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To avoid possible electroweak vacuum instability in the vectorlike fermion model, we introduce a new
singlet scalar to the model, which couples to the vectorlike fermion and also mixes with the Higgs boson
after spontaneous symmetry breaking. We investigate the vectorlike fermion predominantly coupled to the
third-generation quarks, and its mass is generated from the vacuum expectation value of the new scalar field
in the model. In this setup, as running towards high energies, the new scalar provides a positive contribution
to the running of the Higgs quartic coupling, and the matching on the scale of the scalar mass gives rise to a
threshold effect that lifts up the Higgs quartic coupling strength. The two effects help stabilize the
electroweak vacuum of the Higgs potential. Therefore, this setup could evade possible vacuum instability in
the vectorlike fermion model. We show that a large range of parameter space is allowed to have both stable
Higgs vacuum and perturbativity of all the running couplings, up to the Planck scale. We also examine the
experimental constraints from the electroweak precision observables such as oblique corrections S; T and
nonoblique corrections to the ZbLb̄L coupling, the Higgs coupling precision measurements, and the current
LHC direct searches.
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I. INTRODUCTION

The discovery of the Higgs-like scalar boson at the Large
Hadron Collider (LHC) is the great triumph of the standard
model (SM) of particle physics. The Higgs boson mass was
measured at the ATLAS and CMS with reasonable accu-
racy: mh ¼ 125.9� 0.4 GeV [1]. Now that all the param-
eters of the SM are determined by experimental data, the
completion of the SM evoked our interest in its high energy
behavior such as Higgs vacuum stability. The measured
value of the Higgs boson mass leads to a very intriguing
situation. The most accurate analysis of the electroweak
vacuum stability in the SM was performed in Refs. [2,3],
showing that the theory sits near the boundary between a
stable phase and an instable phase of the vacuum structure
if there is no new physics (NP) beyond the SM. Therefore,
NP should be introduced to stabilize the electroweak
vacuum of the Higgs potential.
There are already many kinds of NP models available to

address the TeV scale physics. These models involve
various extensions of the scalar sector, fermion sector,
and/or gauge boson sector of the SM. The Higgs vacuum
stability serves as a criterion to justify the high energy
behavior of these NP models [4]. Among these, the models
with an extended fermion sector would worsen the potential
instability [5–8]. We will focus on a vectorlike fermion
model predominantly coupled to the third-generation
quarks [9–13] and manage to improve the stability of
the electroweak vacuum by modifying its particle content.

The vectorlike fermion model is less constrained by the
experimental data than the models with extra chiral
fermions. Because of nondecoupling behavior of the chiral
fermion, the electroweak data from the precision measure-
ments, the Higgs coupling measurements, and the LHC
direct searches put very strong limits on its parameter space
[14,15]. Moreover, due to the tight constraints on the light
quarks from flavor physics, the heavy vectorlike fermion
cannot significantly couple to the first two generations.
In order to find out the true vacuum state and analyze its

stability, we need to investigate the Higgs effective poten-
tial. Since the instability occurs at energies much higher
than the electroweak scale, the effective potential is well
approximated by the renormalization group (RG) improved
tree-level expression for the large field values h ≫ v ¼
246 GeV [3]:

VeffðhÞ ¼
λðμÞ
4

h4; ð1Þ

where the Higgs quartic coupling λðμÞ runs with the
renormalization scale μ. Generally speaking, if the Higgs
quartic coupling λðμÞ becomes negative, the effective
potential becomes instable through developing a minimum
much deeper than the realistic minimum. As we know, in
the SM the Higgs quartic coupling becomes negative at
around 1010 GeV according to complete next-to-next-to-
leading order calculation of the running Higgs quartic
coupling [2]. As shown in Fig. 3 of Ref. [3], in which the
measured uncertainties of the top quark and the Higgs
masses are taken into account, the SM Higgs vacuum state
lies in a narrow region of the metastable phase. In the
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vectorlike fermion model, the new vectorlike fermion has
negative contributions to the β function of the running
Higgs quartic coupling, which drives the Higgs potential
towards the absolute instable phase.
To cure the potential instability in the vectorlike fermion

model, we would like to modify the particle content and
interactions in the model. In the RG running, new bosonic
particles provide positive contributions to the running of
the Higgs quartic coupling, while new fermionic particles
contribute negatively. Although there may be many pos-
sible ways to extend the model, here we suggest a very
simple and economical extension by adding a new scalar
singlet to the vectorlike fermion model. This new singlet
scalar couples to the Higgs boson and thus provides a
positive contribution to the running of the Higgs quartic
coupling. However, if the new scalar couples only to the
Higgs boson but not to others, the quartic coupling of the
new scalar will increase as the energy goes higher and
higher. Thus it is likely that the scalar quartic coupling by
itself runs into a nonperturbativity region at or below the
Planck scale. To avoid this possible problem, we require
that the new scalar couples to the vectorlike fermion, which
provides a negative contribution to the running of the scalar
quartic coupling and thus controls the growth of the scalar
quartic coupling strength at high energies. We assume that
the new scalar singlet has a nonzero vacuum expectation
value (VEV). To make the model more predictive, this
VEV also generates the mass term for the vectorlike
fermion. In this setup, there are two effects to lift up the
running Higgs quartic coupling strength. First, the new
scalar provides a positive contribution to the β function of
the running Higgs quartic coupling. Second, in the match-
ing on the scale of the scalar mass, the Higgs quartic
coupling obtains a positive threshold shift [4,16].
Therefore, the new scalar could stabilize the electroweak
vacuum of the Higgs potential, and this setup could
evade possible vacuum instability in the vectorlike fermion
model.
The paper is organized as follows. In the next section, we

set up the Lagrangian of the model and obtain the mass
spectrum in the model. In Sec. 3, we present a study of
vacuum stability through the one-loop renormalization
group running. The matchings between different energy
scales are carefully treated. We consider the theoretical
bounds on the masses of the heavy particles from pertur-
bative unitarity in Sec. 4. In Sec. 5, the precision electro-
weak observables, including the oblique corrections S, T
and nonoblique corrections to the ZbLb̄L couplings, are
examined. In Sec. 6, we perform a global fit on the Higgs
coupling precision measurements and put constraints on the
parameter space. Then we discuss the direct searches on the
heavy scalar and the vectorlike fermion. Finally, we
summarize the constraints on the parameter spaces in the
conclusion section. In Appendix A, we provide details of
the relevant electroweak Lagrangian in the model. In

Appendix B, we list the one-loop renormalization group
equations. Appendix C presents the detailed calculations on
the oblique corrections. In Appendix D, we list the partial
decay widths of the heavy particles.

