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We present the medium-modified energy collimation in the leading-logarithmic approximation (LLA)
and next-to-leading-logarithmic approximation (NLLA) of QCD. As a consequence of more accurate
kinematic considerations in the argument of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
fragmentation functions (FFs) we find a new NLLA correction OðαsÞ which accounts for the scaling
violation of DGLAP FFs at small x. The jet shape is derived from the energy collimation within the same
approximations and we also compare our calculations for the energy collimation with the event generators
PYTHIA6 and YAJEM for the first time in this paper. The modification of jets by the medium in both cases is
implemented by altering the infrared sector using the Borghini-Wiedemann model. The energy collimation
and jet shapes qualitatively describe a clear broadening of showers in the medium, which is further
supported by YAJEM in the final comparison of the jet shape with CMS PbPb data at center-of-mass energy
2.76 TeV. The comparison of the biased versus unbiased YAJEM jet shape with the CMS data shows a more
accurate agreement for biased showers and illustrates the importance of an accurate simulation of the
experimental jet-finding strategy.
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I. INTRODUCTION

The phenomenon of jet quenching was first established
experimentally through the observed suppression of high-
pT hadrons in nucleus-nucleus (A-A) collisions at the
Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC) [1–4]. It was then confirmed by
various other measurements where highly virtual partons
produced in hard processes in a medium showed modifi-
cations to the subsequent evolution of a QCD shower, in
particular a softening and broadening of the resulting
hadron distribution which leads to a reduction in the yield
of leading hadrons and jets [5–9].
In the vacuum, the production of highly virtual partons

following the hard inelastic scattering of two partons from
the incoming protons (2 → 2þ X) is followed by the
fragmentation into a spray of hadrons which are observed
in high-energy collider experiments. The evolution of
successive splittings qðq̄Þ → qðq̄Þg, g → gg and g → qq̄
(q, q̄ and g label quark, antiquark and gluon, respectively)
inside the parton shower prior to hadronization is well
established and can be described by the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution equations for
fragmentation functions in the leading-logarithmic approxi-
mation (LLA) of QCD [10–12] or alternatively in terms of

Monte Carlo (MC) formulations such as the PYSHOW
algorithm [13,14]. In A-A collisions, partons produced in
the hard inelastic scattering of two partons from nuclei
(2 → 2þ X) propagate through the hot/dense QCD media
also produced in such collisions and their branching pattern
is changed by interacting with the color charges of the
deconfined quark-gluon plasma (QGP) [15]. As a conse-
quence, additional medium-induced soft gluon radiation is
produced in A-A collisions, which leads for instance to the
modification of high-pT hadroproduction [16–18]. At
RHIC, the main observables considered to probe this
physics were the nuclear suppression factor of single
inclusive hadrons RAA [19,20] and the suppression factor
of hard back-to-back dihadron correlations IAA [21,22].
More recently, through the analytical developments of
Refs. [23–25], it was demonstrated that medium-induced
soft gluon radiation is ruled by a condition of antiangular
ordering over successive emissions of such gluons, which
oppositely to the condition of angular ordering in the
vacuum (for a review see Ref. [26]), leads to the jet
broadening. However, further efforts are required in order
to implement the full description of color decoherence
effects in Monte Carlo event generators.
In this paper, we aim at discussing two different

observables currently relevant mainly for LHC physics:
the energy collimation and the jet shape of medium-
modified showers. We use a QCD-inspired model intro-
duced by Borghini and Wiedemann (BW) [27] for the
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modification of the fragmentation functions (FFs) by the
medium where the medium evolution itself is described by
a hydrodynamical evolution. In the BWmodel, the DGLAP
splitting functions are enhanced in the infrared sector in
order to mimic the medium-induced soft gluon radiation.
In practice, the 1=z dependence of the QCD vacuum
splitting functions corresponding to the parton branchings
qðq̄Þ → qðq̄Þg and g → gg are altered by introducing
a parameter Ns ¼ 1þ fmed (fmed ≥ 0) in the form
Pa→bcðzÞ ¼ Ns=zþOð1Þ, which is simple and mostly
leads to analytical results. In Ref. [28], which appeared
long after Ref. [27], Nayak derived in-medium expressions
for the quark and gluon DGLAP splitting functions in
nonequilibrium (nonisotropic) QCD at leading order in αs
as a function of arbitrary nonequilibrium distribution
functions fqð~pÞ and fgð~pÞ, where ~p is the momentum
of the hard parton. The modification to the splitting
functions turns out to be quite similar to the one introduced
in the BW model [27] by some prefactor depending on
fqð~pÞ and fgð~pÞ, which affects both the infrared and
regular terms of the evolution kernels. Later on, in
Refs. [25,29], the splitting functions were modified by
an overall factor which depends on the pertinent medium
parameters, such as the medium transport coefficient q̂.
Whether these modification prefactors are related to those
found in Ref. [28] may be an interesting issue of further
investigation, but this is out of the scope of this paper.
Moreover, the BW model in Ref. [27] and the calculations
in Ref. [29] show that the production of soft hadrons as
described by the FFs is enhanced at small energy fraction x
of the outgoing hadrons. The same result was also found in
Ref. [30], where a full resummation from large to small x
was performed in the same frame of the vacuum Albino-
Kniehl-Kramer parametrization of FFs (for a detailed
review see Ref. [31]), which further motivates the use of
the simple BW prescription in the following.
We start with the quantification of the jet energy

collimation and a study of the jet broadening in gluon
and quark jets in LLA. The computation of the energy
collimation was first performed analytically in the vacuum
[32] and subsequently modeled in the medium [33] by
means of the inclusive spectrum of partons provided by the
medium-modified solution of DGLAP FFs at large x ∼ 1.
For this purpose, a high-energy jet of half opening angle
Θ0, energy E and virtuality Q ¼ EΘ0 produced in a
nucleus-nucleus collision was considered, followed by
the production of one concentric sub-jet of opening angle
Θ and transverse momentum k⊥ ¼ xEΘ where the bulk
xE ∼ E of the jet energy is contained [32,33]. By definition,
the smaller the angle Θ where the jet energy is concen-
trated, the higher the jet energy collimation [32]. The half
opening angle of the jet Θ0 should be fixed according to the
jet definition used by the experiment. The energy collima-
tion can be then determined by maximizing the distribution
of partons Dðx; EΘ0; EΘÞ, which dominates the hard

fragmentation (x ∼ 1) of the jet into a sub-jet, as discussed
in Ref. [33]. In this paper, we will provide a more accurate
description of the energy collimation, which accounts for
the x dependence in the third argument of the FFs
Dðx; lnEΘ0; ln xEΘÞ. The account of the shift in ln x leads
to a small next-to-leading-logarithmic approximation
(NLLA) correction of order OðαsÞ which decreases the
energy collimation at intermediate values of x as a
consequence of the scaling violation of DGLAP FFs
[34]. Our first aim is indeed to make a comparison for
the jet energy collimation between the LLA and NLLAwith
PYTHIA6 [13,14] and YAJEM [35] in the medium. Such
studies have been done for the vacuum case [36], but it is
far from being evident that there are no additional
differences in the medium and this issue should be further
studied.
The integrated jet shape ΨðΘ;Θ0Þ provides indeed an

analogous measurement of how widely the transverse
energy of the jet is spread. This observable was first
studied in the vacuum in Ref. [36] and generalized to
the medium throughout the calculations presented in
Refs. [37,38] in the framework of the cone and kt jet
reconstruction algorithms. By definition, ΨðΘ;Θ0Þ deter-
mines the energy fraction [x≡ΨðΘ;Θ0Þ] of a jet of half
opening angle Θ0 that falls into a sub-jet of half opening
angle Θ for a fixed jet energy E. In our framework, we
extract for the first time the angular dependence of the sub-
jet energy fraction from the simple prescription provided by
the LLA DGLAP energy collimation x ¼ fðEΘ0; EΘÞ at
fixed energy E; no other computation for this observable is
known in the context of LLA DGLAP evolution equations.
Thus, the jet energy collimation is a LLA DGLAP
observable; however, it is not measured in a heavy-ion
collisions context, but jet shapes are. That is why, in the
comparison with MC, we do the jet shape analysis with
PYTHIA6 and YAJEM using the FASTJET package [39,40]
on the events and compare our results with CMS pp and
PbPb data for central collisions (0–10%) at 2.76 TeV [8].
The BW prescription provides a simple test case for this; as
it is analytically solvable and easily implemented in the
YAJEM code, it will be shown to capture the main physics
of additional soft gluon production and jet broadening
through this observable.
Finally, for the purpose of a detailed comparison with

