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We calculate the Wigner functions for a quark target dressed with a gluon at one loop in perturbation
theory. The Wigner distributions give the combined position and momentum space information of the
quark distributions and are related to both generalized parton distributions and transverse momentum
dependent parton distributions. We calculate and compare the different definitions of quark orbital angular
momentum and the spin-orbit correlations in this perturbative model. We compare our results with other
model calculations.
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I. INTRODUCTION

In classical physics, a system of particles can be
described in terms of phase space distributions, which
represent the density of particles at a point in the phase
space at a given time. In quantum mechanics, position and
momentum operators do not commute, and they cannot be
determined simultaneously. Thus in quantum mechanics,
one cannot define phase space distributions. Wigner dis-
tributions in quantum mechanics were introduced long ago
[1]. They can be thought of as quantum mechanical phase
space distributions; however, they cannot be interpreted as
probability distributions for the reason above, and they are
not positive definite. Wigner distributions become classical
phase space distributions in the limit h → 0. A quantum
mechanical Wigner distribution for the quarks and gluons
in the rest frame of the nucleon was introduced in [2,3].
Reduced Wigner functions are obtained from the seven-
dimensional most general Wigner distributions by integrat-
ing the minus component of the momentum. Reduced
Wigner distributions are functions of three position and
three momentum variables and as discussed above are not
measurable. To obtain measurable quantities, one has to
integrate over more variables. By integrating out the
momentum variables, one can relate the reduced Wigner
distributions to generalized parton distributions (GPDs),
and by integrating out the position variables, one gets the
transverse momentum dependent parton distributions
(TMDs). Thus, the Wigner distributions can be thought
of as more general mother distributions in which both
position and momentum space information of quarks and
gluons are encoded.
Wigner distributions are related to the generalized parton

correlation function (GPCFs) [4,5] of the nucleon, which
are the fully unintegrated, off-diagonal quark-quark corre-
lators. An overlap representation for the above using model
light-front wave functions has been studied in [6]. If one
integrates over the minus component of the momentum
(light-cone energy), one gets the generalized transverse

momentum dependent parton distributions (GTMDs).
These are functions of the 3-momentum of the quark
and the momentum transfer to the nucleon Δμ. In [7],
the authors introduced five-dimensional Wigner distribu-
tions in the infinite momentum frame by integrating the
GTMDs over the momentum transfer in the transverse
direction Δ⊥. These Wigner distributions are functions of
the two position and three momentum variables. Working
in the infinite momentum frame or equivalently using the
light-cone formalism has several advantages, as the trans-
verse boosts are Galilean or do not involve dynamics, and
the longitudinal boost is just a scale transformation [8]. So
it is easier to have an intuitive picture of the parton
distributions in the nucleon. As discussed before, Wigner
distributions do not have probabilistic interpretation due to
the uncertainty principle. By integrating out one or more
variables, one can define new distributions that have
probabilistic interpretation. Depending on whether the
nucleon and the quark are polarized or unpolarized, several
such distributions can be defined. In this work we shall
restrict ourselves to longitudinal polarizations only. As
Wigner distributions cannot be measured, model calcula-
tions are important to understand what kind of information
about the quark-gluon correlation in the nucleon can be
obtained from them, as well as to verify to what extent
different model dependent and model independent relations
among various distributions are satisfied. However, inte-
grating out more variables gives measurable quantities
having the interpretation of probability densities. In [7],
the Wigner distributions for quarks and gluons have been
studied in the light-cone constituent quark model and in the
light-cone chiral quark soliton model. Both of these models
have no gluonic degrees of freedom and the Wilson line
becomes unity.
The quark orbital angular momentum (OAM) contribu-

tion to the total spin of the nucleon has gained considerable
attention since the EMC experiments [9] which showed that
the quark intrinsic spin contribution was less than expected.

