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To avoid possible electroweak vacuum instability in the vectorlike fermion model, we introduce a new
singlet scalar to the model, which couples to the vectorlike fermion and also mixes with the Higgs boson
after spontaneous symmetry breaking. We investigate the vectorlike fermion predominantly coupled to the
third-generation quarks, and its mass is generated from the vacuum expectation value of the new scalar field
in the model. In this setup, as running towards high energies, the new scalar provides a positive contribution
to the running of the Higgs quartic coupling, and the matching on the scale of the scalar mass gives rise to a
threshold effect that lifts up the Higgs quartic coupling strength. The two effects help stabilize the
electroweak vacuum of the Higgs potential. Therefore, this setup could evade possible vacuum instability in
the vectorlike fermion model. We show that a large range of parameter space is allowed to have both stable
Higgs vacuum and perturbativity of all the running couplings, up to the Planck scale. We also examine the
experimental constraints from the electroweak precision observables such as oblique corrections S, 7" and
nonoblique corrections to the Zb; b; coupling, the Higgs coupling precision measurements, and the current

LHC direct searches.
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I. INTRODUCTION

The discovery of the Higgs-like scalar boson at the Large
Hadron Collider (LHC) is the great triumph of the standard
model (SM) of particle physics. The Higgs boson mass was
measured at the ATLAS and CMS with reasonable accu-
racy: m;, = 125.9 +£ 0.4 GeV [1]. Now that all the param-
eters of the SM are determined by experimental data, the
completion of the SM evoked our interest in its high energy
behavior such as Higgs vacuum stability. The measured
value of the Higgs boson mass leads to a very intriguing
situation. The most accurate analysis of the electroweak
vacuum stability in the SM was performed in Refs. [2,3],
showing that the theory sits near the boundary between a
stable phase and an instable phase of the vacuum structure
if there is no new physics (NP) beyond the SM. Therefore,
NP should be introduced to stabilize the electroweak
vacuum of the Higgs potential.

There are already many kinds of NP models available to
address the TeV scale physics. These models involve
various extensions of the scalar sector, fermion sector,
and/or gauge boson sector of the SM. The Higgs vacuum
stability serves as a criterion to justify the high energy
behavior of these NP models [4]. Among these, the models
with an extended fermion sector would worsen the potential
instability [5—8]. We will focus on a vectorlike fermion
model predominantly coupled to the third-generation
quarks [9-13] and manage to improve the stability of
the electroweak vacuum by modifying its particle content.
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The vectorlike fermion model is less constrained by the
experimental data than the models with extra chiral
fermions. Because of nondecoupling behavior of the chiral
fermion, the electroweak data from the precision measure-
ments, the Higgs coupling measurements, and the LHC
direct searches put very strong limits on its parameter space
[14,15]. Moreover, due to the tight constraints on the light
quarks from flavor physics, the heavy vectorlike fermion
cannot significantly couple to the first two generations.

In order to find out the true vacuum state and analyze its
stability, we need to investigate the Higgs effective poten-
tial. Since the instability occurs at energies much higher
than the electroweak scale, the effective potential is well
approximated by the renormalization group (RG) improved
tree-level expression for the large field values h > v =
246 GeV [3]:

V) =gt m

where the Higgs quartic coupling A(u) runs with the
renormalization scale p. Generally speaking, if the Higgs
quartic coupling A(u) becomes negative, the effective
potential becomes instable through developing a minimum
much deeper than the realistic minimum. As we know, in
the SM the Higgs quartic coupling becomes negative at
around 10'° GeV according to complete next-to-next-to-
leading order calculation of the running Higgs quartic
coupling [2]. As shown in Fig. 3 of Ref. [3], in which the
measured uncertainties of the top quark and the Higgs
masses are taken into account, the SM Higgs vacuum state
lies in a narrow region of the metastable phase. In the
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vectorlike fermion model, the new vectorlike fermion has
negative contributions to the f function of the running
Higgs quartic coupling, which drives the Higgs potential
towards the absolute instable phase.

To cure the potential instability in the vectorlike fermion
model, we would like to modify the particle content and
interactions in the model. In the RG running, new bosonic
particles provide positive contributions to the running of
the Higgs quartic coupling, while new fermionic particles
contribute negatively. Although there may be many pos-
sible ways to extend the model, here we suggest a very
simple and economical extension by adding a new scalar
singlet to the vectorlike fermion model. This new singlet
scalar couples to the Higgs boson and thus provides a
positive contribution to the running of the Higgs quartic
coupling. However, if the new scalar couples only to the
Higgs boson but not to others, the quartic coupling of the
new scalar will increase as the energy goes higher and
higher. Thus it is likely that the scalar quartic coupling by
itself runs into a nonperturbativity region at or below the
Planck scale. To avoid this possible problem, we require
that the new scalar couples to the vectorlike fermion, which
provides a negative contribution to the running of the scalar
quartic coupling and thus controls the growth of the scalar
quartic coupling strength at high energies. We assume that
the new scalar singlet has a nonzero vacuum expectation
value (VEV). To make the model more predictive, this
VEV also generates the mass term for the vectorlike
fermion. In this setup, there are two effects to lift up the
running Higgs quartic coupling strength. First, the new
scalar provides a positive contribution to the f function of
the running Higgs quartic coupling. Second, in the match-
ing on the scale of the scalar mass, the Higgs quartic
coupling obtains a positive threshold shift [4,16].
Therefore, the new scalar could stabilize the electroweak
vacuum of the Higgs potential, and this setup could
evade possible vacuum instability in the vectorlike fermion
model.

The paper is organized as follows. In the next section, we
set up the Lagrangian of the model and obtain the mass
spectrum in the model. In Sec. 3, we present a study of
vacuum stability through the one-loop renormalization
group running. The matchings between different energy
scales are carefully treated. We consider the theoretical
bounds on the masses of the heavy particles from pertur-
bative unitarity in Sec. 4. In Sec. 5, the precision electro-
weak observables, including the oblique corrections S, T
and nonoblique corrections to the Zb; b, couplings, are
examined. In Sec. 6, we perform a global fit on the Higgs
coupling precision measurements and put constraints on the
parameter space. Then we discuss the direct searches on the
heavy scalar and the vectorlike fermion. Finally, we
summarize the constraints on the parameter spaces in the
conclusion section. In Appendix A, we provide details of
the relevant electroweak Lagrangian in the model. In
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Appendix B, we list the one-loop renormalization group
equations. Appendix C presents the detailed calculations on
the oblique corrections. In Appendix D, we list the partial
decay widths of the heavy particles.

II. THE MODEL

We consider an extension of the SM, by adding a
vectorlike fermion singlet y with charge +2/3, and a real
neutral singlet scalar y. Since the vectorlike fermion has the
same quantum number as the right-handed up-type quarks,
they will mix together. Because of the tight constraints on
the up and charm quarks from flavor physics, we assume
the vectorlike fermion mixes only with the top quark as a
fermionic top partner. The new scalar interacts with the
Higgs doublet in the potential, which induces mixing
between the scalar and the SM Higgs boson after sponta-
neous symmetry breaking.

The scalar potential reads

V(®.y) = —u @ ® + 2y(272)?

2
Hs » As 4 AsH T )

— 2y =y 4+ == (DPTD)y, 2
2){ 4)( 2 ( )is (2)

where @ is the SM Higgs doublet

77,'+
¢ = <%(¢+iﬂ0)>' (3)

Requiring the scalar potential to be positive for asymp-
totically large values of the fields, we obtain the following
conditions:

dghy > A2y, Ag >0, As > 0. (4)
In general, the scalar potential develops nonzero vacuum
expectation values for both the Higgs and the singlet:

<<I>>=(f), W=, (5)

V2

with the following relations from tadpole conditions:

e
[l%.]:iHUZ—’—%, (6)
Aoy 02
Uz = Agu* + S; . (7)

If we assume the new physics is at the TeV scale, the new
scale u is larger than the electroweak scale v. After
symmetry breaking, there are mass mixings between the
SM Higgs ¢ and the scalar y. The mixing matrix is
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_/\/l2 _ <2)“HU2 A.SH'UM>‘ (8)

/ISH’UM 2&5142

Diagonalizing the above matrix, we obtain the mass
squared eigenvalues

m%’s = lH’Uz + /15142:[:\/(,15”2 — /1[.]7)2)2 + léHu202 (9)
and the eigenvectors

(h) <cosqo —singo)(gb) (10)
s)  \sin @ CcosQ 7))’
where the mixing angle ¢ is given by

