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We argue that deep inelastic scattering (DIS) at small values of Q2 is an essentially nonperturbative
process and can be described, partially at least, by the vector meson dominance (VMD) model. We show
this by the straightforward calculation that the VMDmodel alone can successfully explain data on structure
functions of DIS in a broad interval of xð5 × 10−2÷10−4Þ for the region Q2 ≤ 1 GeV2. For a description of
data at largerQ2 we use the two-component (VMDþ perturbativeQCD) approach. We show that these two
components can be separated if VMD is used in the aligned jet version. We take into account, in
calculations of the VMD component of structure functions, the excited states of the ρ-meson and
nondiagonal transitions between different members of the ρ-meson family. Amplitudes of these transitions
arre obtained using a formalism of the light-front Bethe-Salpeter equation and the method of diffraction-
scattering eigenstates. The perturbative QCD component is calculated using a framework of the color
dipole model with the dipole cross section having a Regge-type energy dependence. We present results of
the detailed comparison of our predictions with experimental data for structure functions of the nucleon.
We also obtain approximate predictions for the structure functions in the region of very small x, up to
10−8÷10−9, and show that the nonperturbative component at such values of x is still relatively large and
must be taken into account if Q2 is about a few GeV2 or less.
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I. INTRODUCTION

It was shown almost 50 years ago that the vector meson
dominance hypothesis [1] can be successfully used for a
description of photoproduction and low q2 electroproduc-
tion processes. In particular, the ρ, ω, φ-dominance model
applied to the forward Compton scattering amplitude
connects the total photoproduction cross section, σγp,
with the total vector meson proton cross section, σVp,
(V ¼ ρ, ω, φ), and with diffractive vector meson photo-
production cross section, dσ=dtðγp → VpÞ. This connec-
tion, formulated as the “photoproduction sum rule” [2], has
been checked by experiment, and the agreement with data
has proved to be good enough in the case of weakly virtual
photons. However, strong discrepancies with experiment
have been observed in the case of large spacelike q2, and
this has been interpreted as revealing the coupling of the
photon to higher mass states. Naturally, the heavy masses
become relatively important with an increase of q2, due to
propagator factors, 1=ðQ2 þM2Þ2, in VMD sums (for
spacelike photons Q2 ¼ −q2 > 0 in our metric). The first
heavy vector mesons were observed in eþe−-annihilation
experiments around 1972, and, at the same time, the
approach named the “generalized vector dominance”
(GVD) appeared [3,4]. To describe the structure functions

σT;L of the inelastic electron scattering, the GVD
models use spectral representations for imaginary parts
of transverse and longitudinal forward Compton ampli-
tudes, the corresponding spectral weight functions, ρT;L,
being related with the amplitudes for Vp → V 0p scattering:

σT;LðQ2; sÞ ¼
ZZ

dM2dM02 ρT;Lðs;M2;M02ÞM2M02

ðM2 þQ2ÞðM02 þQ2Þ : ð1Þ

This form implies that, in principle, in nature there can be
infinitely many mesons (like in Nc → ∞ limit of QCD [5]).
According to the VMD concept, these mesons are the same
as the mesons produced in the process eþe− → hadrons.
The hypothesis of the quark-hadron duality [6] suggests
that the observed scaling in eþe− → hadrons, i.e., the
behavior σðeþe− → hadronsÞ ∼ 1=s, is just a consequence
of the infinitely large number of vector mesons. Surely,
very heavy vector mesons have large hadronic widths and,
being produced in eþe−-annihilation, they merge in the
hadronic continuum. But in some cases one can consider
vector mesons as narrow or even zero-width resonances.
For example, in VDMmodels the sums over meson masses
converge rather well as we will see below and in this case
the zero-width approximation is justified.
VMD, combined with the quark-hadron duality, is used,

e.g., also for a description of two-point functions (vector
current-vector current correlators) and electromagnetic*bugaev@pcbai10.inr.ruhep.ru
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pion form factor (see, e.g., [7]). Matching of the VMD
predictions with the corresponding pQCD and OPE for-
mulas at largeQ2 leads, again, to a requirement of infinitely
many vector mesons. In all such calculations, beginning
from the pioneering work [4], the mass spectrum of vector
mesons is taken in a simple form:

M2
n ¼ M2

0ð1þ anÞ: ð2Þ

Such a form arises, e.g., in QCD string models, as a
result of semiclassical quantization of a straight string
system (see [8] and references therein). The same spectrum
(with a ¼ 2) was predicted by the Veneziano model [9] and
it is often referred to as a the “radial Regge mass spectrum.”
Just this form of the vector meson mass spectrum, as has
been shown in [4,6,10], is needed to reproduce rather well
the partonic logarithm of the two-point correlator.
The dominance of ρ, ω, φ-mesons in electromagnetic

interactions of hadrons at low energies has a very solid
theoretical explanation. Two main phenomena are in need
of such an explanation: (i) the direct γhh-coupling is absent
at lowest order in the hadron momentum, the entire photon
coupling being released through a virtual vector meson, and
(ii) the vector mesons are coupled to conserved hadronic
currents. It has been shown in many works of last century
that both these features are predicted by field theories
operating with effective chiral Lagrangian of pseudoscalars
and vector mesons (see, e.g., [11] for a review). In
particular, all predictions of VMD were reproduced in
the model [12], in which ρ-meson arises as the dynamical
gauge boson of a hidden local symmetry (HLS) in the
nonlinear chiral Lagrangian, and the mass of the ρ is
generated by spontaneous breaking of the chiral symmetry
through the Higgs mechanism. There are other field-theory
models of vector mesons which are motivated by the
VMD, e.g., the massive Yang-Mills models [13] and the
WCCWZ-approach [14] using the idea of nonlinear reali-
zation of chiral symmetry.
It is remarkable that in HLS model [12] ρ meson is a

gauge boson as in the conjecture of Sakurai suggested in
1960 [15]. Nowadays it has become clear, as we tried to
argue in this section, that one needs field-theory models
with an infinite number of vector mesons. Fortunately, in
the last ten years the new theoretical approach to modeling
low energy properties of QCD has appeared, consisting of
studies of five-dimensional holographic duals of QCD
[16,17]. The idea (which goes back to the work [18]) is
to reproduce holographically the important properties of
QCD, such as a confinement and chiral symmetry breaking.
One of the consequences of such a description is just the
VMD, in which the towers of vector mesons including all
excited states, i.e., ρ, ω, φ with their families, contribute. It
is essential that the vector mesons of these towers are
gauge fields with hidden gauge invariance, i.e., the five-
dimensional approach of [16,17] is the natural

generalization of earlier ideas of works [12,15] suggested
to explain the ρ, ω, φ-dominance. The works [16,17] not
only marked the “return of vector meson dominance” [19],
these works propose the field theory basis for GVD
predicted in [3] more than 40 years ago.
The main aim of the present paper is a calculation of the

VMD contribution in structure functions of DIS.
Traditionally, VMD has been used for predictions of
structure function of DIS in the diffraction region
[20,21] of the ν −Q2 plane, i.e., in the region of small
x, x ≪ 0.1 (irrespectively of the Q2-value). This limitation
is connected with the necessary condition