II. THE MODEL

We consider an extension of the SM, by adding a
vectorlike fermion singlet ψ with charge þ2=3, and a real
neutral singlet scalar χ. Since the vectorlike fermion has the
same quantum number as the right-handed up-type quarks,
they will mix together. Because of the tight constraints on
the up and charm quarks from flavor physics, we assume
the vectorlike fermion mixes only with the top quark as a
fermionic top partner. The new scalar interacts with the
Higgs doublet in the potential, which induces mixing
between the scalar and the SM Higgs boson after sponta-
neous symmetry breaking.
The scalar potential reads

VðΦ; χÞ ¼ −μ2HΦ†Φþ λHðΦ†ΦÞ2

−
μ2S
2
χ2 þ λS

4
χ4 þ λSH

2
ðΦ†ΦÞχ2; ð2Þ

where Φ is the SM Higgs doublet

Φ ¼
 

πþ

1ffiffi
2

p ðϕþ iπ0Þ

!
: ð3Þ

Requiring the scalar potential to be positive for asymp-
totically large values of the fields, we obtain the following
conditions:

4λSλH > λ2SH; λH > 0; λS > 0: ð4Þ

In general, the scalar potential develops nonzero vacuum
expectation values for both the Higgs and the singlet:

hΦi ¼
�

0
vffiffi
2

p

�
; hχi ¼ u; ð5Þ

with the following relations from tadpole conditions:

μ2H ¼ λHv2 þ
λSHu2

2
; ð6Þ

μ2S ¼ λSu2 þ
λSHv2

2
: ð7Þ

If we assume the new physics is at the TeV scale, the new
scale u is larger than the electroweak scale v. After
symmetry breaking, there are mass mixings between the
SM Higgs ϕ and the scalar χ. The mixing matrix is
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M2
S ¼

�
2λHv2 λSHvu

λSHvu 2λSu2

�
: ð8Þ

Diagonalizing the above matrix, we obtain the mass
squared eigenvalues

m2
h;S ¼ λHv2 þ λSu2∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλSu2 − λHv2Þ2 þ λ2SHu

2v2
q

ð9Þ
and the eigenvectors�

h

S

�
¼
�
cosφ − sinφ

sinφ cosφ

��
ϕ

χ

�
; ð10Þ

where the mixing angle φ is given by

tan 2φ ¼ λSHuv
λSu2 − λHv2

: ð11Þ

Equations (9) and (11) can be inverted to express the
parameters λH, λS, and λSH in terms of the physical
quantities mh;S and the mixing angle φ:

λH ¼ m2
hcos

2φþm2
Ssin

2φ

2v2
;

λS ¼
m2

Scos
2φþm2

hsin
2φ

2u2
;

λSH ¼ m2
S −m2

h

2uv
sin 2φ: ð12Þ

The general Yukawa couplings involved in the vectorlike
fermion ψ and the top quark u3 read

−LYukawa ¼
yMffiffiffi
2

p χψ̄LψR þ λTffiffiffi
2

p χψ̄Lu3R

þ ytQ̄L
~Hu3R þ yTQ̄L

~HψR þ H:c:; ð13Þ

where ~H ¼ iσ2H⋆ and QL is the left-handed third-

generation quark doublet QL ¼ ð u3L
bL

Þ. We can also write

down a Dirac mass term of the vectorlike fermion:

−Lmass ¼ mDψ̄LψR þ H:c: ð14Þ
After spontaneous symmetry breaking, the vectorlike
fermion and the top quark mix together. The mass mixing
matrix between ðu3L;ψLÞ and ðu3R;ψRÞ is written as

MF ¼
 ytvffiffi

2
p yTvffiffi

2
p

λTuffiffi
2

p mD þ yMuffiffi
2

p

!
: ð15Þ

To make the model more predictive, we assume that the
masses of the vectorlike fermion are purely generated from
the spontaneous symmetry breaking, such that mD ¼ 0.
Through a redefinition of the fields ðtR; TRÞ, one can

always rotate away one off-diagonal element of the mass
matrix, such that yT ¼ 0 or λT ¼ 0. As is in the literature
[9], we choose to rotate ðtR; TRÞ by an angle
tan−1ðλT=ðyMÞÞ to have λT ¼ 0. So after the rotation, the
mass matrix becomes

MF ¼
 ytvffiffi

2
p yTvffiffi

2
p

0 yMuffiffi
2

p

!
: ð16Þ

To diagonalize the fermion mass matrix, we rotate the
gauge eigenstates ðu3;ψÞ into the mass eigenstates ðt; TÞ by
using two 2 × 2 unitary transformations

�
tL;R
TL;R

�
¼ UL;R

�
u3L;R
ψL;R

�
; ð17Þ

where the unitary matrices are

UL;R ¼
�
cos θL;R − sin θL;R
sin θL;R cos θL;R

�
: ð18Þ

Thus, the mass matrix MF transforms as

ULMU†
R ¼ Mdiag ¼

�
mt 0

0 mT

�
: ð19Þ

The masses squared of the top quark t and its partner T are

m2
t;T ¼ 1

4
ðy2t v2 þ y2Tv

2 þ y2Mu
2Þ

×

"
1∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2ytyMvu

y2t v2 þ y2Tv
2 þ y2Mu

2

�
2

s #
; ð20Þ

and the mixing angles are

tan 2θL ¼ 2yTyMvu
y2Mu

2 − y2Tv
2 − y2t v2

;

tan 2θR ¼ 2ytyTv2

y2Mu
2 þ y2Tv

2 − y2t v2
: ð21Þ

Note that the two mixing angles are not independent
parameters, with the relation

