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We compute the nuclear corrections to the proton-deuteron Drell-Yan cross section for inclusive dilepton
production, which, when combined with the proton-proton cross section, is used to determine the flavor
asymmetry in the proton sea, d̄ ≠ ū. In addition to nuclear smearing corrections that are known to be
important at large values of the nucleon’s parton momentum fraction xN , we also consider dynamical off-
shell nucleon corrections associated with the modifications of the bound nucleon structure inside the
deuteron, which we find to be significant at intermediate and large xN values. We also provide estimates of
the nuclear corrections at kinematics corresponding to existing and planned Drell-Yan experiments at
Fermilab and J-PARC which aim to determine the d̄=ū ratio for x ≲ 0.6.

DOI: 10.1103/PhysRevD.90.014010 PACS numbers: 13.60.Hb, 12.38.-t, 21.45.Bc

I. INTRODUCTION

The discovery of the flavor asymmetry in the light quark
sea in the proton d̄ ≠ ū has been one of the most important
findings in hadronic physics from the past two decades
[1–6], stimulating considerable discussion about the nature
and origin of the nucleon’s nonperturbative structure (see
e.g. Refs. [7–10] for reviews). In particular, the Drell-Yan
reaction involving dilepton-pair production in inclusive
hadron-hadron scattering has provided the most direct
constraints on the x dependence of the d̄=ū ratio [4–6].
Here, at the partonic level, a quark from the hadron beam
annihilates with an antiquark from the target hadron (or vice
versa) producing a high energy virtual photon which
subsequently decays to a pair of oppositely charged leptons,
qq̄ → γ� → lþl− [11]. By selecting specific values of the
momentum fractions of the partons in the beam and target
hadrons, one can construct ratios of cross sections with
sensitivity to particular combinations of parton distribution
functions (PDFs). In contrast to inclusive deep-inelastic
lepton-nucleon scattering, which measures charge-even
combinations of PDFs, qþ q̄, the Drell-Yan reaction has
the advantage of allowing effects in the antiquark distribu-
tions to be cleanly isolated from those in the quark PDFs.
More specifically, the inclusive proton-free nucleon scat-

tering cross section for the production of a lepton pair with
invariant mass squaredQ2 ≫ M2, whereM is the mass of the
nucleon, is given (at leading order in the strong coupling) by

σpNðxp;xNÞ≡ dσpN

dxpdxN

¼4πα2

9Q2

X
q

e2q½qðxpÞq̄ðxNÞþ q̄ðxpÞqðxNÞ�; ð1Þ

where α is the fine-structure constant. In Eq. (1), qðxpÞ and
q̄ðxNÞ are the quark and antiquark PDFs in the proton and
target nucleon evaluated at parton light-cone momentum
fractionsxp andxN of the proton and nucleon, respectively, eq
is the electric charge, and the sum is taken over all flavors q.
(Here and throughout this paper, for ease of notation we omit
the explicit Q2 dependence in the arguments of PDFs and
cross sections.) For the case of proton scattering from the
deuteron, taking the ratio of pd to pp cross sections, and
assuming the deuteron to be composed of a free proton and
neutron, one can isolate the ratio of d̄ to ū distributions for
large values of xp ≫ xN [12],

σpd

σpp
≈ 1þ d̄ðxNÞ

ūðxNÞ
½xp ≫ xN �: ð2Þ

The increase of the ratio σpd=2σpp above unity observed at
intermediatexvalues [4–6] has thenbeen related directly to an
excess of d̄ over ū in the proton.
Previous analyses of lepton-pair production in pd

scattering have typically assumed that effects associated
with the nuclear structure of the deuteron are negligible at
the energies where the existing experiments [4–6] have
been carried out. On the other hand, there has been a
growing awareness of the need to account for nuclear
corrections in precision determinations of PDFs, particu-
larly at large values of x [13–16], where there is greatest
sensitivity to the short-range structure of the nucleon-
nucleon interaction. In deep-inelastic lepton scattering from
the deuteron, for instance, nuclear smearing and nucleon
off-shell effects have been included in a number of global
PDF analyses [17–22], which have found significant effects
on the d-quark distribution in particular at high x values
(x≳ 0.5). While the sea quark distributions in the proton do
not extend to as large values of x as the valence quark
distributions, the smearing effects become prominent at
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correspondingly smaller x values where the PDFs are
falling most rapidly [23].
Recently Kamano and Lee [24] considered nuclear

corrections to the pd Drell-Yan cross sections in a
center-of-mass frame in which the projectile and target
move with large longitudinal momentum. Boosting the
deuteron wave function from the rest frame under the
assumption that particle number is conserved, they found
small corrections to the existing data from the Fermilab
E866 experiment [5,6], but potentially larger effects at
x≳ 0.5 for the new E906 (“SeaQuest”) experiment at lower
energy [25]. Contributions from pion exchange between the
proton and neutron in the deuteron were also found to be
important at x≳ 0.4 [24], which may appear surprising
given that the small mass of the pion mπ is generally
expected to restrict such effects to the region of
x≲mπ=M ≈ 0.15. Earlier calculations of pion (and other
meson) exchange effects in deep-inelastic lepton-deuteron
scattering [26–28] showed a few percent overall enhance-
ment (“antishadowing”) in the deuteron to nucleon struc-
ture function ratio at x ∼ 0.1. An indirect feedback effect on
quark distributions at large x could result from the con-
servation of valence quark number, although one might
expect the major impact of the pion cloud to be on sea
quark distributions.
In addition to Fermi motion and meson exchange effects,

other corrections are also known to contribute to high
energy nuclear cross sections, such as those associated with
nuclear medium modification of the partonic structure of
bound nucleons (nucleon off-shell corrections) [29–33],
and final state interactions between the spectator nucleon in
the deuteron and the hadronic debris from the proton-
nucleon collision [34]. While both of these corrections are
difficult to constrain theoretically, their uncertainties are
important to estimate for determining the overall errors on
the PDF distributions, especially at large values of x.
In the present analysis we revisit the calculation of the