data from the CMS experiment, the jet-shape analysis with
YAJEM is performed for both PbPb and pp collisions
following the CMS analysis procedure closely. Jets are
reconstructed with the anti-kT algorithm [39,40] with a
resolution parameter Rð≡Θ0Þ ¼ 0.3. The clustering analy-
sis is limited to charged particles with ei > 1 GeV inside
the jet cone where Erec ≥ 100 GeV is required for a jet (i.e.
Erec stands for the recovered jet energy inside the cone) [8].
The condition ei > 1 GeV removes the soft QCD medium
background which may blur the jet fragmentation and jet-
shape analysis. In order to illustrate the role of the bias
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caused by the jet-finding procedure outlined above, we
compare the biased jet shape (i.e. provided the CMS jet-
finding conditions are fulfilled) with an unbiased jet shape
(which is a purely theoretical quantity) for both PbPb and
pp CMS data.

II. THEORETICAL FRAMEWORK

A. Description of the process and kinematics

In Fig. 1, we consider the production of one gluon or
quark (A ¼ g, q, q̄) jet of total energy E and opening angle
Θ0 which fragments into a sub-jet B of energy xE and
opening angle Θ (Θ ≤ Θ0), where x is the energy fraction
of A carried by B.
By definition, the virtualities of the jet A and the sub-jet

B are Q ¼ EΘ0 and k⊥ ¼ EpΘ (Ep ¼ xE), respectively.
The virtuality, also known as the hardness of the jet,
determines the phase space for radiation and hence sets
the maximal transverse momentum of a parton inside the
jet: k⊥ ≤ Q. A minimal cutoff parameter Q0 can be
introduced k⊥ ≥ Q0, such that the minimal angle reached
by a parton inside the cascade equals Θmin ≥ Q0=xEΘ0.
Experimentally, this physical picture corresponds to the
calorimetric measurement of the energy flux deposited
within a given solid angle. From the partonic point of view,
the successive decays of partons in the cascade are ordered
in k⊥;i, or angles Θi due to the LLA kinematics for hard
parton decays (x ∼ 1) or due to the QCD coherence for soft
parton decays (x ≪ 1) [32]. Hard parton decays determine
the bulk of the jet energy and are ruled by the LLA
kinematics, which leads to DGLAP evolution equa-
tions [41], while soft parton decays determine the bulk
of the jet multiplicity and are ruled by QCD coherence,
which leads instead to the modified-LLA (MLLA) evolu-
tion equations [32].
The jet energy collimation is characterized by the large

energy fraction x of the sub-jet where the bulk of the jet
energy inside the given cone Θ < Θ0 ≪ 1 is deposited.
Hence, the probability for the energy fraction x to be
deposited in a cone of aperture Θ is related to the DGLAP
inclusive spectrum of partons through the formula [42],

DAðx; EΘ0; xEΘÞ ¼
X
B¼g;q

DB
Aðx; EΘ0; xEΘÞ; ð1Þ

where the nature of partonsB is not identified. In Eq. (1), the
FFs DB

Aðx; EΘ0; xEΘÞ determine the probability that a
partonA produced at largepT ∼ E in a high-energy collision
fragments into a hard sub-jet B of transverse momentum
xEΘ, which we write in the third argument of the FF.
Qualitatively, Eq. (1) describes the evolution of the jet A in
the k⊥ range xEΘ ≤ k⊥ ≤ EΘ0 according to the LLA k⊥
ordering and hence, it determines the partonic skeleton of
the sub-jet B before the hadronization takes place.
As compared to the FF for the inclusive spectrum of

partons where the third argument is set to EΘ for hard
partons x ∼ 1: DB

Aðx; EΘ0; EΘÞ [33], the formula (1)
accounts for the energy fraction x of the sub-jet B in
the FFs DB

Aðx; EΘ0; xEΘÞ. We cannot compute
DB

Aðx; EΘ0; xEΘÞ by using DGLAP evolution equations
because of the x dependence included in the third argu-
ment, but we can instead expand it in powers of “ln x”
through the exponential operator,

DB
Aðx; EΘ0; xEΘÞ ¼ eln xð∂=∂ lnðEΘÞÞDB

Aðx; EΘ0; EΘÞ ð2Þ

such that,

DB
Aðx; EΘ0; xEΘÞ

¼ DB
Aðx;ΔξÞ − ln x

αsðEΘ0Þ
2π

e4Ncβ0Δξ
∂DB

A

∂Δξ ðx;ΔξÞ
þOðα2sÞ; ð3Þ

where,

ξðEΘÞ ¼ 1

4Ncβ0
ln

�
ln

�
EΘ
ΛQCD

�
2
�
;

Δξ¼ ξðEΘ0Þ− ξðEΘÞ; αsðEΘ0Þ ¼
2π

4Ncβ0 lnð EΘ0

ΛQCD
Þ :

ð4Þ

Hence, Eq. (1) can be rewritten in the form,

DAðx;EΘ0; xEΘÞ

¼
X
B¼g;q

�
DB

Aðx;ΔξÞ− lnx
αsðEΘ0Þ

2π
e4Ncβ0Δξ

∂DB
A

∂Δξ ðx;ΔξÞ
�

þOðα2sÞ; ð5Þ

where αs is the QCD coupling constant, β0 is the first
coefficient of the QCD β function given by β0 ¼
1

4Nc
ð11
3
Nc − 4

3
TRnfÞ, with Nc ¼ 3, TR ¼ 1

2
, nf ¼ 3 and

ΛQCD (¼ 300 MeV) is the mass scale of QCD. The new
correction OðαsÞ is very small as x → 1 and can be much

DA
B

B

Θ0

AΕ

Θ

xE

FIG. 1. Fragmentation of a jet A of half opening angle Θ0 into a
sub-jet B of half opening angle Θ < Θ0.
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larger for x ≈ 0.5. As displayed in Fig. 1, the ladder
Feynman diagrams leading to DGLAP evolution equations
for DB

Aðx;ΔξÞ should be iterated from the hardest virtuality
Q ¼ EΘ0 of the process to the lower sub-jet virtuality
k⊥ ¼ EΘ through the variable Δξ in Eq. (4). Thus,
DB

Aðx;ΔξÞ describes the distribution of partons B with
transverse momentum k⊥ ¼ EΘ contained inside the
parton A, which fixes the initial scale of the hard process:
Q ¼ EΘ0; i.e. the virtuality. Therefore, we can estimate
DAðx; EΘ0; xEΘÞ with the solution of DGLAP evolution
equations for the FFs DB

Aðx;ΔξÞ, which appear on the rhs
of Eq. (5).

B. Medium-modified DGLAP evolution equations
with the BW model

The DGLAP evolution equations for the splitting A½1� →
B½z�C½1 − z� (where z is the energy fraction of one parton in
the splitting) in the k⊥ range EΘ ≤ k⊥ ≤ EΘ0 takes the
simple form [41]

d
d lnEΘ

Dðx; EΘ0; EΘÞ

¼ αsðEΘÞ
4π

Z
1

x

dz
z
PðzÞD

�
x
z
; EΘ0; EΘ

�
; ð6Þ

where PðzÞ is the evolution “Hamiltonian” given by the
regularized splitting functions [10–12]. In order to account
for the medium-induced soft gluon radiation in heavy-ion
collisions, we make use of the QCD-inspired model
proposed in Ref. [27] which leads to a simple solution
of the evolution equations at x ∼ 1. In this model, the
infrared parts of the splitting functions are arbitrarily
enhanced by the factor Ns ¼ 1þ fmed, where fmed ≥ 0
accounts for medium-induced soft gluon radiation.