PHYSICAL REVIEW D 90, 014024 (2014)

1550-7998=2014=90(1)=014024(11) 014024-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.014024
http://dx.doi.org/10.1103/PhysRevD.90.014024
http://dx.doi.org/10.1103/PhysRevD.90.014024
http://dx.doi.org/10.1103/PhysRevD.90.014024


Also, recent polarized beam experiments suggest that the
gluon polarization contribution to the total spin of the proton
is very small. Wigner distributions are related to the OAM
carried by the quarks in the nucleon. As suggested from the
experimental data, a substantial part of the spin of the
nucleon comes from quark and gluon OAM. The issues of
gauge invariance and experimental measurability of the
OAM contribution complicate the full understanding of
such contributions [10]. Theoretically there exist mainly
two definitions of OAM: one obtained from the sum rules of
GPDs and the other, canonicalOAMdistribution in the light-
cone gauge. It has been shown in the literature that these two
different distributions areprojectionsofWignerdistributions
withdifferent choicesofgauge links, and theyare relatedbya
gauge dependent potential term [11–13]. In [14,15], the
canonical OAM in light-front gauge is shown to be related to
the twist-3 GPDs.
In this paper, we present a calculation of the quark

Wigner distributions in light-front Hamiltonian formulation
using overlaps of light-front wave functions (LFWFs). This
approach is based on [16]. This has the advantage that it
gives an intuitive picture of deep inelastic scattering (DIS)
processes in field theory while keeping close contact with
the parton model, but the partons are now field theoretic
partons: they are noncollinear, massive, and also interacting
[17]. However, they are still on mass shell. An expansion of
the target state in Fock space in terms of multiparton
LFWFs allows one to calculate the matrix elements of
operators. The nonperturbative light-front wave functions
are boost invariant. While the nonperturbative LFWFs for a
bound state like the nucleon require a model light-front
Hamiltonian, it is interesting and useful to replace the
bound state with a simple composite two-body spin-1=2

state, like a quark at one loop in perturbation theory. This is
a relativistic state and the relativistic two-parton LFWFs
can be calculated analytically in light-front Hamiltonian
perturbation theory. This wave function is a function of the
mass of the quark. It mimics the LFWF of a two-particle
bound state [18]. In this work we calculate the Wigner
distributions and OAM for a quark dressed with a gluon in
the light-front Hamiltonian approach. We follow the
formalism of [16], where it was shown that in light-front
gauge one can write the light-front QCD Hamiltonian
entirely in terms of the dynamical degrees of freedom
and, using a certain representation of the Dirac gamma
matrices, it is possible to write the theory in terms of two-
component fermion spinors and transverse components of
the gauge field. This two-component approach has been
used successfully to investigate the GPDs. Here we use this
formalism to investigate the Wigner distributions.
The plan of the paper is as follows. In Sec. II we calculate

the Wigner distributions for a dressed quark. In Sec. III we
calculate the OAM in the same model. We present the
numerical results in Sec. IV and conclusions in Sec. V.

II. WIGNER DISTRIBUTIONS

The Wigner distribution of quarks can be defined as the
two-dimensional Fourier transforms of the GTMDs [4,7]:

ρ½Γ�ðb⊥;k⊥;x;σÞ¼
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥:b⊥W½Γ�ðΔ⊥;k⊥;x;σÞ; ð1Þ

where Δ⊥ is the momentum transfer of dressed quarks in
the transverse direction and b⊥ is the two-dimensional
vector in impact parameter space conjugate to Δ⊥. W½Γ� is
the quark-quark correlator given by

W½Γ�ðΔ⊥; k⊥; x; σÞ ¼
�
pþ;

Δ⊥
2

; σ

����W½Γ�ð0⊥; k⊥; xÞ
����pþ;−

Δ⊥
2

; σ

�

¼ 1

2

Z
dz−d2z⊥
ð2πÞ3 eiðxpþz−=2−k⊥:z⊥Þ

�
pþ;

Δ⊥
2

; σ

����ψ̄
�
−
z
2

�
ΩΓψ

�
z
2

�����pþ;−
Δ⊥
2

; σ

�����
zþ¼0

: ð2Þ

We define the initial and final dressed quark states in
the symmetric frame [19], where pþ and σ define the
longitudinal momentum of the target state and its
helicity, respectively. x ¼ kþ=pþ is the fraction of
longitudinal momentum of the dressed quark carried
by the quark. In the symmetric frame, the trans-
verse momentum transfer (Δ⊥) has the Δ⊥ → −Δ⊥
symmetry. Ω is the gauge link needed for color gauge

invariance. In this work, we use the light-front gauge
and take the gauge link to be unity. The symbol Γ
represents the Dirac matrix defining the types of quark
densities.
In this work, we calculate the above Wigner distributions

for a quark state dressed with a gluon. The state of
momentum p and helicity σ can be expanded in Fock
space in terms of multiparton LFWFs [20]

jpþ; p⊥; σi ¼ ΦσðpÞb†σðpÞj0i þ
X
σ1σ2

Z
½dp1�

Z
½dp2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3pþ

q
δ3ðp − p1 − p2ÞΦσ

σ1σ2ðp;p1; p2Þb†σ1ðp1Þa†σ2ðp2Þj0i; ð3Þ
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where ½dp� ¼ dpþd2p⊥ffiffiffiffiffiffiffiffiffiffiffi
16π3pþ

p . ΦσðpÞ and Φσ
σ1σ2 are the single-

particle (quark) and two-particle (quark-gluon) LFWFs. σ1
and σ2 are the helicities of the quark and gluon, respec-
tively. ΦσðpÞ gives the wave function renormalization for
the quark. The two-particle function Φσ