proton-deuteron Drell-Yan cross section in Sec. II, paying
particular attention to corrections associated with Fermi
smearing and nucleon off-shell effects, which are expected
to persist even at high energies. These corrections have
received attention recently in several analyses [17–20] of
deep-inelastic scattering from the deuteron, where their
impact on PDFs and their uncertainties have been studied
systematically in the context of global QCD fits using the
“weak binding approximation” [13–15]. However, to date
the global PDF analyses have not systematically included
nuclear corrections to the pd Drell-Yan data, and it is
important for a consistent determination of PDFs to
incorporate these in all data sets analyzed which involve
deuterium nuclei.
In Sec. III we evaluate the pN cross section in terms of

parton distributions in the bound nucleon. To take into
account the possible modification of the nucleon structure
due to interactions with the nuclear environment, we

consider a relativistic spectator quark model in which
the bound nucleon PDF is related to the change of the
confinement radius of the nucleon in the deuteron. The
approach is similar to the model developed in Refs. [14,20],
but in addition to valence quarks the model also includes
the effects on sea quarks at small x. The combined effects of
the nuclear smearing and off-shell corrections are illus-
trated in Sec. IV, where we discuss their impact on existing
and planned Drell-Yan experiments at Fermilab [5,6,25]
and J-PARC [35,36]. Finally, in Sec. V we summarize our
findings, and discuss their implications for future analyses
of Drell-Yan cross sections and their constraints on parton
distributions.

II. DRELL-YAN PROCESS IN
PROTON-DEUTERON SCATTERING

In this section we present the derivation of the inclusive
lepton-pair production cross section for proton-deuteron
scattering. After defining the relevant light-cone kinematics
in the collinear frame, we describe how the pd cross section
can be related to the corresponding nucleon-level cross
section for proton scattering from bound nucleons in the
deuteron.

A. Kinematics

We begin by defining the four-momenta of the virtual
photon, beam proton, and target deuteron by qμ, kμ, and Pμ

d,
respectively. To simplify the notation, we also introduce a
rescaled deuteron momentum, pμ

d ≡ ðM=MdÞPμ
d, where

Md is the deuteron mass, so that p2
d ¼ M2. In a frame

of reference where the proton and deuteron are collinear
(“pd frame”) the momenta can be decomposed in terms of
light-cone unit vectors n̄μ and nμ,

qμ ¼ xpkþn̄μ þ xdp−
d n

μ þ qμ⊥; ð3aÞ

kμ ¼ kþn̄μ þ M2

2kþ
nμ; ð3bÞ

pμ
d ¼

M2

2p−
d
n̄μ þ p−

d n
μ; ð3cÞ

where n̄2 ¼ n2 ¼ 0 and n̄ · n ¼ 1, and the “plus” and
“minus” light-cone components of any four-vector a are
defined as a� ¼ ða0 � a3Þ=

ffiffiffi
2

p
. The four-vector qμ⊥

denotes the transverse momentum of the photon, with
q⊥ · n ¼ q⊥ · n̄ ¼ 0, and q2⊥ ¼ −qμ⊥q⊥μ the square of the
corresponding transverse three-momenta. The four-
momentum of the nucleon in the deuteron is denoted by
pμ and can be similarly expanded as

pμ ¼ p2 þ p2⊥
2zp−

d
n̄μ þ zp−

d n
μ þ pμ

⊥; ð4Þ
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where the transverse momentum four-vector pμ
⊥ of the

bound nucleon is defined such that p2⊥ ¼ −pμ
⊥p⊥μ. The

variables xp and xd in Eq. (3a) are given by

xp ¼ qþ

kþ
; xd ¼

q−

p−
d
; ð5Þ

and play the role of Nachtmann scaling variables for the
Drell-Yan process, while the variable z in Eq. (4) represents
the light-cone momentum fraction carried by the nucleon in
the deuteron,

z ¼ p−

p−
d
: ð6Þ

Note that in the collinear frame, where the beam and
target move in opposite directions, the proton and
deuteron variables involve “plus” and “minus” compo-
nents, respectively.
The experimentally measured (external) variables char-

acterizing the process are the rescaled center-of-mass
energy squared of the collisions, s ¼ ðkþ pdÞ2, the dilep-
ton invariant mass squared Q2 ¼ ðlþ l̄Þ2, where l and l̄
are the four-momenta of the produced lepton and
antilepton. For convenience we also define the variable
~s ¼ 2kþp−

d , in terms of which the center-of-mass energy
squared can be written as s ¼ ~sþ 2M2 þM4=~s, so that in
the high energy limit, ~s ≫ M2, one has s → ~s. From
Eq. (3a) the photon virtuality can also be related to ~s as
Q2 ¼ xpxd ~s − q2⊥. In addition, one can define the dilepton
rapidity y� in the proton-deuteron center-of-mass frame
(or pd frame), in which kþ ¼ p−

d ,

y� ¼ 1

2
log

qþ

q−

����
kþ¼p−

d

: ð7Þ

Note that, in contrast to the Lorentz invariants s andQ2, the
rapidity generally depends on the frame of reference. The
external variables are related to the Nachtmann light-cone
momentum fractions by

xp ¼ Q⊥ffiffiffi
~s

p expðy�Þ; xd ¼
Q⊥ffiffiffi
~s

p expð−y�Þ; ð8Þ

where Q2⊥ ¼ Q2 þ q2⊥ is the transverse mass of the dilep-
ton, and inverting the relation between s and ~s, one has

~s ¼ s
2

"
1 −

2M2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2

s

r #
: ð9Þ

In the nuclear impulse approximation one assumes that
the proton beam scatters incoherently from the individual
proton or neutron in the deuteron. In relating the pd
Drell-Yan cross section to the underlying proton-bound

nucleon cross section, it will be convenient to introduce
the (internal) nucleon-level analog of the Nachtmann
scaling variable,

xN ¼ q−

p− ¼ xd
z
; ð10Þ

the pN center-of-mass energy squared,

sN ¼ ðkþ pÞ2 ¼ z~s

�
1þM2 þ p2 þ p2⊥

z~s
þM2ðp2 þ p2⊥Þ

ðz~sÞ2
�
;