tan θR ¼ mt

mT
tan θL: ð22Þ

It is also useful to invert Eqs. (20) and (21) to express
the model parameters ðyt; yT; yMÞ in terms of physical
parameters ðmt;mT; θLÞ:
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yM ¼
ffiffiffi
2

p
mT

u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θL þ x2t sin2θL

q
;

yT ¼
ffiffiffi
2

p
mT

v
sin θL cos θLð1 − x2t Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θL þ x2t sin2θL

p ;

yt ¼
ffiffiffi
2

p
mt

v
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2θL þ x2t sin2θL
p ; ð23Þ

where xt ¼ mt=mT .
In this model, the singlet scalar interacts with the SM

particles in two ways: mixing with the SM Higgs boson and
interacting with the top quark through Yukawa coupling. In
the top quark sector, the vectorlike fermion mixes with the
top quark. The mass of the vectorlike fermion is generated
from the VEVs of the symmetry breaking. This forces the
masses of the two heavy fields S and T at the order of the
scale u, which is assumed to be TeV scale. Let us summarize
the new parameters in the model. There are five independent
parameters, which are chosen to be two heavy masses mS
andmT , two mixing angles φ and θL, and the TeV symmetry
breaking scale u. In the following sections, we will use the
shorthand notation for the mixing angles

sφ ≡ sinφ; cφ ≡ cosφ;

sL ≡ sin θL; cL ≡ cos θL: ð24Þ

III. VACUUM STABILITY AND
RENORMALIZATION GROUP EQUATIONS

In order to find out the true vacuum and investigate its
stability, we should study the effective scalar potential
which includes the radiative loop corrections and
RG-improved parameters. At the one-loop order, the
effective scalar potential is [17], in the Landau gauge,

VeffðΦ; χÞ ¼ VðΦ; χÞ þ 1

64π2
X
i

ð−1Þ2sið2si þ 1Þ

×M4
i ðΦ2; χ2Þ

�
ln
M2

i ðΦ2; χ2Þ
μ2

− ci

�
; ð25Þ

where M2
i ðΦ2; χ2Þ are the field-dependent mass squared

and the index i runs over all the fields in the model. Here ci
are constants that depend on the renormalization scheme.
We choose the MS scheme, with ci ¼ 3=2 for scalars and
fermions and ci ¼ 5=6 for vector bosons. The effective
scalar potential Veff must develop a realistic minimum at
the electroweak scale v, corresponding to the SMVEV. The
stability condition on the Higgs vacuum is dependent on
the behavior of Veff in the large-field limit h ≫ v ¼
246 GeV. This condition is essentially equivalent to the
requirement [2] that the Higgs quartic coupling λðμÞ never
becomes negative below the Planck scale. We will study the
renormalization group equation (RGE) running behavior of
the Higgs quartic coupling λðμÞ in the MS scheme.

This requires us to work in the effective field theory
framework, by integrating heavy particles out at their mass
thresholds and matching all the running couplings between
effective theories at different scales. At the scale of the
scalar pole massMS, we can integrate out the scalar singlet
in the tree-level potential VðΦ; χÞ by using its equation of
motion:

χ2 ¼ u2 −
λSH
λS

ðΦ†Φ − v2=2Þ: ð26Þ

Inserting the above equation back to VðΦ; χÞ, we obtain the
tree-level effective Higgs potential below the heavy mass
threshold:

VðΦÞ ¼ λSMðΦ†Φ − v2=2Þ2; ð27Þ

where

λSM ¼ λH −
λ2SH
4λS

: ð28Þ

This shows that there is a tree-level shift when we match the
Higgs quartic coupling λH in the model to the Higgs quartic
coupling λSM in the low energy effective theory. This is
consistent with the expression of the Higgs boson mass in
the limit of v ≪ u:

m2
h ¼ 2v2

�
λH −

λ2SH
4λS

þOðv2=u2Þ
�
: ð29Þ

At the scale of the heavy fermion pole mass MT , we also
integrate out the heavy fermion by using its equation of
motion. The tree-level matching between the model and
the low energy effective theory in the Yukawa sector
tells us

ySMt ¼ yt −
λTyT
yM

: ð30Þ

Since we already take λT ¼ 0 after the redefinition of the
Yukawa couplings, no matching is needed for yt.
Depending on different particle content in effective

theories, there are different RGE running behaviors in
different energy regions.
Region I: Scale μ < MT;MS.—In this region, after

integrating out all the heavy particles, we recover the
SM as the low energy theory. The SM one-loop RGE for
the Higgs quartic coupling is

dλ
d ln μ2

¼ βSMλ ¼ λ

ð4πÞ2
�
12λþ 6y2t −

9g21
10

−
9g22
2

�

þ 1

ð4πÞ2
�
−3y4t þ

9g42
16

þ 27g41
400

þ 9g22g
2
1

40

�
; ð31Þ
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where g1 ¼
ffiffiffiffiffiffiffiffi
5=3

p
gY is the hypercharge gauge coupling in

grand unified theory (GUT) normalization and g2 the weak
SUð2ÞL gauge coupling. Note that, for a light Higgs, the
running behavior is mainly controlled by the top quark
Yukawa coupling, which drives λ towards more negative
values. If there is no new particle running in the loop, λ
would eventually become negative at a high energy scale
around 1010 GeV.
In order to determine the boundary condition for λðμÞ at

the renormalization scale μ, one needs to know how the MS
renormalized Higgs quartic coupling λðμÞ relates to the SM
input parameters. Here the SM input parameters are taken
to be the SM pole masses Mh, Mt, MW , andMZ and Fermi
constantGF, αsðMZÞ. The relation that connects λðμÞ to the
SM input parameters can be written as