/,{SHI/”)
Agu? — Ayv*’

(11)

tan2¢ =

Equations (9) and (11) can be inverted to express the
parameters Ay, Ag, and Agy in terms of the physical
quantities m, ¢ and the mixing angle ¢:

20082 24in2
_ Mmj,cos @ + mgsin“@

A 20° '
m3cos’ g + mjsin’p
As = 2u? ’
mi —m; .
)“SH :ﬁsmﬁp. (12)

The general Yukawa couplings involved in the vectorlike
fermion y and the top quark u; read

—Lyykawa = y—M)(ll_/Ll//R + ﬁ)ﬂ/_’L’/%R
ukawa —
V2 V2

+y,QrHusg + yrQp Hyp + He.,  (13)
where H = iocoH* and Q; is the left-handed third-
generation quark doublet Q; = (LZSL ). We can also write
L
down a Dirac mass term of the vectorlike fermion:
—Linass = mpW g + Hee. (14)

After spontaneous symmetry breaking, the vectorlike
fermion and the top quark mix together. The mass mixing
matrix between (u3;,y; ) and (usg,yg) is written as

Mp = <,1j 2),Mu>- (15)
Vi "t

To make the model more predictive, we assume that the
masses of the vectorlike fermion are purely generated from
the spontaneous symmetry breaking, such that mp = 0.
Through a redefinition of the fields (7, Tg), one can
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always rotate away one off-diagonal element of the mass
matrix, such that y; = 0 or 17 = 0. As is in the literature
[9], we choose to rotate (tz,T;) by an angle
tan~' (A7/(vy)) to have Ay = 0. So after the rotation, the
mass matrix becomes

MF:<ﬁ ﬁ). (16)
0 dumt
V2

To diagonalize the fermion mass matrix, we rotate the
gauge eigenstates (u3, ) into the mass eigenstates (¢, T) by
using two 2 X 2 unitary transformations

t u

( L,R) :um< m)’ -
Tpr VLR

where the unitary matrices are

o (cos 0; r
LrR= | .
sin@; g

Sy

cos Oy g

Thus, the mass matrix M transforms as

+ m;, O
ULMZ/{R - Mdiag - 0 my . (19)

The masses squared of the top quark 7 and its partner T are
2 lioa 20, 29
myr =7 (70 + 707+ yyu’)
2y, ymvu >2
1F4/1 = ( . (20)
\/ yiv? 4y +

and the mixing angles are

X

2yrymvu
tan20; = )
Yyu® = ypo* = yiv?
2 2
tan 20, = YT (21)

) 2.2 2.2°
Yy~ + YrvT = yiv

Note that the two mixing angles are not independent
parameters, with the relation

™ an ;. (22)
mr

tan Oy =

It is also useful to invert Eqgs. (20) and (21) to express
the model parameters (y,,yr,yy) in terms of physical
parameters (m,, my,0;):
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2
Yy = Vamy \/00529L + x?sin’0,,
u
V2my sin @, cos 0, (1 — x?)
Yr = )
! v y/cos®0, + xZsin26,
V2m 1
Vi = ' (23)

9
v \/cos?0, + x}sin?0,

where x, = m,/my.

In this model, the singlet scalar interacts with the SM
particles in two ways: mixing with the SM Higgs boson and
interacting with the top quark through Yukawa coupling. In
the top quark sector, the vectorlike fermion mixes with the
top quark. The mass of the vectorlike fermion is generated
from the VEVs of the symmetry breaking. This forces the
masses of the two heavy fields S and T at the order of the
scale u, which is assumed to be TeV scale. Let us summarize
the new parameters in the model. There are five independent
parameters, which are chosen to be two heavy masses mg
and my, two mixing angles ¢ and 6; , and the TeV symmetry
breaking scale u. In the following sections, we will use the
shorthand notation for the mixing angles

5, =sing, Cp=COSQ,

s; =sinf;, ¢ =cosb. (24)

III. VACUUM STABILITY AND
RENORMALIZATION GROUP EQUATIONS

In order to find out the true vacuum and investigate its
stability, we should study the effective scalar potential
which includes the radiative loop corrections and
RG-improved parameters. At the one-loop order, the
effective scalar potential is [17], in the Landau gauge,

1
Var(®.2) = V(@) + o5 D (=17 (25: 4 1)

ML) ] s

x M3 (%, 4?) [In
where M?(®?, y?) are the field-dependent mass squared
and the index i runs over all the fields in the model. Here c;
are constants that depend on the renormalization scheme.
We choose the MS scheme, with ¢; = 3 /2 for scalars and
fermions and ¢; = 5/6 for vector bosons. The effective
scalar potential V. must develop a realistic minimum at
the electroweak scale v, corresponding to the SM VEV. The
stability condition on the Higgs vacuum is dependent on
the behavior of V ; in the large-field limit 7> v =
246 GeV. This condition is essentially equivalent to the
requirement [2] that the Higgs quartic coupling A(u) never
becomes negative below the Planck scale. We will study the
renormalization group equation (RGE) running behavior of
the Higgs quartic coupling A(u) in the MS scheme.
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This requires us to work in the effective field theory
framework, by integrating heavy particles out at their mass
thresholds and matching all the running couplings between
effective theories at different scales. At the scale of the
scalar pole mass Mg, we can integrate out the scalar singlet
in the tree-level potential V(®, y) by using its equation of
motion:

= uz—ﬁg—H(CI)TCI)—vz/Z). (26)
S

Inserting the above equation back to V(®, y), we obtain the
tree-level effective Higgs potential below the heavy mass
threshold:

V(®) = ASM(<I>T<I> - v2/2)2, (27)
where
SM /%H
= Ay — 2. 28
= 2y = (28)

This shows that there is a tree-level shift when we match the
Higgs quartic coupling Az in the model to the Higgs quartic
coupling ASM in the low energy effective theory. This is
consistent with the expression of the Higgs boson mass in
the limit of v <« u:

2
mi =207 (AH _%sn + O(Uz/u2)>. (29)
424

At the scale of the heavy fermion pole mass M7, we also
integrate out the heavy fermion by using its equation of
motion. The tree-level matching between the model and
the low energy effective theory in the Yukawa sector
tells us

ATy
yM =y, -1 (30)
Ym

Since we already take Ay = O after the redefinition of the
Yukawa couplings, no matching is needed for y,.

Depending on different particle content in effective
theories, there are different RGE running behaviors in
different energy regions.

Region I: Scale p < My, Mg.—In this region, after
integrating out all the heavy particles, we recover the
SM as the low energy theory. The SM one-loop RGE for
the Higgs quartic coupling is

oo A 991 993
— M — 122+ 6y2 — A _2%
ding? 7 (4;;)2[ TOT T
1 2 9 2791 94391

SR N N it . (31

+(4ﬂ)2[ Y6 T 400 T 40 (31)
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where g; = 1/5/3gy is the hypercharge gauge coupling in
grand unified theory (GUT) normalization and g, the weak
SU(2), gauge coupling. Note that, for a light Higgs, the
running behavior is mainly controlled by the top quark
Yukawa coupling, which drives A towards more negative
values. If there is no new particle running in the loop, 4
would eventually become negative at a high energy scale
around 10'° GeV.

In order to determine the boundary condition for A(u) at
the renormalization scale y, one needs to know how the MS
renormalized Higgs quartic coupling A(u) relates to the SM
input parameters. Here the SM input parameters are taken
to be the SM pole masses M;,, M,, My, and M, and Fermi
constant G, a,(M ). The relation that connects A(p) to the
SM input parameters can be written as

_ GrM;,

AM () 7

[T+ A5 (u)]. (32)

where A, (u) represents electroweak one-loop radiative
corrections at the scale x4 [18]. Similarly, the boundary
condition for y, can be determined from the relation
between the pole mass and its running mass:

yM(u) = (V2Gp) M, [1 + A (u)], (33)

where A, (u) denotes the electroweak radiative corrections
[19]. In the RGE running, we start from the scale of the top
pole mass M,. The boundary conditions of the couplings at
the M, scale are taken from the two-loop matched values
presented in Ref. [3].

Region Il (a): Scale y > My and y < Mg.—There are
two cases in the intermediate region, since the model could
have either My < Mgor My > M. Let us first discuss case
(a): My < Mg. Because of Ay = 0, there is no matching
condition on the top-Yukawa coupling at the scale of the
heavy fermion mass M;. Above this scale, the heavy
fermion contributes to the one-loop running of the gauge
couplings, Yukawa couplings, and Higgs quartic coupling
A. The RGE for the Higgs quartic coupling becomes

dA 1

— ASM
diny®> 74 +(4n)2

[6Ay7 — 3y — 6y7y7].  (34)

Because of the negative contributions from the additional
terms in the above RGE, we expect the scale, at which the
Higgs quartic coupling becomes negative, to be lower than
that in the SM. Therefore, in the pure vectorlike fermion
model, the Higgs vacuum instability problem is worse than
that in the SM.