The medium-modified splitting functions in z space are
written in the form [27],

PggðzÞ ¼ 4Nc

�
Ns

z
þ
�

Ns

1 − z

�
þ
þ zð1 − zÞ − 2

�
;

PgqðzÞ ¼ 2TR½z2 þ ð1 − zÞ2�; ð7aÞ

PqgðzÞ ¼ 2CF

�
2Ns

z
þ z − 2

�
;

PqqðzÞ ¼ 2CF

��
2Ns

1 − z

�
þ
− 1 − z

�
; ð7bÞ

where the ½…�þ prescription is defined asR
1
0 dx½FðxÞ�þgðxÞ≡

R
1
0 dxFðxÞ½gðxÞ − gð1Þ�. The solutions

of Eq. (6) can most conveniently be obtained in Mellin
space Dðj; EΘ0; EΘÞ through the transformation

Dðj; EΘ0; EΘÞ ¼
Z

1

0

dxxj−1Dðx; EΘ0; EΘÞ;

such that the convolution (6) yields,

d
d lnEΘ

Dðj; EΘ0; EΘÞ ¼ PðjÞDðj; EΘ0; EΘÞ;

PðjÞ ¼
Z

1

0

dzzj−1PðzÞ: ð8Þ

The advantage of the Mellin transform can be clearly seen
in Eq. (8). The convolution over z in Eq. (6) reduces to the
product of the Mellin-transformed splitting functions PðjÞ
and the FFs Dðj; EΘ0; EΘÞ. Making use of the variables
introduced in Eq. (4), Eq. (8) can be more explicitly
rewritten in the matrix form at leading order (LO),

d
dξ

0
B@

DqNSðj; ξÞ
Dqsðj; ξÞ
Dgðj; ξÞ

1
CA ¼

0
B@

PqqðjÞ 0 0

0 PqqðjÞ PqgðjÞ
0 PgqðjÞ PggðjÞ

1
CA
0
B@

DqNSðj; ξÞ
Dqsðj; ξÞ
Dgðj; ξÞ

1
CA; ð9Þ

where DqNS and Dqs stand, respectively, for the flavor-
nonsinglet and flavor-singlet quark distributions, andPikðjÞ
are the Mellin transforms of the LO splitting functions:

PggðjÞ ¼ − 4Nc

�
Nsψðjþ 1Þ þ NsγE − Ns − 1

j
− Ns − 1

j − 1

�

þ 11Nc

3
− 2nf

3
þ 8Ncðj2 þ jþ 1Þ
jðj2 − 1Þðjþ 2Þ ; ð10aÞ

PgqðjÞ ¼ TR
j2 þ jþ 2

jðjþ 1Þðjþ 2Þ ; ð10bÞ

PqgðjÞ ¼ 2CF
ð2Ns − 1Þðj2 þ jÞ þ 2

jðj2 − 1Þ ; ð10cÞ

PqqðjÞ ¼ −CF

�
4Nsψðjþ 1Þ þ 4NsγE − 4

Ns − 1

j

− 3 − 2

jðjþ 1Þ
�
: ð10dÞ

This method allows for the diagonalization of the “Ham-
iltonian” given by the set PðjÞ with respect to the
“evolution-time" variable ξ ∼ t ¼ lnðEΘÞ. In some limits
at large and small x, analytical solutions of the equations
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can be found through this method [41] but for numerical
computation, solving the equations directly in x space
turns out to be more efficient than inverting the Mellin
transform numerically. Thus, at large energy fraction x ∼ 1,
or equivalently large j ≫ 1 (which we are interested in),
the expressions for the Mellin representation of the
splitting functions (10a)–(10d) can be reduced to

PqqðjÞ ≈ 4CFNs

�
− ln jþ 3

4Ns
− γE

�
;

PggðjÞ ≈ 4NcNs

�
− ln jþ β0

Ns
− γE

�
; ð11Þ

where the asymptotic behavior of the digamma function
ψðjþ 1Þ ≈ ln j is replaced at j ≫ 1 [41]. The off-diagonal
matrix elements vanish in this approximation:
PgqðjÞ ¼ PqgðjÞ ¼ 0.
Note that the Ns ln j dependence in Eq. (11) arises from

the ½Ns=ð1 − zÞ�þ terms of the DGLAP splitting functions,
such that for hard partons z ∼ 1, the enhanced contribution
of the soft 1 − z ∼ 0 component ½1=ð1 − zÞ�þ produces
the sub-jet broadening within this approximation.
Qualitatively, as a consequence of energy conservation, if
soft gluon radiation is enhanced in the region Θ ≤ Θ0 ≤ Θ0

for a fixed jet energy E, the sub-jet energy (B, xE) should
be smaller compared to its value in the vacuum and the
energy collimation should then decrease, i.e. Θ should
increase.
Going back to x space requires taking the inverse Mellin

transform given by

Dðx;ΔξÞ ¼ 1

2πi

Z
C
djx−jDðj;ΔξÞ; ð12Þ

where the contour C in the complex plane is parallel to the
imaginary axis and lies to the right of all singularities. Since
we are interested in the large j ≫ 1 (x ∼ 1) approximation,
we insert Eq. (11) into Eq. (9). After integrating the result,
we get the medium-modified distribution at large x ∼ 1,

DA
Aðx;ΔξÞ≃ ð1 − xÞ−1þ4CANsΔξ

exp½4CANsð 3
4Ns

− γEÞΔξ�
Γð4CANsΔξÞ

;

ð13Þ

where β0 is replaced by 3=4 (nf ¼ 3) in Eq. (11). The
corresponding result in the vacuum for Ns ¼ 1 is given
in Ref. [41].
Within this approximation, the parton initiating the jet A

is identical to that initiating the sub-jet B ¼ A, CA ¼ Nc if
A is a gluon and CA ¼ CF ¼ 4

3
if A is a quark. Indeed, the

FF DA
Aðx;ΔξÞ in Eq. (13) describes the splittings g → gg

and q → qg and as constructed, it neglects the others:
g → qq̄ and q → gq. Therefore, the sum over B in Eq. (5)
disappears such that,

DA
Aðx; EΘ0; xEΘÞ

¼ DA
Aðx;ΔξÞ − ln x

αsðEΘ0Þ
2π

e4Ncβ0Δξ
∂DA

A

∂Δξ ðx;ΔξÞ
þOðα2sÞ: ð14Þ

In a more accurate solution of this problem which
could only be achieved numerically, the whole sum of
the parton branchings is given by Dqðx; EΘ0; xEΘÞ ¼
Dq

qðx; EΘ0; xEΘÞ þDg
qðx; EΘ0; xEΘÞ for a quark jet and

Dgðx; EΘ0; xEΘÞ ¼ Dg
gðx; EΘ0; xEΘÞ þDq

gðx; EΘ0; xEΘÞ
for a gluon jet, with the full resummed contribution of the
soft gluon/collinear logarithms arising from the Ns=z
dependence of the splitting functions in the FO approach
of DGLAP FFs [30,43].