λSMðμÞ ¼ GFM2
hffiffiffi

2
p ½1þ ΔhðμÞ�; ð32Þ

where ΔhðμÞ represents electroweak one-loop radiative
corrections at the scale μ [18]. Similarly, the boundary
condition for yt can be determined from the relation
between the pole mass and its running mass:

ySMt ðμÞ ¼ ð
ffiffiffi
2

p
GFÞ12Mt½1þ ΔtðμÞ�; ð33Þ

where ΔtðμÞ denotes the electroweak radiative corrections
[19]. In the RGE running, we start from the scale of the top
pole massMt. The boundary conditions of the couplings at
the Mt scale are taken from the two-loop matched values
presented in Ref. [3].
Region II (a): Scale μ ≥ MT and μ < MS.—There are

two cases in the intermediate region, since the model could
have eitherMT < MS orMT > MS. Let us first discuss case
(a): MT < MS. Because of λT ¼ 0, there is no matching
condition on the top-Yukawa coupling at the scale of the
heavy fermion mass MT . Above this scale, the heavy
fermion contributes to the one-loop running of the gauge
couplings, Yukawa couplings, and Higgs quartic coupling
λ. The RGE for the Higgs quartic coupling becomes

dλ
d ln μ2

¼ βSMλ þ 1

ð4πÞ2 ½6λy
2
T − 3y4T − 6y2Ty

2
t �: ð34Þ

Because of the negative contributions from the additional
terms in the above RGE, we expect the scale, at which the
Higgs quartic coupling becomes negative, to be lower than
that in the SM. Therefore, in the pure vectorlike fermion
model, the Higgs vacuum instability problem is worse than
that in the SM.
Region II (b): Scale μ ≥ MS and μ < MT .—This is the

case MT > MS. According to Eq. (28), the Higgs quartic
coupling receives a positive shift at the MS threshold

λH ¼ λSM þ λ2SH
4λS

; ð35Þ

which is the matching condition on the Higgs quartic
coupling. The heavy scalar also changes the RGE running
behavior of the Higgs quartic coupling, which becomes

dλH
d ln μ2

¼ βSMλ þ 1

ð4πÞ2
1

4
λ2SH: ð36Þ

The positive contribution from the last term in Eq. (36)
delays the occurrence of the vacuum instability at high
energies. Therefore, the above two effects on the RGE
running could avoid the possible vacuum instability.
However, we have to worry about the perturbativity

bounds on the scalar quartic coupling λS. The RGE running
of the scalar coupling is

dλS
d ln μ2

¼ 1

ð4πÞ2 ½9λ
2
S þ λ2SH�: ð37Þ

If there is no new heavy fermion coupled to the heavy
scalar, it is very likely that the scalar coupling λS blows up
at some energy scale and thus violates the perturbativity
bounds. Although adding a heavy scalar could solve the
instability problem, there is another problem from the
perturbativity bounds on the scalar coupling in the model
with only scalar sector extension.
Region III: Scale μ ≥ MT;MS.—In this region, both the

heavy fermion and the heavy scalar are involved in the
RGE running. If MT < MS, the quartic Higgs coupling
would receive the same tree-level threshold correction as
Eq. (35) at the boundary of region III. The full RGE
running of the Higgs quartic coupling is

dλH
d ln μ2

¼ βSMλ þ 1

ð4πÞ2
�
6λHy2T þ 1

4
λ2SH − 3y4T − 6y2t y2T

�
:

ð38Þ

We notice that in the above RGE the negative contribution
to the β function of the Higgs quartic coupling from yT is
vastly softened by the positive contribution from λSH,
especially at high energies. By including the positive
threshold shift, the vacuum instability problem could be
evaded. On the other hand, we need to take care of the
perturbativity bounds on the scalar coupling. The RGE
running of the scalar coupling λS is

dλS
d ln μ2

¼ 1

ð4πÞ2 ½9λ
2
S þ λ2SH þ 6y2MλS − 3y4M�; ð39Þ

where yM is the Yukawa coupling of the scalar to the heavy
fermion. Without the y4M term in the above equation, λS
could blow up and reach the Landau pole at some scale.
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The presence of new Yukawa coupling plays a role to avoid
this trouble.
In our numerical scan, we requires that at all the running

scales below Planck scale,

λHðμÞ > 0; 0 < λSðμÞ < 4π: ð40Þ

The evolution of λSH is written as

dλSH
d ln μ2

¼ 1

ð4πÞ2
�
λSH

�
2λSH þ 6λH þ 3λS þ 3y2t

þ 3y2T þ 3y2M −
9g21
20

−
9g22
4

�
− 6y2Ty

2
M

�
: ð41Þ

Since λSH could be either positive or negative, we require
only

jλSHðμÞj < 4π: ð42Þ

The RGE runnings of the new Yukawa couplings are

dy2T
d lnμ2

¼ y2T
ð4πÞ2

�
9

2
y2T þ

9

2
y2t þ

1

4
y2M −

17

20
g21 −

9

4
g22 − 8g23

�
;

ð43Þ

dy2M
d ln μ2

¼ y2M
ð4πÞ2

�
y2T þ 9

2
y2M −

8

5
g21 − 8g23

�
: ð44Þ

We require all the Yukawa couplings to be in the pertur-
bative region at all energies below the Planck scale.
The complete RGEs in three regions are listed in

Appendix B. To illustrate, we show the RGE running of
the Yukawa and scalar couplings in Fig. 1 for a typical
parameter point: mS¼1TeV, mT¼800GeV, sinφ ¼ 0.1,
sin θL ¼ 0.08, and u ¼ 2 TeV. Using Eqs. (40) and (42),
we could put constraints on the parameter space in the
model. So we perform a numerical scan over a large
range of the parameter space for all parameters: the
masses mS and mT , the mixing angles sφ and sL, and the
scale u. Figures 2 and 3 show the allowed parameter
space satisfying the stability and the perturbativity con-
ditions. As expected, if the mixing angle sφ is too small,
and the scalar mass is light, the scalar cannot give
enough lift on the Higgs quartic coupling. In this small
parameter region, the Higgs quartic coupling will become
negative below the Planck scale. So in Fig. 2 we notice
there is a small region where the Higgs vacuum is
instable. Figure 2 also shows the zero sφ is always
excluded. This indicates that it is not allowed to take the
decoupling limit in the scalar sector. On the other hand,
the parameter region where the scalar and the Higgs have
a large mixing is disfavored, especially when the scalar is
heavy. The reason for this is that the scalar quartic
couplings will increase as evolving to the high energy