Region II (b): Scale y > Mg and uy < My.—This is the
case My > M. According to Eq. (28), the Higgs quartic
coupling receives a positive shift at the M threshold
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/12
Ay =AM —|—4L£, (35)

which is the matching condition on the Higgs quartic
coupling. The heavy scalar also changes the RGE running
behavior of the Higgs quartic coupling, which becomes

L IR N
ding> "4 (4m)2475H

(36)

The positive contribution from the last term in Eq. (36)
delays the occurrence of the vacuum instability at high
energies. Therefore, the above two effects on the RGE
running could avoid the possible vacuum instability.

However, we have to worry about the perturbativity
bounds on the scalar quartic coupling Ag. The RGE running
of the scalar coupling is

dis 1
ding?  (4n)?

(922 + 22,]. (37)

If there is no new heavy fermion coupled to the heavy
scalar, it is very likely that the scalar coupling Ag blows up
at some energy scale and thus violates the perturbativity
bounds. Although adding a heavy scalar could solve the
instability problem, there is another problem from the
perturbativity bounds on the scalar coupling in the model
with only scalar sector extension.

Region IlI: Scale u > My, M g.—In this region, both the
heavy fermion and the heavy scalar are involved in the
RGE running. If My < Mg, the quartic Higgs coupling
would receive the same tree-level threshold correction as
Eq. (35) at the boundary of region III. The full RGE
running of the Higgs quartic coupling is

Dy on

1 1
W M+ —— |64y7 + Z’%H -3y} — 6y7y7 |-

(47)?
(38)

We notice that in the above RGE the negative contribution
to the f function of the Higgs quartic coupling from y7 is
vastly softened by the positive contribution from Agy,
especially at high energies. By including the positive
threshold shift, the vacuum instability problem could be
evaded. On the other hand, we need to take care of the
perturbativity bounds on the scalar coupling. The RGE
running of the scalar coupling Ag is

dig 1
ding?  (4r)?

(922 + 23, + 6y3,4s — 3vy].  (39)

where y,, is the Yukawa coupling of the scalar to the heavy
fermion. Without the y}, term in the above equation, Ag
could blow up and reach the Landau pole at some scale.
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The presence of new Yukawa coupling plays a role to avoid
this trouble.

In our numerical scan, we requires that at all the running
scales below Planck scale,

Ag(p) >0, 0 < Ag(u) < 4x. (40)

The evolution of Agy is written as

dA 1
dTS;g = W [/lsH <2/15H + 61y + 3,18 + 3)’%
997 943

Since Agy could be either positive or negative, we require
only

s (u)| < 4. (42)

The RGE runnings of the new Yukawa couplings are

dd B9, 9, 1, 17, 9,
1 Z Z _ -8 2 ,
ding? ~ (@ [277 T2 T T 5 Ty T 0

(43)

dyy Y
diny®>  (4n)?

9 8
{y% + Ey% — gg% - 89%] . (44)

We require all the Yukawa couplings to be in the pertur-
bative region at all energies below the Planck scale.

The complete RGEs in three regions are listed in
Appendix B. To illustrate, we show the RGE running of
the Yukawa and scalar couplings in Fig. 1 for a typical
parameter point: mg=1TeV, m;y;=800GeV, singp = 0.1,
sin@; = 0.08, and u =2 TeV. Using Egs. (40) and (42),
we could put constraints on the parameter space in the
model. So we perform a numerical scan over a large
range of the parameter space for all parameters: the
masses mg and my, the mixing angles s, and s, and the
scale u. Figures 2 and 3 show the allowed parameter
space satisfying the stability and the perturbativity con-
ditions. As expected, if the mixing angle s, is too small,
and the scalar mass is light, the scalar cannot give
enough lift on the Higgs quartic coupling. In this small
parameter region, the Higgs quartic coupling will become
negative below the Planck scale. So in Fig. 2 we notice
there is a small region where the Higgs vacuum is
instable. Figure 2 also shows the zero s, is always
excluded. This indicates that it is not allowed to take the
decoupling limit in the scalar sector. On the other hand,
the parameter region where the scalar and the Higgs have
a large mixing is disfavored, especially when the scalar is
heavy. The reason for this is that the scalar quartic
couplings will increase as evolving to the high energy
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FIG. 1 (color online). The RGE running of the Yukawa and
scalar couplings in the model. All parameters are defined in the
MS scheme. The starting point of the running is m,(M,). The
benchmark point mg =1 TeV, my =800 GeV, sing = 0.1,
sinf; = 0.08, and u = 2 TeV is taken.

scale and eventually become nonperturbative. Indeed,
Fig. 2 shows the region with large mixing angle s, is
excluded. If we fix the scale u (dashed contours in
Fig. 2), there is a strict bound on the mass of the scalar
from the perturbativity limit on the scalar coupling
strength Ag. Regarding the parameter space for the heavy
fermion, we expect that small s; is favored, since the
small mixing angle usually gives rise to small Yukawa

1 — T T T | T T -

08k [ ] Anl allowed region | ]

- \ ..... u=4TeV Contour | |

0.6 % - - - u=2TeV Contour |—|

. \ = u=1TeV Contour E

041 Y& E

\\‘ T

02 . E

9— :\ L T——
£ o~ -

7 e et

-0.2 . /,/,.4-":‘: -------- {

. // ]

04f F E

/ |

-0.6 E

[ ]

-0.8 B

-1 c T P I P I P ]

500 1000 1500 2000

mg [GeV]

FIG. 2 (color online). The allowed parameter region of the
scalar mass and mixing angle (mg, s,,) when all other parameters
are scanned over. The colored region satisfies the vacuum
stability of the Higgs potential and perturbativity of all the
running couplings. The interiors of the dashed lines are the
allowed contours (myg, s,) for different fixed scales u.
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1 o

\:l All allowed region
----- u =4 TeV Contour

0.9

=== u=2TeV Contour

0.8

—— u=1TeV Contour

07 [r

08y

0.5 ‘\
§

0.4\

sin(6,)

03} %
0.2 ‘\‘\

I R N SN ANl SR RN SRR SRRNE SRNEE ARNNE S

0.1 \ . e

b \ : i .
500 1000 1500
m, [GeV]

2000

FIG. 3 (color online). The allowed parameter region of the
vectorlike fermion mass and mixing angle (my,s;) when all
other parameters are scanned over. The colored region satisfies
the vacuum stability of the Higgs potential and perturbativity of
all the running couplings. The interiors of the dashed lines are the
allowed contours (my, s;) for different fixed scales u.

couplings yz. Small s; could keep the Higgs quartic
coupling positive up to the Planck scale. Figure 3
exhibits this feature. As also shown in Fig. 3, if we
fix the scale u (dashed contours), the mass of the
vectorlike fermion also has an upper bound, since small
Yukawa coupling y,, is favored. Finally, we notice that
Fig. 2 is symmetric for the positive and negative value
|
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of the s,. From now on, we will present the parameter
space with only the positive half of the whole range
of s,.