2ν=ðQ2 þm2Þ ≫ 2R;

wherem is the characteristic mass value of the hadron in the
photon’s fluctuation, R is the radius of the target.
It is very important to understand that the mass spectrum

of photon fluctuations can never be saturated by the vector
mesons alone. Quark-antiquark pair interacts with the target
as a vector meson if the transverse momentum k⊥ of the
pair’s quark is not large and confinement effects are
essential. If k⊥ is small, the pair is similar with a jet
aligned along the photon’s momentum [22], but the trans-
verse size of it becomes, due to the evolution, of order of
the hadronic size, before an arrival at the target. Only such
pairs can be considered as “vector mesons”, the quotation
marks here signify that these mesons, in contrast with a
case of the usual hadrons, interact solely nonperturbatively
with the target. This conclusion is consistent with the fact
that VMD is an essentially low energy approach and cannot
be applied to a description of hard processes such as
processes of jet production in meson-nucleon collisions.
Evidently, perturbative contributions to the structure func-
tions must be calculated separately using some model. So,
the whole approach is necessarily the two-component one.
In literature there are examples of one-component models

describing the structure functions of DIS without exploiting
the VMD. The model GVD-CDP (Generalized Vector
Dominance—Colour Dipole Picture) [23] uses the frame-
work of the color dipole model [24] with a QCD-inspired
Ansatz for the ðqq̄Þp forward scattering amplitude. The
model imitates destructive interference effectswhich usually
must be incorporated in off-diagonal vector dominance
models [25] to provide convergence of sums over vector
meson states. Note that in spite of the name, the model is
nonhadronic: it operates with quarks and gluons only.
Another way of the one-component description of DIS is

the approach based on pQCD. In particular, it has been
realized (see, e.g., [26]) that nonperturbative effects in DIS
are partly masked by effects of gluon saturation if the
saturation scale is relatively large (for the lowest Q2 data at
HERAQ2

s ∼ 2 GeV2 for x ∼ 10−5–10−6). Nevertheless, the
basic fact is that the color dipole-proton scattering ampli-
tude is a genuinely nonperturbative object and it is
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impossible, performing a “global fit” to the structure
functions, to avoid a modeling and a use of phenomeno-
logical Ansätze [27].
At the end of this introduction one should mention

several works where the separation of soft and hard
components in structure functions of DIS have been
performed in a way which is closest to ours. Authors of
[28,29] use a Regge-type energy dependence for both
components of σγp, and the corresponding intercepts are
different (αP ∼ 1.06–1.08 for the soft component and
αP ∼ 1.3–1.4 for the hard one). The paper [28] uses for
both components the formalism of GVD [Eq. (1)], in
diagonal approximation, whereas papers [29] use the color
dipole model. Authors [30,31] use for a description of the
soft component the VMD in its simplest form (only ρ, ω,
φ-mesons are taken into account). Their criterion of the
separation differs from ours: it is assumed that M2

qq̄ is a
good measure of the transverse size for a majority of
qq̄-pairs and AJM-like contributions are small.
Preliminary results of calculations with the two-

component approach developed in the present paper have
been published in works [32].
The plan of the paper is as follows. In the second section

the main formulas of nondiagonal VMD model, in the
aligned jet version, are obtained, starting from the color
dipole model and using the quark-hadron duality argu-
ments. In the third section the formalism of the light-front
Bethe-Salpeter equation is used for an obtaining the
approximate expressions for the vector meson mass spec-
trum and the meson’s wave functions. Further, using a
method of the diffraction scattering eigenstates the expres-
sions for the amplitudes of nondiagonal transitions
(Vp → V 0p) are derived. In the fourth section the structure
functions of DIS are calculated using, for a soft component,
the nondiagonal VMD and, for a hard component, the
Regge-type parametrization suggested in [29]. The last
section contains our conclusions.

II. VMD IN ALIGNED-JET VERSION

The starting point of our consideration is the expression
based on the perturbative QCD and two-step picture of the
γ�p interaction: the γ� → qq̄ conversion is followed by an
interaction of the qq̄-pair with the target proton (Fig. 1). For

definiteness we use here the GVD-CDP model [23]. The
total γ�p interaction cross section (summed over all
possible final hadronic states) is given by the contribution
of the qq̄-channel in the imaginary part of the Compton
forward scattering amplitude,

σT;LðQ2; sÞ ¼ 1

16π

X
j

X
r;r0

Z
dz

Z
d2k⊥

Z
dz0

Z
d2k0⊥

× ψT;L�
γðr;r0Þð~k

0
⊥; z0; Q2Þ

×
1

s
Aqq̄→pð~k0⊥; z0; ~k⊥; z; sÞψT;L

γðr;r0Þð~k⊥; z; Q2Þ:
ð3Þ

In this expression Aqq̄→p is an imaginary part of the
ðqq̄Þp forward scattering amplitude, Q2 and

ffiffiffi
s

p
are a

virtuality of the photon and γ�p center-of-mass energy,
ψT;L
γðr;r0Þ are light cone wave functions of qq̄-fluctuations of

the virtual photon with transverse or longitudinal polari-
zation. These wave functions depend on quark and anti-
quark helicities ðr=2; r0=2Þ, quark mass (mq) and quark
momentum variables z, k⊥ (z ¼ kþ=qþ is the fraction of the
photon light cone momentum carried by the quark, k⊥ is the
transverse momentum of the incoming quark).
Using Mqq̄ and z as independent variables rather than

k⊥, z, where Mqq̄ is an invariant mass of the qq̄-pair,

M2
qq̄ ¼

k2⊥ þm2
q

zð1 − zÞ ; ð4Þ

one can show that the wave functions contain the transverse
and longitudinal electromagnetic currents jr;r

0
T and jr;r

0
L and

quark propagators,

ψT;L
γðr;r0Þ ∼ eq

jr;r
0

T;L

Q2 þM2
qq̄
; ð5Þ

and, in turn, these currents are functions of z [33],

jr;r
0

T ∼ ð2zþ 1� rÞδr;r0 ; jr;r
0

L ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðz − 1Þ

p
δr;r0 : ð6Þ

The final expressions for σT;L depend on a square of
eqjT;L, averaged on r, r0,

e2q
X
r;r0

jjr;r0T j2 ∼ e2q½z2 þ ð1 − zÞ2�;

e2q
X
r;r0

jjr;r0L j2 ∼ e2qð1 − zÞ: ð7Þ

The main assumption of the GVD-CDP approach is that
the amplitude 1

s Aqq̄→p is similar in structure with corre-
sponding amplitude predicted by the two-gluon-exchange
approximation [34,35]. Namely, the simple expression:

FIG. 1. The diagram representing schematically the contribu-
tion of qq̄ channel in an imaginary part of the Compton forward
scattering amplitude.
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1

s
Aqq̄→pð~k0⊥; z0; ~k⊥; z; sÞ

¼ 2ð2πÞ3
Z

d2l⊥ ~σqq̄pðl2⊥; z; sÞ

× ½δð~k0⊥ − ~k⊥Þ − δð~k0⊥ − ~k⊥ − ~l⊥Þ�δðz − z0Þ ð8Þ

is suggested. Here, ~σqq̄p is the color dipole cross section,

j~l⊥j is the transverse momentum transfer. The simplest
and very convenient Ansatz for the color dipole cross
section is [36]