scale and eventually become nonperturbative. Indeed,
Fig. 2 shows the region with large mixing angle sφ is
excluded. If we fix the scale u (dashed contours in
Fig. 2), there is a strict bound on the mass of the scalar
from the perturbativity limit on the scalar coupling
strength λS. Regarding the parameter space for the heavy
fermion, we expect that small sL is favored, since the
small mixing angle usually gives rise to small Yukawa
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benchmark point mS ¼ 1 TeV, mT ¼ 800 GeV, sinφ ¼ 0.1,
sin θL ¼ 0.08, and u ¼ 2 TeV is taken.
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FIG. 2 (color online). The allowed parameter region of the
scalar mass and mixing angle ðmS; sφÞ when all other parameters
are scanned over. The colored region satisfies the vacuum
stability of the Higgs potential and perturbativity of all the
running couplings. The interiors of the dashed lines are the
allowed contours ðmS; sφÞ for different fixed scales u.
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couplings yT . Small sL could keep the Higgs quartic
coupling positive up to the Planck scale. Figure 3
exhibits this feature. As also shown in Fig. 3, if we
fix the scale u (dashed contours), the mass of the
vectorlike fermion also has an upper bound, since small
Yukawa coupling yM is favored. Finally, we notice that
Fig. 2 is symmetric for the positive and negative value

of the sφ. From now on, we will present the parameter
space with only the positive half of the whole range
of sφ.

IV. PERTURBATIVE UNITARITY

Although there is no bad s-dependent high energy
behavior in the model, the tree-level perturbative unitarity
could put constraints on the masses and couplings of the
heavy particles. In the partial wave treatment [20], given the
tree-level scattering amplitude Mðs; θÞ of all possible
2 → 2 scattering processes, the partial wave amplitude
with angular momentum J is written as

aJ ¼
1

32π

Z
1

−1
d cos θPJðcos θÞMðs; θÞ; ð45Þ

where s and θ are the total energy squared and the
scattering polar angle in the center of mass frame, respec-
tively. PJðcos θÞ is the Legendre polynomial. The unitarity
requires the following condition [20–22]:

jReðaJÞj ≤
1

2
: ð46Þ

In the high energy limit, following the equivalence
theorem [23–26], the unitarity condition could be obtained
by calculating the partial wave amplitudes of the coupled
channels in the scalar sector. It has been shown [27] that the
dominant contribution in the coupled channels is the
process SS → SS. In the high energy limit, the tree-level
amplitude of the SS → SS is

M
�

1ffiffiffi
2

p SS →
1ffiffiffi
2

p SS

�
¼ 1

64v2u2
½6ðm2

H þ 5m2
SÞðv2 þ u2Þ þ 3ðm2

H þ 15m2
SÞðv2 − u2Þ cosð2φÞ

− 6ðm2
H − 3m2

SÞðv2 þ u2Þ cosð4φÞ − 3ðm2
H −m2

SÞðv2 − u2Þ cosð6φÞ
− 12ðm2

H −m2
SÞ2vusin3ð2φÞ�: ð47Þ

If we put it back to the unitarity condition Eq. (46), we
obtain the constraints on the parameter space. In the limit of
no mixing between the Higgs and the scalar, it gives a
constraint on mS against u:

mS <

ffiffiffiffiffiffi
4π

3

r
u: ð48Þ

On the other hand, the heavy fermion also has an
upper bound on its mass and coupling sL from the
requirement of the perturbative unitarity through the
fermion antifermion scattering process. At high energyffiffiffi
s

p
≫ mT , the tree-level amplitude of the process

TT̄ → TT̄ is

MðTT̄ → TT̄Þλiλf

¼ m2
Tðu−2c4L þ v−2s4LÞ

0
BBB@

1 0 0 0

0 0 −1 0

0 −1 0 0

0 0 0 1

1
CCCA; ð49Þ

where λi and λf are the helicity states of the initial and
final states, respectively. λi and λf are taken to be one of
the following helicity states: fþþ;þ−;−þ;−−g.
Diagonalizing it and taking the largest s-wave compo-
nent, we have the unitarity condition
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FIG. 3 (color online). The allowed parameter region of the
vectorlike fermion mass and mixing angle ðmT; sLÞ when all
other parameters are scanned over. The colored region satisfies
the vacuum stability of the Higgs potential and perturbativity of
all the running couplings. The interiors of the dashed lines are the
allowed contours ðmT; sLÞ for different fixed scales u.
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amax
0 ¼ 1

16π
½m2

Tðu−2c4L þ v−2s4LÞ� <
1

2
: ð50Þ

Similarly, if there is no mixing between the vectorlike
fermion and the top quark, it gives a constraint on mT
against u:

mT <
ffiffiffiffiffiffi
8π

p
u: ð51Þ

V. PRECISION ELECTROWEAK
MEASUREMENTS

The presence of the new scalar S and the vectorlike
fermion T renders both modified SM couplings and new
electroweak couplings. We summarize the relevant
Lagrangian involving gauge couplings and the Higgs
couplings in Appendix A. These electroweak couplings
have impact on the electroweak observables, precisely
measured at the LEP and SLC.
The dominant NP effects on the electroweak observables

appear in the gauge boson vacuum polarization correla-
tions, named oblique corrections [28], parametrized by
three independent parameters S, T, and U:

αS≡ 4e2½Π0
33ð0Þ − Π0

3Qð0Þ�; ð52Þ

αT ≡ e2

s2Wc
2
Wm

2
Z
½Π11ð0Þ − Π33ð0Þ�; ð53Þ

αU ≡ 4e2½Π0
11ð0Þ − Π0

33ð0Þ�; ð54Þ

where the notation ΠXY with X; Y ¼ 1; 3; Q denotes
the vacuum polarization amplitudes and Π0

XYðq2Þ ¼
d
dq2 ΠXYðq2Þ. From the global fit of the electroweak pre-
cision data, the constraints on the S, T, and U parameters
can be obtained. The following fit results are determined
from the GFITTER fit [29] for the reference SM parameters
mt ¼ 173 GeV and mh ¼ 126 GeV. In the NP model, the
contribution of the U parameter is usually very small and
can be neglected. By fixing U ¼ 0, the GFITTER global fit
results in

