þðp · k1Þðq · k1Þq · ðk1 þ k2Þ
þ 1

ðq · k2Þq · ðk1 þ k2Þp · ðk1 þ k2Þðp · k2Þ

þ 1

ðq · k1Þq · ðk1 þ k2Þp · ðk1 þ k2Þðp · k2Þ
þ 1

ðq · k2Þðp · k1Þðq · k1Þðp · k2Þ
�
;

¼ 64p−q−k−21 k−22 q4T

�
k−1 k

−
2

OM

�
1

k21TDðk2Þ
þ 1

k22TDðk1Þ
�
þ 1

OM

�
k−21

k21TDðk1Þ
þ k−22
k22TDðk2Þ

�

þ 1

k21Tk
2
2TDðk1ÞDðk2Þ

�
; ð25Þ

where we introduced the notation

DðkiÞ ¼ ðk−i qT − q−kiTÞ2 with i ¼ 1; 2;

M ¼ k−2Dðk1Þ þ k−1Dðk2Þ;
O ¼ k21Tk

−
2 þ k22Tk

−
1 ; ð26Þ

with k−1 , k
−
2 , and q

− being related to the transverse momenta and pseudorapidities of the produced diphoton ηγ1 ; ηγ2 and the
jet ηh via

k−1 ¼ k1Tffiffiffi
2

p eηγ1 ; k−2 ¼ k2Tffiffiffi
2

p eηγ2 ; q− ¼ qTffiffiffi
2

p eηh : ð27Þ

In the last line of Eq. (25), we explicitly used the kinematical relations between the 4-momenta of the produced photons and
the jet in the light-cone frame arising due to energy-momentum conservation (see the Appendix). Substituting the above
expression into Eq. (9), the diphotonþ jet cross-section at partonic level in quark-nucleus collisions can be simplified to

dσqA→qðqÞγðk1Þγðk2ÞX

d2k1Tdηγ1d
2k2Tdηγ2d

2qTdηh
¼ 4α2eme4q

ð2πÞ6 ffiffiffiffiffi
2s

p q−k−21 k−22 q4Tδ

�
xq −

k1Tffiffiffi
s

p eηγ1 −
k2Tffiffiffi
s

p eηγ2 −
qTffiffiffi
s

p eηh
�

×

�
k−1 k

−
2

OM

�
1

k21TDðk2Þ
þ 1

k22TDðk1Þ
�
þ 1

OM

�
k−21

k21TDðk1Þ
þ k−22
k22TDðk2Þ

�

þ 1

k21Tk
2
2TDðk1ÞDðk2Þ

�
×
Z

d2rTd2bTeiðqTþk1Tþk2TÞ:rTNFðbT; rT; xgÞ: ð28Þ
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The production at the partonic level is related to the one in proton-nucleus collisions by convoluting Eq. (28) with the quark
and antiquark distribution functions of a proton and the quark-hadron fragmentation function

dσqA→hðq0Þγðk1Þγðk2ÞX

d2k1Tdηγ1d
2k2Tdηγ3d

2q0
Tdηh

¼
Z

1

zmin
h

dzh
z2h

Z
dxqfðxq; μ2I Þ

dσqðpÞ→qðqÞγðk1Þγðk2ÞX

d2k1Tdηγ1d
2k2Tdηγ2d

2qTdηh
Dh=qðzh; μ2FÞ: ð29Þ

The light-cone momentum fractions xq; xg; zh are again related to the transverse momenta and rapidities of the produced
hadron and prompt diphoton via (see the Appendix for the derivation)

xq ¼ xq̄ ¼
1ffiffiffi
s

p
�
k1Te

ηγ1 þ k2Te
ηγ2 þ q0T

zh
eηh

�
;

xg ¼
1ffiffiffi
s

p
�
k1Te

−ηγ1 þ k2Te
−ηγ2 þ q0T

zh
e−ηh

�
;

zh ¼ q0T=qT with zmin
h ¼ q0Tffiffiffi

s
p

�
eηh

1 − k1Tffiffi
s

p eηγ1 − k2Tffiffi
s

p eηγ2

�
: ð30Þ

One can obtain the inclusive diphoton cross section from the semi-inclusive diphotonþ jet cross section given in Eq. (24)
by integrating over the outgoing jet momentum. To simplify the algebra, we introduce photon fragmentation parameters z1
and z2. The parameters z1 and z2 are the fraction of energy of parton carried away by produced photons with momenta k1
and k2, respectively,