C. Jet energy collimation

As discussed in Ref. [41], the distribution (13) presents a
certain maximum at some angle Θ where the bulk of the jet
energy is concentrated. The reason for this can be under-
stood as follows: for Δξ → 0, or Θ → Θ0, almost all of the
energy is contained inside the cone Θ0 [i.e. D → δð1 − xÞ]
and the probability distribution DA

A for x ≠ 1 should
decrease. For Θ decreasing Θ ≫ ΛQCD=E [notice that
the x dependence was reabsorbed on the pre-exponential
term in Eq. (2)], the emission outside the cone Θ grows
and the fragmentation probability decreases. Then,
taking the first derivative over lnΘ in Eq. (14) leads to
the NLLA (not to be confused with the MLLA) equation
for Θ:

�
lnð1 − xÞ þ 3

4Ns
− γE − ψð4CANsΔξÞ

��
1 − 4Ncβ0ebΔξ ln x

αsðEΘ0Þ
2π

�

¼ 4CANse4Ncβ0Δξ ln x
αsðEΘ0Þ

2π

�
lnð1 − xÞ þ 3

4Ns
− γE − ψð4CANsΔξÞ

�
2

− 4CANse4Ncβ0Δξ ln x
αsðEΘ0Þ

2π
ψ ð1Þð4CANsΔξÞ; ð15Þ
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which is the main theoretical result of this section for
medium (Ns > 1) and also vacuum (Ns ¼ 1). We invert
Eq. (15) numerically in order to get the NLLA jet energy
collimation Θðx; EÞ. In Eq. (15), ψðxÞ is the digamma
function and ψ ð1ÞðxÞ ¼ dψðxÞ

dx is the polygamma function of
the first order, which is new in this context. Note that this is
one correction; a more complete set of corrections of the
same order can be also added if, for instance, one considers
the next-to-leading-order corrections [44] to the ap-
proached splitting functions (11) in a more cumbersome
approach of this problem. However, this term goes beyond
DGLAP and corresponds to the so-called scaling violation
in DGLAP fragmentation functions [34]. In our framework,
this correction slightly increases the available phase space
from the hardest (B, x ∼ 1) to slightly softer partons
(B, x ∼ 0.5) and is therefore expected to decrease the
energy collimation or increase Θ at intermediate x. As
expected for harder partons ln x ∼ 0, the above equa-
tion (15) reduces to the simpler one [33],

ψð4CANsΔξÞ ¼ lnð1 − xÞ þ 3

4Ns
− γE: ð16Þ

Symbolically, the inversion of the NLLA (15) and
LLA (16) can be written for quark (A ¼ q, q̄) and gluon
(A ¼ g) jets in the simple form,

ΘA

Θ0

¼
�
EΘ0

ΛQCD

�−γAðx;NsÞ
: ð17Þ

Setting ln x → 0 in Eq. (15), the LLA expression for
γAðx; NsÞ is simply written in the form [33]

γAðx;NsÞ¼ 1− exp

�
−Ncβ0
CANs

ψ−1
�
lnð1−xÞþ 3

4Ns
− γE

��
;

ð18Þ

where ψ−1 is the inverse of the digamma function. The
exponent γAðx; NsÞ provides indeed the medium-modified
slope of the energy collimation as a function of Ns for a
fixed value of the sub-jet energy fraction x and can be
obtained numerically from the NLLA equation (15). In
Table I, we display the values of the NLLA and LLA slopes
for x ¼ 0.5 and x ¼ 0.8, which are in agreement with the
LLA (NLLA) DGLAP large sub-jet energy fraction x
approximation where these predictions should be tested.

As x → 0, the fixed-order (FO) approach of the LLA fails
to provide any reliable result.
The new equation (15) cannot be rewritten like Eq. (17)

but it can be solved numerically. From Table I, one may
wonder why the NLLA (15) and LLA (16) slopes of the
energy collimation are the same.1 Indeed, the coupling
constant does not depend on the jet energy only, but
rather on the product EΘ ≫ ΛQCD through the term
ln xe4Ncβ0ΔξαsðEΘ0Þ ∼ ln xαsðEΘÞ in Eq. (15). As the jet
energy E increases, the sub-jet cone Θ decreases and
αsðEΘÞ should remain roughly constant. Therefore, the
NLLA and LLA curves of the jet energy collimation should
stay approximately parallel to each other asymptotically.
We can see in both cases that the nuclear suppression

parameter Ns decreases the slope of the energy collimation,
which translates into increasing the rate of the jet broad-
ening asymptotically. In both medium and vacuum γq > γg,
which physically means that quark jets are more collimated
than gluon jets. The same trends should be confirmed in the
forthcoming analysis of the jet energy collimation with the
event generator YAJEM.

III. COMPARISON WITH YAJEM
AND QGP HYDRODYNAMICS

In order to gauge the impact of the approximations made
in deriving the results of the preceding section, we compare
them with results for jet energy collimation obtained in a
MC formulation of the in-medium jet evolution. Within
such a model, the parton initiating a jet A does not have to
be identical to that initiating the sub-jet B and hence the full
set of splittings g → gg and g → qq̄ is available for a gluon
jet. In addition, exact energy-momentum conservation at
every splitting vertex is enforced.
In vacuum, the PYSHOW algorithm [13,14] is a well-

tested numerical implementation of QCD shower simula-
tions. For comparison with our analytic results, we use the
Borghini-Wiedemann prescription implemented within the
in-medium shower code [45].

A. The in-medium shower generator YAJEM

YAJEM is based on the PYSHOWalgorithm, to which it
reduces in the limit of no medium effects. It simulates the
evolution of a QCD shower as an iterated series of splittings
of a parent into two daughter partons a → bc where the
energy of the daughters are obtained as Eb ¼ zEa and Ec ¼
ð1 − zÞEa and the virtuality of the parent and daughters is
ordered as Qa ≫ Qb, Qc. The decreasing hard virtuality
scale of partons provides (splitting by splitting) the trans-
verse phase space for radiation, and the perturbative
QCD evolution terminates once the parton virtuality

TABLE I. NLLA and LLA values of the slope γAðx; NsÞ of the
energy collimation forNs ¼ 1.4 (medium) andNs ¼ 1 (vacuum).

NLLA, LLA x ¼ 0.5 x ¼ 0.8 NLLA, LLA x ¼ 0.5 x ¼ 0.8

γgðx; 1.4Þ 0.37 0.26 γgðx; 1Þ 0.54 0.38
γqðx; 1.4Þ 0.67 0.50 γqðx; 1Þ 0.83 0.65

1Notice that Table I displays indeed 16 values for the slopes,
but such numbers are identical for the NLLA and LLA energy
collimation.
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reaches a lower value Q0 ¼ 1 GeV, at which point the
subsequent evolution is considered to be nonperturbative
hadronization.
The probability distribution to split at given z is given by

the same QCD splitting kernels and their medium modi-
fication in the BW prescription, which we have used above,
i.e. Eqs. (7a) and (7b); however, in the explicit kinematics
of the MC shower the singularities for z → 0 or z → 1 are
outside of accessible phase space and no ½…�þ regulari-
zation procedure is needed.
We will refer to the implementation of the BW pre-

scription for in-medium showers in the following as
YAJEM+BW (note that this corresponds to the FMED
scenario described in Ref. [45]). This is distinct from the
default version of the code YAJEM, YAJEM-DE, which is
tested against multiple observables at both RHIC and LHC
(see e.g. Refs. [46–48]) and is based on an explicit
exchange of energy and momentum between jet and
medium rather than a modification of splitting probabilities.
For a straightforward benchmark comparison with ana-

lytic results, a value of fmed can be chosen, the parton
shower can be computed and stopped at the partonic level
or evolved using the Lund model to the hadronic level, and
then clustered using the anti-kT algorithm and properties
like collimation or jet shapes can then be extracted.
In a MC treatment of the shower evolution, using a

constant value of fmed to characterize the medium is not
needed and in fact not realistic once a comparison with data
is desired. Following the procedure in Ref. [45], the value
of fmed is determined event by event by embedding the hard
process into a hydrodynamical medium [49] starting from a
binary vertex which is at ðx0; y0Þ and following an eikonal
trajectory ζ through the medium evaluating the line integral

fmed ¼ Kf

Z
dζ½ϵðζÞ�3=4ðcosh ρðζÞ − sinh ρðζÞ cosψÞ;

ð19Þ

where ϵ is the local energy density of the hydrodynamical
medium, ρ the local flow rapidity and ψ the angle between
the flow and the direction of parton propagation. Events are
then generated for a large number of random ðx0; y0Þ
sampled from the transverse overlap profile

Pðx0; y0Þ ¼
TAðr0 þ b=2ÞTAðr0 − b=2Þ

TAAðbÞ
; ð20Þ

where TA is a nuclear thickness function TAðrÞ ¼R
dzρAðr; zÞ obtained from the Woods-Saxon density

ρAðr; zÞ, and all observables are averaged over a suffi-
ciently large number of events. This leaves a single
dimensionful parameter Kf characterizing the strength
of the coupling between parton and medium which is
tuned to reproduce the measured nuclear suppression factor
RAA in central 200 GeV AuAu collisions (see Ref. [45]).

