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We present an analysis of nonperturbative contributions to the transverse momentum distribution of
Z=γ� bosons produced at hadron colliders. The new data on the angular distribution ϕ�

η of Drell-Yan pairs
measured at the Tevatron are shown to be in excellent agreement with a perturbative QCD prediction based
on the Collins-Soper-Sterman (CSS) resummation formalism at next-to-next-to-leading logarithmic
(NNLL) accuracy. Using these data, we determine the nonperturbative component of the CSS resummed
cross section and estimate its dependence on arbitrary resummation scales and other factors. With the scale
dependence included at the NNLL level, a significant nonperturbative component is needed to describe the
angular data.
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I. INTRODUCTION

QCD factorization methods utilizing transverse-
momentum-dependent (TMD) parton distributions and
fragmentation functions provide a powerful framework
for describing multiscale observables in high-energy
hadron interactions. Production of Drell-Yan lepton-
antilepton pairs in Z=γ� boson production in hadron-hadron
collisions is one basic process in which TMD factorization
is applied to predict the boson’s transverse momentum (QT)
distribution and related angular distributions. Collinear
QCD factorization is applicable for describing lepton pairs
with QT of order of the invariant mass Q of the pair. The
respective large-QT cross sections have been computed up
to two loops in the QCD coupling strength αs [1–4] and are
in reasonable agreement with the data.
But, at smallQT , all-order resummationof large logarithms

lnðQT=QÞ needs to be performed [5–7] to obtain sensible
cross sections. TMD factorization provides a systematic
framework for QT resummation to all orders in αs, as has
been shown in classical papers byCollins, Soper, andSterman
(CSS) [8–12]. The resummed cross sections have been com-
puted at various QCD orders in the CSS formalism and
kindred approaches [3,4,13–22]. In addition to perturbative
radiative contributions, the resummed cross sections include a
nonperturbative component associated with QCD dynamics
at momentum scales below 1 GeV. Understanding of the
nonperturbative terms is important for tests of TMD fac-
torization and precision studies of electroweak boson pro-
duction, including the measurement of W boson mass [23].
Instead of measuring QT distributions directly, one can

measure the distribution in the angle ϕ�
η [24] that is

closely related to QT=Q. The ϕ�
η distributions have been

recently measured at both the Tevatron [25] and the
Large Hadron Collider [26,27]. Small experimental errors
of the ϕ�

η measurements (as low as 0.5%) allow one to test
the QT resummation formalism at an unprecedented level.
On the theory side, the small-QT resummed form factor
for Z boson production has been computed to next-to-next-
to-leading logarithmic (NNLL)/NNLO [28].1 We would
like to confront precise theoretical predictions implemented
in programs LEGACY and RESBOS [29–31] by the new
experimental data to obtain quantitative constraints on the
nonperturbative contributions.
Such analysis is technically challenging and requires

one to examine several effects that were negligible in the
previous studies of the resummed nonperturbative terms
[29,31,32]. The framework for the fitting of Drell-Yan
processes in the CSS formalism must be extended to the ϕ�

η,
rather than QT , distributions. Nonperturbative effects must
be distinguished from comparable modifications by NNLO
QCD corrections, NLO electroweak (EW) corrections, and
the associated perturbative uncertainties.
To carry out this study, we modified theQT resummation

calculation employed in our previous studies to evaluate
NNLO QCD (α2s) and NLO EW (αEW) perturbative con-
tributions and consider the residual QCD scale dependence
associated with higher-order terms. This implementation
was utilized to determine the nonperturbative factor from
the D0 Run-2 data on the ϕ�

η distributions.
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1Throughout the paper, “NNLO” will consistently refer to the
cross sections of order α2s, in accordance with the observation that
the lowest-order nonzero contribution to the resummed QT
distribution arises from the subprocess qq̄ → V of order α0s. This
is to be distinguished from an alternative convention that may be
applied at large QT [20,28], according to which the α2s contri-
butions are of the next-to-leading order (NLO).
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Our findings shed light on several questions raised in
recent studies of TMD factorization [33–45] and soft-
collinear-effective (SCET) theory [46–48]. We examine if
the ϕ�

η data corroborate the universal behavior of the
resummed nonperturbative terms that is expected from
the TMD factorization theorem [11] and was observed in
the global analyses of Drell-Yan QT distributions at fixed-
target and collider energies [31,32]. We also investigate the
rapidity dependence of the nonperturbative terms, which
may be indicative of new types of higher-order contribu-
tions [49]. It has been argued [4,20–22,50] that the
evidence for nonperturbative smearing is inconclusive
because of a large QCD scale dependence. Since the
magnitude of the scale dependence reduces with the order
of the calculation, we include the dependence on the soft
scales in the resummed cross section up to Oðα2sÞ, i.e.
NNLL/NNLO. In this case, the radiative contributions are
estimated to the same order as in [28], either exactly or
approximately, and we also include contributions respon-
sible for the dependence on the resummation scales to one
higher order (α2s) than in [4,20–22,50].
Based on our numerical implementation, we demonstrate

that the impact of the power-suppressed contributions is
generically distinct from the scale dependence: the non-
perturbative effects can be distinguished from the NNLO
scale uncertainties. The nonperturbative component that we
find is consistent with a universal quadratic (Gaussian)
power-suppressed contribution of the kind that may be
expected on general grounds [11], and of a magnitude that
is compatible with a previous global analysis of Drell-Yan
QT distributions [32].
The D0 data are precise enough and may be able to

distinguish between the Gaussian and alternative non-
perturbative functions that have been recently proposed
[51]. It would be insightful to examine constraints on a
variety of the nonperturbative models that are currently
discussed [44–46,52], as well as the

ffiffiffi
s

p
dependence of the

nonperturbative contributions by using a combination of
the Tevatron and LHC data. As such investigation demands
significant computational resources, it will be pursued in
future work.
Our main numerical results have been reported at the

QCD Evolution Workshop at Thomas Jefferson National
Accelerator Facility in May 2012 [53]. The current paper
documents this analysis in detail and is organized as
follows. Section II reviews the relation between the ϕ�

η

angle and transverse momentum QT in the Collins-Soper-
Sterman notations (Sec. II A), general structure of the
resummed cross section and estimation of NNLO contri-
butions and their scale dependence (Secs. II B, II C, II D),
nonperturbative model (Sec. II E), matching of the small-
QT and large-QT terms (Sec. II F), photon radiation
contribution (Sec. II G), and numerical accuracy (Sec. II
H). In Sec. II I, distinctions between the NNLL/NNLO
resummed QT distributions obtained in the CSS formalism

and the alternative approach of Refs. [19,28,54] are
summarized.
Next, in Sec. III, the size of the nonperturbative con-

tributions is estimated by a χ2 analysis of the D0 data in
three bins of vector boson rapidity (yZ), by applying two
different methods to examine the scale dependence of the
resummed cross section. By using the constraining power
of this data set, we suggest a Gaussian smearing factor
suitable forW and Z production, and we give an estimate at
68% confidence level (C.L.) for the leading parameter of
the nonperturbative (NP) functional form. We provide the
user with several sets of grids of theory predictions for
phenomenological applications based on CT10 NNLO [55]
parton distribution function (PDF) eigenvector sets, and
for scans of the nonperturbative smearing function and
estimates of its uncertainty in future measurements.

II. OVERVIEW OF THE RESUMMATION
METHOD

A. Relation between QT and ϕ�
η variables

The CSS resummation formalism predicts fully differ-
ential distributions in electroweak boson production, includ-
ing decay of heavy bosons.While the original formulation of
the CSS formalism deals with resummation of logarithms
dependent on the boson’s transverse momentum QT , it can
readily be extended to resum angular variables of decay
particles. One such variable is the azimuthal angle separation
Δφ of the leptons in the lab frame, which approaches π
(back-to-back production of leptons in the transverse plane)
when QT → 0. Consequently, the region Δφ → π is sensi-
tive to small-QT resummation [30].
Recently, an angular variable ϕ�

η was proposed in [24]
that has an experimental advantage compared to QT and
Δφ. The ϕ�

η variable is not affected by the experimental
resolution on the magnitudes of the leptons’ (transverse)
momenta that limits the accuracy of the QT measurement.
Soft and collinear resummation for the ϕ�

η distribution can
be worked out either analytically [20–22,50] or numerically
by integrating the resummed QT distribution over the
leptons’ phase space.
To describe decays of massive bosons, the CSS formal-

ism [30] usually operates with the lepton polar angle
θCS and azimuthal angle φCS in the Collins-Soper (CS)
reference frame [56]. The CS frame is a rest frame of
the vector boson in which the z axis bisects the angle
formed by the momenta ~p1 and −~p2 of the incident
quark and antiquark. In the CS frame, the decay leptons
escape back-to-back (~l1 þ ~l2 ¼ 0), and the electron’s and
positron’s 4-momenta are

lμ1jCS frame

¼ ðQ=2Þf1; cosφCS sin θCS; sinφCS sin θCS; cos θCSg;
ð1Þ
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and

lμ2jCS frame ¼ ðQ=2Þf1;− cosφCS sin θCS;− sinφCS sin θCS;− cos θCSg: ð2Þ

On the other hand, the angular variable ϕ�
η is defined in a different frame (“η frame”), in which the leptons escape θ�η and

π − θ�η with respect to the incident beams direction. The η frame is related to the lab frame by a boost β ¼ tanhððη1 þ η2Þ=2Þ
along the incident beam direction, where η1 and η2 are the pseudorapidities of e− and eþ in the lab frame. The frame
coincides with the CS frame when QT ¼ 0. Knowing the polar angle θ�η in the η frame and the difference Δφ ¼ φ1 − φ2 of
the lepton’s azimuthal angles in the transverse plane to the beam direction, one defines