σ1σ2ðp;p1; p2Þ gives
the probability to find a bare quark having momentum p1

and helicity σ1 and a bare gluon with momentum p2 and
helicity σ2 in the dressed quark. The two-particle LFWF is

related to the boost invariant LFWF: Ψσ
σ1σ2ðx; q⊥Þ ¼

Φσ
σ1σ2

ffiffiffiffiffiffi
Pþp

. Here we have used the Jacobi momenta
ðxi; qi⊥Þ:

pþ
i ¼ xipþ; qi⊥ ¼ ki⊥ þ xip⊥; ð4Þ

so that
P

ixi ¼ 1,
P

iqi⊥ ¼ 0. These two-particle LFWFs
can be calculated perturbatively as [20]

Ψσa
σ1σ2ðx;q⊥Þ¼

1

½m2−m2þðq⊥Þ2
x −ðq⊥Þ2

1−x �
gffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πÞ3
p Taχ†σ1

1ffiffiffiffiffiffiffiffiffi
1−x

p
�
−2

q⊥
1−x

−
ðσ⊥:q⊥Þσ⊥

x
þimσ⊥ð1−xÞ

x

�
χσðϵ⊥σ2Þ�: ð5Þ

We use the two-component formalism [16]: χ is the two-
component spinor, Ta are the color SUð3Þ matrices, m is
the mass of the quark, and ϵ⊥σ2 is the polarization vector of
the gluon (⊥ ¼ 1, 2). As stated in the Introduction, the
quark state dressed by a gluon that we consider here mimics
the bound state of a spin-1=2 particle and a spin-1 particle.
For such a bound state, the bound state mass M should be
less than the sum of the masses of the constituents for
stability. Here in the two-component formalism, we use the
same mass for the bare and the dressed quark in perturba-
tion theory [17]. We investigate theWigner distributions for
the unpolarized and longitudinally polarized dressed quark
and the relevant correlators are with Γ ¼ γþ and γþγ5. The
single-particle sector contributes through the normalization
of the state, which is important to get the complete
contribution at x ¼ 1. In this work we restrict ourselves
to the kinematic region x < 1, and in this case the
contribution from ΦσðpÞ can be taken to be 1. We calculate
the contribution to the quark-quark correlator and the
Wigner distribution from the two-particle sector in the
Fock space expansion. This is given by

W½γþ�ðΔ⊥; k⊥; x; σÞ

¼ 1

ð2πÞ3
X
σ1;σ2

Ψ�σa
σ1σ2ðx; q0⊥ÞΨσa

σ1σ2ðx; q⊥Þ; ð6Þ

W½γþγ5�ðΔ⊥; k⊥; x; σÞ

¼ 1

ð2πÞ3
X

σ1;σ2;λ1

Ψ�σa
λ1σ2

ðx; q0⊥Þχ†λ1σ3χσ1Ψσa
σ1σ2ðx; q⊥Þ; ð7Þ

where the Jacobi relation for the transverse momenta in the
symmetric frame is given by q0⊥ ¼ k⊥ − Δ⊥

2
ð1 − xÞ and

q⊥ ¼ k⊥ þ Δ⊥
2
ð1 − xÞ. We use the symbol ρλλ0 for Wigner

distributions, where λðλ0Þ is the longitudinal polarization of

the target state (quark). The four Wigner distributions have
been defined in [7] as follows:

ρUUðb⊥; k⊥; xÞ

¼ 1

2
½ρ½γþ�ðb⊥; k⊥; x;þezÞ þ ρ½γþ�ðb⊥; k⊥; x;−ezÞ� ð8Þ

is the Wigner distribution of unpolarized quarks in the
unpolarized target state;

ρLUðb⊥; k⊥; xÞ

¼ 1

2
½ρ½γþ�ðb⊥; k⊥; x;þezÞ − ρ½γþ�ðb⊥; k⊥; x;−ezÞ� ð9Þ

is the distortion due to longitudinal polarization of the
target state;