ΔS ¼ SNP − SSM ¼ 0.05� 0.09; ð55Þ

ΔT ¼ TNP − TSM ¼ 0.08� 0.07; ð56Þ

and the correlation coefficient is taken to be 0.91.
We split the calculation on the oblique parameters into

boson-loop contributions TS, SS and fermion-loop contri-
butions TF, SF and consider them separately. For the
boson-loop contributions, the NP effect is involved only
in the vacuum polarization amplitudes where the Higgs or
the heavy scalar are in the loop. This is shown by Feynman
diagrams in Fig. 4. Using the vector boson self-energy ΠVV
defined in Appendix C, we obtain

ΔTS ¼ s2φ½Tsðm2
SÞ − Tsðm2

hÞ�; ð57Þ

ΔSS ¼ s2φ½Ssðm2
SÞ − Ssðm2

hÞ�; ð58Þ

where the functions are defined as

TsðmÞ ¼ −
3

16πc2W

�
1

ðm2 −m2
ZÞðm2 −m2

WÞ
× ðm4 lnm2 − s−2W ðm2 −m2

WÞm2
Z lnm

2
Z

þ s−2W c2Wðm2 −m2
ZÞm2

W lnm2
WÞ −

5

6

�
; ð59Þ

SsðmÞ ¼ 1

12π

�
lnm2 −

ð4m2 þ 6m2
ZÞm2

Z

ðm2 −m2
ZÞ2

þ ð9m2 þm2
ZÞm4

Z

ðm2 −m2
ZÞ3

ln
m2

m2
Z
−
5

6

�
: ð60Þ

Similarly, it is straightforward to calculate the oblique
corrections due to the top quark and the vectorlike fermion
shown in Fig. 5. Subtracting the SM contributions due to
the third-generation quarks

TSM
F ¼ 3m2

t

4πe2v2
; ð61Þ

(a) (b)

(c) (d)

FIG. 4. The one-loop Feynman diagrams (a–d) of the vector
boson self-energy ΠVV due to the scalars in the loop.

FIG. 5. The one-loop Feynman diagrams of (a) W boson self-
energyand(b)Z bosonself-energy,duetoheavyfermions in the loop.
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SSMF ¼ 1

2π

�
1 −

1

3
log

m2
t

m2
b

�
; ð62Þ

we arrive at the final expressions

ΔTF ¼ TSMs2L

�
−ð1þ c2LÞ þ s2L

m2
T

m2
t
þ c2L

2m2
T

m2
T −m2

t
ln
m2

T

m2
t

�
;

ð63Þ

ΔSF ¼ −
s2L
6π

�
ð1 − 3c2LÞ ln

m2
T

m2
t
þ 5c2L

−
6c2Lm

4
t

ðm2
T −m2

t Þ2
�
2m2

T

m2
t
−
3m2

T −m2
t

m2
T −m2

t
ln
m2

T

m2
t

��
; ð64Þ

which agree with the results in Ref. [9]. We expect that both
ΔSF → 0 and ΔTF → 0 would occur in the heavy mass
limit mT → ∞ due to decoupling of the vectorlike fermion.
However, it is hard to observe such a decoupling feature
from Eqs. (63) and (64). As we know, decoupling happens
when mass goes to infinity but couplings are fixed. If one
uses the mixing angle instead of the couplings, the
decoupling behavior becomes opaque. The expression of
the mixing angle

sL ≃ yTvffiffiffi
2

p
mT

ð65Þ

shows that sL goes to zero when mT goes to infinity and yT
is fixed. Therefore, as sL goes to zero, the ΔSF and ΔTF
vanish. On the other hand, if one expresses Eqs. (63) and
(64) by using the parameters ðyT;mTÞ instead of ðsL;mTÞ,
it is easy to see that both ΔSF and ΔTF are proportional to
y2Tv

2

m2
T
, which clearly exhibit the decoupling behavior.

The only important nonoblique correction comes from
the vertex correction of the Zbb̄ coupling. In general, the
effective Zbb̄ vertex can be parametrized as

g2
cW

b̄γμ
�
gL

1 − γ5
2

þ gR
1þ γ5

2

�
bZμ; ð66Þ

where

gL ¼ gSML þ δgNPL ; ð67Þ

gR ¼ gSMR þ δgNPR : ð68Þ

Here gSM denotes the SM coupling with a radiative
correction included, and δgNP represents the correction
purely from the NP model. In the SM, by taking the leading
mt-dependent radiative corrections into account, the SM
couplings are

gSML ¼ −
1

2
þ 1

3
s2W þ m2

t

16π2v2
; ð69Þ

gSMR ¼ 1

3
s2W: ð70Þ

In our model, there is no tree-level correction to the Zbb̄
coupling. However, at one loop, flavor-dependent vertex
corrections arise and contribute to the ZbLb̄L coupling.
Figure 6(a) shows the dominant one-loop Feynman dia-
gram in the t’ Hooft–Feynman gauge, in which the vector-
like fermion and the top quark appear in the loop. The
presence of vertex corrections gives rise to nonzero δgNPL .
To extract out the leading mT-dependent terms explicitly,
we perform the loop calculation in the “gaugeless” limit
[30–33], in which the Z boson is treated as a nonpropagat-
ing external field coupled to the current Jμ ¼ b̄LγμbL. By
using the Ward identity [30,31], the leading contribution
to the ZbLb̄L coupling can be obtained via the calculation

of the higher dimensional operator ∂μπ0
mZ

b̄LγμbL, where π0 is
the Goldstone boson eaten by the Z boson. The relevant
Feynman diagram is shown in Fig. 6(b). The one-loop
effective Lagrangian that is generated by the Feynman
diagram is

Lπbb̄ ¼ ϵb
2

v
b̄LγμbL∂μπ

0; ð71Þ

where

ϵb ¼ −
1

16π2v2
½m4

t c4LC0ðm2
t ; m2

t ; 0Þ þm4
Ts

4
LC0ðm2

T; m
2
T; 0Þ

þ 2m2
t m2

Tc
2
Ls

2
LC0ðm2

t ; m2
T; 0Þ�: ð72Þ

Here C0ðm2
1; m

2
2; m

2
3Þ is the three-point Passarino-Veltman

(PV) function [34] in the zero external momentum limit,
wheremi are the masses of the particles in the triangle loop.
In the limit of the Goldstone boson, the three-point PV
function reduces to