ϕ�
η ¼ tan ðϕacop=2Þ sin θ�η ð3Þ

in terms of the acoplanarity angle ϕacop ¼ π − Δφ. We write cos θ�η as a function of the lepton momenta in the lab frame as

cos θ�η ¼ tanh

�
η1 − η2

2

�
¼

ffiffiffiffiffiffiffiffiffi
lþ1 l

−
2

p
−

ffiffiffiffiffiffiffiffiffi
l−1 l

þ
2

pffiffiffiffiffiffiffiffiffi
lþ1 l

−
2

p þ ffiffiffiffiffiffiffiffiffi
l−1 l

þ
2

p ¼ fðcos θCSÞ − fð− cos θCSÞ
fðcos θCSÞ þ fð− cos θCSÞ

; ð4Þ

where l�1;2 ¼ ðl01;2 � lz1;2Þ=
ffiffiffi
2

p
,

fðcos θCSÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

T þ 2MTQ cos θCS þQ2cos2θCS −Q2
Tsin

2θCScos2φCS

q
; ð5Þ

and M2
T ¼ Q2 þQ2

T . We also write cosΔφ as

cosΔφ ¼ ðQ2
T −Q2sin2θCS −Q2

Tsin
2θCScos2φCSÞ½ðQ2sin2θCS þQ2

Tsin
2θCScos2φCS þQ2

TÞ2
− 4M2

TQ
2
Tsin

2θCScos2φCS�−1
2: ð6Þ

In the limit QT → 0, ϕ�
η simplifies to

ϕ�
η ≈ ðQT=QÞ sinφCS; ð7Þ

since tanðϕacop=2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ cosΔφÞ=ð1 − cosΔφÞp

, and

θ�η → θCS; cosΔφ → −1þ 2

�
QT

Q
sinφCS

sin θCS

�
2

: ð8Þ

Measurement of ϕ�
η thus directly probes QT=Q.2

Relations like these can analytically express the ϕ�
η

distribution in terms of the QT distribution, but in practice
it is easier to compute the ϕ�

η distribution by Monte Carlo
integration in RESBOS code. In this case, the interval of
small QT=Q maps onto the region of small ϕ�

η. For
example, in Z production at Q ≈MZ, the range 10−3 ≤
ϕ�
η ≤ 0.5 rad corresponds to 0.1≲QT ≲ 50 GeV.

B. General structure of the resummed cross section

The resummed cross sections that we present are based
on the calculation in [13,29–31] with added higher-order

radiative contributions (Secs. II C and II D) and a modified
nonperturbative model (Sec. II E). We write the fully
differential cross section for Z boson production and
decay as

dσðh1h2 → ðZ → ll̄ÞXÞ
dQ2dyZdQ2

Td cos θCSdφCS

¼
X4
α¼−1

FαðQ;QT; yÞAαðθCS;φCSÞ ð9Þ

in terms of the structure functions FαðQ;QT; yZÞ and
angular functions AαðθCS;φCSÞ. The variables Q, QT ,
and yZ correspond to the invariant mass, transverse
momentum, and rapidity of the boson in the lab frame;
θCS and φCS are the lepton decay angles in the CS frame.
Among the structure functions Fα, two (associated with the
angular functions A−1 ¼ 1þ cos2 θCS and A3 ¼ 2 cos θCS)
include resummation of soft and collinear logarithms in the
small-QT limit. For such functions, we write

FαðQ;QT; yZÞ ¼ WαðQ;QT; yZ;C1=b; C2Q;C3=bÞ
þ YαðQ;QT; yZ;C4QÞ; ð10Þ

where

2The asymptotic relation between ϕ�
η and QT=Q can alter-

natively be obtained by introducing the component aT of ~QT
along the thrust axis n̂ ¼ ð~l1;T − ~l2;TÞ=j~l1;T − ~l2;T j, where ~l1;T and
~l2;T are the transverse momenta of e− and eþ, and identifying
aT ¼ QT sinφCS at QT → 0 [21,22,24,57].
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WαðQ;QT; yZÞ ¼
Z

d2b
4π2

ei ~QT ·~b
X

j¼u;d;s;…

eWα;jðb;Q; yZÞ

ð11Þ
is introduced to resum small-QT logarithms to all orders in
αs. The W term depends on several auxiliary QCD scales
C1=b, C2Q, and C3=b with constant coefficients C1;2;3 ≈ 1
that emerge from the solution of differential equations
describing renormalization and gauge invariance of QT
distributions [8,12]. YαðQ;QT; yZ;C4QÞ is a part of the
nonsingular remainder, or “the Y term.” It depends on a
factorization and renormalization momentum scale C4Q.
The Fourier-Bessel integral over the transverse position

b in theW term in Eq. (11) acquires contributions from the
region of small transverse positions 0 ≤ b ≲ 1 GeV−1,
where the form factor can be approximated in perturbative
QCD, and the region b≳ 1 GeV−1, where the perturbative
expansion in the QCD coupling αsð1=bÞ breaks down,
and nonperturbative methods are necessitated. In Z boson
production, the small-b perturbative contribution domi-
nates the Fourier-Bessel integral for any QT value

[7,32,58]. At QT below 5 GeV, the production rate is also
mildly sensitive to the behavior in the b > 0.5 GeV−1

interval, where the full expression for eWα;jðb;QÞ is yet
unknown.
To determine the acceptable large-b forms of eWα;jðb;QÞ

by comparison to the latest Z boson data, we need to update
the leading-power contribution to eWα;jðb;Q; yZÞ comput-

able in perturbative QCD, denoted by eWpert
α;j ðb;Q; yZÞ, by

considering additional QCD and electromagnetic correc-
tions and dependence on QCD factorization scales. In
particular, scale dependence in the perturbative form factoreWpert may smear the sensitivity to the nonperturbative
factor [3,20,28,50]. We will review the perturbative
contributions in the next two subsections.

C. Perturbative coefficients for canonical scales

For a particular “canonical” combination of the
scale parameters, the perturbative contributions simplify;
the resummed form factor at b ≪ 1 GeV−1 takes the
form

eWpert
α;j ðb;Q; yZÞ ¼

X
j¼u;d;s;…

jHα;jðQ;ΩÞj2 exp ½−Sðb;QÞ�

×
X

a¼g;q;q̄

½Cja ⊗ fa=h1 �ðχ1; μFÞ
X

b¼g;q;q̄

½Cj̄b ⊗ fb=h2 �ðχ2; μFÞ ð12Þ

in terms of a 2 → 2 hard part jHα;jðQ;ΩÞj2, Sudakov
integral

Sðb;QÞ ¼
Z

Q2

b2
0
=b2

dμ̄2

μ̄2

�
Aðμ̄Þ ln

�
Q2

μ̄2

�
þ Bðμ̄Þ

�
; ð13Þ

and convolutions ½Cj=a ⊗ fa=h� of Wilson coefficient func-
tions Cj=a and PDFs fa=h for a parton a inside the initial-
state hadron h. The convolution integral is defined by

½Cja⊗fa=h�ðχ;μFÞ¼
Z

1

x

dξ
ξ
Cja

�
χ

ξ
;μF

�
fa=hðξ;μFÞ: ð14Þ

In Eq. (14) the convolution depends on the momentum
fractions χ1;2 that reduce to x

ð0Þ
1;2 ≡ ðQ=

ffiffiffi
s

p Þe�yZ in the limit
Q2

T=Q
2 → 0, as explained in Sec. II F, as well as on the

factorization scale μF ¼ b0=b. Some scales are propor-
tional to the constant b0 ¼ 2e−γE ¼ 1.123…, where γE ¼
0.577… is the Euler-Mascheroni constant.
The functions Hα;j, A, B, and C can be expanded as a

series in the QCD coupling strength,

Hα;jðQ;Ω; αsðμ̄ÞÞ ¼ 1þ
X∞
n¼1

�
αsðμ̄Þ
π

�
n
HðnÞ

α;jðQ;ΩÞ;

Aðαsðμ̄ÞÞ ¼
X∞
n¼1

�
αsðμ̄Þ
π

�
n
AðnÞ; etc: ð15Þ

Some perturbative contributions can be moved between the
hard function Hα;j and Sudakov exponential depending on
the resummation scheme [16]. In the CSS resummation
scheme, Hα;jðαsÞ ¼ 1 to all αs orders. In the Catani–De
Florian–Grazzini (CFG) resummation scheme, Hα;jðαsÞ
includes hard virtual contributions starting at OðαsÞ, while
the Sudakov exponential depends only on the type of the
initial-state particle (quark or gluon) that radiates soft
emissions. In Drell-Yan production, differences between
the CSS and CFG schemes are small, below 1% in the
kinematic region explored. We carry out the analysis in the
CSS scheme, but the nonperturbative function that we
obtain can be readily used with the CFG scheme.
The functions A and B for the canonical choice of scales

are evaluated up to Oðα3sÞ and Oðα2sÞ, respectively, using
their known perturbative coefficients [59–64]. The three-
loop coefficient Að3Þ is included, but has a weak effect on
the cross section (3% at QT ≈ 2 GeV). The coefficient Að3Þ
has been derived within the soft-collinear effective theory
[65] and found to contain a term arising from the “collinear
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anomaly,” besides theOðα3sÞ cusp contribution known from
[64]. The “collinear” anomaly contribution breaks the
symmetry of the SCET Lagrangian by regulators of loop
integrals [65–68]. The expansion of eWpert in the CSS
scheme is found to be in agreement with that derived in
SCETup to NLO.We checked that Að3Þ

SCET has inappreciable
influence on the conclusions.
The Wilson coefficient functions CðiÞ are computed

exactly up to OðαsÞ and approximately to Oðα2sÞ. Most
of our numerical results were obtained with the Oðα2sÞ
approximation for the Wilson coefficient before the exact

Oðα2sÞ results were published [3,4,28]. This expression is
constructed by using a numerical approximation for the
canonical part of the Wilson coefficient at Oðα2sÞ and exact
expression for its dependence on soft scales. Our a poste-
riori comparison shows the approximation to be close to
the exact expression; cf. the next subsection.
The Y contribution in Eq. (11) is defined as the differ-

ence between the fixed-order perturbative QT distribution
calculation and the asymptotic distribution obtained by
expanding the perturbative part eWpert up to the same order.
It is given by

YαðQT;Q; yZÞ ¼
Z

dξ1
ξ1

Z
dξ2
ξ2

X∞
n¼1

�
αsðC4QÞ

π

�
n
fa=h1ðξ1; C4QÞRðnÞ

α;abðQT;Q; yZ; ξ1; ξ2; C4QÞ fb=h2ðξ2; C4QÞ; ð16Þ

where the functions RðnÞ
α;ab are integrable when QT → 0, and their explicit expressions for all contributing α toOðαsÞ can be

found in [10,30]. TheOðα2sÞ contribution to the dominant structure function Y−1 is included using the calculation in [1,58].
Oðα2sÞ corrections to the other structure functions in the Y term are essentially negligible in the small-QT region of our fit.