»

IV. PERTURBATIVE UNITARITY

Although there is no bad s-dependent high energy
behavior in the model, the tree-level perturbative unitarity
could put constraints on the masses and couplings of the
heavy particles. In the partial wave treatment [20], given the
tree-level scattering amplitude M(s,0) of all possible
2 — 2 scattering processes, the partial wave amplitude
with angular momentum J is written as

1
a;=——[ dcosOP;(cos)M(s,0), (45)
327 4

where s and 6 are the total energy squared and the
scattering polar angle in the center of mass frame, respec-
tively. P,(cos 6) is the Legendre polynomial. The unitarity
requires the following condition [20-22]:

Re(a,)| < (40)

N =

In the high energy limit, following the equivalence
theorem [23-26], the unitarity condition could be obtained
by calculating the partial wave amplitudes of the coupled
channels in the scalar sector. It has been shown [27] that the
dominant contribution in the coupled channels is the
process SS — SS. In the high energy limit, the tree-level
amplitude of the S§ — SS is

1 1 1
M( SS — ESS> = i [6(m3; 4+ 5m2)(v* + u?) + 3(m3, + 15m3)(v* — u?) cos(2¢)

=

— 6(m% —3m3)(v? + u?) cos(4g) — 3(m3, — m%)(v* — u?) cos(6¢)
—12(m%, — m%)2vusin’(2¢)]. (47)

If we put it back to the unitarity condition Eq. (46), we
obtain the constraints on the parameter space. In the limit of
no mixing between the Higgs and the scalar, it gives a
constraint on mg against u:

4
mg < \/?ﬂu. (48)

On the other hand, the heavy fermion also has an
upper bound on its mass and coupling s; from the
requirement of the perturbative unitarity through the
fermion antifermion scattering process. At high energy
/s> my, the tree-level amplitude of the process
TT - TT is

[

1 0 0 O
0O 0 -1 0
20,2 4 2.4
= + , 49
mz(u=*cy +v7%s7) 0 -1 0 0 (49)
0O 0 0 1

where 4; and A, are the helicity states of the initial and
final states, respectively. 4; and 4, are taken to be one of
the following helicity states: {++,+—,—+,——}.
Diagonalizing it and taking the largest s-wave compo-
nent, we have the unitarity condition
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1 _ _ 1
ag™ = Ton [m2(u=2ct + v72s7)] < X (50)

Similarly, if there is no mixing between the vectorlike
fermion and the top quark, it gives a constraint on my
against u:

my < \/8xu. (51)

V. PRECISION ELECTROWEAK
MEASUREMENTS

The presence of the new scalar S and the vectorlike
fermion 7" renders both modified SM couplings and new
electroweak couplings. We summarize the relevant
Lagrangian involving gauge couplings and the Higgs
couplings in Appendix A. These electroweak couplings
have impact on the electroweak observables, precisely
measured at the LEP and SLC.

The dominant NP effects on the electroweak observables
appear in the gauge boson vacuum polarization correla-
tions, named oblique corrections [28], parametrized by
three independent parameters S, 7, and U:

aS = 4[5 (0) ~ Ty, (0)]. (52)
&2
al = 22m2 [T, (0) — 33 (0)], (53)
wCewiz
aU = 4¢*[IT} (0) — IT3;(0)], (54)

where the notation Ily, with X,Y =1,3,0 denotes
the vacuum polarization amplitudes and ITy,(g?) =
diqzﬂxy(qz). From the global fit of the electroweak pre-
cision data, the constraints on the S, 7, and U parameters
can be obtained. The following fit results are determined
from the GFITTER fit [29] for the reference SM parameters
m; = 173 GeV and m; = 126 GeV. In the NP model, the
contribution of the U parameter is usually very small and
can be neglected. By fixing U = 0, the GFITTER global fit
results in

AS = SNP — §5M — 0,05 + 0.09, (55)
AT = TNP — TSM = 0,08 + 0.07, (56)

and the correlation coefficient is taken to be 0.91.

We split the calculation on the oblique parameters into
boson-loop contributions T'g, S¢ and fermion-loop contri-
butions Tr, Sr and consider them separately. For the
boson-loop contributions, the NP effect is involved only
in the vacuum polarization amplitudes where the Higgs or
the heavy scalar are in the loop. This is shown by Feynman
diagrams in Fig. 4. Using the vector boson self-energy I1yy,
defined in Appendix C, we obtain
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h,S h,S
VANV ALY :\ |
VANNNANNNY
h,S
(2) (b)
’LS h: S
VAN MY Y Wv
-
Vv

(c) (d)

FIG. 4. The one-loop Feynman diagrams (a—d) of the vector
boson self-energy Ilyy due to the scalars in the loop.

ATy = s[T(m3) = T(m3)]. (57)
ASg = Sé[ss(mg) - Ss(mizz)}’ (58)

where the functions are defined as

3 1
~ 16xc}, {(mz — m3)(m* —mjy)

x (m*Inm? = s32(m? — m3,)m% In m%

T (m)=

5
+ s;vzc%l,(m2 - m%)m%v In m%v) - 6] , (59)

1
Sy(m) = Ton

(9m? + m%)m3, n m? 5}

o - o
(m* —m3)

> — = (60)

(m*=m2)* " mi 6
Similarly, it is straightforward to calculate the oblique
corrections due to the top quark and the vectorlike fermion
shown in Fig. 5. Subtracting the SM contributions due to
the third-generation quarks

3m?
TSM = L 61
r 4ret? ( )
t,T t,T
WWV\QMW ZW@\MNZ
b t, T

(@) (b)

FIG. 5. The one-loop Feynman diagrams of (a) W boson self-
energy and (b) Z boson self-energy, due to heavy fermions in the loop.
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1 1. m?
SM—_ (1 -—log—% 2
Sr 271'( 3 Ogm,%)’ (62)

we arrive at the final expressions

m? 2m? m?

AT = TSMs2 [—(1 +c3)+ S%m—§+ C%ﬁlnm—g} :
t T t 13

(63)

51 2y 1o M7 2
ASp = ~ % (1 —3CL)InW—|—SCL

t
a 6¢2 m} 2m2  3m% — m? nm_% (64)
)’ ’

(my—m)>\'mz — my—m? " m?
which agree with the results in Ref. [9]. We expect that both
ASr — 0 and AT — 0 would occur in the heavy mass
limit my — oo due to decoupling of the vectorlike fermion.
However, it is hard to observe such a decoupling feature
from Egs. (63) and (64). As we know, decoupling happens
when mass goes to infinity but couplings are fixed. If one
uses the mixing angle instead of the couplings, the
decoupling behavior becomes opaque. The expression of
the mixing angle
yrv
sy = 65
L \/EmT ( )

shows that s; goes to zero when my goes to infinity and y;
is fixed. Therefore, as s; goes to zero, the ASy and ATy
vanish. On the other hand, if one expresses Eqs. (63) and
(64) by using the parameters (y;, my) instead of (s;, my),
it is easy to see that both ASy and AT ¢ are proportional to
yizz)z’

T

The only important nonoblique correction comes from
the vertex correction of the Zbb coupling. In general, the
effective Zbb vertex can be parametrized as

which clearly exhibit the decoupling behavior.

9 5 I—ys I+ys
T2 pyk bZ,, 66
o e + 9k " (66)
where
gL = gM +8g)", (67)
gr = g + SgRY. (68)

Here ¢°™ denotes the SM coupling with a radiative
correction included, and S¢"* represents the correction
purely from the NP model. In the SM, by taking the leading
m,-dependent radiative corrections into account, the SM
couplings are

I 1
B ==3 3% e

PHYSICAL REVIEW D 90, 014007 (2014)
b

(b) b

FIG. 6. (a) The dominant one-loop Feynman diagrams in the
t" Hooft-Feynman gauge; (b) the only Feynman diagrams after
the gaugeless limit is taken in the model.

1
IR =35 (70)

In our model, there is no tree-level correction to the Zbb
coupling. However, at one loop, flavor-dependent vertex
corrections arise and contribute to the Zb;b; coupling.
Figure 6(a) shows the dominant one-loop Feynman dia-
gram in the t Hooft-Feynman gauge, in which the vector-
like fermion and the top quark appear in the loop. The
presence of vertex corrections gives rise to nonzero 5gh".
To extract out the leading my-dependent terms explicitly,
we perform the loop calculation in the “gaugeless” limit
[30-33], in which the Z boson is treated as a nonpropagat-
ing external field coupled to the current J* = b, y*b, . By
using the Ward identity [30,31], the leading contribution
to the Zb, b, coupling can be obtained via the calculation
! 0

a,x
m

of the higher dimensional operator b;y*b;, where 7° is

z
the Goldstone boson eaten by the Z boson. The relevant

Feynman diagram is shown in Fig. 6(b). The one-loop
effective Lagrangian that is generated by the Feynman
diagram is

2 _
ﬁﬂbE = eb_bLyﬂbLaﬂﬂo’ (71)
v
where
= 1o [m{c] Co(m7, m7,0) + mys} Co(m7, m7.,0)
+ 2mimzc sy Co(mi, mz,0)]. (72)

Here Cy(m?, m3, m3) is the three-point Passarino-Veltman
(PV) function [34] in the zero external momentum limit,
where m; are the masses of the particles in the triangle loop.
In the limit of the Goldstone boson, the three-point PV
function reduces to

-1 lnﬁ if my #m
17 2 1 2
Co(m%,m%,O) = ”;1 my " my . (73)
- if my; = m,.
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In the decoupling limit, taking s; — 0 in Eq. (72), one
recovers the leading m,-dependent contribution in the SM:
2
smo_ M
CATrr 74)

Based on the Ward identity in Refs. [30,31], we recognize
the coefficient ¢, in Eq. (71) is proportional to the quantity
we are interested in:

SHP =€, — M. (75)

So we obtain the expression for the NP correction §g}":

m2s? m3 2m3 m3
SVP = L (12422 T 1T
I = 16x22 ( L)+t m2 " hmk—m? T m?
(76)

Note that the terms inside the bracket are the same as
in Eq. (63).