C0ðm2
1; m

2
2; 0Þ ¼

8<
:

− 1
m2

1
−m2

2

ln m2
1

m2
2

if m1 ≠ m2;

− 1
m2

1

if m1 ¼ m2:
ð73Þ

FIG. 6. (a) The dominant one-loop Feynman diagrams in the
t’ Hooft–Feynman gauge; (b) the only Feynman diagrams after
the gaugeless limit is taken in the model.
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In the decoupling limit, taking sL → 0 in Eq. (72), one
recovers the leading mt-dependent contribution in the SM:

ϵSMb ¼ m2
t

16π2v2
: ð74Þ

Based on the Ward identity in Refs. [30,31], we recognize
the coefficient ϵb in Eq. (71) is proportional to the quantity
we are interested in:

δgNPL ¼ ϵb − ϵSMb : ð75Þ

So we obtain the expression for the NP correction δgNPL :

δgNPL ¼ m2
t s2L

16π2v2

�
−ð1þ c2LÞ þ s2L

m2
T

m2
t
þ c2L

2m2
T

m2
T −m2

t
ln
m2

T

m2
t

�
:

ð76Þ

Note that the terms inside the bracket are the same as
in Eq. (63).
Among all electroweak observables, three of them are

related to the Zb̄b couplings: Ab, A
0;b
FB, and Rb. It is known

that the asymmetries Ab and A0;b
FB are mainly sensitive to

δgNPR , while the Rb mainly sets constraints on δgNPL . Because
of the dominant corrections on the δgNPL , we will make use
of the observable Rb to constrain the parameter space. The
shift in Rb due to new physics is

δRb ¼ 2Rbð1 − RbÞ
gLδgNPL þ gRδgNPR

g2L þ g2R
: ð77Þ

The experimental value and SM theoretical value (includ-
ing two-loop corrections) [1] is

Rexp
b ¼ 0.21629� 0.00066; ð78Þ

Rth
b ¼ 0.21575� 0.00003: ð79Þ

Following Ref. [35], δgNPL is determined to be δgL ¼
0.0028� 0.0014.
The experimental constraints on the oblique parameters

and the Zb̄b couplings set limits on the parameter space in
the model. We scan over a large range of the parameter
space and obtain the allowed parameter region at the 95%
confidence level (C.L.). We find that all the parameter
spaces on the ðmS; sφÞ in the scalar sector are allowed. This
means the constraint from the electroweak precision data
on the scalar sector is quite weak. However, only part of the
parameter space on the ðmT; sLÞ in the top sector is allowed,
as is shown in Fig. 7. Since all the NP corrections are
proportional to s2L, there is an upper limit on the sL.
Figure 7 shows the decoupling nature of the vectorlike
fermion: as the fermion becomes heavier, there are less
allowed regions of the mixing angle due to the implicit
1=mT dependence of the mixing angle. The constraint from

the nonuniversal correction to the Zbb̄ coupling is weaker
than the one from the universal oblique corrections. The
tightest constraint comes from the T parameter, since
the vectorlike fermion is in the singlet representation of
the electroweak group, which contributes to the custodial
symmetry breaking in the model at the loop level. The
dashed line in Fig. 7 shows tighter constraints in the pure
vectorlike fermion model than in our model. The relaxed
constraint on the T parameter in our model is due to the
opposite correction from the boson loops with respect to the
fermion contribution. Therefore, the existence of the heavy
scalar leads to a larger allowed parameter space.

VI. HIGGS COUPLING MEASUREMENTS

Current data on the measurements of the coupling
properties of the Higgs boson at the LHC show that there
is no significant deviation from the SM expectation. This
put constraints on the NP models in which the Higgs
couplings to the SM particles are modified. The deviations
in the Higgs couplings can occur in two ways: new
fermions or charged bosons contribute to the loop-induced
hγγ and/or hgg couplings, or new scalars mixed with the
Higgs boson give rise to the deviation in the tree-level hVV
and/or hff̄ couplings. In our model, the heavy scalar mixed
with the Higgs boson induces tree-level correction to the
couplings of the Higgs to the SM particles. The vectorlike
fermion also contribute to the loop-induced hgg coupling
and hγγ coupling. These effects will modify both the
production cross section and the decay branching ratio
of the Higgs boson. In the narrow-width approximation, the
signal cross section can be decomposed in the following
way for all channels:
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FIG. 7 (color online). The allowed region from the oblique
corrections S; T, and Zb̄LbL at the 95% confidence level. Below
the pink dashed line is the allowed region from the S; T
parameters in the pure vectorlike fermion model.
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ðσ · BRÞðii → h → ffÞ≡ σii · BRff ¼ σii · Γff

Γh
; ð80Þ

where σii is the production cross section through the initial
state ii, Γff the partial decay width into the final state ff,
Γh the total width of the Higgs boson, and BRff the
branching ratio.
Let us parametrize the deviations on the Higgs couplings

in terms of the Higgs coupling scale factors κ, defined as
gNP=gSM. The general effective Higgs couplings could be
rewritten as

LHiggs ¼ κWgSMhWWhW
þμW−

μ þ κZgSMhZZhZ
μZμ

− κtgSMhtt ht̄t − κbgSMhbbhb̄b − κτgSMhττhτ̄τ

þ κggSMhgghG
μνGμν þ κγgSMhγγhA

μνAμν; ð81Þ

where gSM are the SM Higgs couplings. At the tree level,

gSMhWW ¼ 2m2
W

v , gSMhZZ ¼ m2
Z
v , and gSMhff ¼ mf

v . On the other hand,
the couplings gSMhγγ and gSMhgg only receive loop corrections
and thus are suppressed by the loop factor. Up to one-loop
level, the SM couplings to the photon and the gluon are

gSMhgg ¼
g2s

16π2
X
f

gSMhff
mf

A1=2ðτfÞ; ð82Þ

gSMhγγ ¼
e2

16π2

�
gSMhWW

m2
W

A1ðτWÞ þ
X
f

2Nf
cQ2

f

gSMhff
mf

A1=2ðτfÞ
�
;