D. Perturbative coefficients for arbitrary scales

The resummed form factor in Eq. (12) can be generalized to allow variations in the arbitrary factorization scales arising in
the solution of Collins-Soper differential equations. At small b, the scale-dependent expression takes the form

eWpert
α;j ¼

X
j¼u;d;s;…

jHα;jðQ;Ω; C2QÞj2 exp
�
−
Z

C2
2
Q2

C2
1
=b2

dμ̄2

μ̄2
Aðμ̄;C1Þ ln

�
C2
2Q

2

μ̄2

�
þ Bðμ̄;C1; C2Þ

�

×
X

a¼g;q;q̄

½Cja ⊗ fa=h1 �
�
χ1;

C1

C2

;
C3

b

� X
b¼g;q;q̄

½Cj̄b ⊗ fb=h2 �
�
χ2;

C1

C2

;
C3

b

�
; ð17Þ

where the coefficients C1 ¼ bμ̄ and C2 ¼ μ̄=Q are associated with the lower and upper integration limits in Eq. (17), while
μF ¼ C3=b is the factorization scale at which Wilson coefficient functions are evaluated. The canonical representation
adopted in Eq. (12) corresponds to C1 ¼ C3 ¼ b0 and C2 ¼ 1. For the rest of the discussion, we use the same scale C2Q to
compute the hard function Hα;j and the Y term, i.e. set C4 ¼ C2.
The perturbative coefficients AðnÞ, BðnÞ, and CðnÞ are generally dependent on the scale coefficients, but the full form factoreWpert is independent when expanded to a fixed order in αs. We can therefore reconstruct the perturbative coefficients order

by order for arbitrary C1, C2, C3 if we know the canonical values of the coefficients, indicated by the superscript “(c).”
By truncating the series at Oðα2sÞ, we must have

eWðb;Q;C1; C2; C3ÞjOðα2sÞ ¼ eWðb;Q;C1 ¼ C3 ¼ b0; C2 ¼ 1ÞjOðα2sÞ: ð18Þ

Making a series expansion on both sides of Eq. (18), we find the following relations by equating the coefficients in front of
each power of log ðb2Q2Þ:

Að1ÞðC1Þ ¼ Að1;cÞ; ð19Þ

Að2ÞðC1Þ ¼ Að2;cÞ − Að1;cÞβ0 ln
b0
C1

; ð20Þ

Að3ÞðC1Þ ¼ Að3;cÞ − 2Að2;cÞβ0 ln
b0
C1

−
Að1;cÞ

2
β1 ln

b0
C1

þ Að1;cÞβ20

�
ln

b0
C1

�
2

; ð21Þ

Bð1ÞðC1; C2Þ ¼ Bð1;cÞ − Að1;cÞ ln
b20C

2
2

C2
1

; ð22Þ
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Bð2ÞðC1; C2Þ ¼ Bð2;cÞ − Að2;cÞ ln
b20C

2
2

C2
1

þ β0

�
Að1;cÞln2

b0
C1

þ Bð1;cÞ lnC2 − Að1;cÞln2C2

�
; ð23Þ

Cð1Þja

�
ξ;
C1

C2

; C3

�
¼ Cð1;cÞja ðξÞ þ δjaδð1 − ξÞ

�
Bð1;cÞ

2
ln
b20C

2
2

C2
1

−
Að1;cÞ

4

�
ln
b20C

2
2

C2
1

�
2
�
− Pð1Þ

ja ðxÞ ln
μFb
b0

; ð24Þ

Cð2Þja

�
ξ;
C1

C2

; C3

�
¼ Cð2;cÞja ðξÞ þ δjaδð1 − ξÞLð2ÞðC1; C2Þ þ

�
β0
2
Cð1;cÞjb ðξÞ − ½Cð1;cÞjb ⊗ Pð1Þ

ba �ðξÞ − Pð2Þ
ja ðξÞ

�
ln
μFb
b0

þ 1

2
½Pð1Þ

jb ⊗ Pð1Þ
ba �ðξÞln2

μFb
b0

: ð25Þ

Here the beta-function coefficients for Nc colors and Nf flavors are β0 ¼ ð11Nc − 2NfÞ=6,
β1 ¼ ð17N2

c − 5NcNf − 3CFNfÞ=6, CF ¼ ðN2
c − 1Þ=ð2NcÞ. PðnÞ

ja ðξÞ is a splitting function of order n. The term

Lð2ÞðC1; C2Þ in Cð2Þja realizes the exact dependence on the soft scale constants C1 and C2,

Lð2ÞðC1; C2Þ≡ 1

32
ðAð1;cÞÞ2log4

�
b20C

2
2

C2
1

�
−
1

8
Að1;cÞβ0 log

�
b2μ2F
b20

�
log2

�
b20C

2
2

C2
1

�
−
1

8
Að1;cÞBð1;cÞlog3

�
b20C

2
2

C2
1

�

−
1

24
Að1;cÞβ0log3

�
b20C

2
2

C2
1

�
−
1

4
Að1;cÞδC1clog2

�
b20C

2
2

C2
1

�

−
1

4
Að2;cÞlog2

�
b20C

2
2

C2
1

�
þ 1

4
β0Bð1;cÞ log

�
b2μ2F
b20

�
log

�
b20C

2
2

C2
1

�

þ 1

8
ðBð1;cÞÞ2log2

�
b20C

2
2

C2
1

�
þ 1

8
β0Bð1;cÞlog2

�
b20C

2
2

C2
1

�

þ 1

2
Bð1;cÞδC1c log

�
b20C

2
2

C2
1

�
þ 1

2
Bð2;cÞ log

�
b20C

2
2

C2
1

�
: ð26Þ

The dependence on C3 is small already at OðαsÞ. The canonical coefficients in the CSS scheme are [30]

Að1;cÞ ¼ CF; Bð1;cÞ ¼ −
3

2
CF; Að2;cÞ ¼ CF

��
67

36
−
π2

12

�
CA −

5

18
Nf

�
;

Bð2;cÞ ¼ C2
F

�
π2

4
−

3

16
− 3ζ3

�
þ CACF

�
11

36
π2 −

193

48
þ 3

2
ζ3

�
þ 1

2
CFNf

�
−
π2

9
þ 17

12

�
; ð27Þ

and δCð1;cÞ ¼ − ln2ðC1=ðb0C2Þe−3=4Þ þ π2=4 − 23=16.

The expression for Cð2Þja ðξ; C1=C2; C3Þ in Eq. (25) is more
complex than the one for the other coefficients. From
the fixed-order NNLO calculation [69] we know that the

contribution Cð2Þja is small in magnitude (2%–3% of the
cross section) in Z production and does not vary strongly
with yZ [2]; hence it has weak dependence on ξ. Its
importance is further reduced in the computation of the
normalized ϕ�

η distributions that we will work with.

Knowing this, we approximate Cð2Þja ðξ; C1=C2; C3Þ as

Cð2Þja ðξ; C1=C2; C3Þ ≈ fhδCð2;cÞi þ Lð2ÞðC1; C2Þgδð1 − ξÞδja;
ð28Þ

where hδCð2;cÞi denotes the average value of the Wilson
coefficient in Z production for the canonical scale combi-
nation and Lð2ÞðC1; C2Þ is the same as in Eq. (26). It is
estimated from the requirement that the resummed cross
section reproduces the fixed-order prediction for the
computation of the invariant mass distribution, which
has been known for a long time [70] and was evaluated
in our analysis by the computer code CANDIA [71,72].3 The
second term in Eq. (28) realizes the exact dependence on
soft scale constants C1 and C2. The ξ dependence of

Cð2Þja ðξ; C1=C2; C3Þ is neglected in this approximation. The
C3 dependence is included for OðαsÞ and is of the same
order as the Oðα2sÞ dependence on C1 and C2.

3Other computer codes are also publicly available for this
purpose: DYNNLO [3,18] and VRAP [2].
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The part δCð2;cÞja of Cð2;cÞja proportional to δjaδð1 − ξÞ can be determined from the calculation in [28] as

δCð2Þqq;c ¼ CACF

�
59

18
ζ3 −

1535

192
þ 215

216
π2 −

π4

240

�
þ 1

4
C2
F

�
−15ζ3 þ

511

16
−
67π2

12
þ 17

45
π4
�

−
1

16
ðπ2 − 8Þ2C2

F þ 1

864
CFNfð192ζ3 þ 1143 − 152π2Þ; ð29Þ

where ζ3 ¼ 1.20206…, CF ¼ ðN2
C − 1Þ=ð2NCÞ, CA ¼ NC.

Using the following relation in the CFG scheme:

HDY
α;j ¼ 1þ αsðQÞ

π
HDYð1Þ þ α2sðQÞ

π2
HDYð2Þ þ � � � ; ð30Þ

one can estimate that the impact onHDY
q due to the inclusion

of the Oðα2sÞ virtual corrections HDYð2Þ
q at Q ≈MZ is about

2%. This correction is of the same order as the magnitude of
the effect of about 1% from the averaged coefficient hδCð2;cÞi
in our calculation. This approximation is valid in the
kinematic region of W=Z production. The full expression

for Cð2;cÞja ðξÞ can be implemented in the future numerical
work when the experimental errors further decrease.
The effect of the inclusion of scale-dependent terms at

Oðα2sÞ is illustrated in Fig. 1 for the QT differential cross
section forTevatronZ production at the central rapidityyZ ¼ 0
andQ ¼ MZ. The orange solid band is theOðαsÞ uncertainty
obtained by variations ofC2 in the range 0.5–2, while the blue
dot-dashed band is the same uncertainty evaluated at Oðα2sÞ.
The sensitivity of the cross section to C2 is clearly reduced
upon the inclusion of the Oðα2sÞ contribution.