In practice, this procedure leads to hfmedi ≈ 0.4 which we
will use in the analytical expressions when a comparison
with data is intended.

B. Medium-modified jet energy collimation

In this section we compare our NLLA (15) and LLA [33]
predictions for the energy collimation with YAJEM+BW.
The analysis is carried out for gluon and quark jets
independently and including all particles in an event, i.e.
no detector effects are simulated in this section.
We generate thousands of gluon and quark dijets

(i.e. back-to-back jets) for different fixed values of the
center-of-mass energy

ffiffiffi
s

p
taken in the range

ffiffiffi
s

p ¼
100–1200 GeV. By doing so, we fix the energy of the
leading initial parton to be Elp ¼

ffiffiffi
s

p
=2 for each member in

the dijet. The values of Elp are thus not selected as in the
standard procedure by sampling the initial energy (or pT)
distribution of partons provided by parton distribution
functions (PDFs) [50], nuclear parton distribution functions
(nPDFs) [51] and the LO matrix elements of the partonic
cross section as we do later when comparing with data.
Jets are then reconstructed by using the anti-kT algorithm

[39,40] inside the cone of radii R ¼ 1.0, 0.3 (Θ0), in
agreement with the hard collinear approximation
where the NLLA and LLA predictions should be tested.
Reconstructed jets can be sorted by energy
(Ejet;1 > Ejet;2 > …) event by event such that the most
energetic one (Ejet;1) can be randomly selected from its pair
(Ejet;2) for the analysis. We purposely use the default
algorithm used by all LHC experiments. Our motivation
to do so from this subsection for the energy collimation is
based on the fact that we then compare our PYTHIA6 and
YAJEM+BW results for the jet shapes with the CMS data in
Sec. IV, where jets are reconstructed with the anti-kt
algorithm (see Ref. [8]). Besides, the anti-kT is the most
robust jet reconstruction algorithm for pp and PbPb
collisions at the LHC with respect to underlying events
and pileup.
The jet reconstruction radius coincides with the opening

angle of the jet Θ0 ¼ R and Θ ¼ r with that of the sub-jet.
The cone R contains the reconstructed average energy flux
(Erec) of the jet A and r the energy flux of the sub-jet B
(xErec), as illustrated in Fig. 2.
The energy collimation can be then extracted from the

angular distribution of the energy flux in r < R: 1
Njets

d2N
dedr for

r < R ðΘ < Θ0Þ. The recovered jet energy Erec can be
obtained by integrating 1

Njets

d2N
dedr over the whole range

0 < r ≤ R such that the fraction x of the jet energy carried
by the sub-jet r < R can be written in the form

x ¼ 1

Erec

Z
r

0

dr0
Z

dee
d2N
dedr0

;

Erec ¼
Z

R

0

dr0
Z

dee
d2N
dedr0

: ð21Þ
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By fixing the energy fraction x in Eq. (21) to be large,
x > 0.5, we can numerically compute the sub-jet radius r
where the bulk xErec of the reconstructed jet energy is
contained. If the same procedure is repeated for different
values of the center-of-mass energy

ffiffiffi
s

p
, the energy evo-

lution of the collimation rðErecÞ can be then displayed as a
function of Erec for a fixed sub-jet energy fraction x.
The FASTJET package [39,40] provides the invariant

mass mj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
j − ~p2

j

q
of each jet independently from

its pair if jets are sorted by the invariant mass
(m1 > m2 > …), where m1 is the invariant mass of the
first jet and m2 is the invariant mass of the second jet. The
reconstructed virtuality of the jet inside small radii R ≪ 1
can be related to the invariant mass of the dijet Mjj ≫ mj

through

Q ¼ Mjj

2
R; ð22Þ

where Mjj can be expressed in terms of each mj,

M2
jj ¼ m2

1 þm2
2 þ 2E1E2

− 2E1E2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −m2

1

E2
1

��
1 −m2

2

E2
2

�s
cosϕ; ð23Þ

which should be evaluated with m1 ≠ m2, E1 ≠ E2 and
ϕ ≈ π for clustered back-to-back jets. Indeed, the jet finder
misses part of the initial jet energy Elp and invariant mass
mlp such that, the new values inside R are biased to smaller

ones. Therefore, the reconstructed invariant mass of the
dijet Mjj should be estimated as given in Eq. (23) for the
biased Ei and mi obtained with FASTJET. The result in
Eq. (22) can be checked to be in good agreement with the
averaged one Q ¼ ErecR displayed in Tables II and III in
Secs. III C and III D, respectively; the smaller the R values,
the more important the bias and the better the agreement in
the collinear limit, provided R ≥ ΛQCD=Erec. We rewrite
Eq. (17) in the form,

rA ¼ R

�
Q

ΛQCD

�−γAðx;NsÞ
; Cg ¼ Nc ¼ 3;

Cq ¼ CF ¼ 4

3
; ð24Þ

for the phenomenological treatment of the gluon (Cg ¼ Nc)
and quark (Cq ¼ CF) jets with rA ≤ R. We choose
ΛQCD ¼ 300 MeV, the same value as in the PYSHOW
showering algorithm and do not use the Lund model for the
hadronization of partons into hadrons in this sec-
tion [13,14]. The result for the energy collimation extracted
from YAJEM+BW (21) will be compared with the medium-
modified NLLA and LLA formulas (15). The medium
modification parameter fmed is set to its mean value
hfimed ¼ 0.4, obtained from averaging over the hydrody-
namical model. The result of the numerical inversion of
Eqs. (15) and (16) will be displayed in the form given by
Eq. (24) in both cases.

C.Medium-modified jet energy collimation in gluon jets

In Table II, we display gluon dijets at three different
center-of-mass energies

ffiffiffi
s

p ¼ 150–500 GeV, which are
reconstructed by using the anti-kT algorithm [39,40] for the
radii R ¼ 1 and R ¼ 0.3. As described above, Erec is the
recovered jet energy of the leading parton Erec ¼ ẑ

ffiffiffi
s

p
=2

inside the cone R and Q is the jet virtuality. Note that the
recovered energy of the leading parton equals the jet energy

TABLE II. Reconstructed jet energies inside the cone radii
R ¼ 1.0 and R ¼ 0.3.ffiffiffi
s

p
(GeV) R Erec (GeV) Q (GeV) R Erec (GeV) Q (GeV)

150 1.0 64.8 64.8 0.3 46.3 13.8
300 1.0 131.3 131.3 0.3 98.0 29.4
500 1.0 220.4 220.4 0.3 168.9 50.7

TABLE III. Reconstructed jet energies inside the cone radii
R ¼ 1.0 and R ¼ 0.3.ffiffiffi
s

p
(GeV) R Erec (GeV) Q (GeV) R Erec (GeV) Q (GeV)