Among all electroweak observables, three of them are
related to the Zbb couplings: A, A(}’g, and R;,. It is known
that the asymmetries .4, and A(}’l}; are mainly sensitive to
5gR¥, while the R;, mainly sets constraints on 5g1*. Because
of the dominant corrections on the 5g\, we will make use
of the observable R, to constrain the parameter space. The

shift in R;, due to new physics is

9100 + grogR®

6Rb — 2Rb(1 _Rb)
91 + 9k

(77)

The experimental value and SM theoretical value (includ-
ing two-loop corrections) [1] is

RS = 0.21629 + 0.00066. (78)
R = 0.21575 + 0.00003. (79)

Following Ref. [35], §¢XF is determined to be &g, =
0.0028 £ 0.0014.

The experimental constraints on the oblique parameters
and the Zbb couplings set limits on the parameter space in
the model. We scan over a large range of the parameter
space and obtain the allowed parameter region at the 95%
confidence level (C.L.). We find that all the parameter
spaces on the (mg, s,,) in the scalar sector are allowed. This
means the constraint from the electroweak precision data
on the scalar sector is quite weak. However, only part of the
parameter space on the (my, s; ) in the top sector is allowed,
as is shown in Fig. 7. Since all the NP corrections are
proportional to s?, there is an upper limit on the s;.
Figure 7 shows the decoupling nature of the vectorlike
fermion: as the fermion becomes heavier, there are less
allowed regions of the mixing angle due to the implicit
1/my dependence of the mixing angle. The constraint from

PHYSICAL REVIEW D 90, 014007 (2014)
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FIG. 7 (color online). The allowed region from the oblique
corrections S, T, and Zb 1 by at the 95% confidence level. Below
the pink dashed line is the allowed region from the S,T
parameters in the pure vectorlike fermion model.

the nonuniversal correction to the Zbb coupling is weaker
than the one from the universal oblique corrections. The
tightest constraint comes from the 7 parameter, since
the vectorlike fermion is in the singlet representation of
the electroweak group, which contributes to the custodial
symmetry breaking in the model at the loop level. The
dashed line in Fig. 7 shows tighter constraints in the pure
vectorlike fermion model than in our model. The relaxed
constraint on the 7 parameter in our model is due to the
opposite correction from the boson loops with respect to the
fermion contribution. Therefore, the existence of the heavy
scalar leads to a larger allowed parameter space.

VI. HIGGS COUPLING MEASUREMENTS

Current data on the measurements of the coupling
properties of the Higgs boson at the LHC show that there
is no significant deviation from the SM expectation. This
put constraints on the NP models in which the Higgs
couplings to the SM particles are modified. The deviations
in the Higgs couplings can occur in two ways: new
fermions or charged bosons contribute to the loop-induced
hyy and/or hgg couplings, or new scalars mixed with the
Higgs boson give rise to the deviation in the tree-level AVV
and/or hf f couplings. In our model, the heavy scalar mixed
with the Higgs boson induces tree-level correction to the
couplings of the Higgs to the SM particles. The vectorlike
fermion also contribute to the loop-induced igg coupling
and hyy coupling. These effects will modify both the
production cross section and the decay branching ratio
of the Higgs boson. In the narrow-width approximation, the
signal cross section can be decomposed in the following
way for all channels:
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. T
(6-BR)(ii > h — ff) =0, BR = % (80)

where o;; is the production cross section through the initial
state ii, 'y the partial decay width into the final state ff,
[, the total width of the Higgs boson, and BR;, the
branching ratio.

Let us parametrize the deviations on the Higgs couplings
in terms of the Higgs coupling scale factors «, defined as
P /M. The general effective Higgs couplings could be
rewritten as

Litiggs = KwGawwhW Wy, + kg0, hZ4Z,,
— K, gy hit — kg3 hbb — k,gyMhTt
+ KgghqghG 'Gyy + K},ghwhA””A (81)
where ¢°M are the SM Higgs couplings. At the tree level,
2
Py = 2"ZW, g%z — "% and ghyy = =L On the other hand,

the couplings ghy}, and ghgg only receive loop corrections

and thus are suppressed by the loop factor. Up to one-loop
level, the SM couplings to the photon and the gluon are

et
Ihss = 16,22 ;m—fAl/z(Tf)v (82)
T e o)+ 3205 B4, )
(83)
where the sum over f runs over t,b,s,c quarks and
T, = 4mh' Here the loop functions A(7) and A, ,(7) are
Aip(r) =271+ (1 - 7)f (7)), (84)
A(r) =-2-37[14+ (2 —-17)f(7)]. (85)
with
arcsin®[1/+/x], for x > 1,
flx) = —% [lnt\/‘/g— in}z, for x < 1. (86)

In our model, due to mixing between the Higgs boson and
the heavy scalar, all the tree-level Higgs couplings are
modified as

Gigr = Codhzrs v = SOy (87)
The loop-induced Higgs couplings to the photon and the
gluon are also modified by the new contribution from the

vectorlike fermion loop, as shown in Fig. 8. So the Higgs
couplings to the photon and the gluon are
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¢ g T g
ﬁ’ ‘E — t ﬁ’ ‘E — T
t g T 9
(@) (b)
v T v
RS _ hS _ .
gl T gl
()
FIG. 8. Theloop-induced 7 — gg Feynman diagrams due to the

top quark (a) and the vectorlike fermion (b), and the loop-induced
h — yy Feynman diagrams due to the top quark (c) and the
vectorlike fermion (d).

2
p_ 9 Inrf gnrT
hgg — 1672 (;m—fAl/z(rf) + m—TAl/z(rT)>, (88)

2
N € Ihww f 2 9nfr
9y = 162 [—mw A(tw) + Ef 2N Q5 — m; Ay p(zp)
8 gnrr
2IRTT A 89
+3 my 12(t7) | s (89)

4m2 . . .
where 7 =—4 and g, gprr couplings are given in
h

Appendix A. Note that in the above equations there is
no scalar mass mg dependence. From these couplings, we
obtain the Higgs coupling scale factors « in the model:

p gNP
_ _ __ Jhgg w

Ky = Kp = C,, Ky = P K, = N (90)
hgg hw

The above parameters are not independent. k, can be
expressed in terms of k,, because the loop contributions
from the vectorlike fermion to the 7 — yy and h — gg
couplings are the same. Therefore, there are only two
independent parameters (xy,k,) in our general parametri-
zation of the Higgs couplings in the model.

In the Higgs measurement at the LHC, the signal
strength modifier [36] for each individual channel is
defined as

NP NP
oy BRff

Riioh—ff = <M ooSM- 91
111 = SN BRY (91)

The main channels for the Higgs production are the gluon
fusion process gg — h, the vector-boson fusion (VBF)
process ¢qq — hgqg, and the associated production
qq — Vh. To distinguish them, we denote the initial state
ii as (g9, HV, VBF). So the production cross section in the
parton level could be written as
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NP _ 2 SM NP 2 _SM

_ 2 S
99 = KgOgg > oyv = Kyopy:

NP _ M
OyBr — KyOvVBF-

(92)

O

In practice, it is hard to separate contributions from
different production channels. So the production cross
section in the hadron level should be

Opp = Zciagp, (93)

where ¢; is the relative contribution from the production
channel ii, which depends on experimental cuts and
detector efficiencies. At the current LHC running, the
following decay channels: h - WW/ZZ, h — yy, and
h — bb/tt are observed. Among these channels, the
measurements in the 7 — bb /7t channels still have large
uncertainties on the coupling measurements as well as poor
mass resolution. Therefore, the precise determination of
the Higgs coupling mainly comes from the h - WW/ZZ,
h — yy channels. The decay branching ratio in the model is

BR,, = rriZBRSM,  BRyy = rrcy BRYY,

BR;y = rrxfBR, (54)

M . s
where rr = & is the ratio of the total width in the SM
h

against that in our model. In terms of the scale factors in the
model, the total decay width is parametrized as

NP = (0.917x% + 0.003k% + 0.08x2)ISM,  (95)

where the coefficients come from the numerical values of
the SM contributions.