~σqq̄pðl2⊥; z; sÞ ¼ σ0ðsÞδðl2⊥ − zð1 − zÞΛ2Þ: ð9Þ

We assume that Λ is an energy independent constant
(i.e., it does not depend on s). It will be clear below that this
assumption is necessary if one wants to have the duality of
GVD-CDP with our formulation of VMD.
The position space color dipole cross section is given by

the formula

σqq̄pðr2⊥; z; sÞ ¼ σ0ðsÞð1 − J0ðr⊥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞ

p
ΛÞÞ: ð10Þ

It is proportional to r2⊥ at small r2⊥ (color transparency)
and goes to a constant at r2⊥ → ∞ (it gives hadronic
unitarity if the s-dependence of σ0ðsÞ is not too strong).
Ansatz (9), together with Eqs. (7), leads to very simple

final expressions for σT;LðQ2; sÞ (everywhere below we
simplify the notation, Mqq̄ → M):

σTðQ2; sÞ ≅ e2

12π2
Reþe−σ0ðsÞ

Z
1

0

dz
3

2
½z2 þ ð1− z2Þ�

×

�Z
dM2

M2

ðQ2 þM2Þ2 þ nondiagonal part

�
;

ð11Þ

σLðQ2; sÞ ≅ e2

12π2
Reþe−σ0ðsÞ

Z
1

0

dz6zð1− zÞ

×

�Z
dM2

Q2

ðQ2 þM2Þ2 þ nondiagonal part

�
:

ð12Þ
Here,

Reþe− ¼ Nc

X
q

�
eq
e

�
2

: ð13Þ

Nondiagonal parts in Eqs. (11), (12) depend onM2,M02,
Λ. The integrals over z in these equations are equal to 1 and
we omit these factors temporarily. We see that the γqq̄-
coupling is completely determined by the quark’s charges
and the pair’s mass.
For connection of this approach with VMD one must

introduce the vector mesons, the γV-coupling and vector-

meson nucleon amplitudes, using quark-hadron duality
arguments. For simplicity, we consider only one vector
meson family: ρ-meson and its excitations. We assume that
the mass spectrum of the ρ-family is equidistant in a square
of mass, i.e.,

M2
n ¼ M2

ρð1þ anÞ;
ΔM2 ¼ M2

nþ1 −M2
n ¼ M2

ρa: ð14Þ

The integral in Eq. (11) can be rewritten in a form

Z
dM2

M2

M4

ðQ2 þM2Þ2 ≅
X
i

ΔM2M4
i

M2
i ðQ2 þM2

i Þ2
: ð15Þ

Using this form one obtains for the diagonal part of σT :

σTðQ2; sÞ ¼ e2

12π2
Reþe−

X
i

ΔM2M4
i

M2
i ðQ2 þM2

i Þ
σ0ðsÞ

≅
X
i

e2

f2i

M4
i

ðQ2 þM2
i Þ
σ0ðsÞ; ð16Þ

where

e2

f2i
≡ e2

12π2
Reþe−

ΔM2

M2
i
: ð17Þ

Now, the quark-hadron duality suggests the replacement
of a sum over qq̄-pairs with a massMi in Eq. (16) by a sum
over vector mesons with a mass MVn

≡Mn and, corre-
spondingly, an introduction of γVn-coupling constants
e

fVn
≡ e

fn
defined by the expression [37]

e2

f2n
≡ e2

12π2
Reþe−

ΔM2

M2
n
; ð18Þ

where ΔM2 is determined now from the vector meson mass
spectrum, Eq. (14).
Finally, one obtains the familiar GVD expressions for

σT;LðsÞ (in diagonal approximation):

σTðQ2; sÞ ¼
X
n

e2

f2n

M4
n

ðQ2 þM2
nÞ2

σTnðsÞ; ð19Þ

σLðQ2; sÞ ¼
X
n

e2

f2n

Q2M2
n

ðQ2 þM2
nÞ2

σLn ðsÞ: ð20Þ

Here, σT;Ln are total cross sections for Vn-nucleon
interactions for the vector mesons with transverse (T)
and longitudinal (L) polarizations.
Now we should take into account the fact that the

quark-hadron duality approach used in a derivation of
Eqs. (19), (20) is based on the VMD. It means, in particular,
that cross sections σnðsÞ correspond to nonperturbative
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processes only. However, the qq̄-pair with a small trans-
verse size being color neutral weakly interacts with a
hadronic target, this interaction is calculated in the frame-
work of perturbative QCD. According to the uncertainty
principle

r2⊥ ∼
1

k2⊥
∼

1

M2zð1 − zÞ ð21Þ

(for massless quarks). So, at fixed and not very small values
of M2, quarks of the wide qq̄-pairs (those having large r2⊥
and interacting nonperturbatively) have relatively small
transverse momenta and are asymmetric in the longitudinal
energy, that is zð1 − zÞ is relatively small.
To separate approximately perturbative and nonpertur-

bative interactions of the qq̄-pair with the nucleon target we
introduce the model parameter k20⊥. We assume that qq̄-pair
interacts nonperturbatively if transverse momentum of
pair’s quarks is smaller than k0⊥. For a given pair’s mass
M it means that

zð1 − zÞ < k20⊥
M2

: ð22Þ

This criterion constrains the variable z, so, now one
must return to integrals over z in Eqs. (11), (12). The
constraint (22) leads to the following changes (if we
want to keep in the structure functions σT;L only non-
perturbative parts):

3

2

Z
1

0

dz½z2 þ ð1 − zÞ2� ¼ 1 →
3

2

Z
1

0

dz½z2 þ ð1 − zÞ2�

× Θ
�
k20⊥
M2

− zð1 − zÞ
�

¼ ηTðM2; k20⊥Þ; ð23Þ

6

Z
1

0

zð1 − zÞdz ¼ 1 → 6

Z
1

0

zð1 − zÞ

× Θ
�
k20⊥
M2

− zð1 − zÞ
�
dz

¼ ηLðM2; k20⊥Þ: ð24Þ

The straightforward calculation gives the following
values of η-factors

ηTðM2; k20⊥Þ ¼ 3z0 − 3z20 þ 2z30; ð25Þ

ηLðM2; k20⊥Þ ¼ 6z20 − 4z30; ð26Þ

z0 ¼
1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
− k20⊥
M2

r
≃ k20⊥

M2
: ð27Þ

Evidently, the same factors (we will call them
“cut-off factors”) appear also in VMD expressions for
σT;LðQ2; sÞ:

σTðQ2; sÞ ¼
X
n

e2

f2n
ηTðM2

n; k20⊥Þ
M4

n

ðQ2 þM2
nÞ2

σTnðsÞ; ð28Þ

σLðQ2; sÞ ¼
X
n

e2

f2n
ηLðM2

n; k20⊥Þ
Q2M2

n

ðQ2 þM2
nÞ2

σLn ðsÞ: ð29Þ

Physically, one can say that the cut-off factors lead to a
strong decreasing of the γV-coupling for heavy vector
mesons in DIS processes because only the qq̄-pairs with
large transverse size are taken into account. Really,
ηT;L ≪ 1, so

e2

f2n
ηT;L ≡ e2

ðf�2n ÞT;L
≪

e2

f2n
: ð30Þ

The duality relation (18) is modified now, in application
of VMD to DIS, to

e2

ðf�2n ÞT;L
¼ ηT;L

e2

12π2
Reþe−

ΔM2

M2
n
: ð31Þ

If we consider, in VMD approach, an interaction of the
qq̄-pair with the nucleon as an interaction of the vector
meson, then, surely, VMD formulas for the structure
functions σT;L must contain also the nondiagonal contri-
butions (Fig. 2). In GVD-CDP picture the nondiagonal
transitions of qq̄-pairs are quite essential leading to large
cancellations in final formulas. In contrast with this, it is
well known by the experience of hadron physics that in our
VMD such cancellations cannot be too large. We study a
role of nondiagonal transitions, Vnp → Vn0p, in Sec. IV.
The general formulas for σT;L containing the nondiagonal
contributions are

FIG. 2. The schematic diagram for the Compton forward
scattering amplitude in a nondiagonal VMD model.
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σTðQ2; sÞ ¼
X
n

e2

f2n
ηTðM2

n; k20⊥Þ
M4

n

ðQ2 þM2
nÞ2

σTnðsÞ

þ
X
n≠n0

e2

fnfn0
ηTðmaxðM2

n;M2
n0 Þ; k20⊥Þ

×
M2

nM2
n0

ðQ2 þM2
nÞðQ2 þM2

n0 Þ
1

s
ImFT

n;n0 ðsÞ;

ð32Þ

σLðQ2; sÞ ¼
X
n

e2

f2n
ηLðM2

n; k20⊥Þ
Q2M2

n

ðQ2 þM2
nÞ2

σLn ðsÞ

þ
X
n≠n0

e2

fnfn0
ηLðmaxðM2

n;M2
n0 Þ; k20⊥Þ

×
M2

nM2
n0

ðQ2 þM2
nÞðQ2 þM2

n0 Þ
1

s
ImFL

n;n0 ðsÞ:

ð33Þ

Here, we introduce the notation FT;L
n;n0 for amplitudes of

Vnp → Vn0p scattering for mesons with transverse and
longitudinal polarizations.
It is easy to prove that, due to a presence of the cut-off

factors in sums over vector mesons in Eqs. (32), (33) the
convergence takes place even if no cancellations arise after
addition of nondiagonal terms.

III. THE HADRONIC AMPLITUDES
AND WAVE FUNCTIONS

A. Reduced Bethe-Salpeter equation

Vector mesons are bound states of two constituent quarks
and for a description of their interactions with nucleons and
for calculations of the mass spectra of their excited states it
is quite convenient to use a formalism of the light front
Bethe-Salpeter (BS) equation. The initial four-dimensional
BS equation has a view [38]

ið2πÞ4ΦðP; qÞ ¼ 1

Δ1Δ2

Z
d4q0Kðq − q0ÞΦðP; q0Þ: ð34Þ

In this equation ΦðP; qÞ is the BS wave function, P
and q are total and relative momenta of meson’s quarks,
respectively,

P ¼ p1 þ p2; q ¼ 1

2
ðp1 − p2Þ: ð35Þ

p1;2 are quark’s momenta, Δ1;2 ¼ p2
1;2 −m2

q. We work in
the approximation of free propagators and spinless meson
and quarks.
Light front dynamics [39] (for a review see, e.g., [40])

operates with three inner momentum variables (we use the
on-mass-shell condition, P2 ¼ M2 (in this section M is a

mass of the two-quark bound state), and neglect the
transverse momentum of the meson as a whole, i.e., we
put P⊥ ¼ 0):

~q⊥¼ 1

2
ð~p1⊥− ~p2⊥Þ¼ ~p1⊥¼−~p2⊥; y¼ qþ

Pþ
: ð36Þ

These three internal variables essentially represent the
relative momenta, ~q⊥, qþ, of two constituent quarks. For
the variable y one has from Eqs. (35), (36):

y ¼ p1þ − p2þ
2Pþ

: ð37Þ

The light front reduction of the BS equation consists in
integrating both sides of Eq. (34) over q−. We assume that
the interaction kernel doesn’t depend on q− (“instantaneous
approximation”), i.e.,

Kðq − q0Þ≃ Kð~q⊥ − ~q0⊥; y − y0Þ: ð38Þ

We define the reduced BS wave function by the relation
[41]

ψðq⊥; yÞ ¼
Z

1

2
dq−ΦðP; qÞ: ð39Þ

Integration of the product of two propagators standing in
the right hand side of the BS equation (34) gives the well-
known result (see, e.g., [42]).

Z
1

2
dq−ðΔ1Δ2Þ

−1 ¼ 2πi
2Pþ

�
−q2⊥ −m2

q þM2xð1 − xÞ
�−1

:

ð40Þ

Here, the variable x is introduced,

x ¼ 1

2
þ y ¼ p1þ

Pþ
; 0 < x < 1. ð41Þ

Using the relation

d4q ¼ 1

2
dq−dqþdq⊥ ð42Þ

and the definition (39) one obtains finally the reduced BS
equation:

½M2xð1− xÞ− ðq2⊥ þm2
qÞ�ψð~q⊥; yÞ

¼ 1

2ð2πÞ3
Z

d2q0⊥dy0Kð~q⊥ − ~q0⊥; y− y0Þψð~q0⊥; y0Þ ð43Þ

This equation is equivalent to the corresponding equa-
tion obtained in a framework of the effective light cone
QCD-inspired theory [43].
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B. Spectrum of vector meson excitations

The next step is an introduction of the approximate
confinement scheme. The simplest phenomenological
Lorentz invariant model of confinement has been suggested
in [44]. If one units the three variables ~q⊥, y in a single
three vector

~q ¼ ðq1⊥;; q2⊥; μyÞ ð44Þ

(μ is a model parameter having a dimension of mass) one
can introduce the angular momentum operator

~J ¼ −iq × ~∇q: ð45Þ

After this one takes the three-dimensional potential
which becomes infinite at large j~qj to secure that eigen-
states of the mass operator are confined to a region ~q2 < ~q2c.
Using (44), the equation (43) can be rewritten in the form

ð2πÞ3
�
−M2

4
þm2

q þ ~q2
	
ψð~qÞ ¼ 1

2μ

Z
d3q0Kð~q− ~q0Þψð~q0Þ:

ð46Þ

We suppose that the kernel Kð~q − ~q0Þ describes the long
range quark-antiquark interaction of oscillatory type lead-
ing to the confinement (see, e.g., [41] and references
therein),

Kð~q − ~q0Þ ¼ ð2πÞ3ω2
qq̄ð ~∇2

q þ ω−2
0 Þδ3ð~q − ~q0Þ: ð47Þ

In ~r-space one has, correspondingly,

Kð~rÞ ¼ 1

ð2πÞ3
Z

e−i~q ~rKð~qÞd3q ¼ −ω2
q~qδð~r−ω−2

0 Þ: ð48Þ

Two parameters of this kernel, ω2
q~q and ω−2

0 , (the latter

gives the shift of the potential at ~r ¼ 0) can be determined
from data for a mass spectrum of bound states.
Substituting the kernel Kð~q − ~q0Þ from Eq. (47) in