E. Nonperturbative resummed contributions

Our fit to the ϕ�
η will adopt a simple flexible convention

[32] for eWαðb;QÞ at b≳ 1 GeV−1 that can emulate a
variety of functional forms arising in detailed nonpertur-
bative models [14,43,44,46,73–77].
The convention is motivated by the observation that,

given the strong suppression of the deeply nonperturbative
large-b region in Z boson production, only contributions
from the transition region of b of about 1 GeV−1 are

non-negligible compared to the perturbative contribution
from b < 1 GeV−1. In the transition region, eWðb;QÞ can
be reasonably approximated by the extrapolated leading-
power, or perturbative, part eWpertðb;QÞ, and the non-
perturbative smearing factor eWNPðb;QÞ,

eWα;jðb;Q; yZÞ ¼ eWpert
α;j ðb�; Q; yZÞ eWNPðb;Q; yZÞ: ð31Þ

When b is large, the slow b dependence in eWpert
α;j ðb�; QÞ can

be neglected, compared to the rapidly changing eWNPðb;QÞ.
The latter contribution captures the effect of the powerlike
contributions proportional to bp with p > 0 that alter the
large-b tail of eWðb;QÞ in a different way compared toeWpertðb;QÞ. The powerlike contributions suppress the rate
only at QT below 2–3 GeV, while the leading-power term
and its scale dependence affect a broader interval of QT
values (see representative figures in Ref. [50]). The non-
perturbative suppression results in a characteristic shift of
the peak in the dσ=dQT distribution, which is distinct from
the scale dependence.
To avoid divergence due to the Landau pole in αsðμ̄Þ at

μ̄ → 0, we redefine the scales of order 1=b in eWpertðb;QÞ
according to the b� prescription [9,10] dependent on two
parameters [32]. In the Sudakov exponential, the lower
limit ðC1=bÞ2 is replaced by ðC1=b�ðb; bmaxÞÞ2, with

b�ðb; bmaxÞ≡ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðb=bmaxÞ2

p ; ð32Þ

where bmax is set to 1.5 GeV−1 in [32]. To avoid evaluating
the PDFs fa=hðξ; μFÞ at a factorization scale μF below
the initial PDF scale μini ≈ 1 GeV, we choose μF ¼
C3=b�ðb; C3=μiniÞ; it is larger than μini for any b. This
prescription is preferred by the global fit to Drell-Yan QT
data, where it both preserves the exact perturbative expan-
sion for ~Wpert at b < 1 GeV−1 and improves the agreement
with the data.
In a broad range ofQ values in the Drell-Yan process, the

behavior of experimentally observed QT distributions is
described by [31,32]

eWNPðb;QÞ ¼ exp

�
−b2

�
a1 þ a2 ln

�
Q
2Q0

�

þ a3 ln

�
xð0Þ1 xð0Þ2

0.01

���
; ð33Þ
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FIG. 1 (color online). Dependence of Z boson QT distribution
on the scale parameter C2 at Oðα2sÞ and OðαsÞ.
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with xð0Þ1;2 ¼ Qffiffi
s

p e�y, free parameters a1; a2; a3, and a fixed

dimensional parameter Q0 ¼ 1.6 GeV. The b2 dependence
characterizes the leading power-suppressed contribution
[73] that can be resolved with the available data. The lnðQÞ
dependence is predicted by the Collins-Soper evolution
equation [8]. The higher-order power-suppressed contri-
butions proportional to b4, etc., cannot be reliably distin-
guished in the fit from the b2 term. Although linear
contributions proportional to b may also arise from
long-distance dynamics [52], they have been empirically
disfavored in a global QT fit [31].
In the vicinity of Q around MZ, Eq. (33) reduces to

eWNPðb;Q ≈MZÞ ¼ exp ½−b2aZ� ð34Þ
with

aZ ¼ a1 þ a2 ln

�
MZ

2Q0

�
þ a3 ln

�
M2

Z

0.01s

�
: ð35Þ

One of the essential applications of CSS resummation
formalism concerns the measurement of W boson mass in
hadron-hadron collisions. The current most preciseW mass
measurements obtained by the D0 and CDF collaborations
at the Tevatron [78,79] quote a total error of about 20 MeV,
with the bulk of it (approximately 90%) associated with
three theoretical sources: PDF uncertainty (of order
10 MeVaccording to [80]), EW corrections, and the model
of eWNPðb;QÞ in the production of W bosons. The last
source of uncertainty appears because the W mass mea-
surements are sensitive to the shape of the cross section in
the low-QT region.
Once aZ is determined from Z=γ� boson production, it is

easy to predict eWNP inW boson production at the same
ffiffiffi
s

p
,

eWNPðb;Q ≈MWÞ ¼ exp ½−b2aW �; ð36Þ
where

aW ¼ aZ þ a2 ln

�
MW

MZ

�
þ a3 ln

�
M2

W

M2
Z

�
: ð37Þ

For bmax ¼ 1.5 GeV−1, one finds a2 ¼ 0.17� 0.03 GeV2

and a3¼−0.03�0.02GeV2 [32], where the error estimate

includes the scale dependence. The log terms proportional
to a2 and a3 are small in Eq. (37), so that it is safe to assume
aW ≈ aZ in central-rapidity measurements at the same

ffiffiffi
s

p
.

If Q is substantially different from MZ, or if predictions
for the LHC are made, the a2 and a3 contributions cannot
be neglected. The nonperturbative coefficient becomes

aðQ;
ffiffiffi
s

p Þ ¼ aZð1.96 TeVÞ þ a2 ln

�
Q
MZ

�

þ a3 ln

�
Q2

M2
Z

s
ð1.96 TeVÞ2

�
: ð38Þ

F. Matching the W and Y terms

By examining the mapping of QT distributions on ϕ�
η

distributions discussed in Sec. II A, we can identify three
regionswith distinct QCDdynamics: the resummation region
ϕ�
η ≲ 0.1 rad, where theW term dominates; the intermediate

(matching) region 0.1≲ ϕ�
η ≲ 0.5 rad; and the perturbative

region ϕ�
η ≳ 0.5 rad, where the W þ Y term approaches the

fixed-order (FO) contribution. As ϕ�
η increases in the inter-

mediate region, theW þ Y term eventually becomes smaller
than the FO term at ϕ�

η ≡ ϕswitchðQ; yZÞ. The final cross
section is taken to be equal to theW þ Y term at ϕ�

η < ϕswitch

and FO term at ϕ�
η ≥ ϕswitch [30].

The position of the switching point is subject to some
variations dependent on the shapes of the W term and its
asymptotic expansion at not too small ϕ�

η ∝ QT=Q, i.e.
away from the Q2

T=Q
2 → 0 limit where the W term is

uniquely defined. These variations have almost no effect on
the fit of the nonperturbative function in the resummation
region ϕ�

η. They originate from the possibility of including
additional terms of order Q2

T=Q
2 in the longitudinal

momentum fractions χ1;2 in the W term and its asymptotic
expansion. These terms vanish atQ2

T=Q
2 → 0, but they can

be numerically important or even desirable in the inter-
mediate region, where they may improve agreement
between the W þ Y and FO terms.
At intermediate QT=Q, radiation of a Z boson and

semihard jets requires sufficient center-of-mass energy of
incident partons, or large enough partonic momentum
fractions ξ1 and ξ2. For example, the FO hadronic cross
section is written as

dσ
dQ2dyZdQ2

T
¼

X
a;b

Z
1

0

dξ1

Z
1

0

dξ2
dσ̂

dQ2dyZdQ2
T
fa=Aðξ1Þfb=Bðξ2Þ

≡
Z

1

ξ̄1

dξ1

Z
1

ξ̄2

dξ2hðξ1; ξ2Þδ
��

ξ1
x1

− 1

��
ξ2
x2

− 1

�
−
Q2

T

M2
T

�
; ð39Þ

where hðξ1; ξ2Þ contains the hard-scattering matrix element and PDFs, andMT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þQ2

T

p
. The energy constraint from

the δ function imposes the following boundaries on the partonic momentum fractions: ξ1 ¼ x1 þ ðQ2
T=sÞ=ðξ2 − x2Þ;

ξ̄1 ¼ ½x1 þ ðQ2
T=sÞ=ð1 − x2Þ� ≤ ξ1 ≤ 1; ξ̄2 ≡ ½x2 þ ðQ2

T=sÞ=ð1 − x1Þ� ≤ ξ2 ≤ 1, with x1;2 ¼ MTffiffi
s

p e�y.
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These boundaries are absent in theW and asymptotic contributions, which depend on convolutions of Wilson coefficient
functions and PDFs,

½Cj;a ⊗ fa=hi �ðχi; μFÞ ¼
Z

1

χi

dξi
ξi

Cj;a

�
χi
ξi
; μFb; C1; C2; C3

�
fa=hiðξi; μFÞ ð40Þ

for i ¼ 1 or 2. The variables χi satisfy χ1;2 → xð0Þ1;2 ≡
ðQ=

ffiffiffi
s

p Þe�y and cannot exceed ξ̄1;2. Thus, for non-
negligible Q2

T=Q
2, theW and asymptotic term may include

contributions from the unphysical momentum fractions
ξi ≤ ξ̄i, and ideally one should include kinematically
important Q2

T=Q
2 contributions into χ1;2 to bring them

as close to ξ̄1;2 as possible.
As the procedure for including the Q2

T=Q
2 corrections in

the W term is not unique, we explored several of them. We

find that either χ1;2 ¼ xð0Þ1;2 ¼ ðQ=
ffiffiffi
s

p Þe�y or χ1;2 ¼ x1;2 ¼
ðMT=

ffiffiffi
s

p Þe�y results in the comparable agreement with the
ϕ�
η data from D0 and ATLAS 7 TeV. These prescriptions are

designated as the “kinematical corrections of type 0” and
“type 1,” or kc0 and kc1, in our numerical outputs.
In contrast, some alternative choices produce worse

agreement with the examined data, such as χ1;2 ¼ ξ̄1;2 ¼
ððMT þQTÞ=

ffiffiffi
s

p Þe�y designated as kc2. Furthermore, the
kc1 prescription improves matching compared to kc0 atffiffiffi
s

p ¼ 14 TeV, corresponding to scattering at smaller x. We
use the kc1 matching as the default prescription in the
subsequent comparisons.
Dependence on the matching prescription at intermediate

QT (intermediate ϕ�
η) reflects residual sensitivity to higher-

order contributions and is reduced [30] once large-QT
contributions of Oðα2sÞ are included, compared to OðαsÞ.
The RESBOS implementation follows a general argument
for matching of the resummed contribution onto the fixed-
order result that applies in other areas, such as the treatment
of PDFs for heavy quarks in deep inelastic scattering in a
general-mass variable number scheme [81,82]. Matching is
stabilized by constructing resummed coefficient functions
that comply with the energy-momentum conservation in the
exact fixed-order contribution.