z1 ¼
k−1
p− ; z2 ¼

k−2
p− − k−1

: ð31Þ

In the soft-photon limit, we have z1 ≈
k−
1

q− and z2 ≈
k−
2

q−. Therefore, Eqs. (24) and (28) yield

dσqA→γðk1Þγðk2ÞX

d2k1Tdηγ1d
2k2Tdηγ2

¼ 2α2eme4q
ð2πÞ6 z21z

2
2

Z
d2qTq4T

�
k−1 k

−
2

OM

�
1

k21TDðk2Þ
þ 1

k22TDðk1Þ
�
þ 1

OM

�
k−21

k21TDðk1Þ
þ k−22
k22TDðk2Þ

�

þ 1

k21Tk
2
2TDðk1ÞDðk2Þ

� Z
d2rTd2bTeiðqTþk1Tþk2T Þ:rTNFðbT; rT; xgÞ; ð32Þ

with O defined in Eq. (26) and

DðkiÞ ¼ ðziqT − kiTÞ2 with i ¼ 1; 2;

M ¼ k−2Dðk1Þ þ k−1Dðk2Þ: ð33Þ

The relations between the light-cone variables xg; z1; z2 and final-state momenta for inclusive diphoton production are given
below (for the derivation, see the Appendix):

xgðqT ; k1T; ηγ1 ; k2T; ηγ2Þ ¼
1

xqs

�
k21T
z1

þ k22T
z2ð1 − z1Þ

þ q2T
1 − z1 − z2 þ z1z2

�
;

z1 ¼
k1T
xq

ffiffiffi
s

p eηγ1 ;

z2 ¼
k2T

xqð1 − z1Þ
ffiffiffi
s

p eηγ2 : ð34Þ

Similar to Eqs. (20), (22), one can treat the collinear divergence in the cross section Eq. (32) by introducing a hard cutoff
and separating the collinear singular part into the photon fragmentation contribution. The structure of the collinear
singularity in different terms in Eq. (32) is very similar, except the last term which can be also rewritten in terms of two
separated similar singular terms as long as k1T

z1
≠ k2T

z2
, using the identity
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1

Dðk1ÞDðk2Þ
¼

�
1

Dðk1Þ
þ 1

Dðk2Þ
�

1

Dðk1Þ þDðk2Þ
: ð35Þ

It is convenient to perform some variable changes in Eq. (32). In the terms containing the factor 1=Dðk1Þ and 1=Dðk2Þ, we
change the variable qT to qT → qT þ k1T

z1
and qT → qT þ k2T

z2
, respectively. The infrared divergent part of the integral is then

extracted in the same fashion as for the single inclusive photon production in Eq. (22). After some tedious but
straightforward algebra, one can write the diphoton cross section in terms of fragmentation and direct parts,

dσqA→γðk1Þγðk2ÞX

d2k1Tdηγ1d
2k2Tdηγ2

¼ dσDirect

d2k1Tdηγ1d
2k2Tdηγ2

þ dσFragmentation

d2k1Tdηγ1d
2k2Tdηγ2

: ð36Þ

The direct diphoton contribution is given by

dσDirect

d2k1Tdηγ1d
2k2Tdηγ2

¼ 2α2eme4q
ð2πÞ6

Z
q2T>μ

2
F

d2qT
jqT þ k1T=z1j4

q2T
NFðjqT þ k1Tð1þ 1=z1Þ þ k2T j; xgðjqT þ k1T=z1jÞÞ

× z22

�
1

k21Tk
2
2Tðq2Tz21 þ z22jqT þ k1T=z1 − k2T=z2j2Þ

þ
�
k−1 k

−
2

Ok22T
þ k−21
Ok21T

�
1

k−2 q
2
Tz

2
1 þ k−1 z

2
2jqT þ k1T=z1 − k2T=z2j2

�
þ ðk1↔k2; z1↔z2Þ: ð37Þ

The fragmentation contribution can be written in terms of a single and double photon fragmentation functions,