ð11Þ

and the nucleon-level rapidity,

y�N ¼ 1

2
log

qþ

q−

����
kþ¼p−

¼ y� þ log
ffiffiffi
z

p
; ð12Þ

where each of the variables has also been related to the
external variables defined above. Note that the rapidity y�N
here does not coincide with the rapidity of a free proton-
bound nucleon collision, since the center of mass is slightly
shifted by the transverse component of the nucleon
momentum [37]. While the kinematical relations in
Eqs. (10)–(12) are exact, in practice the energies relevant
for current and future Drell-Yan experiments are relatively
large, with s ≫ M2. In the high energy limit, s → ∞, one
can therefore usually neglect hadron mass corrections and
the transverse motion of the nucleon, in which case the
proton and deuteron momentum fractions simplify to

xp ≈
Q⊥ffiffiffi
s

p expðy�Þ; xd ≈
Q⊥ffiffiffi
s

p expð−y�Þ; ð13Þ

while the pN center-of-mass energy squared becomes
sN ≈ zs. For the inclusive cross sections that will be
considered here, with q2⊥ integrated over, one can also
assume Q2 ≫ q2⊥, so that Q⊥ ≈Q.

B. Relation between deuteron and
nucleon cross sections

The differential cross section for Drell-Yan lepton-pair
production in inclusive proton-deuteron scattering is
defined as [37]

dσpd

d4qdΩ
¼ 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk · pdÞ2 −M4

p α2

Q4
Lμνðl; l̄ÞWpd

μν ðk; pd; qÞ;

ð14Þ

where Ω is the solid angle spanned by the lepton pair.
The lepton tensor Lμν is given by

Lμνðl; l̄Þ ¼ 2lμl̄ν þ 2lνl̄μ − gμνðl · l̄þm2
lÞ; ð15Þ
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where ml is the lepton mass, which in our case is
negligible. The proton-deuteron hadronic tensor (rescaled
per nucleon) is defined in terms of the matrix element of the
commutator of the currents Jμ evaluated at the space-time
points 0 and ζ,

Wpd
μν ðk; pd; qÞ

¼ M
Md

Z
d4ζ
ð2πÞ4 e

iq·ζhk; pdj½Jμð0Þ; JνðζÞ�jk; pdi; ð16Þ

with the arguments defined in Sec. II A.
In the weak binding approximation, as is relevant for a

weakly bound nucleus such as deuterium, the nucleon
propagator in the nuclear medium can be expanded up to
order p2=M2 in the bound nucleon momentum [33,38,39].
This then allows the deuteron tensor to be factorized into a
nucleon-level tensor ~WpN

μν and a deuteron spectral function
ρd which describes the momentum distribution of the
nucleons in the deuteron,

Wpd
μν ðk; pd; qÞ ¼

X
N

Z
d4p
ð2πÞ4 ρdðpÞ

~WpN
μν ðk; p; qÞ; ð17Þ

where the sum is taken over the proton and neutron,
N ¼ pþ n, and we assume charge symmetric nucleon
distributions in the deuteron. A similar factorization can be
obtained if one neglects antiparticle degrees of freedom, or
treats the nucleons effectively as scalars [16]. In the
impulse approximation, where the scattering takes place
incoherently from individual nucleons in the nucleus, with
the noninteracting “spectator” nucleon on its mass shell, the
spectral function can be written in terms of the deuteron’s
rest frame wave function ψd (which is a function of the
nucleon’s three-momentum only),

ρdðpÞ ¼ N ð2πÞ4jψdðpÞj2δðp0 þ Es −MdÞ; ð18Þ

where N is a normalization factor, Es ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

p
is the

spectator nucleon energy, and

p0 ¼ Md − Es ≈M þ εd −
p2

2M
ð19Þ

is the energy of the interacting nucleon, with εd ¼
−2.2 MeV the deuteron binding energy. In fact, the wave
function depends on the magnitude of the nucleon’s
three-momentum, jpj, and is normalized such thatR
d3pjψdðpÞj2 ¼ 1.
The specification of the deuteron rest frame in comput-

ing the spectral function in Eq. (18) breaks the relativistic
covariance of the formalism, although typically Drell-Yan
experiments are performed with the deuteron target at rest
[5,6,25,35]. Furthermore, the commonly used deuteron
wave functions [40–42] are computed in the nonrelativistic

approximation, and care must be taken to ensure that the
correct normalization is preserved when reducing the full
deuteron tensor defined in terms of relativistic nucleon
fields, to one expressed in terms of nonrelativistic wave
functions. (Relativistic extensions of deuteron wave func-
tions, which incorporate lower components of nucleon
spinors, have also been used recently in high precision fits
to NN scattering data [43].) Although the form of the
normalization factor N is not unique [30,44], the choice
N ¼ M=p0 ensures conservation of the (Lorentz invariant)
baryon number [33,38], in contrast to the conservation of
the (Lorentz noninvariant) particle number discussed in
Ref. [24]. With this choice, the differential pd cross section
in Eq. (14) can be written in the deuteron rest frame as

dσpd

dxpdxdd2q⊥dΩ
¼

X
N

Z
d3p

M
p0

jψdðpÞj2
~s

8Mjpj
α2

Q4

× Lμν ~WpN
μν ðk; p; qÞ; ð20Þ

where we have used the relation d4q ¼ kþp−
d dxpdxdd

2q⊥.
In analogy with Eq. (14), the product of the lepton

tensor with the pN hadronic tensor in Eq. (20) is related to
the proton–off-shell nucleon differential scattering cross
section according to

d ~σpN

dxpdxNd2q⊥dΩ
¼ z~s

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk ·pÞ2−M2p2

p α2

Q4
Lμν ~WpN

μ;ν ðk;p;qÞ;

ð21Þ
where dxN ¼ dxd=z. Integrating over the transverse photon
momentum q⊥ and dΩ, the proton-deuteron cross section
σpdðxp; xdÞ≡ dσpd=dxpdxd can therefore be written in
terms of the pN cross section as