G. Photon radiative contributions

Our resummed calculations include both Z-mediated and
photon-mediated contributions to production of Drell-Yan
pairs, as well as their interference. Electroweak radiative
contributions have been extensively studied in Z boson
[83–86] and W boson production [87–92]. The dominant
NLO electroweak contribution is associated with final-state
radiation of photons. To compare the D0 data to the
RESBOS prediction without the NLO electroweak correc-
tion, we correct the fitted data to the Born level for final-
state leptons by subtracting the NLO electromagnetic
correction obtained bin by bin by the PHOTOS code [93].
This correction is essential for the agreement of RESBOS

theory and data. However, since the photon-mediated and
final-state photon radiation contributions are relatively
small, in the first approximation we can treat them as a
linear perturbation and evaluate for a fixed combination of
the nonperturbative and scale parameters taken from either
the Brock-Landry-Nadolsky-Yuan (BLNY) or our best-fit
parametrizations.

H. Numerical accuracy

Given the complexity of the resummation calculation, we
expect several sources of random numerical errors that may
compete with the accuracy of the most precise ϕ�

η data
points, which are of order 0.5% of the respective central
cross sections. The numerical errors may arise from the
parametrizations of PDFs, integration, and interpolation at
various stages of the analysis. They can be treated as
independent and uncorrelated and primarily result in
higher-than-normal values of the figure-of-merit function
χ2 when not explicitly included in the estimates. In com-
parison, the variations due to aZ or C1;2;3 parameters are of
order a few percent and correlated across the ϕ�

η spectrum.

I. A comparison with an alternative formalism

In the last part of this section, it is instructive to
summarize the distinctions between the NNLL/NNLO
resummed QT distributions obtained in the CSS formalism
and the alternative approach of Refs. [19,28,54]. Both
methods predict QT distributions in a wide range of
processes, including production of lepton pairs and
Higgs boson. While sharing the same physics principles,
they organize the small-QT form factor W in distinct ways
and differ in the form of their higher-order corrections and
quantitative dependence on QCD scales.
We will outline the key differences by referring to the

work by Bozzi, Catani, de Florian, and Grazzini (BCFG) in
Ref. [54]. There, the BCFG representation was derived
step-by-step and compared to the CSS method in the kin
process of gg → Higgs production. The general observa-
tions of that paper also apply to the Drell-Yan process.
In both formalisms, the resummed QT distribution for

h1h2 → VX, where V ¼ γ�; Z, and upon integration over
the decay angles of the lepton pair, is constructed from the
small-QT resummed, large-QT fixed-order, and asymptotic
(overlap) contributions, denoted as W, FO, and ðWÞFO,

dσðh1h2 → VXÞ
dQ2dyZdQ2

T
¼ W þ FO − ðWÞFO ¼ W þ Y: ð41Þ
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In accord with the preceding discussion, the W term of the CSS formalism takes the form, in a simplified notation, of

WðQ;QT; yZÞ ¼
Z

bdb
4π

J0ðQTbÞ eWCSSðb;Q; yZÞ: ð42Þ

The integrand consists of the zeroth order Bessel function, J0ðQTbÞ, and the form factor ~WCSS that is derived in the context
of TMD factorization. At b ≪ 1 GeV−1, the form factor is expressed as

eWCSSðb;Q; yZÞ ¼
X
j;a;b

Z
1

0

dξ1

Z
1

0

dξ2fa=h1ðξ1; μFÞfb=h2ðξ2; μFÞ

× jHjðQ; μQ=Q; αSðμQÞÞj2 exp
�
−
Z

μQ

μb

dμ2

μ2
AðαSðμÞ; μbbÞ ln

�
μ2Q
μ2

�
þ BðαSðμÞ; μbb; μQ=QÞ

�

× Cja

�
χ1
ξ1

;
μQ
μb

; μFb

�
Cj̄b

�
χ2
ξ2

;
μQ
μb

; μFb

�
: ð43Þ

eWCSS depends on three QCD scales: μb ¼ C1=b, μQ ¼ C2Q, μF ¼ C3=b, where the arbitrary scale constantsC1,C2, andC3

are of order unity. Their exact values are chosen so as to optimize the convergence of the perturbative series. The
combination C1 ¼ C3 ¼ b0, C2 ¼ 1 is the natural choice.
In Refs. [19,54], the resummed form factor eWBCFG in the second approach is written at b ≪ 1 GeV−1 as

eWBCFGðb;Q; yZÞ ¼
X
j;a;b

Z
1

0

dξ1

Z
1

0

dξ2fa=h1ðξ1; μ̄FÞfb=h2ξ2; μ̄FÞWj;abðb;Q; ξ1ξ2s; ᾱs; μ̄R; μ̄FÞ: ð44Þ

Wj;ab is reconstructed from its Nth Mellin moments Wab;N that are expanded in powers of αsðμ̄RÞ≡ ᾱs. Wab;N consists of
the function Hj;ab;N that depends only on scales of order Q, and the exponent eGN that depends on eL≡ lnðQ2b2=b20 þ 1Þ
and ratios of various scales,

Wab;Nðb;Q; ᾱs; μ̄R; μ̄FÞ ¼ Hj;ab;NðQ; ᾱs; Q=μ̄R;Q=μ̄F;Q=μ̄QÞ · exp fGNðᾱs; eL;Q=μ̄R;Q=μ̄QÞg: ð45Þ

On the right-hand side, the representation includes three
auxiliary QCD scales, each taken to be of order of the
boson’s virtuality Q: the resummation scale μ̄Q, the
renormalization scale μ̄R, and the PDF factorization scale
μ̄F. The dependence on b enters only through the loga-
rithmic term eL inside eGN .
The representation eWBCFGðb;Q; yZÞ in Eqs. (44) and

(45) can be obtained from eWCSSðb;Q; yZÞ in Eq. (43) by a
series of steps that are documented in [54].
First, the QCD scales are selected differently in the two

approaches. In eWCSSðb;Q; yZÞ several terms depend on the
variable scales μb ¼ C1=b and μF ¼ C3=b. The QCD scale
C2Q plays the role that is similar to the resummation scale
μ̄Q. Inside the Sudakov integral, the scale μ in αsðμÞ is
integrated over.
In eWBCFGðb;Q; yZÞ, the scales μ̄b and μ̄F are fixed at

b0=b. The QCD coupling strength αsðμÞ is converted into
the series of ᾱs (at the scale μ̄R ∼Q) using the renormal-
ization group equations. The collinear PDFs fa=hðξ; μÞ
in Eqs. (43) and (44) are evaluated at μF ∼ 1=b ineWCSSðb;Q; yZÞ, and μ̄F ∼Q in eWBCFGðb;Q; yZÞ. To pre-
serve the factorization scale invariance, the Mellin moment

Wab;N of the BCFG form factor explicitly includes an
operator matrix UNðb0=b; μ̄FÞ for DGLAP evolution of
fa=hðξ; μÞ between the scales μ̄F and b0=b, while the CSS
form factor does not.4

After the conversion αsðμÞ → ᾱs in Wab;N , the contribu-
tions at scales of order Q are included into Hj;ab;N as in
Eq. (45). The Sudakov integral Sðb;Q;C1; C2Þ ¼ SðμQ=μbÞ
and the anomalous dimensions of various components are
assimilated into GN . Within GN , all evolution operators are
expanded as a series in ᾱs and L ¼ lnðQ2b2=b20Þ,

GN ¼ Lgð1ÞðᾱsLÞ þ gð2Þ
�
ᾱsL;

Q
μ̄R

;
Q
μ̄Q

�

þ ᾱs
π
gð3Þ

�
ᾱsL;

Q
μ̄R

;
Q
μ̄Q

�
þ � � � : ð46Þ

Finally, a prescription for matching of the W þ Y and
FO terms at large QT is introduced in eWBCFG by replacing

4More specifically, Wab;N in Appendix A of [54] includes the
evolution operator that is factorized as UNðb0=b; μ̄FÞ ¼
UNðb0=b; μ̄QÞUNðμ̄Q; μ̄FÞ. UNðb0=b; μ̄QÞ is exponentiated inside
GN . UNðμ̄Q; μ̄FÞ is retained in Hj;ab;N .
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all generic logarithms L ¼ lnðQ2b2=b20Þ in eGN byeL ¼ lnðQ2b2=b20 þ 1Þ. The replacement forces the expo-
nential to satisfy eGN → 1 when b20=b