dσFragmentation

d2k1Tdηγ1d
2k2Tdηγ2

����k1T
z1

≠k2T
z2

¼ αeme2q
2ð2πÞ4

k21Tz
2
2

jk1Tz2 − k2Tz1j2
�
1

k22T
þ k21Tk

−
2

k22TO
þ k−1

O

�
1

z1
Dγ=hðz1; μ2FÞ

× NFðjk1Tð1þ 1=z1Þ þ k2T j; xgðk1T=z1ÞÞ þ ðk1↔k2; z1↔z2Þ;
dσFragmentation

d2k1Tdηγ1d
2k2Tdηγ2

����k1T
z1

¼k2T
z2

¼ αeme2q
2ð2πÞ4

�
1

2
þ ðk−1 k−2 k21T þ k−21 k22TÞ

z22
Oðk−2 z21 þ k−1 z

2
2Þ
�

1

z1z2
Dγ1γ2=hðz1; z2; μ2FÞ

× NFðjk1Tð1þ 1=z1Þ þ k2T j; xgðk1T=z1ÞÞ þ ðk1↔k2; z1↔z2Þ: ð38Þ

The single-photon fragmentation functionDγ=h was defined in Eq. (23), and the diphoton fragmentation function in the soft
limit in the leading-log approximation is

Dγ1γ2=hðz1; z2; μ2FÞ ¼
αeme2q
π

1

z1z2

�
1

Λ2
QCD

−
1

μ2F

�
: ð39Þ

In Eqs. (37) and (38), we used a short-hand notation for the light-cone variable xgðqTÞ≡ xgðqT ; k1T; ηγ1 ; k2T; ηγ2Þ, where xg
was defined in Eq. (34). Therefore, one should bear in mind that in different terms in direct and fragmentation parts, the
arguments of the dipole-target scattering amplitude NFðkT; xgÞ (the transverse momenta kT and gluon light-cone variable
xg) are different.
Note that, as long as k1T

z1
≠ k2T

z2
, the two collinear singularities of the integrand in Eq. (32) do not coincide, and therefore

the diphoton fragmentation contribution in Eq. (38) can be written in terms of two single-photon fragmentation
contributions. When k1T

z1
≈ k2T

z2
, the collinear singularity in Eq. (32) is stronger than the case of the single-photon production

in Eqs. (22) and (23).
Both the semi-inclusive diphotonþ jet and inclusive diphoton production cross section (both direct and fragmentation

parts) depend on the dipole-target amplitude and therefore in principle probe the small-x dynamics. In contrast to the
dihadron production at leading-log which involves a higher number of Wilson lines, the diphoton production depends only
on the dipole amplitude. Note that the light-cone variables xg and xq that enter the diphotonþ jet and diphoton production
cross sections are different; see Eqs. (30) and (34). Therefore, the two cross sections in principle are sensitive to different
kinematical regions of the dipole amplitude.
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The production in proton-nucleus collisions is related to
the above partonic cross section via

dσpA→γðk1Þγðk2ÞX

d2k1Tdηγ1d
2k2Tdηγ2

¼
Z

1

xmin
q

dxq½fqðxq; μ2I Þ þ fq̄ðxq̄; μ2I Þ�

×
dσqA→γðk1Þγðk2ÞX

d2k1Tdηγ1d
2k2Tdηγ2

; ð40Þ

where the parameter xq is the ratio of the incoming quark to
the projectile nucleon energy and the lower limit of integral
xmin
q is defined by

xmin
q ¼ Max

�
k1Te

ηγ1ffiffiffi
s

p ;
k2Te

ηγ2ffiffiffi
s

p
− k1Te

ηγ1

�
: ð41Þ

Before proceeding with numerical computation, a com-
ment here is in order. In the soft limit, we assumed that for
large s the “−” component of the incoming projectile
momentum is approximately unchanged by the interaction,
and the transverse momenta of the emitted photons are
small, k1T; k2T ≲ qT with q2=s ≪ 1. This approximation is
not appropriate for qT ¼ 0. Since the produced quark
momentum is integrated over to obtain the inclusive
diphoton cross section, it is essential to check that the
contribution of this kinematic region is not important.
Under the kinematic condition that p− ≈ q− and qT ¼ 0,
the trace in Eq. (11) can be analytically calculated to give

htrðS†SÞispin
¼ 8ðk1:k2Þ2ðkþ1 þ kþ2 Þ2½ðkþ1 − kþ2 Þ2p−2 − ðk1:k2Þ2�

ðkþ1 kþ2 Þ2½ðkþ1 þ kþ2 Þ2p−2 − ðk1:k2Þ2�2
;