Eq. (46) one obtains the equation

�
−M2

4
þm2

q þ ~q2
�
ψð~qÞ ¼ ω2

qq̄

2μ
ð ~∇2

q þ ω−2
0 Þψð~qÞ: ð49Þ

Now it is convenient to use the new variable β (with the
dimension of energy) defined by the relation

ω2
qq̄

2μ
≡ β4: ð50Þ

With this new variable the Eq. (49) is rewritten in the
form

�
− β2

2
~∇2
q þ

q2

2β2

�
ψð~qÞ ¼ 1

2β2

�
M2

4
−m2

q þ β4ω−2
0

�
ψð~qÞ:

ð51Þ

The full factor in front of ψð~qÞ in the right hand side of
this equation is dimensionless constant, so, formally it is
the equation for a wave function of a particle moving in the
three-dimension oscillatory potential. Eigenstates of mass
operator square are obtained from the quantum condition

1

2β2

�
M2

4
−m2

q þ β4ω−2
0

�
¼ N þ 3

2
; N ¼ 2nþ l;

ð52Þ

where n, l are radial and orbital quantum numbers
respectively.
For simplicity we consider all excitations as radial ones,

and put l ¼ 0 everywhere below. The most essential feature
of the meson mass spectrum in the present rough model is
the equidistance in a square of mass:

M2
ρn ¼ að1þ bnÞ;
a ¼ M2

ρ0 ; n ¼ 0; 1; 2;…;

b ·M2
ρ0 ¼ M2

ρn −M2
ρn−1 ¼ const: ð53Þ

As is pointed out in the Introduction, such a behavior is
predicted, in particular, by QCD string models. According
to [45], the experimental values of rho-family masses are
following (from n ¼ 0 up to n ¼ 4, in MeV): 770, 1450,
1700, 1900 and 2150. It is remarkable that, if we para-
metrize the mass spectrum by the formula (53), then, from a
comparison with these experimental mass values, we
obtain, using a least-square method, the value 1.76 for
the parameter b, which is close to the value b ¼ 2 predicted,
originally, by the Veneziano model [9] and used in many
works exploiting the quark-hadron duality hypothesis
(see the Introduction).
For calculations inVMDmodels it is better to use themass

spectrum parameters which give more accurate mass values
for the lowest excited states (because just these states are
most essential in VMD sums). Having this in mind, the
approximate values of model parameters β, ω0 can be
determined substituting in Eq. (52) experimental values of
mesonmasses forn ¼ 0 andn ¼ 1 (or for n ¼ 0 andn ¼ 2).
It gives, in the first case, the following system of equations:

M2
ρ0

4
−m2

q þ β4ω−2
0 ¼ 3

2
2β2;

M2
ρ1

4
−m2

q þ β4ω−2
0 ¼

�
2þ 3

2

�
2β2: ð54Þ

If mq ¼ 0.3 GeV one finds from here that b ¼ 2.5 and
β2 ¼ 0.094 GeV2, ω2

0 ¼ 0.04 GeV2. In the second case,
one has b ¼ 2, β2 ¼ 0.074 GeV2, ω2

0 ¼ 0.033 GeV2.
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In Fig. 3 we show the experimental values of masses for
numbers of the rho family, together with the lines for b ¼ 2
and for b ¼ 2.5.
Note that in Eq. (52) the quark mass term enters in a

combination with the parameter ω0, so, any change of the
mq value is connected with a corresponding change of a
value of ω0, so, a sensitivity of the mass spectrum to a value
of the quark mass is weak. Note also that in constituent
quark models of hadrons (see, e.g., [43]) the typically used
values of the constituent quark mass are within a rather
narrow interval, (0.26–0.31) GeV.
For concrete calculations we choose the following values

of β and b:

β2 ¼ 0.094; b ¼ 2:

Using such a choice we try to combine two cases, more
or less. Although, our experience shows that final results
very weakly depend on the β2 value if it changes within the
interval ð0.074–0.094Þ GeV2.

C. Wave functions of vector mesons

The eigenfunctions of Eq. (51) are well known (see, e.g.,
[46]). They are proportional to exponential factor e−q2=2β2

(in momentum space) and to polynomial in q ¼ j~qj. Radial
part of the total wave function (we keep for it the same
notation, ψ ) depends on the modulus of ~q,

ψnðqÞ ¼
1ffiffiffiffiffiffi
An

p
Xn
k¼0

ð−1Þk
4kk!ð2nþ 1 − 2kÞ!

�
q
β

�
2n−2k

e
− q2

2β2 :

ð55Þ

Here An is the normalization coefficient.

Below it will be convenient to separate in (55) q⊥ and y
variables using the connection

q2 ¼ q2⊥ þ μ2y2; ð56Þ

and after this to return to the initial notation, ψðq⊥; yÞ.
The numerical value of the model parameter μ, intro-

duced above, in Eq. (44) is not very essential for final
results. We suppose that μ is approximately equal to the
mass of the ground state of the family.
The simplest way for a normalization of the reduced BS

function is to calculate the electromagnetic form factor
FðQ2Þ of the bound state in this light front formalism and to
put Fð0Þ ¼ 1. The corresponding diagram is shown in
Fig. 4. It contains two vertex functions and three quark
propagators.
The four-dimensional vertex function is defined by the

relation

ΦðP; qÞ ¼ 1

Δ1Δ2

ΓðP; qÞ ð57Þ

and, after reduction, the three-dimensional vertex function
Γð~qÞ is connected with the reduced BS function ψð~qÞ by
the simple formula

ψð~qÞ ¼ Γð~qÞ
q2 þm2

q − M2

4

: ð58Þ

This formula is used for a calculation of the form-factor
diagram. Straightforward calculation gives

FðQ2⊥Þ ¼
2

ð2πÞ3
Z

d~q
2μ

�
1

4
− y2

�
ψð~qÞψ

�
~qþ

~Q⊥
2

�
ð59Þ

(we neglect the longitudinal momentum transfer, Qþ ≃ 0).
From here one obtains the normalization condition,

Z
d~q
2μ

�
1

4
− y2

�
ψ2ð~qÞ ¼ ð2πÞ3

2
: ð60Þ

Now, using this equation and the relation
d~q ¼ μd2q⊥dy, one has finally

FIG. 3. The dependence of M2
ρn on the radial quantum number

n of the excited state. The dots are experimental values of
vector meson masses of the ρ-family members (the values of
masses for n ¼ 3 and for n ¼ 4 are poorly known). Lines
correspond to two different parametrizations of mass spectrum
[Eq. (53)].