2 ≪ Q2, i.e., in the
region of the small transverse positions b that dominate the
Fourier-Bessel integral when QT is large. The resulting
outcome is that the W and asymptotic terms cancel well at
large QT , and that, upon the integration over QT, the
inclusive W þ Y cross section turns out to be exactly equal
to the fixed-order cross section. In the BCFG cross section,
matching therefore arises as a result of a mathematical
replacement L → eL in the resummed exponential, and not
because of the physical constraint due to energy-momen-
tum conservation imposed in our approach. The L → eL
matching works by suppressing the GN exponent at b2 ≪
1=Q2 via a deft, even though not unique, redefinition of L
(see also Ref. [94]).
In the CSS approach adopted in RESBOS, the scale

constants C1 and C3 need not be equal to b0 exactly. The
Sudakov integral SðμQ=μbÞ is evaluated numerically and
not as a logarithmic expansion in powers of L as it is done
in eWBCFGðb;Q; yZÞ. The RESBOS code does not operate
with the independent QCD scales μ̄R ∼Q and μ̄F ∼Q of
the BCFG formalism.
RESBOS finds αsðμÞ by numerically solving the renorm-

alization group equation and always evolves the PDFs
fa=hðξ; μFÞ forward from the initial scale Q0 ≈ 1 GeV of
the input PDF ensemble to a higher scale μF ≥ Q0. This is
to be contrasted with eWBCFGðb;Q; yZÞ, which implements
the logarithmic expansion for αsðμÞ and the DGLAP matrix
operator UNðb0=b; μ̄QÞ that evolves the PDFs fa=hðξ; μ̄FÞ
backward from μ̄Q ≈Q down to a lower scale b0=b in the
most relevant b region. The backward evolution of this
kind has a tendency to be unstable and cause the PDFs to
deviate at low momentum scales. Hence the numerical
evolution of αsðμÞ and forward DGLAP evolution adopted
in eWCSSðb;Q; yZÞ is more trustworthy in precision studies.
The nonperturbative contribution arises in eWCSSðb;Q; yZÞ

as a natural feature of QCD factorization in terms of
TMD PDFs. Dependence on matching is present, implicitly
or explicitly, in either formalism. When looking for evidence
of nonperturbative effects in ϕ�

η distributions, it is desirable
to investigate several prescriptions for matching of low-QT
andhigh-QT terms.Wehavedone it byvarying the formof the
rescaling variables that control the cross sections in the
matching region in RESBOS.

III. NUMERICAL RESULTS

A. General features

In this section we determine aZ from the distribution
ð1=σÞdσ=dϕ�

η measured by D0 [25] that is normalized to
the total cross section σ in the measured Q and y range.
These data are given in three bins of Z boson rapidity yZ. In
the first two, jyZj ≤ 1 and 1 ≤ jyZj ≤ 2, the ð1=σÞdσ=dϕ�

η

distribution is measured separately for electrons and muons
at Npt ¼ 29 points of ϕ�

η. In the third bin, jyZj ≥ 2, only
electrons are measured at 25 points of ϕ�

η. The first two yZ
bins provide substantial new constraints. The third bin has
larger statistical errors and reduced discriminating power.
All predictions are obtained by using CT10 NNLO PDFs

[55]. Predictions based on MSTW’08 NNLO PDF sets [95]
were also computed and did not show significant difference
with CT10 NNLO predictions.
From the previous section, the resummed cross sections

depend on the perturbative scales, power-suppressed con-
tributions, and choice of subleading kinematic terms. It is
possible to identify an optimal combination of these factors
that results in a good description of the D0 data across
the full ϕ�

η range. In particular, the large-QT /large-ϕ�
η data

generally prefer the factorization scale of orderQ=2 or even
less in the fixed-order piece. At small-QT (small-ϕ�

η), the
scale parameter C3 in the range 1.5b0–2b0 is slightly more
preferable. To illustrate properties of the ϕ�

η distributions,
we compute the resummed cross sections using a combi-
nation C1 ¼ C3 ¼ 2b0, C2 ¼ Q=2, and aZ ¼ 1.1 GeV2

that is close to the best-fit solution. The difference between
the best-fit solution and the prediction based on these
round-off values will be discussed in Sec. III B.
A comparison of the prediction with these choices to

the D0 data for jyZj ≤ 1 and a few other predictions is
presented in Fig. 2. The new parametrization provides a
better description of the data at 0.1 ≤ ϕ�

η ≤ 1 than the
superimposed prediction utilizing the BLNY parametriza-
tion [31] of eWNP. Consequently, it results in a better χ2 than
the RESBOS prediction used in the D0 analysis [25], which
used the CTEQ6.6 NLO PDFs, BLNY ~WNP, and canonical
choice of C1;2;3.
We also compare predictions for three types (0, 1, 2) of

the kinematical (matching) correction discussed in Sec. II F.
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FIG. 2 (color online). The ratios to the central theoretical
prediction of the D0 electron data at jyZj ≤ 1 and alternative
theoretical predictions. The central prediction is computed
assuming C1 ¼ C3 ¼ 2b0, C2 ¼ 1=2, aZ ¼ 1.1 GeV2, and kin-
ematical correction 1. Theory predictions based on alternative
kinematical corrections (0 and 2) and BLNY nonperturbative
parametrization are also shown.
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For the selected combination of scale parameters, the type-
0 and type-1 kinematical corrections provide a nearly
identical prediction. The type-0 and type-1 corrections
can differ by 2%–3% for other scales. Type 2 is generally
disfavored, so that we assume the type-1 correction for the
rest of the analysis.
A prediction with the same theoretical parameters, as

well as for variations in QCD scales in the ranges 1=4 ≤
C2 ≤ 1 and b0 ≤ C1;3 ≤ 4b0, are compared to the data for
electron production in Fig. 3 and muon production in
Fig. 4. Here we show all rapidity bins for both electron and
muon samples. The ratios of the D0 data to RESBOS theory
with the optimal parameters are indicated by black circles.
Yellow solid, blue dashed, and magenta dot-dashed bands
represent variations in theory due to C2, C1, and C3,
respectively, all normalized to the best-fit prediction.
Again, the agreement with RESBOS observed in these
figures is better than in [25]. Figures 3 and 4 demonstrate

that the theoretical uncertainty at small ϕ�
η is dominated by

variations of C1 and C3. The bands of scale uncertainty are
reduced significantly for 0.04 ≤ ϕ�

η ≤ 0.1 upon the inclu-
sion of Oðα2sÞ scale dependence, as has been discussed in
Sec. II D.
The scale variations can be compared to the dependence

on aZ and kinematic correction in Fig. 5, which result
in distinctly different patterns of variation in dσ=dϕ�

η.
In particular, while the perturbative scale coefficients
C1; C2; C3 produce a slowly changing variation across
most of the measured ϕ�

η range, the increase in aZ produces
a distinct variation that suppresses the rate at ϕ�

η ≲ 0.02 and
increases it at 0.02≲ ϕ�

η ≲ 0.5, with the rate above 0.5
essentially unaffected. A similar behavior was observed in
Fig. 6 of [50] with a different NP function and a different
procedure that varied all QCD scales around the central
values of order of the dilepton’s mass.
It is therefore possible to separate the scale dependence

from the aZ dependence if we restrict the attention to ϕ�
η

below and around ϕ�
η ¼ 0.1. To this aim we consider only

the first 12 bins of ϕ�
η, starting from the smallest value, for

each value of rapidity. Extending the fitted range above
ϕ�
η ≥ 0.1 has a minimal effect on aZ.

B. Detailed analysis

We pursue two approaches for the examination of the
low-ϕ�

η region. In method I, we study the dependence on aZ
by assuming fixed resummation scales corresponding to
half-integer scale parameters, such as C1=b0 ¼ C3=b0 ¼
1; C2 ¼ 1=2 or C1=b0 ¼ C3=b0 ¼ 2; C2 ¼ 1=2. In this
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FIG. 3 (color online). Electrons: Scale variation due to C1;2;3 at
small ϕ�
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method, the goodness-of-fit function χ2 is minimized with
respect to aZ for select combinations of fixed scale
parameters. We find that a χ2 minimum with respect to
aZ exists in these cases, but, given the outstanding precision
of the ϕ�

η data, the best-fit χ2=Npt remains relatively high,
of order 2–3. This is partly due to the numerical noise
discussed in Sec. II H.
The χ2 function can be further reduced by allowing

arbitrary C1;2;3 parameters, in particular, by taking C2 to be
below 1=2. In this context, one has to decide on the
acceptable range of variations in C1;2;3, i.e. the resumma-
tion scales.
As computations for multiple combinations of aZ and

C1;2;3 parameters would be prohibitively CPU extensive, in
method II we first consider a fixed scale combination
indicated by fC̄1; C̄2; C̄3g and implement a linearized
model for small deviations of the scale parameters
from C̄1;2;3. The central combination C̄1;2;3, namely
C̄1 ¼ C̄3 ¼ 2b0, C̄2 ¼ 1=2, produces good agreement with
the data, although not as good as completely freeC1;2;3. The
linearized model is explained in Sec. III B 2. It provides a
fast estimate of small correlated changes in the ϕ�

η shape of
the kind shown in Figs. 3 and 4.
The χ2 function is sampled at discrete aZ values in the

interval aZ ¼ ½0.1∶3.5� GeV2 and reconstructed between

the sampling nodes by using polynomial interpolation.
When the scale variations are allowed, the dependence of
χ2 on aZ is asymmetric and very different from a quad-
ratic one.
To account for the asymmetry of the distributions, we

quote the central value āZ that minimizes χ2ðaZÞ and the
68% C.L. uncertainty. The probability density function
PðaZÞ for aZ in a sample with N points is taken to follow a
chi-squared distribution with N degrees of freedom,

PðaZÞ ¼ PχðN; χ2ðaZÞÞ ¼
ðχ2ÞN=2−1 exp ð−χ2=2Þ

ΓðN=2Þ2N=2 : ð47Þ

With this, we determine the 68% C.L. intervals
½aZ;min; aZ;max�, where aZ;min and aZ;max are defined implic-
itly by

0.16 ¼
R aZ;min
0 PðaZÞdaZRþ∞
0 PðaZÞdaZ

; 0.84 ¼
R aZ;max
0 PðaZÞdaZRþ∞
0 PðaZÞdaZ

:

ð48Þ

For an asymmetric distribution as in method II, the central
value āZ does not coincide with the middle of the 68% C.L.
interval or the mean aZ given by the first moment of the
PðaZÞ distribution.