Given the total production cross section and the decay
branching ratios in terms of the two independent param-
eters (ky,k,), we are ready to compare our theoretical
predictions with the experimental data. We will use all the
available data from Tables 10 and 11 in Ref. [37], which
collect both the ATLAS and CMS experimental results with
full integrated luminosity at 7 and 8 TeV. Then we perform
a global fit based on the y? analysis:

R?XP _ R:»h 2
7= Z(;G?Xp ) , (96)

i 1

where we sum over all the available channels in the
measurements. Here R®P is the Higgs signal modifier
obtained from the experimental data, and ¢°*P is its
experimental error. Figure 9 shows the allowed parameter
region for the scale factors (ky, k) at the 68.27%, 95%, and
99.7% C.L., respectively. The best fit of the scale factors
(ky,k,) is found to be

Ky = 1.0096 +0.297,  «, = 0.941 +0.176,
with 2/ndf = 61.022/54. (97)
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FIG. 9 (color online). The allowed parameter region for the
general parametrization (ky,k,) at the 6827% (red), 95%
(green), and 99.7% (blue) confidence levels. The color palette
in the right side shows the value of the Ay? for the allowed
parameter.

From Eq. (97) and Fig. 9, we find that the central value of
the best fit is close to the SM value, and the 95% C.L.
contour shows a moderate accuracy. In Fig. 9, there is a
small tail in the 99.7% C.L. contour. This tail tells us the
parameter space with larger x, and smaller y is still
allowed by the current data. In the &7 — yy channel, due to
the enhanced total cross section, k, could be larger. While
in the 7 — VV channel, since the total cross section
O ggmnvy ~ KoKy, a larger k, implies a smaller ky. We
could convert our constraints on the scale factors (ky, k)
into a limit on the model parameters, as shown in Fig. 10.
From Fig. 10, we read that the large mixing angles (s, s;)

1 —_———

Higgs Coupling Allowed Region

¢ e o ¢
N
TTT I TTTT ‘ TTTT ‘ TTTT ‘ TTTT | TTTT

sin(8,)
o
[3,]

-

0 0.5
sin(o)

FIG. 10 (color online). The allowed parameter region for the

parameters (s,,, s;) in the model at 95% C.L.
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are not allowed. The constraint on s, is expected, since all
the NP corrections in the total cross section are proportional
to s(%,. The constraint on s; mainly comes from the gluon
fusion production cross section and the i — yy decay
branching ratio. The constraints on the parameters (u,
my) are quite weak, and there is no constraint on mg at
all. For the scale u, it appears only in the combination %,
inside the gg — h and h — yy loops. Since s, cannot be
large, there is no constraint for a TeV scale u. Because of
the saturated behavior of the function A, ;(z7) for a heavy
mr, the constraint on the my is weak.

VII. HADRON COLLIDER SEARCHES

There are many direct searches on the vectorlike quarks
which couple predominantly to the third-generation quarks
at the Tevatron and the LHC. At the LHC, the vectorlike
quark could be produced in a pair through QCD production
pp — TT or be singly produced via electroweak process
pp — Th. For a light vectorlike fermion, the pair produc-
tion cross section is larger than the one in the single
production, while for a heavy vectorlike fermion the single
production is more efficient. The main decay channels of
the heavy vectorlike fermion are

T > tZ, T — bW, T — th, (98)
and T — tS only if the scalar is much lighter than the
vectorlike fermion. In the model, the tree-level partial
decay widths are given by

S2 m3 m2
Ir_pw = ﬁ (1 + O(?)) (99)

$2m3 m2\ 3 m
Iy, =-L2L 1—-—L o—£)), 100
T=12 7 64702 (( m%) - m (100)

2203 2 2 4 .2
r _Spcpcymy 1+5m, ) my, m; v”
T=th = 6402 m3 m: mt u?) )

(101)

By taking the limit my > m,, m,,, the partial decay widths
have the following pattern:

FT—)hW:FT—nZ:FT—)Ih =2:1:1. (102)
This can be understood in the following way. By using the
Goldstone equivalence theorem [24-26], the partial decay
widths can be estimated by calculating the corresponding
Goldstone boson final state instead:

Uroow = Urspes, Uroiz =T .

Because of the custodial symmetry in the scalar sector, the
partial decay widths have
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Tyopet :Upopo i Dpmyy = 20101 (103)

In a recent CMS analysis [38], using the 8 TeV data
collected up to integrated luminosity of 19.5 fb~!, the up-
to-date lower limits on the mass of the heavy fermion are
set to be around 687-782 GeV depending on different
patterns of the vectorlike quark decay branching ratios.
Setting the pattern of the branching ratio as 2:1:1, we
could put a limit on the vectorlike fermion mass: 696 GeV.

In the model, the heavy scalar is CP even, the same as
the SM Higgs boson. The search limits on the high mass
Higgs boson at the Tevatron and the LHC could be used to
set constraints on the mass and couplings of the heavy
scalar. The production mechanism is similar to the Higgs
boson, dominated by the gluon fusion with the production
cross section 6, 5. The decay channels of the heavy scalar
are

S->WwW, S-—>ZZ  S->hh, S-i1i, (104)

and S — 1T only if the vectorlike fermion is much lighter
than the scalar. Other decay channels, such as S — yy/gg,
S — ff, where f is the fermion other than the top quark,
are negligible. The explicit formulas of the partial decay
widths are listed in Appendix D. Similar to the vectorlike
fermion case, in the limit mg > m,,, m,, one could estimate
the partial widths by calculating the decays to the corre-
sponding Goldstone bosons instead:

Sy
= 1
3270?
2m3 2
Usozz =Tg 0 = 64)—52 (1 + O<_Z> )v (106)

m? 2
o=, =)). 107
<m§ )) (107)

A similar decay pattern holds here: T's_yw:ls_zz:
[g_p, =2:1:1. In an up-to-date analysis from the CMS
[39], the searches in S — WW and § — ZZ decay channels
are studied in the mass range between 145 and 1000 GeV. If
the high mass Higgs boson has the same coupling as the
SM, the mass range between 145 and 710 GeV is excluded
at the 95% C.L. We convert this constraint into the limit on
the heavy scalar in the model. After calculating the
production cross section and the decay branching ratios
of the heavy scalar, we perform a scan over the whole range
of the parameter space, which is shown in Fig. 12. It is
shown that a range of the parameter space with light scalar
mass and moderate mixing angle is ruled out.

1—‘S—>WW = FS—»H*E’

Y
2|3

2 4.3
r _ S(PCfﬂmS
S—hh —

64r0v?
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VIII. CONCLUSIONS

We investigated a vectorlike fermion coupled to a new
singlet scalar and the third-generation quarks. The singlet
scalar extended the Higgs sector, through the mixing with
the Higgs boson. In our setup, the mass of the vectorlike
fermion is purely generated from symmetry breaking of the
singlet scalar. We carefully examined the electroweak
vacuum stability and scalar perturbativity via the renorm-
alization group evolution of the Higgs quartic coupling
and the scalar quartic couplings. The matching condition
when integrating out heavy particles and the relation
between the running and physical parameters were con-
sidered. Although the vectorlike fermion provides negative
contributions to the running of the Higgs quartic coupling,
the new scalar contributes positively. In the matching of the
renormalization group, the Higgs quartic coupling obtains a
positive threshold shift at the scale of the scalar mass. By
taking the above two effects into account, it is likely that the
Higgs quartic coupling could stay positive up to the Planck
scale. We performed a scan over the parameter space and
found that a large range of the parameter space is allowed.
In this model, we also examined the constraints from the
precision electroweak observables, Higgs coupling preci-
sion measurements, and the LHC direct searches. In
Figs. 11 and 12, we summarized current constraints on
the parameter space of the top sector (my,sin6; ) and the
scalar sector (mg,sing). It is interesting to see that the
tightest constraints always come from the Higgs vacuum
stability and perturbativity in the (mg,sinf;) and
(mg,sinp) spaces. However, the constraints from the
perturbative unitarity are very weak. Concerning the

| AN Y R FRE

A .

sin(8,)

zbb .
Lhnimiiinantigs couplings.s

Gl

L

il

\\\\\\

Allowe Reglbn

500 1000 1500 2000

m, [GeV]

FIG. 11 (color online). Exclusion plot on the parameters
my — sin @, with all current constraints included. The exclusion
zones are on the shadow side of each line. The allowed region is
shown as the zone delimited by the tightest constraints from the
stability and the LHC.
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FIG. 12 (color online). Exclusion plot on the parameters mg —
sin ¢ with all current constraints included. The exclusion zones
are on the shadow side of each line. The allowed region is shown
as the zone delimited by the tightest constraints from the
perturbativity, the stability (15 < 0), and the LHC.