ð42Þ

where for qT ¼ 0 one has kþ1 þ kþ2 ≈ xg
ffiffiffiffiffiffiffi
s=2

p
and

q− ¼ p− ≈ xq
ffiffiffiffiffiffiffi
s=2

p
. After straightforward algebra, one

can show that z1 and z2 dependence of the two expressions,
Eqs. (42) and (25) is similar, and for z1; z2 → 0 the above
expression approaches zero. Moreover, for the inclusive
diphoton production, the expression Eq. (42) enters the
cross section multiplied by a factor that vanishes at
small qT . Therefore, the contribution of this kinematical
region to the inclusive diphoton cross section is indeed
negligible.

III. NUMERICAL RESULTS AND DISCUSSION

The main ingredient in the calculation of the cross
section of semi-inclusive diphotonþ jet production in
Eq. (28), inclusive direct, and fragmentation diphoton
production [Eqs. (37) and (38)] is the two-dimensional
Fourier transform of the universal dipole-target forward

scattering amplitude NF. It incorporates small-x dynamics
and can be calculated by solving the nonlinear JIMWLK
equations [3]. In the large Nc limit, the coupled JIMWLK
equations are simplified to the Balitsky–Kovchegov (BK)
equation [4], a closed-form equation for the rapidity
evolution of the dipole amplitude which is presently known
to next-to-leading accuracy [5,6]. The running-coupling
improved BK equation (rcBK) has the same generic formal
form as the leading-log BK evolution equation,

∂NFðr; xÞ
∂ lnðx0=xÞ ¼

Z
d2~r1Krunð~r; ~r1; ~r2Þ½NFðr1; xÞ þ NFðr2; xÞ

−NFðr; xÞ − NFðr1; xÞNFðr2; xÞ�; ð43Þ

where the modified evolution kernel Krun using Balitsky‘s
prescription [49] for the running coupling is given by

Krunð~r; ~r1; ~r2Þ ¼
Ncαsðr2Þ

2π2

�
1

r21

�
αsðr21Þ
αsðr22Þ

− 1

�

þ r2

r21r
2
2

þ 1

r22

�
αsðr22Þ
αsðr21Þ

− 1

��
; ð44Þ

with ~r2 ≡ ~r − ~r1 [49,50]. The only external input
necessary for solving the rcBK nonlinear equation is the
initial condition for the amplitude. We take it to have the
following form, motivated by the McLerran–Venugopalan
model [2]:

Nðr; Y ¼ 0Þ ¼ 1 − exp
�
−
ðr2Q2

0sÞγ
4

ln
�

1

ΛQCDr
þ e

��
:

ð45Þ

The infrared scale is taken as ΛQCD ¼ 0.241 GeV, and the
onset of the small-x evolution is assumed to be at x0 ¼ 0.01
[7]. The free parameters in the rcBK equation are γ and the
initial saturation scale Q0s (as probed by quarks), with
s ¼ p; A for the proton and nuclear target, respectively. The
initial saturation scale of proton Q2

0p ≃ 0.168 GeV2 with
the corresponding γ ≃ 1.119was extracted from a global fit
to proton structure functions in deep inelastic scattering
(DIS) in the small-x region [7] and single inclusive hadron
data in pþ p collisions at RHIC and the LHC [14,17,21].
Note that the current HERA data alone are not enough to
uniquely fix the values of Q0p and γ [7]. For the nucleus
case, the initial saturation scale of a nucleus Q2