ρULðb⊥; k⊥; xÞ

¼ 1

2
½ρ½γþγ5�ðb⊥; k⊥; x;þezÞ þ ρ½γþγ5�ðb⊥; k⊥; x;−ezÞ� ð10Þ

represents distortion due to the longitudinal polarization of
quarks; and

ρLLðb⊥; k⊥; xÞ

¼ 1

2
½ρ½γþγ5�ðb⊥; k⊥; x;þezÞ − ρ½γþγ5�ðb⊥; k⊥; x;−ezÞ� ð11Þ

represents the distortion due to the correlation between the
longitudinal polarized target state and quarks.
In our case, þez and −ez correspond to helicity up and

down of the target state, respectively. In the model we
consider, ρLU ¼ ρUL and the final expression for the three
independent Wigner distribution are as follows:

ρ½γ
þ�

UUðb⊥; k⊥; xÞ ¼ N
Z

dΔx

Z
dΔy

cosðΔ⊥ · b⊥Þ
Dðq⊥ÞDðq0⊥Þ

�
I1 þ

4m2ð1 − xÞ
x2

�
; ð12Þ
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ρ½γ
þ�

LU ðb⊥; k⊥; xÞ ¼ N
Z

dΔx

Z
dΔy

sinðΔ⊥ · b⊥Þ
Dðq⊥ÞDðq0⊥Þ

×

�
4ðkxΔy − kyΔxÞ

ð1þ xÞ
x2ð1 − xÞ

�
; ð13Þ

ρ½γ
þγ5�

LL ðb⊥; k⊥; xÞ ¼ N
Z

dΔx

Z
dΔy

cosðΔ⊥ · b⊥Þ
Dðq⊥ÞDðq0⊥Þ

×

�
I1 −

4m2ð1 − xÞ
x2

�
; ð14Þ

where Ax, Ay are the x, y components of A⊥ and

Dðk⊥Þ ¼
�
m2 −

m2 þ ðk⊥Þ2
x

−
ðk⊥Þ2
1 − x

�
;

I1 ¼ 4

�
ðk⊥Þ2 −

Δ2⊥ð1 − xÞ2
4

� ð1þ x2Þ
x2ð1 − xÞ3 :

The Wigner distributions are real [7], which is due to the
Hermiticity property of the GTMDs to which they are
related; in the above expressions, we have taken the real
part of the Fourier transforms.

III. ORBITAL ANGULAR MOMENTUM
OF QUARKS

In [4] it has been shown that the quark-quark correlator
in Eq. (2) defining the Wigner distributions can be para-
metrized in terms of GTMDs. For the twist-2 case we have
four GTMDs ðF1;iÞ corresponding to γþ and four more for
γþγ5 ðG1;iÞ:

W½γþ�
λ;λ0 ¼

1

2M
ūðp0; λ0Þ

�
F1;1 −

iσiþki⊥
Pþ F1;2

−
iσiþΔi⊥
Pþ F1;3 þ

iσijki⊥Δj⊥
M2

F1;4

�
uðp; λÞ;

W½γþγ5�
λ;λ0 ¼ ūðp0; λ0Þ

2M

�
−iϵij⊥ki⊥Δj⊥

M2
G1;1 −

iσiþγ5ki⊥
Pþ G1;2

−
iσiþγ5Δi⊥

Pþ G1;3 þ iσþ−γ5G1;4

�
uðp; λÞ: ð15Þ

Using the above two equations and Eq. (1), we calculate the
GTMDs for the dressed quark model at twist 2. We
have used the Bjorken and Drell convention for gamma
matrices. Using the two-particle LFWFs, we obtain the
final expression for the GTMDS as follows:

F11 ¼ −
N½4k2⊥ð1þ x2Þ þ ðx − 1Þ2ð4m2ðx − 1Þ2 − ð1þ x2ÞΔ2⊥Þ�

Dðq⊥ÞDðq0⊥Þ2x2ðx − 1Þ3 ; ð16Þ

F12 ¼
2Nm2Δ2⊥

Dðq⊥ÞDðq0⊥ÞxðkyΔx − kxΔyÞ
; ð17Þ

F13 ¼
N

Dðq⊥ÞDðq0⊥Þ4xðkyΔx − kxΔyÞ
�
8m2ðk⊥Δ⊥Þ

−
ðkyΔx − kxΔyÞð4k2⊥ð1þ x2Þ þ ðx − 1Þ2ð4m2ðx − 1Þ2 − ð1þ x2ÞΔ2⊥ÞÞ

xðx − 1Þ3
�
; ð18Þ

F14 ¼
2Nm2ð1þ xÞ

Dðq⊥ÞDðq0⊥Þx2ð1 − xÞ ; ð19Þ

G11 ¼ −
2Nm2ð1þ xÞ

Dðq⊥ÞDðq0⊥Þx2ðx − 1Þ ; ð20Þ

G12 ¼
−N

Dðq⊥ÞDðq0⊥Þxðx − 1Þ
�
4m2

k⊥:Δ⊥
ðkyΔx − kxΔyÞ

−
ð1þ xÞΔ2⊥

x

�
; ð21Þ

G13 ¼
N½ð1þ xÞðΔ2

y − Δ2
x þ ΔxΔyðk2y − k2xÞÞ þ 4xm2k2⊥�

Dðq⊥ÞDðq0⊥Þx2ðx − 1ÞðkyΔx − kxΔyÞ
; ð22Þ

G14 ¼
N½−4k2⊥ð1þ x2Þ þ ðx − 1Þ2ð4m2ðx − 1Þ2 − ð1þ x2ÞΔ2⊥Þ�

Dðq⊥ÞDðq0⊥Þ2x2ðx − 1Þ3 ; ð23Þ

where N ¼ g2Cf

2ð2πÞ3 is the normalization constant and Cf is the color factor.
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The kinetic quark OAM is given in terms of the GPDs
[21] as

Lq
z ¼ 1

2

Z
dxfx½Hqðx; 0; 0Þ þ Eqðx; 0; 0Þ� − ~Hqðx; 0; 0Þg:

The GPDs in the above equation are defined at ξ ¼ 0 or
when the momentum transfer is purely in the transverse
direction. GPDs in the model we consider have been
already calculated in [22–26]. The kinetic OAM is related
to the GTMDs [4] by the following relations:

Hðx; 0; tÞ ¼
Z

d2k⊥F11; ð24Þ

Eðx; 0; tÞ ¼
Z

d2k⊥
�
−F11 þ 2

�
k⊥:Δ⊥
Δ2⊥

F12 þ F13

��
;

ð25Þ

~Hðx; 0; tÞ ¼
Z

d2k⊥G14: ð26Þ

Using the GTMDs calculated, we have the following
final expression for the kinetic orbital angular momentum
of quarks in the dressed quark model:

Lq
z ¼ N

2

Z
dxf−fðxÞI1 þ 4m2ð1 − xÞ2I2g; ð27Þ

where

I1 ¼
Z

d2k⊥
m2ð1 − xÞ2 þ ðk⊥Þ2

¼ π × log
�
Q2 þm2ð1 − xÞ2
μ2 þm2ð1 − xÞ2

�
;

I2 ¼
Z

d2k⊥
ðm2ð1 − xÞ2 þ ðk⊥Þ2Þ2

¼ π

ðm2ð1 − xÞ2Þ ;

fðxÞ ¼ 2ð1þ x2Þ:

Here Q and μ are the upper and lower limits of the k⊥
integration, respectively.Q is the large scale involved in the
process, which comes from the large momentum cutoff in
this approach [20]. Alternatively one can choose an
invariant mass cutoff [18]. μ can be safely taken to be
zero provided the quark mass is nonzero. In fact, we have
taken μ to be zero.
The GTMDs F14 and G11 are not reducible to any GPDs

or TMDs in any limit. These appear purely at the level of
the GTMDs and provide new information not contained in
the GPDs or TMDs. F14 is related to the canonical OAM as
shown in [7,12,27]:

lqz ¼ −
Z

dxd2k⊥
k2⊥
m2

F14: ð28Þ

We give the final expression for the canonical quark OAM
in the dressed quark model:

lqz ¼ −2N
Z

dxð1 − xÞ2½I1 −m2ðx − 1Þ2I2�: ð29Þ

The above expression is in agreement with [20], where
the authors have calculated the quark canonical OAM
using the same model neglecting the quark mass. Our
results are also in agreement with [28] and a recent
calculation in [29]. We thus confirm the conclusion in
[29] in our model calculation that the GTMDs F14 and
G11 exist and are nonzero, in contrast to the arguments
given in [30]. Also in [29], the above two GTMDs were
calculated by incorporating the gauge link; as their results
agree with ours, it is clear that the gauge link does not
contribute to these GTMDs and the result is independent
of the choice of the gauge link, which was also noted
in [29].
As shown in [7,31], the correlation between the quark

spin and its OAM is given by

Cq
z ¼

Z
dxd2k⊥

k2⊥
m2

G11: ð30Þ

As in our model F14 ¼ −G11, the above correlation is
given by Eq. (29). The spin-orbit correlation for the quark
in the dressed quark is negative. This is opposite to what is
observed in chiral quark-soliton model and constituent
quark model; namely, here the quark spin is antialigned
with its OAM, unlike the other two models where there is
no gluon.