(mg,sin@;) parameter space, the oblique parameters
S,T put a tight constraint on the parameter space, while
the constraints from the Zb; b, coupling and the Higgs
coupling measurements are weaker. The direct LHC
searches set the lower limits on the mass of the vectorlike
fermion at around 700 GeV. On the other hand, there is no
constraint on the (mg,sing) parameter space from the
oblique parameters S,7 and Zb,b, coupling measure-
ments. The Higgs coupling measurements give rise to an
upper bound on the mixing angle s,,. Regarding to the LHC
direct searches, only a small range of the parameter space
with a moderate mixing angle and light mass is ruled out.
As shown in Figs. 11 and 12, a large region of the
parameter space is still unexplored.
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APPENDIX A: RELEVANT ELECTROWEAK
LAGRANGIAN IN THE MODEL

Let us summarize the relevant Lagrangian as follows.
The interactions of the SM quarks (¢, b) reads

92 -
Lw =—"2=t/"(c; P;)bW} +H.c., Al
w \/§ 14 ( L L) " ( )
L, ==L T3P, - 05312, (A2)
Cy
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2nt _ 2 Z 0\
£H = —\/_” t(mthPR —thLPL)b+H.C. — (m (¢— iﬂo) +mISL){> It, (A3)
v v u

where ¢ = c,h + 5,5 and y = —s,h + ¢, S. The interactions with the gluon and the photon are the same as in the SM. The
interactions of the heavy quark 7" are

g —
L, = —jTy”(s%TﬁPL - 0s})TZ,, (A4)

2 2
Ly =— (’”TL (¢ —in®) + ’”Z"L 1) TT. (AS)

Finally, the terms involved in a 7 and a (z, b) are

9 =
Ly = —"=Ty*(s, PL)bW; +H.c., A6
w \/E r*(sLPr) " (A6)
Ly ==L ap(s,c, T3P,)TZ, + Hee., (A7)
Cw

s —in® -

Ly = —\/_” T(mbsLPR - stLPL)b - <¢ d _)_(> t(mtSLCLPL + mTSLCLPR)T +Hec. (AS)
v v u

APPENDIX B: RENORMALIZATION GROUP EQUATIONS

In this section, we listed the one-loop RGEs in different effective field theories.

1. Renormalization group equations in our model

At the scale u > Mg, M7, both the heavy scalar and the vectorlike fermion are involved in the RGE running. The gauge
coupling RGEs are

dgi _ g1 [41 16 (B1)
ding?  (4z)? |10 15]
de _ 9 [ 19 (B2)
ding>  (4n)*| 6]
dgs _ g3 2
= =T+, B3
diny?®  (4x)? +3 (B3)
where g7 = 5¢3/3 is the hypercharge gauge coupling in GUT normalization. The Yukawa coupling RGEs are

dyi vt [ 97 3, 17999
— 27 2 2 - ~ 22 g, B4
din? Gof|2 T2 T2 TR0 Ty T (B4)

dy, v [3vi 9 W, L g 9%
= —+ =7+ — = ——=—805/, B5
dingd P2 T2t Ty 8 (BS)

dy? 5y 991 993
RN W SR - S N A L. | A1 B6
ding? a2 [T T T Ty (B6)
dyy i (9, 9, 3, L 1, 17,9,

= “yE+=yr 4= V-G -84, B7
din? = G 277 T 20T T Ty ok g9~ — 8 (B7)
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dy%/] Y%/I » 9., 8
= ~yi ——g* —843|. B8
dln,uz (4”)2 yT+2yM 59% g3 ( )
The RGE:s in the Higgs sector are
din 1 2 2 2 » 991 9%
din @2 | 124 + 6y 4 6y, 4 2ye + 67 = 75 =5

1 27¢7  9¢%  9g3¢7
22 3y 3yt vt 33 — 622 1, 792 251 ,
+(4 SH Vi yb Yz yT ytyT+4OO + 16 + 40
disy 1
ding?  (4x)?

9¢* 9¢?
|:/1SH <2/1SH + 64y + 3As + 3y7 + 3y, +yi + 3y + 3y — % - %) - 6}’%)’%4] ) (B10)

dis 1
dinyg®  (4n)?

(923 + 6y3,As + A2, — 3y (B11)

2. The standard model + vectorlike fermion singlet

At the scale 4 < Mg, and p > M7, only the vectorlike fermion is involved in the RGE running. The gauge coupling
RGEs are

dg? 441 16
g12: glz — ], (B12)
dlnp*  (4z)* |10 15
dgy g3 [ 19
_ Yol B13
ding> (4z)*| 6 + (B13)
dgz _ g3 2
S S D e Bl4
diny?>  (4x)? +3 (BL4)

The Yukawa coupling RGEs are

dyi _ 3 [0 O W, o Vg 9% g, (B15)
diny®  (4z) | 2 2 720 4 3
dy, vy [ 3, W, . 9 9%
— e Zb —ZL_ 27242, BI16
din? ~ (np |2 Ty YT T T (B16)
dy2 y2 5y2 992 992
T T 3 2 3 2 3 2 T ZJ1_ 7J2 B17
dinge (g T ) (B17)
dyg i [9, 95,3, 5 17, 9,
= . - - —— P -k -84, BI18
din2 ~ (4n) 20T T2V TR T T T % (B18)
and the RGE in the Higgs sector is
i _ 4 12/1+6y2+6y2+6y2+2y2—9—g%—9—g%
ding? ~ (4x)? o b 100 2
+ 1 3 4 6 2,2 3 4 3 4 4+27g?+9gg+9g%g% (B19)
(47[)2 Yr YTVt Vi yb Yz 400 16 40 .
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3. The standard model + real scalar singlet

Atthe scale y > Mg, and 4 < M, only the vectorlike fermion is involved in the RGE running. The gauge coupling RGEs
are

dgi g [41
_ B20
ding? ~ (4x)? [10)° (B20)
dg3 g [ 19
- = B21
ding>  (4n)*| 6] (B21)
4
dgi__ 95 7). (B22)

ding? — (4x)?

The Yukawa coupling RGEs are

dy: oyt [ 3, Vgt 99
_ 20 2V o I P9 g B23
A @n?|2 T2 TR0 Ty T (B23)
dy; i 3y 9, g 94
- o N TR _gal B24
ding?  (@n? |2 T2 TR Ty Ty T (B24)
dy? y: 5y 991 99
ding? = (4n)? 3y7 +3y;, + S T4 T4 (B25)
and the RGEs in the Higgs sector are
diy Ay 991 99%
= 12y + 6y + 62 +2
ding?  (4n) { O 0%+ 27 = 5=
1 [1 9¢7 27¢% 9g3¢?
o2, =3yt =3yt 29y 2001 P00 B26
RTSE {4 i =30 =3 =18 200 T a0 (B26)
disy Ash 992 992
= 2) 6y + 3Ag + 3y? + 3y +y2 — 2L 22| B27
ding? ~ (da)? | Por Ok + 3+ 35E 4 3y 4 ve =55 = (B27)
da
S (942 + A2,). (B28)

ding® ~ (4n)?

APPENDIX C: CALCULATION OF THE OBLIQUE PARAMETERS S, T

In this section, we present the computation of the S, 7T parameters with Passarino-Veltman functions [34].

1. General formulas for gauge boson self-energy
We list the general formulas for the gauge boson self-energy functions IT;;, where i, j denote the gauge boson species. In
2

the formulas, only the one-point PV function Ay(m?) and the two-point PV functions By(p?, m}, m3) and By (p?, m?, m3)

are involved. In the calculation of the oblique parameters, all the self-energy functions I1;; and their derivatives IT;; = jnz are
computed at p?> = 0. Various contributions from fermion and scalar loops are summanzed as follows.
(i) Fermion loop contribution:
N,
H'zi‘(jf = T 1622 [(91L9]L +ngij)(4BOO(O mfp f2) (m7 gy +mf2)BO(O mfl’ f2> Ag(m7 )_Ao(m%2)>
+2mpmp(9igir + 9ir9;)Bo(0, mfl7mf2)]’ (C1)
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1f _
1 1627

+ 2mypimyp(9iL9ir + 9irg;)Bo (0, mf] ; mfz)}’

where g;; and g;z are the left-handed and right-handed
couplings, respectively, of the gauge boson labeled i to the
fermions running in the loop, from the vertex

fir*(giPr + 9irPRr)f2A,. (C3)

(ii) Scalar tadpole contribution:
IT}; = —gAo(m3), (C4)
Hjj =0, (C5)

where g is the coupling strength of the s —s —V -V
four-point coupling.
(iii) Scalar loop contribution:

117 = 49;9;Boo (0, m7y, m,), (Co)

H?S = 49tg/Boo(O msl’ 22) (C7)

where g; is the coupling strength of the s —s—V
three-point coupling involving the gauge boson
labeled i.