0A ≈ 5Q2
0p

should be considered as an impact-parameter averaged
value, and it is extracted from the minimum-bias data
in deuteron-gold collisions at RHIC and proton-lead
collisions at the LHC [17].
Let us define the azimuthal correlation of the produced

diphoton as [36,37]
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CðΔϕÞ ¼ dσpA→γðk1Þγðk2ÞX

d2k1Tdηγ1d
2k2Tdηγ2

½Δϕ�= dσpA→γðk1Þγðk2ÞX

d2k1Tdηγ1d
2k2Tdηγ2

½Δϕ ¼ Δϕc�; ð46Þ

where Δϕ is the azimuthal angle between the two
produced photons in the plane transverse to the collision
axis. The azimuthal correlation C is proportional to the
probability of inclusive diphoton pair production in a
given kinematics and angle Δϕ between the photons in the
pair, normalized to the fixed reference angle Δϕc. Since
we are mostly interested in studying correlations at
Δϕ ≈ π, we fix the reference angle Δϕc ¼ π=2 throughout
this paper.
One can equally well take the normalization in Eq. (46)

as the differential cross section integrated over the angle
Δϕ. We expect that some of the theoretical uncertainties,
such as sensitivity to possible K factors, which effectively
incorporates the missing higher order corrections, drop out
in the correlation defined in Eq. (46). One should bear in
mind that the correlation defined in Eq. (46) may be more
challenging to measure compared to the so-called coinci-
dence probability [37,51,52] due to possible underlying
event dependence; however, since it is free from extra
integrals over transverse momenta, it should exhibit the
underlying dynamics of the correlation in a cleaner way. In
a sense, the correlation defined in Eq. (46) is a snapshot of
the integrand in the coincidence probability.
Note that the hard scale μI in the parton distribution in

Eq. (40) can be in principle different from the photon
fragmentation scale μF introduced in Eqs. (37) and (38).
Following the conventional pQCD approach, we take the
hard scale μI to be equal to the fragmentation scale μF,
namely, μ ¼ μF ¼ μI. We will later quantify uncertainties
associated with the freedom to choose a different scale μ.
For the patron distributions, we will use the next-to-
leading-order (NLO) Martin-Stirling-Thorne-Watt (MSTW)
PDFs [53]. For numerical computation, we focus here at
low transverse momenta of the produced photon pair at the
LHC at forward rapidities, consistent with the soft approxi-
mation employed for obtaining the cross section. Note that
this kinematics is mostly relevant for probing saturation
effects.
In the standard perturbative calculations, the leading

contribution to the diphoton production comes from the
annihilation diagram. This process produces back-to-back
photon pairs and thus leads to a strong peak in the
correlation at Δϕ ¼ π. This contribution is absent in the
CGC approach, since the dense target wave function is
dominated by gluons. In the CGC framework, the annihi-
lation contribution only appears in the next order in αs.
Nevertheless, we expect the fragmentation diphoton to have
a non-negligible correlation peaked at Δϕ ¼ π. The reason
is that the photon-quark Fock component of the incoming
quark has zero transverse momentum in the collinear
factorization approach. Therefore, if momentum transfer

from the target is small enough, the photon collinear to the
outgoing quark and the photon emerging from the initial
photon-quark state will have opposite transverse momenta,
leading to back-to-back correlation.
The direct diphoton part, on the other hand, is restricted

to kinematics where the transverse momentum of the
outgoing quark jet is relatively large qT > μF. One there-
fore does not expect significant back-to-back correlation in
the direct photon contribution and also expects that the
correlations in the direct part should be more sensitive to
the fragmentation scale. Reducing the scale μ should
enhance the back-to-back correlations for the direct
diphoton.2

Indeed, our numerical results shown in Fig. 2 follow
these expectations. Note that, because of the convolution
with fragmentation and parton distribution functions, the
partonic level correlation gets somewhat smeared out. In
Fig. 2, we show that the correlations atΔϕ ¼ π in the direct
diphoton contribution are indeed much smaller than in the
fragmentation one. In Fig. 2, we also show the effects of
different fragmentation/factorization scales. We present the
correlations in different components of diphoton produc-
tion calculated with two different scales μ (left panel) and
μ=2 (right panel).
The fragmentation contribution is less sensitive to the

choice of fragmentation/factorization scale while the cor-
relations in the direct diphoton are affected by this
uncertainty. This is easy to understand since the fragmen-
tation/factorization scale that appears in the FF and the PDF
of fragmentation cross section in Eq. (38) mainly cancels
between the numerator and the denominator in the corre-
lation defined in Eq. (46). This does not happen in the direct
part since the fragmentation scale appears as the lower limit
of the integral in the cross section, Eq. (37).
In Fig. 2, we also compare the correlations of direct,

fragmentation, and prompt (fragmentationþ direct)
diphoton production at fixed kinematics at the LHC in
proton-nucleus collisions for two different fragmentation/
factorization scales. One notes that the back-to-back
correlation is larger in the fragmentation part, while the
total (and near-side) direct diphoton cross section is larger
than the fragmentation one. As a result, the total prompt
diphoton signal (the sum of direct and fragmentation parts)
exhibits a reduced back-to-back correlation defined via
Eq. (46). However, with the isolation cut technique [41]
(see also Ref. [54]), one can in principle isolate the