FIG. 4. The diagram used for a normalization of the BS wave
function.
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Z
d2q⊥dy

�
1

4
− y2

�
ψ2ðq⊥; yÞ ¼ ð2πÞ3: ð61Þ

D. Scattering amplitudes and nondiagonal
transitions

Our next aim is to calculate amplitudes of elastic
scattering of vector mesons on nucleons and, moreover,
amplitudes of VN → V 0N transitions between members of
the ρ-meson family. The precise absolute values of these
amplitudes are not so important rather we need only relative
values, e.g., the ratio

Fðρ0N → ρ1NÞ=Fðρ0N → ρ0NÞ:

Therefore, for the calculations the simplest model is
used, namely, the well-known model of two- gluon
exchange [34,35].
The nonperturbative effects are simulated in this model

by introducing an effective gluon mass and an effective
value of the quark-gluon coupling constant. The elastic
amplitude for the meson-nucleon scattering is given, in this
model, by the formula [35,47]

FðsÞ ¼ i
16

3
αss

Z
d2q⊥

ðq2⊥ þ μ2gÞ2

× ½1 − Fð4q2⊥Þ�½1 − FðGaussÞ
N ð3q2⊥Þ�; ð62Þ

where αsð¼ g2=4πÞ is the effective coupling constant, μg is
the effective gluon mass which is a parameter of the model.

F and FðGaussÞ
N are form factors of the vector meson and the

nucleon, respectively. For the latter the Gaussian approxi-
mation is used. For a calculation of the vector meson form
factor we use the expression (59). First, perform the
transformation to a transverse r space using the convolution
formula

Z
d2q0⊥dy

�
1

4
− y2

�
ψð~q0⊥; yÞψð~q0⊥ þ ~q⊥; yÞ

¼
Z

d2r⊥dy
�
1

4
− y2

�
e−i~q⊥~r⊥ψ2ðr⊥; yÞ: ð63Þ

Substituting the expression for F from Eq. (59) in
Eq. (62) and using Eq. (63) one obtains

FðsÞ ¼ i
16

3
αss

Z
d2q⊥

Vðq⊥Þ
ðq2⊥ þ μ2gÞ2

×
Z

d2r⊥dyð1 − e−i~q⊥~r⊥Þψ2ð~r⊥; yÞ; ð64Þ

Vðq⊥Þ≡ 1 − FðGaussÞ
N ð3q2⊥Þ ¼ 1 − e−

hr2
N
i

2
q2⊥ : ð65Þ

Here, hr2Ni is the mean square radius of the nucleon. The

expression for FðGaussÞ
N in the right-hand side of E (65) is the

Gaussian approximation for the nucleon form factor [47].
The wave function in transverse r space is obtained from

ψðq⊥; yÞ using the relation

ψðr⊥; yÞ ¼
1

2

Z
dq2⊥J0ðq⊥r⊥Þψðq⊥; yÞ; ð66Þ

where J0ðxÞ is the Bessel function.
For a calculation of amplitudes for nondiagonal tran-

sitions it is convenient to use a method of the diffraction-
scattering eigenstates [48].
We assume that our amplitudes are provided by the

elastic and single diffraction. The basis of diffraction
scattering eigenstates is jr⊥; yi, and in this basis the
scattering matrix is diagonal

h~r⊥; yjF̂ðsÞj~r0⊥; y0i ¼ F~r⊥ðsÞδð~r⊥ − ~r0⊥Þδðy − y0Þ: ð67Þ

Vector meson states are expanded in a complete set of
eigenstates:

jxi ¼
Z

d2r⊥dy
�
1

4
− y2

�1
2j~r⊥; yiψð~r⊥; yÞ: ð68Þ

The elastic scattering amplitude is now

Fn;nðsÞ ¼ hVnjF̂ðsÞjVni

¼
Z

d2r⊥dy
�
1

4
− y2

�
× ψ2ð~r⊥; yÞFr⊥ðsÞ; ð69Þ

whereas, e.g., the amplitude of nondiagonal transition
V → V 0 is

Fn;n0 ðsÞ ¼ hVnjF̂ðsÞjVn0 i

¼
Z

d2r⊥dy
�
1

4
− y2

�

× ψV 0 ð~r⊥; yÞψVð~r⊥; yÞF~r⊥ðsÞ: ð70Þ

The expression for the eigenamplitude F~r⊥ is obtained
from comparison of Eqs. (69) and (64) and is

F~r⊥ðsÞ ¼ i
16

3
αss

Z
d2q⊥

Vðq⊥Þ
ðq2⊥ þ μ2gÞ2

ð1 − e−i~q⊥~r⊥Þ:

ð71Þ

The formalism used here for a determination of vector
meson-nucleon scattering amplitudes is very convenient: it
gives a possibility to connect all these amplitudes (diagonal
as well as nondiagonal ones) with each other because the
expansion coefficients in Eq. (68) are the vector meson
wave functions which are derived using the same confining
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potential. We used above the approximation of spinless
mesons and spinless quarks, so we will, naturally, regard
the amplitudes Fn;n and Fn;n0 in Eqs. (69), (70) as
amplitudes averaged over polarizations and denote them
below by F̄n;n (and σ̄n) and F̄n;n0 . It is well known from
photoproduction experiments (see, e.g., [49,50]) that
σTρpðsÞ and σLρpðsÞ are, in general, different and the ratio
σLðsÞ=σTðsÞ is, at small values of sðs ≤ 10 GeV2Þ, not
smaller than (0.25–0.3) [49]. Probably, this ratio grows
with s, due to spin independence of diffraction scattering at
large energies.
The relations based on VMD, such as Eqs. (32), (33),

contain cross sections and nondiagonal amplitudes for
transversely and longitudinally polarized vector mesons,
σT;Ln ðsÞ and FT;L

n;n0 ðsÞ. We will use the approximation

σTnðsÞ≃ σ̄ðsÞ; FT
n;n0 ðsÞ≃ F̄T

n;n0 ðsÞ

and introduce the model parameter ξðsÞ, which depends on
the energy but does not depend on n, by the relation

σLn ðsÞ ¼ ξðsÞσTnðsÞ; FL
n;n0 ðsÞ ¼ ξðsÞFT

n;n0 ðsÞ:

Ending this section one should note that we did not take
into account rescattering of the eigenstates inside of the
target and, correspondingly, did not consider unitarization
problems. Due to this, there was no need to work with the
general (nonforward) amplitude Fðs; tÞ and use the impact
parameter space.

IV. RESULTS OF CALCULATIONS

Structure functions of DIS in our two-component
approach are sums of two parts, VMD (soft) component
and pQCD (hard) component,

σT;LðQ2; sÞ ¼ σsoftT;LðQ2; sÞ þ σhardT;L ðQ2; sÞ:

The main formulas needed for calculations of the VMD
(soft) contributions to the structure functions are Eqs. (32),
(33) in Sec. II. Photon-vector meson couplings e2=f2n are
determined by the vector meson mass spectrum [Eq. (54)]
and by the quark-hadron duality relation [Eq. (18)]:

e2

f2n
¼ M2

ρ

M2
n

e2

f2ρ
;

f2ρ
4π

¼ 2.25. ð72Þ

Cross sections σTnðsÞ and nondiagonal amplitudes
1
s F

T
n;n0 ðsÞ are calculated using Eqs. (69), (70) for the

amplitudes and Eqs. (55), (66) for the vector meson wave
functions. In the two-gluon-exchange approximation used
for a derivation of Eqs. (69), (70) the Vp-scattering
amplitudes divided on s do not depend on the energy.
Introducing now this dependence we assume that all vector
mesons interact with the nucleon only nonperturbatively
(in accord with VMD) and all amplitudes (including
nondiagonal ones) have the same Regge-type energy
dependence. For a normalization of this energy dependence
one must use the necessary condition: the VMD prediction
for a total photoproduction cross section for the real photon
must agree with experimental data. Choosing the normali-
zation point at s ¼ s0 one has the relations