IV. NUMERICAL RESULTS

In all plots, we have integrated over x and divided by the
normalization, N. In Fig. 1 we show the dependence of the
Wigner distributions on the quark mass. We took the mass
of the dressed quark to be the same as the bare quark. Here
we have plotted the Wigner distributions vs the mass for
fixed values of b⊥ in GeV−1 and k⊥ in GeV. Ideally the
upper limit of the Δ⊥ integration should be infinity.
However we have imposed an upper cutoff Δmax in the
numerical integration. In Fig. 1 we have taken
Δmax ¼ 1.0 GeV. Here b⊥

	! ¼ bĵ and k⊥
	! ¼ kĵ. For ρUU

in Fig. 1(a), we have plotted the mass dependence for three
different values of b⊥, which are 0.1, 0.5, and 1.0 GeV−1,
keeping k⊥ ¼ 0.4 GeV, and we see that the value decreases
with increasing mass. This is because the mass term in the
denominator of Eq. (12) coming from the DðkÞ function is
dominant over the other term. For larger b⊥ values, the
distribution has smaller values as seen from the plot. In
Fig. 1(b), we have plotted the mass dependence for three
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different values of k⊥, which are 0.1, 0.3, and 0.5 GeV,
keeping b⊥ ¼ 0.4 GeV−1. Again we see the same behavior
as in Fig. 1(a): in the lower mass range, ρUU increases
sharply for smaller k⊥. In Figs. 1(c) and 1(d) we have
plotted the mass dependence for ρLU with the same settings

as for ρUU. Since we choose k⊥
	! ¼ kĵ and because of the

factor kxΔy − kyΔx, we observe that the distribution has
negative values but we do observe the same behavior as
seen previously. Lastly in Figs. 1(e) and 1(f), we show the
results for ρLL. Since ρUU and ρLL only differ by a sign in
their mass term as seen in Eqs. (12)–(14), the results are
nearly identical, as the mass term gives subdominant
contribution. In all the plots of 1 we observe that at a
higher mass range the distributions are nearly independent
of b⊥ and k⊥ values.

In Fig. 2 we show the 3D plots for the Wigner
distribution ρUU. In the numerical calculation for
Eq. (12), we have upper cutoffs Δmax

x and Δmax
y for the

Δ⊥ integration. In all plots we have taken m ¼ 0.33 GeV.
In Figs. 2(a) and 2(b), we have plotted ρUU in b space with

k⊥ ¼ 0.4 GeV such that k⊥
	! ¼ kĵ for Δmax⊥ ¼ 1.0 GeV

and Δmax⊥ ¼ 5.0 GeV, respectively. We see that the plot has
a peak centered at bx ¼ by ¼ 0 and decreasing in the outer
regions of the b space. In [7], the authors have shown that
the contour plots show asymmetry associated with the
orbital angular momentum and the asymmetry favored the
b⊥k direction to b∥k. This can be understood from semi-
classical arguments in a model with confinement. As no
confining potential is present in the perturbative model we
consider here, the behavior is expected to be different.

FIG. 1 (color online). Plots of the Wigner distributions vs m (mass in GeV) for fixed values of b⊥ and k⊥ at Δmax ¼ 1.0 GeV. All the
plots on the left [(a), (c), (e)] are for three fixed values of b⊥ (0.1, 0.5, 1.0) in GeV−1 where k⊥ ¼ 0.4 GeV. Plots on the right [(b), (d),

(f)] are for three fixed values of k⊥ (0.1, 0.3, 0.5) in GeV, where and b⊥ ¼ 0.4 GeV−1. For all plots we took k⊥
	! ¼ kĵ and b⊥