2Note that this is one of the main differences between diphoton
and dihadron correlations. In the later case, the dihadron can be
produced from splitting a single gluon, and the back-to-back
production is in principle kinematically allowed.
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fragmentation diphoton contribution and study this
correlation separately.3 Note also that, by default, the
back-to-back correlation is significantly larger in the two
single-photon fragmentation than double-photon fragmen-
tation parts; see Eq. (38).
In Fig. 3 we show the rapidity dependence of the

fragmentation and prompt (directþ fragmentation)

diphoton correlation C defined in Eq. (46) at fixed trans-
verse momenta of the produced diphoton in minimum-
bias proton-nucleus collisions at the LHC energyffiffiffi
s

p ¼ 8.8 TeV. The back-to-back correlations are system-
atically suppressed at forward rapidities (larger ηγ1 and ηγ2)
in both fragmentation and prompt (and direct) diphoton
production.
Given that the correlation in the direct diphoton pro-

duction is small (see Figs. 2 and 3), in the following we
only show the correlation calculated from the fragmenta-
tion diphoton part. The general features of the (de)corre-
lations discussed below persist for the prompt diphoton
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FIG. 2 (color online). Correlations of fragmentation, direct, and prompt diphoton production for two different fragmentation/
factorization scales μ (left panel) and μ=2 (right panel), where we defined μ ¼ μF ¼ μI ¼ ðk1T þ k2TÞ=2. All curves are results obtained
at a fixed pseudorapidity ηγ1 ¼ ηγ2 ¼ 2 and fixed transverse momenta k1T ¼ 1 GeV, and k2T ¼ 2 GeV in minimum-bias proton-lead
(pþ A) collisions at the LHC
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FIG. 3 (color online). Fragmentation (left panel) and prompt (right panel) diphoton correlations at different pseudorapidities of the
produced diphoton η ¼ ηγ1 ¼ ηγ2 in minimum-bias proton-lead collisions. In both panels, the curves are the results obtained from the
rcBK evolution equation with transverse momenta of the diphoton, fixed at k1T ¼ 1 GeV, and k2T ¼ 2 GeV at LHC energyffiffiffi
s

p ¼ 8.8 TeV. In both panels, the factorization and fragmentation scales are taken to be equal to μF ¼ μI ¼ ðk1T þ k2TÞ=2.

3This would be the opposite of what one may do in order to
study the direct diphoton (or photon) production by imposing
isolation cut to discard the fragmentation contribution. An
incorporation of the isolation cut criterion in our framework is
beyond the scope of the current paper.
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production, albeit the magnitude of the correlation is
uniformly smaller. We also fix the factorization/fragmen-
tation scale to μ ¼ ðk1T þ k2TÞ=2, as the variation of the
scale does not greatly affect the correlations in the
fragmentation part; see Fig. 2.
In Fig. 4, we compare the diphoton correlations in

minimum-bias pþ p and pþ A collisions at forward
rapidity ηγ1 ¼ ηγ2 ¼ 2 for fixed transverse momenta of
the pair at k1T ¼ 1 GeV and k2T ¼ 2 GeV. The back-to-
back correlations in pþ A collisions are clearly suppressed
compared to pþ p collisions.
In Fig. 5, right panel, we show the effect of variation of

transverse momenta of the produced photons at fixed
rapidity in pþ A collisions at the LHC. Lowering the

transverse momenta leads to suppression of the away-side
diphoton correlation.
Note that all the features seen in Figs. 3, 4, and 5can be

understood in the saturation picture. By increasing density
or rapidity/energy or decreasing transverse momenta, the
typical xg which enters in the dipole-target scattering
amplitude becomes smaller, and consequently the typical
saturation scale of the system becomes larger. In this case,
the intrinsic back-to-back correlation is smeared due to
momentum exchange with the target at the saturation scale.
This increased decorrelation with increasing saturation
scale appears to be a universal feature of diphoton pro-
duction, irrespective of the mechanism by which the
saturation scale is increased.