(iv) Scalar-vector loop contribution:

T = —g,9;Bo (0, m2, m?), (C8)

where g; is the coupling strength of the s —V -V
three-point coupling involving the gauge boson
labeled i.

2. The oblique parameters S.T

We present the contributions to the S, 7' from the fermion
loops and the boson loops, separately.

a. The fermion loops

The T parameter is computed as

2 I1 I1 25w I,
al = 2 2 2 [H“(O)—H33(0)] = W;W_ 222_ Wfizy,
Sy Cwmy my,  my;  Ccy my
(C10)

ASp = 167 [(II44 + 21143 + T —

N,
= [(gng]L + glejR)(4BOO(O mfl’ f2)

H/tf,SM )

PHYSICAL REVIEW D 90, 014007 (2014)

(m f1+mf2)BO< 1o f2)+BO(0 mfl’ fz))
(C2)

|

where for fermion loops the last term on the right-hand side
does not contribute. In the SM, the fermion contributions
mainly come from the third-generation quarks:

54, = Mg, (C11)
Y = M oo s™. (C12)

In our model, there are new contributions from the vector-
like fermion T

My = 115, + TI5G,,, (C13)
M, = 1Y, + 21, + 55 + 115N, (C14)

By subtracting the SM contribution, the NP correction on
the parameter 7' from the fermion loops can be obtained:

1

Alp=— "% (I -+ Ty — M)
w
— — (I, + 2117, + 1% — 1My [ (C15)
myz
The S parameter is defined as
S = 16x(ITy; — Hgy). (C16)
In the SM, the fermion contributions are
H/SM Hltf SM + Hlbb SM (C17)
H/SM — H/[l SM + H/bb SM (CIS)
while the new model gives
MM = 114 + 210147 + I + I5M, (C19)
H/SM H/tt + 2H/tT rTT + H/bb SM. (CZO)

Therefore the NP correction on the parameter S from the
fermion loops is

(H/tt + 2H/tT 4 H/TT H/tt,SM)}'

i (C21)
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b. The boson loops

To compute the boson contributions, it is convenient
to split them into the gauge parts (T,.S,) and the scalar
parts (T, S,):

Ts=T,+T,, Ss =S, + S, (C22)
where the tilde indicates there are divergences in each
part (T, S), while the total boson contributions to (T, Ss)
are convergent. The gauge parts consist of the contribu-
tions from the W/Z loops, the ghost loops, and the
Goldstone loops, which are not altered in our model. So
the gauge parts will not contribute to ATg and AS in our
model. The scalar parts (T, S, ) consist of all the loops
that involve the Higgs boson, or any new real scalars that
mix with the Higgs boson. In the following, we will
consider only the contributions to the ATg and ASg from
the scalar parts.

In the SM, the self-energy functions involving the Higgs
boson are

3 1 )

PHYSICAL REVIEW D 90, 014007 (2014)
1

1
Y = —TsM 4 2™ 4 s SM, (C24)

2

while there is no Higgs boson contribution in the two-point
function Ilz,. Inserting the above self-energy functions
back to the 7" parameter definition, due to the cancellation
between the first terms in the W and Z self-energy
functions, we obtain the scalar part 7~"EM:

S — —

; (C25)

mW mz

3 A T(my),

C26
167‘[CW ( )

where A is the divergent term A = —y + In4zu? in the
MS scheme. Here the finite part is wrltten as a function of
the scalar mass m:

5

T,(m) = — m* Inm? — sy (m* — m3,)m% Inm% + sy?cd,(m? — m%)m¥, Inm3,) —=|.
( ) 1677.'(3%‘/ (mz_m%)(mz_m%v)( W( W) VA VA w W( Z) w W) 6
(C27)
The calculation is done in the MS scheme, without loss of generality.
In our model, the self-energy functions involving the Higgs boson and the new scalar are
1 -
My = 5 (W + Ty ) + (T, + TI) + (T + T, ), (€28)
1
Mzz = 5 (W, +T5,) + (7 +T15) + (T +1137). (€29)

Note that the first terms do not contribute to the 7' parameter, as in the SM. Similarly, we obtain the scalar part T’

n.O
G+

TS 2 2

myy, myz

ﬂi
= 1 Iy + Iy
a

3A 3A
=2 ——+4T 2 —+T
C¢<167zc%[,+ "(mh)) +s‘f’<16ncgv+ S(m5)>

S 2T(
=T, C s\Umn
16zc3, 7

where the divergent part is the same as the SM as
expected. As the new scalar only contributes to the part
T, via mixing with the SM Higgs, common factors s,
and ¢, could be extracted, leaving a SM-like T (m)
Hence the function 7';(m) can be used to obtain a concise
form for the 7 in our model. Subtracting the SM
contribution 75M in Eq. (C26), we get a finite and very
concise result for AT:

) +55Ts(m

1 HS I‘[Szri HS HSI[O
4= l: ww +2 wWw "7z +2 ZZ:| (C30)
a my, m3
(C31)
(C32)
ATS = AT; = Sg:[Ts<mS) - Ts(mh)]' (C33)

The S parameter can be defined in an alternative way

using the hypercharge Y:
= —167lI1},, (C34)

which reduces a lot of work for boson contributions. The
Higgs-dependent part S, in the SM is
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L A5, (my) (C36)
= —_-—— m s
127 g
where
1 5 (4m* +6my)m%  (9m?> +m%)m5, m?
S =—|lnm?>-=— Z/ 2 2 Zn—|. C37
s(m) 127 { e (m* —m%)? (m?>—=m%)® ~ m% (©37)
For the same reason as in the Tg calculation, when we turn to the new model, it has a very concise form:
- A A
_ 2 __= 2 =
Ssc,/,( 12”—f—S( h))—f—s(p( on + Ss(m )> (C38)
A
= _ﬁ+ c28,(my) + 528, (mg). (C39)
and similarly
ASg = AS, = sp[S,(ms) = S,(my,)]. (C40)
APPENDIX D: THE PARTIAL DECAY WIDTHS OF THE HEAVY PARTICLES
The heavy scalar S mainly decays in the following channels with partial widths:
F(S = 22) = SES 0 41 vy i1 —4ry + 1212) (D1)
16\/§7T 17 IRVAR YA VA zZ)»
GF g 2 1 2
I'S—-ww)= SV3x Sy X M1, rz,r2)2(1 = 4ry + 12ry), (D2)
I(S = hn) =GP 2 2<c + 24 )zx/l(l Fos N1+ 202 (D3)
16\/_ u @ s hs T h h) »
3G pmgm3 v 2 i
I'(S—Tt) = SFTSETS%C% (sq, - ;cq,,) x A(1, ry, rt)5<1 + ”T) 1= (ry = 1), (D4)

=

—~
v
9]

~

3G 2 2
(S 1) = # <s(,,C% + %C(,;S%) X AL 1),

where ry = m%/m% and the kinematic function 1 is
A, r, ) = 1+r%+r%—2r1—2r2—2r1r2. (D6)
Note that if tang ~ 7, the partial width in the T7 channel is suppressed, while if tan¢ ~ —ﬁtan2 0;, the tt channel is

suppressed.
The vectorlike fermion mainly decays in the following channels with partial widths:

Grm3

(T - Zt) = 16?;’%; s2¢3 x A1, 1z, r)2(1 4 r7 = 2r, = 2% + ryrg + 12), (D7)
Gpmy. !

(T - Wb) = \fﬂ sz} MLorw. rp)2(1+ ry =21, = 215 + ryry + 1), (D8)
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Grmy 5 , vy’ 1 2
(T - ht) = spepl cp+=5, | X ALy, r)2(146r, = ry =1y, +17), (D9)
u

16V 2x

Gr-m> 2
(T - St) = F'r s2c? (s,/, - Bq,,) x A1, rg, r)i(1 4 6r, — rg — ryrg + 7).

16V27

u

Also note that the St channel is suppressed due to the factor s

(D10)

s .
» — ¢, in its coupling.
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