	! ¼ bĵ.
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In our case we observe the asymmetry, but there is no
particular favored direction for this asymmetry. In
Figs. 2(c) and 2(d), we have plots in the k space where

b⊥ ¼ 0.4 GeV such that b⊥
	! ¼ bĵ for Δmax⊥ ¼ 1.0 GeV

and Δmax⊥ ¼ 5.0 GeV, respectively. The behavior in the k
space is similar to that in the b space but the peaks have
negative values. In Figs. 2(e) and 2(f), we show the plots in
the mixed space. As discussed earlier, Wigner distributions
do not have probability interpretation due to the uncertainty
principle in quantum mechanics. However, in the distribu-
tions ρUUðky; bxÞ we have integrated out the kx and by
dependence, giving us the probability densities correlating

ky and bx; this correlation is not restricted by the uncer-
tainty principle. Unlike in [7], we observe minima at
bx ¼ 0 and ky ¼ 0. In fact, the minima are observed for
all bx values for ky ¼ 0. As Δmax increases, the minima get
deeper. The plots show that the probability of finding a
quark with fixed ky and bx first increases away from ky ¼ 0

and then decreases.
In Fig. 3 we show the 3D plots for the Wigner

distribution ρLU. This is the distortion of the Wigner
distribution of unpolarized quarks due to the longitudinal
polarization of the dressed quark. In Figs. 3(a) and 3(b), we
have plotted ρLU in b space with k⊥ ¼ 0.4 GeV such that

FIG. 2 (color online). 3D plots of the Wigner distributions ρUU. Plots (a) and (b) are in b space with k⊥ ¼ 0.4 GeV. Plots (c) and (d)
are in k space with b⊥ ¼ 0.4 GeV−1. Plots (e) and (f) are in mixed space where kx and by are integrated. All the plots on the left [(a), (c),
(e)] are forΔmax ¼ 1.0 GeV. Plots on the right [(b), (d), (f)] are forΔmax ¼ 5.0 GeV. For all the plots we keptm ¼ 0.33 GeV, integrated

out the x variable, and took k⊥
	! ¼ kĵ and b⊥

	! ¼ bĵ.
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k⊥
	! ¼ kĵ for Δmax⊥ ¼ 1.0 GeV and Δmax⊥ ¼ 5.0 GeV,
respectively. Like in [7], we observe a dipole structure
in these plots and the dipole magnitude increases with
increase inΔmax. In Figs. 3(c) and 3(d), we have plots in the
k space where b⊥ ¼ 0.4 GeV such that b⊥

	! ¼ bĵ for
Δmax⊥ ¼ 1.0 GeV and Δmax⊥ ¼ 5.0 GeV, respectively.
Again we observe a dipole structure, but the orientation
is rotated in the k space when compared to the b space plots
of Figs. 3(a) and 3(b). As before, the dipole magnitude
increases with increase in Δmax. In Figs. 3(e) and 3(f), we

show the plots in the mixed space. We observe the
quadrupole structure in the mixed space like in [7] and
the peaks increase in magnitude with increasing Δmax⊥ .
In Fig. 4 we show the 3D plots for the Wigner

distribution ρLL. The behavior is similar to that of Fig. 2
since the Wigner distribution functions ρUU and ρLL only
differ by the sign of the mass term in the numerator.
In Fig. 5 we have plotted the dependence of the Wigner

distributions on the upper limit of Δ⊥ integration. Ideally,
the upper limit of the FT should be infinite, but for practical

FIG. 3 (color online). 3D plots of the Wigner distributions ρLU . Plots (a) and (b) are in b space with k⊥ ¼ 0.4 GeV. Plots (c) and (d)
are in k space with b⊥ ¼ 0.4 GeV−1. Plots (e) and (f) are in mixed space where kx and by are integrated. All the plots on the left [(a), (c),
(e)] are forΔmax ¼ 1.0 GeV. Plots on the right [(b), (d), (f)] are forΔmax ¼ 5.0 GeV. For all the plots we keptm ¼ 0.33 GeV, integrated
out the x variable, and took k⊥

	! ¼ kĵ and b⊥
	! ¼ bĵ.
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purposes, a finite upper limit is necessary. For physical
processes, for example in the deeply virtual Compton
scattering (DVCS), such limits are there from the kinemat-
ics; that is, the momentum transfer should be much less
than the virtuality of the photon, Q. Figures 5(a), 5(b), and
5(c) show plots of ρUU, ρLU, and ρLL, respectively, as
functions of b⊥ for a fixed value of k⊥ and different values
of Δmax. ρUU and ρLL show similar behavior, which is
expected from the analytic formulas. Both of them show a

peak at ∣b⊥∣ ¼ 0; the peak becomes sharper as Δmax
increases. ρLU is zero at b⊥ ¼ 0 and changes sign at the
origin. Here we observe two peaks, and these move closer
to ∣b⊥∣ ¼ 0 as Δmax increases. This means that the
correlations between the unpolarized quarks inside the
unpolarized target, as well as the distortions due to
the longitudinal polarization of the quarks in the longitu-
dinally polarized dressed quark target, are large in the close
vicinity of b⊥ ¼ 0 for fixed k⊥. If the allowed transverse