σpdðxp; xdÞ ¼
X
N

Z
d3pjψdðpÞj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk · pÞ2 −M2p2

p
zp0jpj

× ~σpN
�
xp;

xd
z
; p2

�
; ð22Þ

where ~σpN ≡ d ~σpN=dxpdxN . Note that the proton-nucleon
cross section here has an explicit dependence on p2, which
reflects the possible modification of the nucleon structure
due to interactions with other nucleons in the nucleus. This
will require a generalization of the expression for the on-
shell cross section in Eq. (1) to account for the dependence
of the bound nucleon PDFs on p2, which in general does
not vanish even in the high energy limit. For the case of the
deuteron, where the spectator nucleon is on-mass-shell, the
virtuality of the interacting nucleon p2 can be related to p2⊥
and z by p2 ¼ −p2⊥Md=ðMd −MzÞ þ p2

max, with p2
max ¼

zMðM2
d −M2 − zMMdÞ=ðMd −MzÞ. The off-shell gener-

alization of the pN cross section and the parton distributions
in the bound nucleon will be discussed in Sec. III B.
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C. Convolution and nuclear smearing function

In practical applications of the cross section relation in
Eq. (22) it is convenient to express the three-dimensional
integration over p in terms of integrations over the light-
cone fraction z and the transverse momentum p2⊥, as
defined in Sec. II A,

Z
d3p ¼

Z
dzdp2⊥

πMEs

Md −Mz
; ð23Þ

where the integration over the azimuthal angle has
been performed. The on-shell spectator condition
restricts the nucleon momentum to be p2 ¼ p2⊥ þ p2

z ,
where the longitudinal momentum is given by pz ¼
½p2⊥ þ M2 − ðMd −MzÞ2�=2ðMd −MzÞ. Using these rela-
tions, the pd cross section can then be written as

σpdðxp; xdÞ ¼
X
N

Z
dz
z
dp2⊥fðz; p2⊥Þ ~σpN

�
xp;

xd
z
; p2

�
;

ð24Þ

where

fðz; p2⊥Þ ¼
πMEs

Md −Mz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0p0 þ jkzjpzÞ2 −M2p2

p
jkzjp0

jψdðpÞj2

ð25Þ

is the z- and p⊥-dependent light-cone momentum distri-
bution of nucleons in the deuteron (or unintegrated smear-
ing function). In the high energy limit, as is considered in
the applications here, where k20 ≫ p2 þ p2⊥ ≲Oð1 GeV2Þ,
one can approximate the function fðz; p2⊥Þ by

fðz; p2⊥Þ ≈
πMEs

Md −Mz

�
1þ pz

p0

�
jψdðpÞj2: ð26Þ

This result coincides with the smearing function for deep-
inelastic scattering computed in the Bjorken limit [14,16],
and is automatically normalized to unity. A simplified
convolution in terms of one-dimensional smearing func-
tions can be obtained if the off-shell nucleon cross section
is expanded around its on-shell limit, p2 ¼ M2,

~σpNðxp; xN; p2Þ

≈ σpNðxp; xNÞ
�
1þ ðp2 −M2Þ

M2
δσpNðxp; xNÞ

�
; ð27Þ

where σpNðxp; xNÞ≡ ~σpNðxp; xN;M2Þ is the on-shell
proton-nucleon cross section, and

δσpNðxp; xNÞ ¼
∂ log ~σpN

∂ logp2

����
p2¼M2

ð28Þ

is the lowest order off-shell correction. Higher order
terms in this expansion are suppressed by additional
powers of ðp2−M2Þ=M2≈2ðεd−p2=MÞ=M. The expan-
sion (27) then enables the p⊥ dependence of the
integrand to be factorized into a p⊥-integrated (on-shell)
smearing function fðzÞ and an off-shell smearing func-
tion fðoffÞðzÞ,

σpdðxp; xdÞ ¼
X
N

Z
1

xd

dz
z

�
fðzÞ þ fðoffÞðzÞδσpN

�
xp;

xd
z

��

× σpN
�
xp;

xd
z

�
; ð29Þ

where

fðzÞ ¼
Z

dp2⊥fðz; p2⊥Þ; ð30Þ

and

fðoffÞðzÞ ¼
Z

dp2⊥
p2 −M2

M2
fðz; p2⊥Þ: ð31Þ

The result (29) is analogous to the generalized convo-
lution expressions for deep-inelastic nuclear structure
functions [14] in the high energy limit, corresponding
in particular to the Fd

1 structure function rather than Fd
2

(or xFd
1).

The z dependence of the smearing function fðzÞ and
the off-shell correction fðoffÞðzÞ is illustrated in Fig. 1 for
several deuteron wave functions based on the AV18 [41],
CD-Bonn [42], and WJC-1 [43] nucleon-nucleon poten-
tials. As expected, the on-shell function fðzÞ peaks
strongly around z ≈ 1, and falls off rapidly away from
the peak. The wave function dependence is relatively
weak, except at large jz − 1j [45]. Since the WJC-1 wave
function has the hardest momentum distribution of the
models considered, the magnitude of the smearing
function is correspondingly smaller at the peak in order
to preserve the correct normalization. In contrast, the off-
shell smearing function fðoffÞðzÞ displays a relatively
stronger dependence on the deuteron wave function, with
the largest magnitude for the WJC-1 model and smallest
magnitude for the CD-Bonn wave function. The negative
sign of fðoffÞðzÞ arises from the p2 −M2 factor in the
integrand in Eq. (31), since the virtuality of the off-shell
nucleon is always less than M2. The small values of the
deuteron binding energy and average three-momentum
distribution suppress the magnitude of the off-shell
function relative to fðzÞ by about an order of magnitude.
However, as we shall see in the next section, where we
discuss the calculation of the pN cross section at the
partonic level, the off-shell corrections can have a
significant effect on the overall pd cross section.
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III. PARTON-LEVEL CROSS SECTION

To compute the pd cross section in Eq. (29) requires
calculation of the nucleon-level cross section in terms of
PDFs of the beam proton and bound nucleon in the target
deuteron. In this section we derive the proton-bound
nucleon cross section, working to leading order accuracy
in the strong coupling. After defining the kinematics
relevant for the parton-level process, we express the off-
shell pN cross section in terms of off-shell generalizations
of PDFs in the bound nucleon, and construct a simple
model to describe the possible p2 dependence of the
off-shell PDFs.