1. Method I: Minimization with fixed scale parameters

In method I, aZ is determined from the D0 data by
minimization of a function

χ2ðaZÞ ¼
XNpt

i¼1

�
Di − T̄iðaZÞ

si

�
2

; ð49Þ

where Di are the data points; T̄iðaZÞ are the theoretical
predictions for fixed scale parameters fC̄1; C̄2; C̄3g; si are
the uncorrelated experimental uncertainties; and Npt is the
number of points.
The dependence of χ2 on aZ in three rapidity bins for two

combinations of C̄1;2;3 is illustrated in Fig. 6, and the
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corresponding best-fit parameters are listed in Table I.
Electrons and muons are combined in the first two bins of
rapidity, jyZj ≤ 1 and 1 ≤ jyZj ≤ 2. In both cases, the χ2

behavior is close to parabolic. The locations of the χ2

minima are consistent in all three bins. However, the quality
of the fit is unacceptable in the first two bins that have the
smallest experimental errors, with χ2=Npt ≈ 3. On the other
hand, the agreement is very good (χ2=Npt < 1) in the third
bin, which has larger errors.
The weighted averages over all three bins are āZ;all y ¼

0.79� 0.03 and 1.12� 0.07 GeV2 for the two scale
combinations. The location of the minimum is distinct
from zero in both cases, but its dependence on the scale
parameters warrants further investigation that we will now
perform.

2. Method II: Computation with scale-parameter shifts

To simplify the minimization when the scale parameters
are varied, we introduce a linearized approximation for
the covariance matrix of the type adopted for evaluating
correlated systematic effects in PDF fits [96,97]. For each
scale parameter Cα, α ¼ 1; 2; 3, we define a nuisance
parameter λα ≡ log2ðCα=C̄αÞ and compute the finite-
difference derivatives of theory cross sections

βiα ≡ TiðaZ; λα ¼ þ1Þ − TiðaZ; λα ¼ −1Þ
2

;

α ¼ 1; 2; 3; i ¼ 1;…; Npt ð50Þ

over the interval λα ¼ �1 corresponding to C̄α=2 ≤
Cα ≤ 2C̄α. Variations of λα introduce correlated shifts in
theory cross sections TiðaZ; C1;2;3Þ with respect to the
fixed-scale theory cross sections TiðaZ; C̄1;2;3Þ≡ T̄iðaZÞ.
We can reasonably assume that the probability distribution
over each λα is similar to a Gaussian one with a central
value of 0 and half-width σλ, taken to be the same for all λα.
The goodness-of-fit function is then defined as

χ2ðaZ; λ1;2;3Þ ¼
XNpt

i¼1

�
Di − T̄iðaZÞ −

P
3
α¼1 βαiλα

si

�
2

þ
X3
α¼1

λ2α
σ2λ

: ð51Þ

The minimum with respect to λα can be found algebrai-
cally for every aZ as [96]

min χ2 ¼ χ2ðaZ; λ̄αÞ

¼
XNpt

i;j

ðDi − T̄iðaZÞÞðcov−1ÞijðDj − T̄jðaZÞÞ;

ð52Þ

containing the inverse of the covariance matrix,

ðcov−1Þij ¼
�
δij
s2i

−
X3
α;β¼1

βi;α
s2i

A−1
αβ

βj;β
s2j

�
; ð53Þ

and a matrix A given by

Aαβ ¼ σ2λδαβ þ
XNpt

k¼1

βk;αβk;β
s2k

: ð54Þ

Equation (52) is essentially the standard χ2 function based
on the covariance matrix in the presence of the correlated
shifts. For every aZ, the nuisance parameters λ̄α that realize
the χ2 minimum are also known,

λ̄αðaZÞ ¼
XNpt

i¼1

Di − T̄iðaZÞ
si

X3
δ¼1

A−1
αδ

βi;δ
si

: ð55Þ

Based on this representation for χ2 (designated as “fitting
method II”), we explored the impact of the scale depend-
ence on the constraint on aZ. Even if the scales are varied,
data prefer a nonzero nonperturbative Gaussian smearing of
about the same magnitude as in method I.
In the simplest possible case, the C1;2;3 parameters are

independent of the rapidity or other kinematic parameters
and shared by all e and μ bins. In this case, variations of the
scale parameters reduce χ2=Npt to about 1.3; i.e. the fit is
better than for the fixed scale combinations discussed
above. We focus on the case when the central scale
parameters are C̄1 ¼ C̄3 ¼ 2b0; C2 ¼ 1=2, although the
conclusions remain the same for other choices.
The plots of χ2=Npt vs aZ and optimal C1=b0, C2, C3=b0

vs aZ, derived from the optimal λα parameters in Eq. (55),
are shown in Fig. 7. The χ2 dependence on aZ becomes
asymmetric when the scale shifts are allowed, with the
large-aZ branch being flattened out in contrast to the small-
aZ one that remains steeply growing. From the right inset,

TABLE I. The best-fit χ2=Npt, central value, and 68% C.L.
intervals for aZ with fixed C1;2;3 ¼ fb0; 1=2; b0g (upper lines)
and f2b0; 1=2; 2b0g (lower lines).

Fit results for ϕ�
η ≤ 0.1

Npt χ2min=Npt āZ � δaZðGeV2Þ
jyZj ≤ 1, eþ μ 24 3.24 0.79þ0.2

−0.03
2.83 1.14� 0.08

1 ≤ jyZj ≤ 2, eþ μ 24 1.87 0.79� 0.05
3.03 1.12þ0.14

−0.13
jyZj ≥ 2, e 12 0.74 0.8þ0.03

−0.05
0.58 1.04þ0.18

−0.16
All yZ bins, 60 2.19 0.79� 0.03
weighted average 2.46 1.12� 0.07
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we see that the optimal C1 and C3 are monotonously
increasing and decreasing as functions of aZ, respectively.
In the vicinity of the minimum, C1 and C3 are of about the
same magnitude at ð1.2 − 1.5Þb0. Very small or large aZ
can be obtained only by taking C1 and C3 to be uncom-
fortably far from unity. In contrast, the optimal C2

parameter is generally in the range 0.3–0.5 and has weaker
dependence on aZ.
The values of χ2=Npt, aZ, and C1;2;3 parameters at the

minimum are reported in the upper portion of Table II.
When the C1;2;3 parameters are shared by all bins, the fit is
relatively insensitive to the confidence level assigned to
the variations λα � 1, controlled by the parameter σλ in
Eq. (51). In Table I, the upper rows in each section
correspond to the fit without a constraint on the λ
parameters, i.e., for 1=σλ ¼ 0. The lower rows are for
assigning a 68% probability to the −1 ≤ λα ≤ 1 intervals,
corresponding to 1=σλ ¼ 1.

For the shared C1;2;3, the outcomes of the fits with
1=σλ ¼ 0 and 1 are very similar, apart from the uncertainty
on the aZ parameter, which is increased when the λα
variations are totally free. [The asymmetric 68% C.L.
uncertainties are computed according to Eq. (48).]
In contrast, when the scale parameters are taken to be

independent in each yZ bin (but still shared between the
electron and muon samples), only the case of σλ ¼ 1 results
in an acceptable fit in all three yZ bins. The best-fit
parameters for this case are listed in the lower part of
Table II. When the scale shifts were arbitrary (1=σλ ¼ 0,
upper lines), the fits were underconstrained and produced
inconsistent aZ values and large scale shifts in all three
bins, especially in the third bin that is not shown for this
reason. On the other hand, for σλ ¼ 1 (lower lines), the
three fits converged well and rendered compatible aZ
values. The χ2=Npt vs aZ dependence for this case is
illustrated in Fig. 8, where the minima are neatly aligned in
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FIG. 7 (color online). χ2=Npt and scale parameters as a function of aZ for C̄1 ¼ C̄3 ¼ 2b0; C̄2 ¼ 1=2. The scale parameters are shared
across three yZ bins.

TABLE II. The best-fit χ2=Npt, central value, and 68% C.L. intervals for aZ, and best-fit C1;2;3 for 1=σλ ¼ 0
(upper rows in each section) and 1 (lower rows).

Fit results for ϕ�
η ≤ 0.1

Npt χ2min=Npt āZ � δaZ ðGeV2Þ Best-fit C1;2;3

C1; C2, C3 are shared by all yZ bins
All yZ bins 60 1.29 0.82þ0.34

−0.12 1.4, 0.33, 1.23
1.31 0.82þ0.22

−0.11 1.42, 0.33, 1.23
C1; C2, C3 are independent in each yZ bin

jyZj ≤ 1, eþ μ 24 1.0 0.56þ0.95
−0.02 0.21, 0.18, 7.56

1.16 0.85þ0.3
−0.15 1.47, 0.3, 1.46

1 ≤ jyZj ≤ 2, eþ μ 24 1.48 1.22þ0.27
−0.36 18, 0.58,0.1

1.70 0.79þ0.2
−0.1 1.69, 0.37, 0.77

jyZj ≥ 2, e 12 � � � � � � � � �
0.59 0.99þ0.99

−0.31 1.74, 0.48, 2.12
Weighted average 60 0.97� 0.25
of all bins 0.82� 0.12
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the three bins. The fit to the second bin is generally worse
than for the other two, suggesting possible rapidity
dependence of aZ. The scale dependence in each bin is
qualitatively similar to that in the right inset of Fig. 7.
Even when C1;2;3 are independent in each yZ bin, by

averaging the aZ values over three bins, we obtain the āZ ¼
0.8–0.9 GeV2 in the last section of Table II that is
essentially the same as in the case when C1;2;3 are shared
by all bins. The findings in Tables I and II are recapitulated
in Fig. 9, showing the 68% C.L. intervals in the fits with
fixed C1;2;3 ¼ b0; 1=2; b0 and 2b0; 1=2; 2b0, as well as the
fit with varied C1;2;3 and σλ ¼ 1. All fits consistently yield
aZ values that are at least 5σ from zero.