150 1.0 70.0 70.0 0.3 58.5 17.6
300 1.0 141.0 141.0 0.3 100.1 30.0
500 1.0 236.0 236.0 0.3 205.9 61.5

r

R

Jet axis

FIG. 2. Jet (Θ0 ¼ R) and sub-jet (Θ ¼ r) cones sharing the bulk
of the jet energy.
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inside R after reconstruction. We can see that gluon jets
carry the energy fractions ẑ ∼ 4=5 and 2=3 of the leading
parton for R ¼ 1.0 and R ¼ 0.3, respectively. Indeed,

ffiffiffi
s

p
=2

is the energy of the leading parton spread in the whole
hemisphere and

ffiffiffi
s

p
=2 − Erec is that part of the jet energy

that is lost outside R, which should not be confused with the
jet energy inside the cone shell r ≤ r0 ≤ R. We can see that
the correlation between parton kinematics and recon-
structed jet kinematics gets increasingly blurred for small
reconstruction radii. Thus, the choice R ¼ 0.3 used by the
CMS experiment provides a more severely biased jet
energy.
In Fig. 3, we display the energy collimation at R ¼ 1.0 in

gluon jets,

rg ¼ R

�
Q

ΛQCD

�−γgðx;NsÞ
; ð25Þ

in the energy range 60 ≤ ErecðGeVÞ ≤ 600 for RHIC and
LHC phenomenology. We choose the energy fractions
x ¼ 0.5, x ¼ 0.8 and compare the NLLA prediction (15)

with the LLA (16) and YAJEM+BW (21) predictions for
hfimed ¼ 0.4. The disagreement between the LLA predic-
tion and YAJEM+BW is quite substantial and is mainly due
to the lack of other perturbative contributions in this
calculation, whereas the NLLA prediction improves the
agreement. As expected for x ¼ 0.5, the OðαsÞ correction
in the NLLA formula (15) proves to be larger than for
x ¼ 0.8. The shape of the energy collimation provided by
the NLLA (15) and the LLA (16) are identical but steeper
than the slope of the energy collimation provided by
YAJEM+BW. Therefore, the NLLA and LLA predictions
overestimate the energy collimation compared to the
YAJEM+BW prescription.
Decreasing the jet radius to the value used by the CMS

experiment at 2.76 TeV PbPb collisions, R ¼ 0.3, leads to a
sizable hardening of the biased jet whichmay provide a better
comparison between the NLLA, LLA and YAJEM+BW
predictions for the jet energy collimation. The bias drives
results to a generic outcome, so differences in the comparison
must disappear as the bias gets stronger. That is why, in
Fig. 4 we display the same curves as in Fig. 3 for R ¼ 0.3.
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FIG. 3 (color online). Energy collimation inside a gluon jet for x ¼ 0.5 (left) and x ¼ 0.8 (right) with R ¼ 1.0.
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FIG. 4 (color online). Collimation of energy inside a gluon jet for x ¼ 0.5 (left) and x ¼ 0.8 (right) with R ¼ 0.3.
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We can see that the description provided by the NLLA (21),
LLA (16) and YAJEM+BW (21) calculations are in better
agreement with one another than the results displayed in
Fig. 3 for R ¼ 1.0. As expected, in the LLA, NLLA and
YAJEM+BW computations, the energy collimation is
stronger as the jet energy increases.
As a consequence of jet quenching in high-energy heavy-

ion collisions, medium-modified showers are expected to
broaden compared with vacuum showers. This effect can be
quantified via the shower energy collimation by taking the
ratios rg;med=rg;vac with hfimed ¼ 0.4 for the medium in the
numerator and hfimed ¼ 0 for vacuum in the denominator
with the NLLA formula (15) and the YAJEM analysis (21).
The ratios are displayed in Fig. 5 for the energy fractions
x ¼ 0.5, 0.8, 0.9 and the jet radius R ¼ 0.3. For x ¼ 0.5, the
NLLA formula predicts a sub-jet broadening that is twice as
large (i.e. smaller energy collimation) than that in YAJEM
+BW, while for x ¼ 0.8 to x ¼ 0.9 the agreement is
improved but still different by a factor of ∼1.5–1.2, reaching
the best agreement for x ¼ 0.9. Thus, as the energy fraction
x increases, the jet broadening inside the smaller cone r
decreases. As expected, the NLLA correction seems to play

a more important role as x decreases. The latter can be
observed in Fig. 5 as one compares the shapes of the
NLLA prediction with YAJEM+BW. The YAJEM+BW
prediction tends to flatten while the NLLA formula
increases, making the vertical difference higher as the energy
scale increases.

D. Medium-modified jet energy collimation
in quark jets

In Table III, we display quark dijets for the same values
of the center-of-mass energy and R. We can see that the
recovered jet energy slightly increases compared with that
displayed in Table II for gluon jets. The energy collimation
inside quark jets (17) can be rewritten in the form,

rq ¼ R

�
Q

ΛQCD

�−γqðx;NsÞ
: ð26Þ

Accordingly, in Fig. 6 and Fig. 7, we display the quark jet
energy collimation for the energy fractions x ¼ 0.5 and
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FIG. 5 (color online). Medium-modified and vacuum energy collimation ratios rg;med=rg;vac for x ¼ 0.5 (left), x ¼ 0.8 (center) and
x ¼ 0.9 (right) with R ¼ 0.3.
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FIG. 6 (color online). Collimation of energy inside a gluon jet for x ¼ 0.5 (left) and x ¼ 0.8 (right) with R ¼ 1.0.
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x ¼ 0.8 by the sub-jet with the medium modification
value hfimed ¼ 0.4.
As for gluon jets, our predictions are in better agreement

with YAJEM+BW for R ¼ 0.3 than for R ¼ 1.0. For
R¼1.0, the NLLA predictions underestimate YAJEM+BW
for x ¼ 0.5 and x ¼ 0.8. However, for R ¼ 0.3, the dis-
agreement is reduced as for gluon jets. Furthermore, the
correction due to the shift in ln x is smaller in a quark jet
compared to a gluon jet and LLA predictions in gluon jets
are in better agreement with YAJEM+BW than in quark
jets. The last statements suggest that NLLA and LLA
predictions should be in better agreement with YAJEM+BW
for much harder jets, i.e. R ¼ 0.1 as displayed in Fig. 8. The
study of smaller jet resolutions such as R ¼ 0.1 which
further biases QCD showers, is shown to always improve
quark/gluon tagging at the LHC [52]. In Fig. 9, we display
the ratios rq;med=rq;vac of the energy collimation in the
medium and the vacuum. The results clearly show the quark
jet broadening as a consequence of jet quenching. The
comparison between the NLLA and LLA predictions
is worse than for gluon jets. In Fig. 10, we compare the
LLA, NLLA and PYTHIA energy collimation in the vacuum.

The disagreement between the LLA, NLLA and PYTHIA6
predictions is more pronounced in the vacuum, which further
explains the huge difference displayed by the ratios in
Fig. 5 and Fig. 9.
In Table IV, we present the values of the slopes γAðx; NsÞ

provided by YAJEM+BW (hfimed ¼ 1.4) and PYTHIA6. As
displayed in the above figures for the energy collimation,
the values are smaller than in the NLLA and LLA
calculations presented in Table I. However, the trends
shown by the variation of γAðx; NsÞ as a function of x
and Ns are similar (γq > γg). In particular, the slopes
decrease as the energy fraction decreases for a given value
of Ns. For a fixed value of x, the energy collimation flattens
as Ns increases. We can see that our calculations and
YAJEM+BW predict a much stronger energy collimation in
quark jets than in gluon jets. Physically, this is because
gluon jets have a color charge roughly twice as large
(Nc=CF ¼ 9=4) than quark jets, or equivalently, gluon jet
multiplicities are higher than quark jet multiplicities by the
same factor asymptotically [53]. Moreover, the first split-
ting dominates the jet width, which for quark jets only has
the available splitting q → qg where the emitted gluon is
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FIG. 7 (color online). Collimation of energy inside a quark jet for x ¼ 0.4 (left) and x ¼ 0.8 (right) with R ¼ 0.3.
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FIG. 8 (color online). Collimation of energy inside a gluon jet for x ¼ 0.5 (left) and x ¼ 0.8 (right) with R ¼ 0.1.
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preferentially soft and does not alter the transverse jet
shape, whereas gluon jets can split into g → qq̄ pairs where
both quarks tend to be equally hard, which can widen the
shape substantially. In both YAJEM+BW and the calcu-
lation, the energy collimation is hence steeper for quark jets
than for gluon jets.
Equations (15) and (16) provide a simple description of