IV. CONCLUSION

In this paper we investigated semi-inclusive diphotonþ
jet and inclusive diphoton production at leading-log
approximation in high-energy proton-nucleus collisions
using the color-glass condensate formalism. We obtained
the inclusive prompt diphoton cross section in terms of
fragmentation and direct diphoton contributions while the
fragmentation part is given in terms of single-photon and
double-photon fragmentation functions.
We have also studied the diphoton azimuthal angular

correlations in pþ p and pþ A collisions at the LHC
kinematics. It is generally seen that at low transverse
momenta of the produced diphoton back-to-back correla-
tions of fragmentation, direct, and prompt diphoton pro-
duction are all sensitive to saturation physics, although this
sensitivity is significantly stronger in two single-photon
fragmentation parts. It was shown that the away-side peak
in diphoton angular correlation is reduced by lowering the
diphoton transverse momenta. At a fixed transverse
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collisions at a fixed pseudorapidity ηγ1 ¼ ηγ2 ¼ 2 with k1T ¼
1 GeV and k2T ¼ 2 GeV at the LHC energy
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momenta, the suppression of the away-side correlations
gets stronger as one goes to larger rapidities (or higher
energies) or a denser system. The main features of away-
side decorrelation of diphoton production seem to be
universally similar to that in dihadron [35] and photon-
hadron [36,37] productions in high-energy pþ A colli-
sions. In all cases, the away-side correlations of the
produced diparticle get suppressed in the presence of a
large saturation scale irrespective of mechanism by which
the particles are produced and the saturation scale is
enhanced. We recall that diphoton production is a theo-
retically cleaner probe of initial-state effects and small-x
dynamics compared to dihadron production, mainly due to
the fact that the diphoton production is free from hadro-
nization corrections, which theoretically are not too well
understood. Moreover, since the virtual photons do not
interact with the gluons inside target, final-state effects are
absent in the diphoton production.
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APPENDIX

The purpose of this appendix is to define the kinematics
and derive the needed relations between various light-cone
energy fractions which appear in the production cross
sections used. This is slightly different from the standard
relations used in production cross sections basedon collinear
factorization theorems of perturbative QCD (pQCD). We
first consider scattering of a quark on the target where a
photon and a quark are produced, depicted in Fig. 1,

qðpÞ þ AðpAÞ → γðk1Þ þ γðk2Þ þ jetðqÞ þ X; ðA1Þ
where A is a label for the multigluon state, described by a
classical field representing a proton or nucleus target. In the
standard pQCD (leading twist) kinematics, only one parton
from the target interacts. This is not the case here since the
target is described by a classical gluon field representing a
multigluon state with intrinsic momentum rather than an
individual gluon with a well-defined energy fraction xg and
zero transverse momentum. Nevertheless, since most of the
gluons in the target wave function have momentum of order
Qs, one can think of the state describing the target as being
labeled by a (4-)momentum pA. In this sense, the gluons in
the target collectively carry fraction xg of the target energy
andhave intrinsic transversemomentumdenoted bypA. This
also means that there is no integration over xg in our case,

unlike the collinearly factorized cross sections in pQCD
(this basically corresponds to setting xg equal to the lower
limit of xg integration in pQCDcross sections).We thus have

pμ ¼ ðp− ¼ xq
ffiffiffiffiffiffiffi
s=2

p
; pþ ¼ 0;pT ¼ 0Þ;

Pμ ¼ ðP− ¼
ffiffiffiffiffiffiffi
s=2

p
; Pþ ¼ 0;PT ¼ 0Þ;

pμ
A ¼ ðp−

A ¼ 0; pþ
A ¼ xg

ffiffiffiffiffiffiffi
s=2

p
;pATÞ;