IV. IMPLICATIONS FOR THE W MASS
MEASUREMENT AND LHC

The previous sections demonstrated that the ϕ�
η distri-

butions in Z=γ� production are sensitive to several QCD
effects. Depending on the ϕ�

η range, hard or soft QCD
emissions can be studied. The nonperturbative power
corrections in QCD can be determined at ϕ�

η ≤ 0.1,

provided that the dependence on resummation scales is
controlled.
To distinguish between various contributing effects, new

developments in the Collins-Soper-Sterman resummation
formalism were necessitated. The computer code RESBOS

includes all such effects relevant for computation of
resummed differential distributions of lepton pairs. New
components of the theoretical framework implemented
in RESBOS were reviewed in Sec. II. In the large-ϕ�

η

region dominated by hard emissions, the two-loop fixed-
order contributions implemented in RESBOS show good
agreement with the D0 data when the renormalization/
factorization scale C4Q for hard emissions is set to be close
to Q=2.5

In the resummed W piece dominating at small ϕ�
η, we

include two-loop perturbative coefficients in the resummed
W term by using the exact formulas for the A and B
coefficients and a numerical estimate for the small Oðα2sÞ
contribution δCð2Þ to the Wilson coefficient functions. We
also fully include, up to Oðα2sÞ, the dependence on
resummation scale parameters C1 and C2 (see Secs. II C
and II D). Matching corrections and final-state electroweak
contributions were implemented and investigated in order
to understand their non-negligible impact on the cross
sections. Finally, we implemented a form factor eWNPðb;QÞ
describing soft nonperturbative emissions at transverse
positions b≳ 1 GeV−1 in the context of a two-parameter
b� model [32]; cf. Sec. II E.
With this setup, we performed a study of the small-ϕ�

η

region at the D0 Run-2 with the goal to determine the range
of plausible nonperturbative contributions. We found that,
to describe Drell-Yan dilepton production with the invari-
ant mass 70 ≤ Q ≤ 110 GeV, it suffices to use a simplified
nonperturbative form factor that retains only a leading
power correction, ~WNPðb;Q ¼ MZÞ ¼ exp ð−b2aZÞ. The
power correction modifies the shape of dσ=dϕ�

η in a pattern
distinct from variations due to the dependence on the
resummation scales C1=b, C2Q, and C3=b in the leading-
power term eWpert; see Figs. 3, 4, and 5. For various fixed
combinations of scale parameters C1;2;3, or when the scale
parameters were varied, the fits require nonzero aZ values
that were summarized in Tables I and II. For example, when
the variations in the scales C1;2;3 were incorporated as
shared free parameters in all rapidity bins using a corre-
lation matrix, we obtained aZ ¼ 0.82þ0.22

−0.11 GeV2 at
68% C.L. (cf. Table II) consistently with the other tried
methods. The estimate of the 68% C.L. uncertainty
including the scale dependence indicates clear preference
for a nonzero aZ, without appreciable rapidity dependence.
The magnitude of aZ depends on the resummation

scales, but allowing the scales to vary increases the
probability for having larger, not smaller aZ. The best-fit
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1 yZ 2

yZ 2

Free Ci, shared
e and scales

0.5 1.0 1.5 2.0 2.5 3.0
0
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8

aZ GeV2

2
N

pt

FIG. 8 (color online). χ2=Npt as a function of aZ for
C̄1 ¼ C̄3 ¼ 2b0; C̄2 ¼ 1=2. The scale parameters are indepen-
dent in each yZ bin.
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FIG. 9 (color online). The 68% C.L. ranges for aZ in individual
yZ bins and in all bins.

5In this region, a three-loop correction must be computed in the
future to reach NNLO accuracy in αs.
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aZ is also correlated with bmax, which controls the upper
boundary of the b range where the exact perturbative
approximation for eWpertðb;Q; yZÞ is used. Using bmax ¼
1.5 GeV−1 in this study, we obtain aðb;QÞ ≈ 0.8GeV2 at
Q ¼ MZ, which is consistent with the value obtained with
the other eWNP forms maximally preserving the perturbative
contribution [32,75–77]. The dependence on bmax weakens
at bmax above 1 GeV−1, and even larger aZ values are
preferred for bmax below 1 GeV−1; cf. Fig. 2 in [32]. The
fitted data were corrected for the effects of final-state NLO
QED radiation. In the fitted region ϕ�

η < 0.1, the uncer-
tainty due to the matching of the resummed and finite-order
terms was shown to be negligible.
The nonperturbative form factor at other

ffiffiffi
s

p
and Q

values can be predicted using the relations in Sec. II E. This
is possible because the dominant part of ~WNP is associated
with the soft factor exp ð−Sðb;QÞÞ which does not depend
on

ffiffiffi
s

p
or the types of the incident hadrons. It is argued in

Sec. II E that the eWNP factors are identical within the
68% C.L. error in central-rapidity Z and W production at
the same

ffiffiffi
s

p
. The same aZ value that we determined can be

readily applied to predictW boson differential distributions
at the Tevatron Run-2, or, with appropriate modifications
proportional to lnðQÞ and lnðsÞ, in other kinematical
ranges; cf. Eq. (38).
The resummation calculation employed in this analysis

can be reproduced using the RESBOS-P code [98] and input
tables [99] available at the “QT resummation portal at
Michigan State University.” The central input tables are
provided for aZ ¼ 1.12� 0.07 GeV2, C1 ¼ C3 ¼ 2b0,
C2 ¼ 1=2, and central CT10 NNLO PDF. In addition,
the distribution includes RESBOS tables corresponding to

the best-fit resummed parameters and CT10 NNLO PDF
eigenvector sets. Finally, for a detailed exploration of the
low-ϕ�

η region, the distribution includes tables for aZ in the
interval 0.5–1.7 GeV2 with step 0.1 GeV2 using the central
PDF, and, to study scale dependence, 7 RESBOS grids for
the central aZ;central ¼ 1.12 GeV2, and the scale parameters
C1 ¼ b0; 4b0, C2 ¼ 1=4; 1, and C3 ¼ b0; 4b0.
As an example of a phenomenological application,

Fig. 10 compares the RESBOS predictions with the
ATLAS data [26,27] on Drell-Yan pair production near
the Z boson resonance peak at

ffiffiffi
s

p ¼ 7 TeV. The figure
shows ratios of data to theory cross sections. The left part
shows the QT distribution for 35–40 pb−1, compared to the
RESBOS prediction with aZ ¼ 1.1 GeV2, C1 ¼ C3 ¼ 2b0;
C2 ¼ 1=2. The yellow band indicates variations in the cross
section due to the scales in the range C1 ¼ b0; 4b0,
C2 ¼ 1=4; 1, and C3 ¼ b0; 4b0. In the case of QT distri-
bution, we obtain good agreement between theory and data,
and in the intermediate/small QT region the theoretical
uncertainty due to C1;2;3 scale parameters is reduced
compared to the study of Ref. [20].
The right part of Fig. 10 shows the ratio of the more

recent ϕ�
η distribution to the central theory prediction based

on our default parametrization at a much higher level of
accuracy. Here, a RESBOS prediction based on the BLNY
parametrization has shown better agreement with the data
than other available codes and was used for event simu-
lation during the ATLAS analysis. A comparable, although
somewhat worse agreement is realized by the Guzzi-
Nadolsky-Wang parametrization, which was not used at
any stage by ATLAS. The right part of Fig. 10 shows
several curves for the default C1;2;3 choice and aZ in the
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FIG. 10 (color online). Data vs theory ratios for the QT distribution by ATLAS 7 TeV, 35–40 pb−1 [26] and ϕ�
η distribution ATLAS

7 TeV, 4.6 fb−1 [27].
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range 0.5–1.7 GeV2. It is clear that the ATLAS ϕ�
η data are

sensitive to aZ as well as bmax and can possibly discriminate
subleading power contributions to the nonperturbative
form factor eWNPðb;QÞ proportional to b4 and beyond.
We provide sets of updated RESBOS grids for the LHC
kinematics that can be used for future improvements in the
nonperturbative model.

V. CONCLUSIONS

In our analysis we have shown that a significant non-
perturbative Gaussian smearing is necessary to describe
features of the low ϕ�

η spectrum. A nonzero NP function is
present even if all the perturbative scale parameters of the
CSS formalism are varied. Values of aZ smaller than
0.5 GeV2 are disfavored by the fit to the recent D0 data,
as demonstrated in Sec. III. The dependence of the dσ=dϕ�

η

on various factors was recently examined in [50], and it was
observed that the dependence on the nonperturbative
contributions could not be reliably separated from the
dependence on the perturbative QCD scales. To go beyond
the analysis of Ref. [50], we carried out a quantitative fit to
the ϕ�

η data of D0, in which we implemented the depend-
ence on the soft resummation scales to NNLO; cf. Sec. II D.
We found that the small-ϕ�

η spectrum cannot be fully
described by employing perturbative scale variations only.
From the characteristic suppression of the production rate

at very small ϕ�
η, or very small QT=Q, we established the

magnitude of the nonperturbative effects.
The resummed predictions based on the new nonpertur-

bative form are implemented in the RESBOS code. It will be
of particular interest to explore the constraining power of
the new forthcoming LHC data for Z andW production at a
variety of

ffiffiffi
s

p
, boson’s invariant masses, and rapidities.

Precise measurements of hadronic cross sections at small
QT will verify the TMD formalism for QCD factorization
and shed light on the nonperturbative QCD dynamics.
These developments will depend on consistent combination
of NNLOQCD and NLO electroweak effects and reduction
of perturbative scale dependence in QCD predictions for
QT distributions.
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