σTnð0; sÞ ¼ σTnð0; s0ÞfðsÞ; fðs0Þ ¼ 1; ð73Þ
1

s
ImFT

n;n0 ðsÞ ¼
1

s
ImFT

n;n0 ðs0ÞfðsÞ: ð74Þ

It is meant here that amplitudes in the right-hand sides of
these equations (which have argument s0) are calculated
using formulas of the two-gluon exchange, Eqs. (69),
(70), (71).
Now we can write down the expression for the

photoproduction cross section (for the soft part of it),

σsoftT ð0; sÞ ¼ σsoftγp ðsÞ ¼
�X

n

e2

f2n
ηTðM2

n; k20⊥ÞσTnðs0Þ þ
X
n≠n0

e2

fnfn0
ηTðmaxðM2

n;M2
n0 Þ; k20⊥Þ

1

s0
ImFT

n;n0 ðs0Þ
�
fðsÞ: ð75Þ

If s0 is low enough (we use, for concrete calculations, the
value

ffiffiffiffiffi
s0

p ¼ 8 GeV) a contribution of the hard component
in σγp is small and the soft contribution can be safely
normalized using the photoproduction data. It gives

σðsoftÞT ð0; sÞ ¼ 114 μb:

For the function fðsÞ we use the Regge-type para-
metrization,

fðsÞ ¼ cffiffiffi
s

p þ
�
s
sс

�
0.06

; ð76Þ

where parameters c and sc are not independent, due to the
condition fðs0Þ ¼ 1.
For a description of the perturbative component we use

the color dipole model with the dipole cross section having

a Regge-type s dependence parametrized by the formula of

FKS model [29]:
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σT;LðQ2; sÞ ¼
Z

dzd2rjψT;L
γ ðz; r;Q2Þj2σ̂hardðs; rÞ; ð77Þ

σ̂hardðs; rÞ ¼ ðαH2 r2 þ αH6 r
6Þe−νHrðr2sÞλH : ð78Þ

Weused in calculations the followingvalues of parameters:

αH2 ¼ 0.072; αH6 ¼ 1.89; νH ¼ 3.27; λH ¼ 0.44.

Structure functions of DIS are defined by the expressions

F2 ¼
Q2

4π2α
ðσL þ σTÞ; FL ¼ Q2

4π2α
σL: ð79Þ

For a determination of the longitudinal cross section σsoftL
we use the Eq. (33) and the parameter ξðsÞ defined above.
Our VMD formulas contain four main parameters: αs, c,

k⊥0, and ξðsÞ.
Parameter αs enters the expression for the Vp amplitude,

Eq. (62), and can be adjusted using the relation

σρp ≃ 1

2
ðσπþp þ σπ−pÞ; ð80Þ

which is the prediction of additive quark model. The
important parameter k⊥0 is determined (together with sc)
by a comparison of the model predictions with data for

FIG. 5. The total cross section of photoabsorption for the real
photon (the dashed line). The solid line is the soft contribution.
The experimental data points are taken from [51–55]. The
experimental points in the interval

ffiffiffi
s

p ¼ 40–210 GeV are taken
from [51] (cosmic ray data).

FIG. 6. The Q2 dependence of the structure function F2 for different values of x. In the left figure the data of each bin of fixed x has
been multiplied by 2i, where i is a number of the bin, ranging from i ¼ 8 (x ¼ 0.08) to i ¼ 28 (x ¼ 0.000063). The experimental points
are taken from [45]. The results of calculations (softþ hard) are shown by dashed curves. The right figure contains the same results but
the data of x bins are shown, together with theoretical curves, for the bins with odd numbers only (i ¼ 9; 11…) and corresponding
contributions of the soft component are shown separately, by solid curves.
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σγpðsÞ for the real photon and data for the structure function
F2 at small values of Q2 (where a contribution of σLðsÞ is
small). At last, the s-dependence of ξðsÞ is adjusted using
data for F2 and, especially, for FL for relatively large Q2,
for which a contribution of the soft component is still
essential.
The fitting of σγp, F2, FL gives, finally, the following

values of model parameters:

αs ¼ 0.78; c ¼ 1.15 GeV; k⊥0 ¼ 0.385 GeV:

As for the function ξðsÞ, our fitting gives the following
result:

ξðsÞ ¼
(
0.25; s ≤ 30 GeV2;
0.17 log s; 30 ≤ s ≤ 7 × 105 GeV2;
1; s ≥ 7 × 105 GeV2:

ð81Þ

Main results of the calculations are shown in Figs. 5–9.
One of advantages of the VMD approach is the pos-

sibility to study the Q2 → 0 limit in formulas, i.e., to
determine the s dependence of the photoproduction cross
section for the real photon (Fig. 5). The interesting question
here is how large the hard contribution to σγp at Q2 ¼ 0 is,
in the region of high energies. The calculation with our
parametrizations, Eqs. (76) and (78), gives

R ¼ σðhardÞT ð0; sÞ=σtotalγp ðsÞ ≈ 20%

at
ffiffiffi
s

p
∼ 300 GeV.

In Fig. 6 one can see that our two-component model is
able to describe correctly the structure function F2ðQ2; xÞ
in the region of low and medium Q2 and in the x interval
(10−4 ÷ 8 × 10−2). In Fig. 7 we show the results for
FLðQ2; xÞ, the structure function which is most sensitive
to unknown function ξðsÞ. It is seen that the agreement with
data is acceptable at small Q2ðQ2 ≤ 5–6 GeV2Þ.
In Figs. 8–9 we show results of our calculations in the

region of very small x (up to x ∼ 10−8–10−9). The data are
absent at x ≤ 10−6 for Q2 ≤ 0.1 GeV2 (Fig. 8) and at
x ≤ 10−5 for Q2 ≥ 1 GeV2 (Fig. 9). To take into account
phenomenologically the effects of gluon saturation we
slightly modified the exponential term in the formula for
σ̂hard in Eq. (78). Namely, we assume that νH slowly
increases with a decrease of x, (νH ¼ 3.27; 4; 5) at,
correspondingly, x ¼ 10−5, 10−7, 10−9. It is seen from
the left parts of Figs. 8, 9 that at smallest Q2 the resulting x

FIG. 7. The x dependence of the structure function FL for
different values of Q2ðGeV2Þ. The experimental points are taken
from [56] (H1 Collaboration). The results of calculations
(softþ hard) are shown by dashed curves.