FIG. 4 (color online). 3D plots of the Wigner distributions ρLL. Plots (a) and (b) are in b space with k⊥ ¼ 0.4 GeV. Plots (c) and (d) are
in k space with b⊥ ¼ 0.4 GeV−1. Plots (e) and (f) are in mixed space where kx and by are integrated. All the plots on the left [(a), (c), (e)]
are for Δmax ¼ 1.0 GeV. Plots on the right [(b), (d), (f)] are for Δmax ¼ 5.0 GeV. For all the plots we keptm ¼ 0.33 GeV, integrated out

the x variable, and took k⊥
	! ¼ kĵ and b⊥

	! ¼ bĵ.
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momentum transfer is higher, these correlations move
closer to the origin. The distortions of the Wigner functions
due to the longitudinal polarization of the quark in an
unpolarized target change sign for negative b⊥; these
distortions are related to the OAM of the quark. Such
distortions are also more concentrated near the origin in b
space as the transverse momentum transfer is higher.
A similar conclusion can be drawn on the spin-orbit
correlation of the quark.
In Fig. 6 we have shown the orbital angular momentum

of quarks as a function of the mass. Figure 6(a) is for Lq
z and

6(b) is for lqz. Both the plots are shown for different values
of Q in GeV, where Q is the upper limit in the transverse
momentum integration. As stated above, this is the large
momentum scale involved in the process. We see similar
qualitative behavior of Lq

z and lqz where both are giving
negative values for the chosen domain of mass and also
both the OAMs decrease in magnitude with increasing

mass. However, the magnitude of the two OAMs differs in
our model, unlike the case in [7], where the same had been
calculated in several models without any gluonic degrees of
freedom and the total quark contributions to the OAMs
were equal for both cases. Note that there is only one quark
flavor in the simple model we consider. In [7], the
contributions to the OAMs from different quark flavors
were found to be different, but the sum over all flavors was
equal for the two definitions of OAM. Also, in [28] it has
been shown that a simple model without the gauge field
(for example, a scalar diquark model) gives the same result
for the above two definitions of quark OAM. Thus, the
perturbative model we consider here explicitly shows the
contribution of the gluonic degrees of freedom to the OAM,
which has been calculated in [20,29]. In fact, in [20] it
was shown that in the model considered here, after the
inclusion of the single particle sector of the Fock space
(which contributes at x ¼ 1), the gluon intrinsic helicity

FIG. 5 (color online). Plots of the Wigner distributions vs b⊥ for different Δmax (GeV) for a fixed value k⊥ ¼ 0.4 GeV and
m ¼ 0.33 GeV. b⊥ is in GeV−1.
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FIG. 6 (color online). Plots of OAM (a) Lq
z and (b) lqz vs m (GeV) for different values of Q (GeV).
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contribution to the helicity sum rule cancels the contribu-
tion from the canonical quark and gluon OAM, and the
Jaffe-Manohar helicity sum rule is satisfied.

V. CONCLUSION

In this work, we calculated the Wigner distributions for a
quark state dressed with a gluon using the overlap repre-
sentation in terms of the LFWFs. This is a simple
composite spin-1=2 system which has a gluonic degree
of freedom. Although the Wigner distributions in quantum
mechanics are not measurable and do not have probabilistic
interpretation, after integrating out some of the variables a
probabilistic interpretation can be obtained. We calculated
the Wigner distributions both for unpolarized and longi-
tudinally polarized target and quarks and showed the
correlations in transverse momentum and position space.
We compared and contrasted the results with an earlier

calculation of Wigner distributions in the light-cone con-
stituent quark model and the light-cone chiral quark soliton
model. We also calculated the kinetic quark OAM using the
GPD sum rule and the canonical OAM and showed that
these are different in magnitude; the difference is an effect
of the gluonic degree of freedom. We also found that in the
limit of zero quark mass, our result for the canonical OAM
agrees with that of [20]. We also presented the results for
the spin-orbit correlation of the quark. Further work would
involve calculating the Wigner distributions for the gluons
and also including transverse polarization of the target and
the quark.
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