Pμ
A ¼ ðP−

A ¼ 0; Pþ
A ¼

ffiffiffiffiffiffiffi
s=2

p
;PAT ¼ 0Þ;

qμ ¼ ðq−; qþ ¼ q2T=2q
−;qTÞ;

kμ1 ¼ ðk−1 ¼ z1p− ¼ z1xq
ffiffiffiffiffiffiffi
s=2

p
; kþ1 ¼ k21T=2k

−
1 ;k1TÞ;

kμ2 ¼ ðk−2 ¼ z2ðp− − k−1 Þ ¼ xqz2ð1 − z1Þ
ffiffiffiffiffiffiffi
s=2

p
;

kþ2 ¼ k22T=2k
−
2 ;k2TÞ; ðA2Þ

wherePμ; Pμ
A; q

μ are themomentaof the incomingprojectile,
target, and the produced jet, respectively. (Pseudo)rapidities
of the produced diphoton are related to their energies via

k−1 ¼ k1Tffiffiffi
2

p eηγ1 ; k−2 ¼ k2Tffiffiffi
2

p eηγ2 ; q− ¼ qTffiffiffi
2

p eηh : ðA3Þ

Imposing energy-momentum conservation at the partonic
level via δ4ðpþ pA − q − k1 − k2Þ and using Eq. (A2) leads
to

p− ¼ k−1 þ k−2 þ q−; ðA4Þ

pþ
A ¼ kþ1 þ kþ2 þ qþ; ðA5Þ

pAT ¼ k1T þ k2T þ qT: ðA6Þ

Plugging the definitions given in Eq. (A3) into the above
relations and using Eq. (A2) (and the on mass-shell con-
dition), one can immediately obtain the energy fractions
xq; xg in the case of the diphotonþ jet production,

xq ¼ xq̄ ¼
1ffiffiffi
s

p ðk1Teηγ1 þ k2Te
ηγ2 þ qTeηhÞ;

xg ¼
1ffiffiffi
s

p ðk1Te−ηγ1 þ k2Te
−ηγ2 þ qTe−ηhÞ; ðA7Þ

where the first and second equations were directly derived
from Eqs. (A4) and (A5), respectively. Note that the light-
cone momentum fraction xg appears in the dipole forward
scatteringamplitudeNFðbt; rt; xgÞ,whereasxq is the fraction
of the projectile proton carried by the incident quark; see
Eq. (A2). One can relate the transverse momentum of the
fragmented hadron q0T to the outgoing quark qT via
zh ¼ q0T=qT . Now using Eq. (A4) the minimum value of
zh is obtained for the maximum value of xq ¼ 1. Therefore,
we obtain
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zmin
h ¼ q0−ffiffiffiffiffiffiffi

s=2
p

− k−1 − k−2
: ðA8Þ

For obtaining the diphoton production, one integrates over
the outgoing quark transverse momentum and rapidity of
diphotonþ jet cross section.The integral over rapidity of the
outgoing jet or q− can be done analytically. Therefore, some
extra care is in order here. Let us first introduce the
parameters z1 and z2 as the fraction of energy of parton
carried away by two produced photons defined by

z1 ≡ k−1
p− ¼ k1T

xq
ffiffiffi
s

p eηγ1 ;

z2 ≡ k−2
p− − k−1

¼ k2T
xqð1 − z1Þ

ffiffiffi
s

p eηγ2 : ðA9Þ

Plugging the above relations into Eqs. (A4) and (A5) and
using Eq. (A2), one can derive the following expressions for
the energy fractions xq; xg:

xq ¼ xq̄ ¼
q−ffiffiffiffiffiffiffi

s=2
p ð1 − z1 − z2 þ z2z1Þ

; ðA10Þ

xg ¼
1

xqs

�
k21T
z1

þ k22T
z2ð1 − z1Þ

þ q2T
1 − z1 − z2 þ z1z2

�
: ðA11Þ

To derive an expression for the lower limit of z1 and z2 (in
integration), we note that 0 ≤ xq ≤ 1. Using the relations in
Eq. (A9), we obtain

zmin
1 ¼ k1Te

ηγ1ffiffiffi
s

p ;

zmin
2 ¼ k2Te

ηγ2ffiffiffi
s

p ð1 − zmin
1 Þ ¼

k2Te
ηγ2ffiffiffi

s
p

− k1Te
ηγ1

: ðA12Þ

Equally, we can immediately obtain the lowest value of xq
denoted by xmin

q from Eqs. (A9) and (A12) by imposing the
condition that 0 < z1; z2 < 1,

xmin
q ¼ Max

�
k1Te

ηγ1ffiffiffi
s

p ;
k2Te

ηγ2ffiffiffi
s

p
− k1Te

ηγ1

�
: ðA13Þ
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