A. Parton-parton scattering

In analogy with the definition of the external momen-
tum variables in the pd frame in Eqs. (3), we decompose
the four-momenta of the colliding partons in the proton
(k̂) and nucleon (p̂) in terms of the light-cone vectors nμ

and n̄μ,

k̂μ ¼ k̂þn̄μ þ k̂2 þ k̂2⊥
2k̂þ

nμ þ k̂μ⊥; ð32aÞ

p̂μ ¼ p̂2 þ p̂2⊥
2p̂− n̄μ þ p̂−nμ þ p̂μ

⊥; ð32bÞ

where k̂2 and p̂2 are the partons’ virtualities and k̂μ⊥ and
p̂μ
⊥ the respective transverse momentum four-vectors. In

the collinear factorization framework, the total pN
amplitude at leading twist is expressed as a product of
the partonic hard scattering amplitude and the soft,
nonperturbative parton distributions in the hadrons. The
partonic amplitude is calculated by expanding the parton
momentum about the direction of motion of the parent
hadron and about the parton’s on-shell limit [46–48]. The
hard scattering process can thus be computed by setting
the partonic momenta in Eqs. (32) to

k̂þ → ξpkþ; k̂μ⊥ → 0; ð33aÞ

p̂− → ξNp−; p̂μ
⊥ → ξNp

μ
⊥; ð33bÞ

which defines the partonic light-cone momentum frac-
tions ξp and ξN in the proton and target nucleon,
respectively. For light quarks, without loss of generality,
one can take the (on-shell) quarks to be massless, so that

k̂2 → 0; p̂2 → 0: ð34Þ

At leading order in the strong coupling, the quark-
antiquark pair fuses into a virtual photon, which sub-
sequently decays into a dilepton. Conservation of
four-momentum, qμ ¼ k̂μ þ p̂μ, then implies that the
momentum fractions are related by

ξN ¼ xN ¼ xd
z
; ξp ¼ Q2

Q2⊥
xp; ð35Þ

which can be obtained by equating the “−” and “þ”
components, respectively, while from the transverse com-
ponents one has q2⊥ ¼ x2Np

2⊥. Since the average transverse
momentum of the bound nucleon is hp2⊥i ≈ p2

F ∼
0.1 GeV2, with pF the deuteron Fermi momentum, one
can therefore neglect the transverse momentum compared
to the dilepton mass Q2. At high energies one then obtains
ξp ≈ xp. In this limit the proton–off-shell nucleon cross
section becomes

~σpNðxp; xN; p2Þ

¼ 4πα2

9xpxNsN

X
q

e2q½qðxpÞ ~̄qðxN; p2Þ þ q̄ðxpÞ ~qðxN; p2Þ�;

ð36Þ

where ~qðxN; p2Þ is the PDF for a quark in an off-shell
nucleon with virtuality p2, such that in the on-shell
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FIG. 1 (color online). Nucleon smearing functions in the deuteron: (a) on-shell distribution fðzÞ and (b) off-shell function foffðzÞ, for
the AV18 [41] (solid lines), CD-Bonn [42] (dashed lines), and WJC-1 [43] (dotted lines) deuteron wave functions.
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limit, p2 → M2, one has ~qðxN;M2Þ≡ qðxNÞ. Note that at
high energy xNsN ≈ xds, so that the dependence on z
enters only through the PDF arguments, and the entire
off-shell dependence of the cross section is contained in
the p2 dependence of the PDFs. In the next section we
estimate this dependence in a simple spectator model of
the nucleon.

B. Off-shell corrections

In the absence of a first principles calculation of the
nuclear bound state in terms of quark and gluons degrees of
freedom, computing the off-shell behavior of PDFs is rather
challenging. Several attempts have been made in the
literature to estimate the p2 dependence of the off-shell
distribution ~q within effective quark models [14,29,32,49].
Generally the models give rise to a suppression of the PDFs
as a function of x, although the quantitative features of the
off-shell modification depend somewhat on the details of
the specific model.
In this analysis we adopt the “modified Kulagin-Petti”

model [14] for the valence distributions used recently in the
CJ global PDF analyses [19,20] which focused on the high-
x region, and extend it to the sea quark sector to describe
the off-shell PDFs at both small and large x. An attractive
feature of this model is that the corrections can be related to
the average virtuality of the bound nucleons in the nuclear
medium, and the corresponding change of the nucleon’s
confinement radius. The valence PDFs for the bound
nucleons are further constrained by baryon number con-
servation, so that the off-shell corrections do not alter the
normalization.
In analogy with Eq. (27), we expand the off-shell PDF

~qðx; p2Þ to lowest order about its on-shell mass limit,

~qðx; p2Þ ¼ qðxÞ
�
1þ ðp2 −M2Þ

M2
δqðxÞ

�
; ð37Þ

where the off-shell correction δqðxÞ is given by

δqðxÞ ¼ ∂ log ~q
∂ logp2

����
p2¼M2

: ð38Þ

Using Eqs. (21), (27), and (37), the off-shell correction
to the proton-nucleon Drell-Yan cross section can be
written as

σpNδσpN ¼ 4πα2

9xpxNsN

X
q

e2q½qðxpÞq̄ðxNÞδq̄ðxNÞ

þ q̄ðxpÞqðxNÞδqðxNÞ�; ð39Þ

where the ðp2 −M2Þ term in Eq. (27) has been factored out.
At the parton level, the pd differential cross section can
then be expressed (at leading order) in terms of the PDFs in
the beam proton and target deuteron,

σpdðxp; xdÞ ¼
4πα2

9xpxdsN

X
q

e2q½qðxpÞq̄dðxdÞ þ q̄ðxpÞqdðxdÞ�;

ð40Þ
where, in analogy with Eq. (29), the PDF in the deuteron qd

is given by

qdðxdÞ ¼
X
N

Z
1

xd

dz
z

�
fðzÞ þ fðoffÞðzÞδq

�
xd
z

��
qN

�
xd
z

�
;