FIG. 8. The x dependence of the structure function F2 for small values ofQ2 in the region of very small x. The experimental points are
taken from [58,59]. The results of calculations (softþ hard) are shown by dashed curves. On the left figure the data are scaled by powers
of 1.5, n ¼ 1; 2; 3… (from bottom to top). The dotted lines are the GBW predictions [57]. On the right figure the data are scaled by
powers of 1.5, n ¼ 1; 2; 3… (from bottom to top), and the corresponding contributions of the soft component are shown separately, by
solid lines.
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dependence of F2, at x ≤ 10−6 almost coincides with the
corresponding prediction of the GBWmodel [57], whereas
at Q2 ≥ 1 GeV2 the GBW saturation effects in the same
region of x are stronger. The accounting of the gluon
saturation, although purely phenomenological, is neces-
sary if one wants to estimate a relative contribution of the
soft component at such small values of x. It is seen from
the right parts of Figs 8, 9 that this contribution is quite
essential at x ∼ 10−8–10−9 even at rather large values
of Q2.
In the present work we took into account in our VMD

formulas the contribution from only one vector meson
family (the ρ family), although, of course, one must
consider all vector mesons entering the current-field iden-
tity. It is clear, however, that the relative contribution of ω
and φ will be much smaller. SU(3) symmetry predicts the
ratios

1

f2ρ
∶
1

f2ω
∶
1

f2φ
¼ 9∶1∶2;

so, e.g., γφ coupling is weaker on a factor of 4.5
(according to leptonic width data, this factor is even larger,
about 6). Besides, the φ meson is more heavy, and the
contribution of its family will be relatively more cut by our
η factors. We plan to include φ and ω mesons in our
calculations in a future paper.
To illustrate the relative importance of diagonal and

nondiagonal amplitudes, on the example of σsoftγp ðsÞ, we
show in Table I placed in the Appendix the different items
of the sum over n, n0 in σTð0; sÞ of Eq. (75).

In Fig. 10 of the Appendix we show how fast a value of
the cross section is saturated with an increase of a number
of vector mesons in the sum. It follows from Table I that an
addition of 9th meson changes the cross section on 0.44%.
The convergence of VMD sums at nonzero Q2 is slightly
worse but, at the same time, the relative contribution of the
soft component decreases with Q2. Our conclusion is that
taking into account the 9 vector mesons in VMD sums is
quite enough if Q2 does not exceed 10–20 GeV2: the
corresponding error in a value of F2 is smaller than
2%–3%.

V. CONCLUSIONS

In the present paper we tried to show that the two-
component description of the photon-nucleon inelastic
scattering, with using VMD model as a nonperturbative
component, is most natural and well-grounded theoreti-
cally. The main argument is quite simple: the vacuum
fluctuations of real and weakly virtual photons are essen-
tially hadronic (according to VMD hypothesis) and, there-
fore, just the use of the VMD approach (which operates
with hadrons rather than with quarks and gluons) is
justified.
It is shown in the paper that the two-component model

is successful in a description of experimental data for
structure functions of DIS at small xðx < 0.08Þ and
Q2 < 10 GeV2. In the region of larger Q2 the perturbative
part begins to dominate and the whole description gradually
becomes one component. In the region of larger x, x > 0.1,
the VMD concept does not work because the longitudinal

FIG. 9. The x dependence of the structure function F2 for medium values of Q2 in the region of very small x. The experimental points
are taken from [60]. The results of calculations (softþ hard) are shown by dashed curves. On the left figure the data are scaled by powers
of 1.5, n ¼ 1; 2; 3… (from bottom to top). The dotted lines are the GBW predictions [57]. On the right figure the data are scaled by
powers of 1.5, n ¼ 2; 4; 6… (from bottom to top), and the corresponding contributions of the soft component are shown separately, by
solid curves.
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size of the photon’s fluctuations becomes too small in
comparison with the target’s size.
The “deep diffraction” region of DIS, in which

Q2 < 1 GeV2, is the region where the VMD component
completely dominates ifx is larger than10−4 (Fig. 2), although
in our model the aligned jet version of VMD suggested by
Bjorken more than 40 years ago is exploited. This means that
asymmetric configurations of qq̄ pairs produced in the
photon’s fluctuations are essential leading to a hadronlike
interaction of the virtual photon with the nucleon. It is shown
that even in the region of very small x, up to x ∼ 10−9, the soft
component is noticeable; e.g., its contribution is about 40% at
x ∼ 10−9, Q2 ¼ 0.65 GeV2 (Fig. 8).
The predictions for the region of small x and Q2 <

1 GeV2 are very important for applications to physics of
very high energy cosmic rays. In particular, the so-called
photonuclear energy losses of high energy cosmic ray
muons in medium are determined just by the muon
interactions in which a characteristic virtuality of the
intermediate photon is small, Q2 ≤ 1 GeV2.
Finally, two remarks concerning, in particular, our plans

for the future, are in order.
(i) For a parametrization of a hard component of the

structure functions we used the color dipole model
with a Regge-type s dependence of the dipole cross
section [Eq. (78)]. This parametrization has been
suggested by the authors of [29] as a contribution of
the “hard Pomeron.” We did not modify the param-
eters adjusted in [29] except the region of very
small xðx < 10−5Þ. Results of our paper show that
the combination (VMDþ FKS hard Pomeron) gives
rather good description of F2 data atQ2 smaller than
10–20 GeV2. It means that our soft contribution

(based entirely on VMD) and the soft Pomeron
component of the FKS model give almost the same
predictions for F2 in the low Q2 region
(Q2 ∼ 1 GeV2) where a hard contribution is small.
As we see from Fig. 6 our curves have a tendency to
undershoot data. Surely, an agreement between our
predictions and F2 data at Q2 larger than 10 GeV2

can be improved by a better adjustment of the
parameters entering Eq. (78) with, probably, some
modification of a form of this equation.

(ii) Electromagnetic structure functions of hadrons in a
region of large Q2 are described quite well by
approaches based on perturbative QCD, taking into
account, in particular, the gluon saturation effects.
Global fits which use the pQCD predictions com-
bined with some phenomenological Ansätze in small
Q2 region (see, e.g., the work of Albacete et al. [27])
give the good description of F2 over the full Q2

range. Probably, it has a sense to try to use in our
two-component approach, instead of the phenom-
enological Regge-type hard component, the pQCD-
inspired component. It would essentially increase
the range of Q2 in which the two-component
approach would give good predictions. Note, how-
ever, that the main motivation of our work was the
description of structure functions just in the non-
perturbative domain where a use of VMD concept is
most natural.
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APPENDIX

TABLE I. Each value in the table gives the contribution to σðsoftÞγp ð0; sÞ from one of transitions, γ → Vn → Vn0 → γ. n is a number of the
row, n0 is a number of the column, or vice versa. The total sum of all contributions is equal to 114 μb.

ffiffiffi
s

p ¼ 8 GeV.

n0

n 0 1 2 3 4 5 6 7 8

0 70.94 10.16 −2.61 0.78 −0.44 0.18 −0.13 0.07 −0.04
1 10.16 10.27 1.94 −0.68 0.21 −0.14 0.05 −0.04 0.02
2 −2.61 1.94 4.48 0.86 −0.36 0.12 −0.09 0.03 −0.03
3 0.78 −0.68 0.86 2.56 0.49 −0.23 0.08 −0.06 0.02
4 −0.44 0.21 −0.36 0.49 1.66 0.31 −0.16 0.06 −0.05
5 0.18 −0.14 0.12 −0.23 0.31 1.17 0.21 −0.12 0.04
6 −0.13 0.05 −0.09 0.08 −0.16 0.21 0.88 0.15 −0.09
7 0.07 −0.04 0.03 −0.06 0.06 −0.12 0.15 0.68 0.11
8 −0.04 0.02 −0.03 0.02 −0.05 0.04 −0.09 0.11 0.54
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