the jet energy collimation under consideration and cannot
be in perfect agreement with the YAJEM+BW description.
This last point suggests that other perturbative contribu-
tions arising from the splittings q → qg and g → qq̄ should
be included in Eq. (1) in the form Dqðx; EΘ0; xEΘÞ ¼
Dq

qðx; EΘ0; xEΘÞ þDg
qðx; EΘ0; xEΘÞ for quark jets and

Dgðx; EΘ0; xEΘÞ ¼ Dg
gðx; EΘ0; xEΘÞ þDq

gðx; EΘ0; xEΘÞ
for gluon jets, with the full resummed contribution of the
soft-collinear logarithms in DGLAP FFs [30,43]. Indeed, as
the jet energy increases, the contributions from the double
logarithmic contributions αs

dz
z
dΘ
Θ (z ¼ Eg=E) increase

asymptotically, which may explain why the difference
between YAJEM+BW and the NLLA predictions gets
wider as the jet energy E increases. Moreover, the more
accurate treatment of phase space in both PYTHIA and
YAJEM have not been taken into account in the NLLA and
LLA calculations.

E. Hadronization effects in the energy collimation

In Fig. 11 we display the energy collimation inside gluon
and quark jets in the vacuum using PYTHIA6. The role of
hadronization is displayed by comparing the energy colli-
mation for final-state hadrons and final-state partons
clustered inside the radius R ¼ 0.3 in the energy range
50 ≤ ErecðGeVÞ ≤ 700 by using the anti-kT algorithm
[39,40]. The hadronic energy collimation has been labeled
as “PYTHIA6” and the partonic energy collimation is labeled
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FIG. 10 (color online). Collimation of energy inside a gluon jet (left) and quark jet (right) for x ¼ 0.8 with R ¼ 0.3 in the vacuum
(Ns ¼ 1).

TABLE IV. YAJEM+BW values of the slope γAðx; NsÞ of the
energy collimation for Ns ¼ 1.4 (medium) and PYTHIA6 values
for Ns ¼ 1 (vacuum).

YAJEM+BW x ¼ 0.5 x ¼ 0.8 PYTHIA6 x ¼ 0.5 x ¼ 0.8

γgðx; 1.4Þ 0.17 0.11 γgðx; 1Þ 0.21 0.14
γqðx; 1.4Þ 0.24 0.17 γqðx; 1Þ 0.29 0.20
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as “PYTHIA6 parton shower.” Since the hadronization is
modeled to occur outside the medium, we limited the
comparison to PYTHIA6 since the results would be identical
for YAJEM+BW with a slightly larger normalization (see
Figs. 4 and 7 for comparison) as a consequence of the jet
broadening. As we can see, the hadronization biases the
partonic energy collimation for jet energies< 400 GeV but
this effect is ∼5% at RHIC energy scales and smaller than
1% at LHC energy scales. For jet energies > 400 GeV the
role of hadronization becomes negligible and therefore
irrelevant for the study of this observable. In general
hadronic showers are less collimated than a fictitious
parton shower at small energy scales.

IV. JET SHAPE: COMPARISON
WITH PbPb CMS DATA

The integrated jet shapeΨðr;RÞmeasures the fraction of
the jet energy of size R contained in a sub-cone of size r
such thatΨðR;RÞ ¼ 1. The differential jet shape reads [36],

rψðr;RÞ ¼ r
dΨ
dr

;

where

dΨ
dr

¼ 1

Erec

Z
dee

d2N
dedr0

;

Erec ¼
Z

R

0

dr0
Z

dee
d2N
dedr0

: ð27Þ

Hence, the integration of Eq. (27) leads to the expression
written in Eq. (21) for the energy fraction x used in the
framework of the energy collimation, which will be
identified with the integrated jet shape hereafter:
x≡Ψðr;RÞ. Our NLLA and LLA predictions for the
integrated jet shape will be therefore based on the maximal
angular aperture Θ≡ r where the bulk of the jet energy is

contained, as we discussed in Sec. II A. For the first time, in
this paper the jet shape is computed from the jet energy
collimation within the same NLLA and LLA schemes.
First of all, we describe how the Monte Carlo simulation

from PYTHIA6 and YAJEM is performed in view of further
comparison with LLA, NLLA predictions and CMS data
hereafter.
For the computation of the integrated jet shapes extracted

from Eq. (27), we will limit our study to charged particles
only, as in the CMS experiment [8]. The initial distribution
of gluon- and quark-initiated showers for the analysis is
determined by the convolution of PDFs and nPDFs with the
LO matrix elements of the final cross section at the given
hard factorization scale of the process. The LO matrix
elements of the partonic cross section can be computed
analytically [54]. PDFs and nPDFs are provided by the
CTEQ [50] and EKS [51] families for pp and PbPb
collisions in the vacuum and the medium, respectively.
The analysis carried out for the jet shapes is hence different
than the analysis for the energy collimation in Secs. III C
and III D where the center-of-mass energy of the hard
parton system was fixed to a certain value

ffiffiffi
s

p
.

A large number of quark and gluon dijets are randomly
generated based on the perturbative QCD spectrum inside
the energy range 200 ≤

ffiffiffi
s

p ðGeVÞ ≤ 600 and clustered by
using the anti-kt algorithm with R ¼ 0.3. After clustering all
charged hadrons with e > 1 GeV inside the given cone
R ¼ 0.3, jet energies Erec are required to fulfill CMS trigger
conditions imposed by the restriction Erec;jet ≥ 100 GeV.
The requirement imposed by the trigger selection in the
analysis will be referred to as a biased shower, while that
including all clustered jet energies will be referred to as an
unbiased shower in the following. Accordingly, the fraction
of gluon jets in one sample is biased by the trigger condition
from fvacg ≈ 0.4 in the unbiased case to fvacg ≈ 0.2 in the
biased case in vacuum showers, and from fmed

g ≈ 0.3 to
fmed
g ≈ 0.1 in medium showers. Thus, quark jets

are dominant in the analysis, particularly in the medium.
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The fraction of gluon jets in a sample is used for the
computation of the mixed integrated jet shape given by the
linear combination for gluon and quark jets in the form

Ψmixedðr;RÞ ¼ fgΨgðr;RÞ þ ð1 − fgÞΨqðr;RÞ ð28Þ

for a direct comparison of the LLA (16), the NLLA (15),
PYTHIA6 and YAJEM+BW with CMS data.
In YAJEM+BW, fmed is computed event by event as

described in Sec. III A. Instead of treating quark and gluon
jets independently in this framework, it is more straightfor-
ward to mix the differential distributions for the energy flux
(27) and compare them with the mixed jet shape from
PYTHIA and YAJEM+BW with account of hadronization.
By doing so, after averaging over a large number of events,
all jets cluster to the biased mean jet-energy value Erec ∼
140 GeV and the mean medium parameter hfimed ∼ 0.4.
In order to compare the PYTHIA6 and YAJEM+BW

calculations with the LLA and NLLA gluon and quark jet
shapes, we solve the equations (15) and (16) numerically
[xg ≡Ψgðr;RÞ and xq ≡Ψqðr;RÞ] as a function of r in the
interval 0 ≤ r ≤ R in the framework of LLA (NLLA)
DGLAP evolution at large x, for the first time in this paper.
For the computation, we choose the mean jet-energy value
Erec ¼ 140 GeV extracted from PYTHIA6 and YAJEM+BW.
Taking the same values for the fraction of gluon jets in a
sample fvacg ≈ 0.2 in the vacuum (hfimed ¼ 0) and fvacg ≈ 0.1
in the medium (hfimed ¼ 0.4), we can evaluate the mixed
LLA and NLLA jet shapes (28) equivalently as in the
Monte Carlo event generators.
In Fig. 12, we show the LLA, PYTHIA6 and YAJEM+BW