ð41Þ
which includes corrections from nuclear smearing and
nucleon off-shell effects.
To evaluate the off-shell correction one assumes that the

p2-dependent PDF can be represented in terms of a spectral
function Dq [14,33],

~qðx; p2Þ ¼
Z

dw2

Z
p̂2
max

−∞
dp̂2Dqðw2; p̂2; x; p2Þ; ð42Þ

where w2 ¼ ðp − p̂Þ2 is the mass of the (on-shell) spectator
quarks in the bound nucleon, and p̂2 is the interacting
quark’s virtuality, with a maximum value p̂2

max ¼
x½p2 − w2=ð1 − xÞ�. Note that since the PDF in Eq. (42)
represents the soft, nonperturbative parton momentum
distribution in the nucleon, there is no hard scale to
suppress contributions from off-shell partons, in contrast
to the hard scattering kinematics in Eqs. (33a). However,
the spectral function Dq must fall off sufficiently fast at
large p̂2 so as to ensure convergence of the spectral
integral.
Following Refs. [14,19,33,38], we use the single-pole

approximation in which the spectator spectrum is repre-
sented by a single (on-shell) state with effective mass w̄2

q for
a given quark flavor q,

Dq ¼ δðw2 − w̄2
qÞΦqðp̂2;Λðp2ÞÞ: ð43Þ

Here the function Φq describes the momentum distribution
of quarks with virtuality p̂2 in the off-shell nucleon, and the
scale parameter Λðp2Þ suppresses contributions from large
p̂2. Note that in this approximation the x dependence of the
off-shell distribution ~q arises from the upper limit on the p̂2

integration in Eq. (42), which depends on x as well as on w2

and p2. In Ref. [14] the scale Λ was related to the
confinement radius RN of the nucleon, Λ ∼ 1=RN , which
allows the p2 dependence of Λ to be interpreted in terms of
the change in the nucleon radius when the nucleon is bound
inside the deuteron. Using Eq. (43), the off-shell correction
δq in Eq. (37) can then be written

δqðxÞ ¼ Cq þ
∂ log q
∂x hqðxÞ; ð44Þ
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where Cq is determined by PDF normalization constraints,
and

hqðxÞ ¼ xð1 − xÞ ð1 − λÞð1 − xÞ þ λw̄2
q=M2

ð1 − xÞ2 − w̄2
q=M2

; ð45Þ

with the parameter λ defined as

λ ¼ ∂ logΛ2

∂ logp2

����
p2¼M2

: ð46Þ

Since the cutoff Λ is inversely proportional to RN , one can
also write the λ parameter as λ ¼ −2ðδRN=RNÞðδp2=M2Þ,
where δRN is the change in the nucleon’s radius in the
nuclear medium, and δp2=M2 ¼ R

dzfðoffÞðzÞ is the
average nucleon virtuality in the deuteron. The value
of δp2 depends on the NN potential model, and ranges
between δp2=M2 ≈ −3.6% and −6.5% for the CD-Bonn
[42] and WJC-1 [43] deuteron wave functions, respec-
tively, with other wave functions such as Paris [40] and
AV18 [41] giving intermediate values. Estimates of the
change in confinement radius in the deuteron based on
the analysis of data on the nuclear EMC effect suggest
[50] a value for δRN=RN ∼Oð1%–2%Þ. In Ref. [20] the
uncertainties in the off-shell corrections were estimated
by considering several combinations of the deuteron
wave function and the nucleon “swelling,” and were
represented in the form of the “CJ12 min” (small nuclear
correction), “CJ12mid” (medium nuclear correction), and
“CJ12max” (large correction) PDFs. These correspond,
respectively, to the WJC-1 wave function (hardest) with a
0.3% nucleon swelling, the AV18 wave function with a
1.2% swelling effect, and the CD-Bonn wave function
(softest) with a 2.1% nucleon swelling.
In previous calculations of off-shell corrections to

PDFs using this type of model [14,19,33,38] (which,
following Ref. [51], we refer to generally as the “off-shell
covariant spectator” or OCS model), only valence quark
distributions were studied. However, with reasonable
approximations it is straightforward to extend this model
to compute the off-shell corrections to sea quark (and
gluon) distributions, as needed in the analysis of Drell-
Yan data. (We include gluons here for completeness, even
though the gluon PDF does not enter explicitly in the
leading order Drell-Yan cross section; it will be relevant,
however, for next-to-leading-order calculations.) The
essential difference will be in the values of the spectator
effective mass w̄2

q for a given parton flavor. Within the
OCS model framework, a fit to existing PDFs in the free
proton gives w̄2

v ¼ 2.2 GeV2, w̄2
s ¼ 5.5 GeV2, and w̄2

g ¼
8.0 GeV2 for the valence, sea, and gluon distributions,
respectively. The valence mass parameter is similar to
that found in Ref. [14], and the larger masses for the sea

quark and gluon distributions reflect the larger minimum
number of partons required in the intermediate state for
sea quarks and gluons compared to valence quarks.
The normalization constant Cq in Eq. (44) is computed

for valence quarks qv ¼ q − q̄ by requiring that the off-
shell correction does not alter the baryon number [19],

Z
1

0

dxqvðxÞδqvðxÞ ¼ 0: ð47Þ

For sea quarks and gluons, on the other hand, perturbative
radiation of soft gluons and generation of qq̄ pairs render
the corresponding integrals infinite. To proceed one can
either impose a constraint from a higher moment, such as
the momentum sum rule, or alternatively consider a model
of the nucleon at a low momentum scale involving a finite
number of partonic degrees of freedom. Parametrizations
based on this boundary condition have long been utilized
by the Dortmund group [52–54], for example, assuming
valencelike gluon and sea PDFs at low Q2, and generating
the high-Q2 dependence through perturbative evolution.
This in fact is closer in spirit to the spectral function model
of Eq. (42) with finite values of the spectator system
mass w̄2

q.
We considered both methods of determining the sea

normalization, but found relatively small differences at
medium to high values of x (x≳ 0.3). At smaller x, results
from Drell-Yan measurements of cross section ratios of C,
Ca, Fe, and W to deuterium [55,56] in the Fermilab E772
experiment disfavor large medium modifications of anti-
quark distributions for 0.1≲ x≲ 0.3. In this range, the OCS
model with the momentum sum rule constraint gives a
fairly small correction, albeit with sizeable uncertainty, and
to ensure consistency with the E772 Drell-Yan data we
therefore smoothly extrapolate the corrections to zero
below x ≈ 0.15.
The ratios qd=qN of the PDFs in the deuteron,

calculated through Eq. (41), to those in an isoscalar
nucleon (N ¼ pþ n) are illustrated in Fig. 2 for the
valence quark uv þ dv, sea quark (or antiquark) ūþ d̄,
and gluon distributions. For consistency with the origi-
nal analysis of the Drell-Yan data from the E866
experiment [6], we use the input nucleon PDFs from
the CTEQ5 global QCD analysis [57] as in Ref. [6]. The
distributions in the deuteron include the effects of
nuclear smearing and nucleon off-shell corrections, with
the bands in Fig. 2 illustrating the maximal range from
different models of the deuteron wave function and
nucleon swelling parameters, as discussed above.
Specifically, the upper edges of the bands, with the
largest qd=qN ratios, correspond to the smallest nuclear
corrections (WJC-1 deuteron wave function with a 0.3%
nucleon swelling), while the lower edges correspond to
stronger nuclear corrections (CD-Bonn wave function
and up to ∼2% nucleon swelling).
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The effects of the nuclear smearing are evident in the rise
above unity at x≳ 0.5 of the valence quarks and gluon
ratios, characteristic of nuclear deep-inelastic structure
function ratios in the nuclear EMC effect [20]. The
behavior of the antiquark ratios for the smallest nuclear
corrections is similar at intermediate and large x, while for
the strongest nuclear corrections the ratio stays below unity
over the range x≲ 0.7 over which the antiquark PDFs are
determined in the CTEQ5 fit [57]. The large spread in the
antiquark ratios for x≳ 0.4 results from a combined effect
of the nuclear correction uncertainties, and the very small
size (with large uncertainty) of the ū and d̄ PDFs in this
region.
Finally, we also note that the general form of the

convolution in Eqs. (40) and (41) closely resembles the
result obtained recently by Kamano and Lee [24], although
with some important differences. In particular, whereas the
momentum fraction z here is defined in the context of
collinear factorization on the light cone [58], as a fraction of
the “minus” components of the proton and deuteron four-
vectors [Eq. (6)], in Ref. [24] it is related to the ratio
pz=pave

z of the nucleon’s longitudinal momentum relative to
its quadratic average with respect to the deuteron wave
function, pave

z ¼ hp2
zi1=2. Therefore, although the formal

expressions for the pd cross sections are similar, a direct
comparison of the cross sections derived here and in
Ref. [24] is difficult because of the different frames and
variables used in the two approaches. An advantage of the
present approach is that by working with light-cone
momentum fractions our results are invariant under
Lorentz boosts along the light front. In practice we perform
the calculation in the rest frame of the deuteron, so that no
approximations need to be made in boosting the deuteron
wave function.

IV. NUCLEAR EFFECTS ON CROSS
SECTION RATIOS

Using the formalism for the pd Drell-Yan cross section
derived in Sec. II and the OCS model for the off-shell
nucleon PDFs in the deuteron in Sec. III, we can proceed to
compute the nuclear effects in the pd dilepton production
reaction by comparing them with the corresponding proton-
free nucleon scattering process. In Fig. 3 we illustrate the
effects of the nuclear corrections in the ratio of the pd to
the isoscalar nucleon pN Drell-Yan cross section computed
at the kinematics of the Fermilab E866 [6] experiment
(incident energy k0 ¼ 800 GeV and average Q2 ¼
54 GeV2). The ratio displays the characteristic shape of
the nuclear EMC effect, with a small, few percent depletion
at intermediate values of x (x≲ 0.5) and a rapid rise above
unity at larger x (x≳ 0.6). The greater spread in the
calculated ratio in the high-x region (x≳ 0.5) reflects the
larger uncertainties in the deuteron wave function at short
distances, or large z in the nuclear smearing function in
Fig. 1. The nucleon off-shell corrections act to reduce the
pd cross section over most of the range of x, resulting in a
more sizeable nuclear effect at intermediate x (0.2≲ 0.6).
The overall uncertainty also increases due to the range
of possible behaviors of the bound nucleon PDFs, as
discussed in Sec. III.
The reduction of the pd Drell-Yan cross section in the

presence of nuclear corrections, relative to the pN cross
section, is clearly visible in the pd to pp cross section ratio
shown in Fig. 4. While the effect of the nuclear smearing is
relatively mild over the range of x covered by the Fermilab
E866 data, 0.02≲ x≲ 0.3 (qualitatively similar to that
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FIG. 3 (color online). Ratio of pd to pN Drell-Yan cross
sections σpd=σpN at the kinematics corresponding to the Fermilab
E866 experiment [6] (incident proton energy k0 ¼ 800 GeV and
average Q2 ¼ 54 GeV2), including the effects of nuclear smear-
ing (green band) and smearing þ nucleon off-shell corrections.
The band for the smearing-only corrections represents the range
defined by the WJC-1 [43], AV18 [41], and CD-Bonn [42]
deuteron wave functions, while the smearing þ off-shell band
includes in addition the range of nucleon off-shell (swelling)
parameters [20].
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FIG. 2 (color online). Ratio of PDFs in the deuteron to those in
an isoscalar nucleon, qd=qN , for valence q ¼ uv þ dv quarks (red
shaded band), antiquarks q ¼ ūþ d̄ (green shaded band), and
gluons (blue shaded band), including the effects of nuclear
smearing and nucleon off-shell corrections. The bands represent
the range of deuteron wave functions and nucleon off-shell
parameters used in Ref. [20].
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found in Ref. [24]), the addition of nucleon off-shell
corrections lowers the overall free-nucleon cross section
appreciably for x≳ 0.1–0.2. An intriguing feature of the
E866 data is the apparent reduction of the pd to pp cross
section ratio below unity at the two largest-x data points,
albeit with large uncertainties, suggesting a possible sign
change of d̄ − ū for x≳ 0.25. By lowering the pd cross
sections in this region, the nuclear corrections computed
here improve the agreement with the data in this region
(using the CTEQ5 PDF set [57]), although it is unlikely that
this can account for the entire effect at large x.
To better understand the large-x behavior of d̄=ū, the new