predictions for hfimed ¼ 0.4 jet shapes compared with pp
and PbPb CMS data in the left panel, and the NLLA,
PYTHIA6 and YAJEM+BW jet shapes for hfimed ¼ 0.4
compared with pp and PbPb CMS data in the right panel.
The jet shape is displayed in the interval 0.6 ≤
x≡Ψðr;RÞ ≤ 1 in agreement with the LLA (and
NLLA) DGLAP large sub-jet energy fraction x

approximation where these calculations are performed.
We can see that the LLA and NLLA qualitatively describe
the features of the jet shapes in both vacuum and medium
but an important disagreement persists. Compared to the
LLA calculation, the NLLA calculation approaches the
data as the jet shape decreases and particularly for more
collimated sub-jets r, as expected. Translating this state-
ment to the energy collimation, we show the NLLA
correction to widen the energy dependence of r and to
increase the difference with the LLA calculation as the sub-
jet energy fraction (jet shape) decreases. Thus, although the
NLLA and LLA predictions seem to capture the main
ingredients of the hard fragmentation process in this
framework, the account of all fragmentation probabilities,
mainly those containing soft gluon contributions should be
taken into account in a more accurate theoretical frame-
work. PYTHIA6 provides instead a good agreement with pp
CMS data for biased jets. YAJEM+BW describes the
shower medium modifications by reproducing the jet
broadening at slightly larger values of r to the right, similar
to the medium-modified NLLA and LLA jet shapes.
Though the YAJEM+BW calculation does not reproduce
the data points exactly, the curve fits the systematic error
bars of the CMS PbPb data. As observed, the sub-jet
broadening shown by the data is very small but in better
agreement with the sub-jet broadening shown by the
Monte Carlo simulations than with that shown by the
theoretical calculations with the BW prescription.
In Fig. 13 we compare the biased (Erec;jet ≥ 100 GeV)

and unbiased (all jets) cases obtained with PYTHIA6 and
YAJEM+BW with pp (left panel) and PbPb (right panel)
CMS data. The unbiased mean jet energy turns out to be
Ejet ∼ 90 GeV after all clustered jets are considered in the
analysis without any further trigger bias. Furthermore, the
evaluation of the unbiased case through Eq. (28) requires
the unbiased gluon jet fractions fvacg ≈ 0.4 and fmed

g ≈ 0.3 in
the vacuum and in the medium, respectively, as performed
here. As can be seen, the shower structure is affected by

r
0 0.1 0.2 0.3

(r
;R

)
m

ix
ed

Ψ

0.6

0.7

0.8

0.9

1

PbPb jet shape, R=0.3

PYTHIA 6
=0.4

med
YAJEM+BW, <f>

=0
med

LLA, <f>

=0.4
med

LLA, <f>

CMS PbPb (0-10%)

CMS pp (0-10%)

r
0 0.1 0.2 0.3

(r
;R

)
m

ix
ed

Ψ

0.6

0.7

0.8

0.9

1

PbPb jet shape, R=0.3
=0

med
PYTHIA 6, <f>

=0.4
med

YAJEM+BW, <f>

=0
med

Next-to-LLA, <f>

=0.4
med

Next-to-LLA, <f>

CMS PbPb (0-10%)

CMS pp (0-10%)

FIG. 12 (color online). Jet shape for CMS pp and PbPb data with R ¼ 0.3, compared with PYTHIA6, YAJEM+BW, the LLA formula
(left panel) and the NLLA formula (right panel).

REDAMY PÉREZ-RAMOS AND THORSTEN RENK PHYSICAL REVIEW D 90, 014018 (2014)

014018-14



imposing a jet-energy condition which leads to a better
agreement between the biased jet shape and the data than
the unbiased jet shape.

A. Hadronization effects in gluon and quark jet shapes

Finally, in Fig. 14, we display the jet shape obtained with
PYTHIA6 for a jet energy ∼110 GeV and display the role of
hadronization between a fictitious partonic shower and a
hadronic shower. For the hadronic shower the study
includes all particles in an event. The shift due to the role
of hadronization is very small and can be cross-checked to
verify that it is the same as the shift displayed for the energy
collimation at Erec ∼ 110 GeV in Fig. 11. However, for
energy scales lower than 400 GeV, the partonic jet shape
obtained from PYTHIA6 is slightly closer to the theoretical
calculations. From the comparison displayed in Fig. 11 we
can conclude that for high-energy jets the shift between
both curves is very small and vanishes asymptotically.
This is another part of the reason why, PYTHIA6 and
YAJEM+BWwith account of hadronization provide a more
accurate agreement with the data.

V. SUMMARY

In this paper, we studied the energy collimation of gluon
and quark jets produced in heavy-ion collisions and the jet
shape of hadrons produced in pp and PbPb collisions at
2.76 TeV. We extracted the LLA and NLLA jet shapes for
quark and gluon jets from the jet energy collimation in the
frame of DGLAP evolution at large x including the scaling
violation of FFs for the first time in this work. More efforts
in the numerical framework are however required in order
to improve our results and provide a more accurate
description which may improve the shape and normaliza-
tion of both observables, as explained in the main body of
this paper.
The NLLA energy collimation seems to capture a more

complete analytical description of this observable than the
LLA energy collimation obtained in Ref. [33], particularly
in gluon jets, but a disagreement with YAJEM+BWand the
data still persists, which is more pronounced in more biased
quark showers with smaller jet resolutions, i.e. R ¼ 0.1.
The difference between gluon and quark jets for this
observable is qualitatively well described by both
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medium-modified NLLA and YAJEM+BW descriptions,
i.e. both provide stronger energy collimation in quark jets
than in gluon jets and the NLLA description improves the
normalization for partons carrying the intermediate energy
fractions x ∼ 0.5. Though this quantity cannot be directly
measured for each type of jet separately, their combination
would lead to the quantification of the jet broadening at
high-energy heavy-ion experiments, i.e. the NLLA formula
in the vacuum (Ns ¼ 1) and PYTHIA6 predict a much faster
increase of the energy collimation than the medium-
modified NLLA (Ns ¼ 1.4) and YAJEM+BW calculations
as the energy scale increases.
We extracted the jet shape from the analysis performed

for the energy collimation and compared the NLLA, LLA,
PYTHIA6 and YAJEM+BW calculations with the CMS pp
and PbPb data at 2.76 TeV. The final biased and unbiased
comparison for this observable clearly shows the impor-
tance of taking all jet-finding conditions into account in
order to get as accurate results as possible in the compari-
son of Monte Carlo event generators and theoretical
predictions with the data.
The NLLA and LLA predictions qualitatively describe

the jet shapes but fail to reproduce the right normalization
of this observable. The reasons for this disagreement are the
same as those previously presented for the energy colli-
mation in the last paragraph of Sec. III D. The biased jet
shape provided by PYTHIA6 is in very good agreement with
pp CMS data and the medium-modified biased jet shape
from YAJEM+BW qualitatively describes the sub-jet
broadening shown by PbPb CMS data for larger values

of r, although it is much weaker in CMS data than in the
YAJEM+BW result. Gluon jets produce a wider shower
broadening than quark jets but they get even more sup-
pressed by biases than quark jets, which clearly dominate
the data for Erec;jet ≥ 100 GeV. This new example proves
that biases appear to strongly suppress the relevant physics
of jet quenching we want to understand and hence,
information is lost concerning the early stage of jet
evolution and its interaction with the medium in the study
of this observable; indeed, the trigger bias suppresses the
range of possible medium modifications brought by the
medium-induced soft gluon radiation [55].
Of course our results for the jet shape and comparison

with the data reflect the characteristics of the BW pre-
scription and hence should be compared and improved with
calculations using other models or more conveniently the
ongoing calculations of Refs. [25,29] (for an interesting
review see also Ref. [56]); a comparison with YAJEM-DE
[57] may for instance be desirable.
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