SeaQuest experiment using a lower proton beam energy of
k0 ¼ 120 GeV, was proposed to measure the pd to pp
Drell-Yan cross section ratio to x ≈ 0.45 [25]. With the
expected precision of the data illustrated in Fig. 5, this
measurement should unambiguously determine the trend of
the d̄=ū ratio in the x ≈ 0.3–0.4 region. Computing the
nuclear effects on the pd cross section at the SeaQuest
kinematics, the impact of the nuclear smearing and off-shell
corrections is comparable to or even larger than the
projected uncertainties for 0.15≲ x≲ 0.4. This suggests
that the overall systematic uncertainties in the measurement
may be underestimated in this region, and that further work
may be needed in order to better constrain the theoretical
uncertainties in the calculation of the nuclear corrections to
the pd cross section. The SeaQuest experiment commenced
data taking in 2014, and is expected to run until late 2015,
with first results anticipated by the end of 2014 [59].
Beyond the Fermilab experiments, a proposal has been

made to extend the Drell-Yan cross section measurements
to even larger x (x≲ 0.6) at the J-PARC facility in Japan
[35], using a 50 GeV proton beam. The size of the nuclear

smearing and nucleon off-shell corrections to the pd=pp
cross section ratio is illustrated in Fig. 6 for an average
dilepton mass of Q2 ¼ 25 GeV2, together with the
expected experimental uncertainties. Because of the higher
values of x that would be probed here, the effects of the
nuclear smearing are expected to be correspondingly more
significant than for the lower-x data from the E866 and
SeaQuest experiments, as can be anticipated from Fig. 3.
As for the SeaQuest data, the uncertainty range of the
nuclear corrections is similar to or larger than the projected
experimental uncertainties for 0.25≲ x≲ 0.5, again sug-
gesting the need to better constrain the nuclear corrections
if the planned precision is to be reached. Currently, the
J-PARC facility is approved for 30 GeV proton running; an
upgrade to a 50 GeV proton beam would be needed to
realize the goals of the proposed experiment [35,59].
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FIG. 4 (color online). Ratio of pd to pp Drell-Yan cross
sections σpd=2σpp at the kinematics of the Fermilab E866 data
[6], with incident proton energy k0 ¼ 800 GeV and average
Q2 ¼ 54 GeV2. The E866 data (filled circles) are compared with
the free nucleon calculation without any nuclear effects (blue
dotted curve), with nuclear smearing corrections only (green
dashed curve), and with nuclear smearing þ off-shell corrections
(red solid band).
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V. CONCLUSIONS

With the significant improvement in the determination of
the d̄=ū ratio at large values of x expected from upcoming
experiments, particularly the SeaQuest Drell-Yan experi-
ment at Fermilab [25], preliminary results from which are
anticipated in late 2014 [59], the need exists to understand
the computation of the cross section with sufficient
accuracy for an unambiguous extraction of the signal. In
this study we have derived the proton-deuteron dilepton
production cross section in terms of the proton-nucleon
cross section, paying particular attention to nuclear smear-
ing and nucleon off-shell corrections in the deuteron. The
form of the relation between the nuclear and nucleon-level
cross sections resembles the familiar convolution result
from deep-inelastic scattering [13–16]: in the high energy
limit the nucleon light-cone momentum distribution in the
deuteron in pd scattering is found to correspond exactly to
the Bjorken limit smearing function relevant for describing
electron-deuteron scattering in the weak binding approxi-
mation [60].
The effects of Fermi motion and nuclear binding con-

tained in the nuclear smearing function are relatively small
in the region of x spanned by the existing E866 data, but
become more noticeable at the higher x values (x≳ 0.4)
that will be accessed in the new Fermilab [25] and proposed
J-PARC [35] experiments. Corrections arising from the
possible off-shell deformation of the nucleon PDFs in the
deuteron have been estimated within a simple spectator
model of the nucleon that has previously been applied to
the analysis of lepton-deuteron deep-inelastic data
[14,19,20]. For the same range of nucleon swelling
parameters as those adopted in the recent CJ global PDF
analysis [20], the ratio of pd to ppDrell-Yan cross sections
is found to be significantly reduced compared with the free-
nucleon calculation. Furthermore, while the nuclear model
uncertainty, from both the short-distance part of the
deuteron wave function and the nucleon off-shell param-
eters, is small compared with the existing E866 data, it is of
similar size to or even larger than the projected uncertain-
ties for the new SeaQuest experiment in the range

0.15≲ x≲ 0.4. Generally, the magnitude of the corrections
and their uncertainties increase with increasing values of x.
These findings suggest that the overall systematic

uncertainties in the future measurements may be under-
estimated at large x, and that further work may be
warranted to reduce the theoretical uncertainties on the
pd cross section in order to attain the precision goal of the
experiments. Although the exact magnitude of the nuclear
corrections is subject to some model dependence, the sign
of the effect appears universal. In particular, the reduction
of the pd cross sections will lead to an increased d̄=ū ratio
extracted from global PDF analyses, with the largest effects
expected at the highest x values. While in the present work
we have made use of the CTEQ5 parametrization of global
PDFs [57] to illustrate the systematics of the nuclear
corrections, the results from this analysis will be used in
future global QCD fits [61] to obtain a more reliable
estimate of the light quark sea distributions in the proton.
For future theoretical work, it will also be necessary to
reexamine the pion-exchange corrections to pd scattering,
which were found in Ref. [24] to be significant at large x.
Earlier work on pion exchange in lepton-deuteron deep-
inelastic scattering [26–28] suggested that pion-exchange
corrections were important primarily at lower x values,
x ∼ 0.1. A combined analysis of both nucleonic and pionic
contributions within our collinear framework, as well as
nuclear shadowing corrections at small x, would then
enable a complete description of the nuclear effects in
the pd Drell-Yan reaction.
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