ð83Þ
where the sum over f runs over t; b; s; c quarks and

τi ¼ 4m2
i

m2
h
. Here the loop functions A1ðτÞ and A1=2ðτÞ are

A1=2ðτÞ ¼ 2τ½1þ ð1 − τÞfðτÞ�; ð84Þ

A1ðτÞ ¼ −2 − 3τ½1þ ð2 − τÞfðτÞ�: ð85Þ

with

fðxÞ ¼
8<
:

arcsin2½1= ffiffiffi
x

p �; for x ≥ 1;

− 1
4

h
ln 1þ ffiffiffiffiffiffi

1−x
p

1−
ffiffiffiffiffiffi
1−x

p − iπ
i
2
; for x < 1:

ð86Þ

In our model, due to mixing between the Higgs boson and
the heavy scalar, all the tree-level Higgs couplings are
modified as

gNPhff ¼ cφgSMhff; gNPhVV ¼ cφgSMhVV: ð87Þ

The loop-induced Higgs couplings to the photon and the
gluon are also modified by the new contribution from the
vectorlike fermion loop, as shown in Fig. 8. So the Higgs
couplings to the photon and the gluon are

gNPhgg ¼
g2s

16π2

�X
f

ghff
mf

A1=2ðτfÞ þ
ghTT
mT

A1=2ðτTÞ
�
; ð88Þ

gNPhγγ ¼
e2

16π2

�
ghWW

m2
W

A1ðτWÞ þ
X
f

2Nf
cQ2

f

ghff
mf

A1=2ðτfÞ

þ 8

3

ghTT
mT

A1=2ðτTÞ
�
; ð89Þ

where τT ¼ 4m2
T

m2
h

and ghtt; ghTT couplings are given in

Appendix A. Note that in the above equations there is
no scalar mass mS dependence. From these couplings, we
obtain the Higgs coupling scale factors κ in the model:

κV ¼ κf ¼ cφ; κg ¼
gNPhgg
gSMhgg

; κγ ¼
gNPhγγ
gSMhγγ

: ð90Þ

The above parameters are not independent. κγ can be
expressed in terms of κg, because the loop contributions
from the vectorlike fermion to the h → γγ and h → gg
couplings are the same. Therefore, there are only two
independent parameters (κV; κg) in our general parametri-
zation of the Higgs couplings in the model.
In the Higgs measurement at the LHC, the signal

strength modifier [36] for each individual channel is
defined as

Rii→h→ff ¼
σNPii · BRNP

ff

σSMii · BRSM
ff

: ð91Þ

The main channels for the Higgs production are the gluon
fusion process gg → h, the vector-boson fusion (VBF)
process qq → hqq, and the associated production
qq → Vh. To distinguish them, we denote the initial state
ii as (gg;HV;VBF). So the production cross section in the
parton level could be written as

(a) (b)

(c) (d)

FIG. 8. The loop-induced h → gg Feynman diagrams due to the
top quark (a) and the vectorlike fermion (b), and the loop-induced
h → γγ Feynman diagrams due to the top quark (c) and the
vectorlike fermion (d).
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σNPgg ¼ κ2gσ
SM
gg ; σNPHV ¼ κ2Vσ

SM
HV; σNPVBF ¼ κ2Vσ

SM
VBF:

ð92Þ

In practice, it is hard to separate contributions from
different production channels. So the production cross
section in the hadron level should be

σpp ¼
X
i

ciσNPii ; ð93Þ

where ci is the relative contribution from the production
channel ii, which depends on experimental cuts and
detector efficiencies. At the current LHC running, the
following decay channels: h → WW=ZZ, h → γγ, and
h → bb=ττ are observed. Among these channels, the
measurements in the h → bb=ττ channels still have large
uncertainties on the coupling measurements as well as poor
mass resolution. Therefore, the precise determination of
the Higgs coupling mainly comes from the h → WW=ZZ,
h → γγ channels. The decay branching ratio in the model is

BRγγ ¼ rΓκ2γBRSM
γγ ; BRVV ¼ rΓκ2VBR

SM
VV ;

BRff ¼ rΓκ2fBR
SM
ff ; ð94Þ

where rΓ ¼ ΓSM
h

ΓNP
h

is the ratio of the total width in the SM

against that in our model. In terms of the scale factors in the
model, the total decay width is parametrized as

ΓNP
h ≃ ð0.917κ2V þ 0.003κ2γ þ 0.08κ2gÞΓSM

h ; ð95Þ
where the coefficients come from the numerical values of
the SM contributions.
Given the total production cross section and the decay

branching ratios in terms of the two independent param-
eters (κV; κg), we are ready to compare our theoretical
predictions with the experimental data. We will use all the
available data from Tables 10 and 11 in Ref. [37], which
collect both the ATLAS and CMS experimental results with
full integrated luminosity at 7 and 8 TeV. Then we perform
a global fit based on the χ2 analysis:

χ2 ¼
X
i

�
Rexp
i − Rth

i

σexpi

�
2

; ð96Þ

where we sum over all the available channels in the
measurements. Here Rexp is the Higgs signal modifier
obtained from the experimental data, and σexp is its
experimental error. Figure 9 shows the allowed parameter
region for the scale factors ðκV; κgÞ at the 68.27%, 95%, and
99.7% C.L., respectively. The best fit of the scale factors
(κV; κg) is found to be

κV ¼ 1.0096� 0.297; κg ¼ 0.941� 0.176;

with χ2=ndf ¼ 61.022=54: ð97Þ

From Eq. (97) and Fig. 9, we find that the central value of
the best fit is close to the SM value, and the 95% C.L.
contour shows a moderate accuracy. In Fig. 9, there is a
small tail in the 99.7% C.L. contour. This tail tells us the
parameter space with larger κg and smaller κV is still
allowed by the current data. In the h → γγ channel, due to
the enhanced total cross section, κg could be larger. While
in the h → VV channel, since the total cross section
σgg→h→VV ∼ κ2gκ

2
V , a larger κg implies a smaller κV. We

could convert our constraints on the scale factors (κV; κg)
into a limit on the model parameters, as shown in Fig. 10.
From Fig. 10, we read that the large mixing angles (sφ; sL)
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FIG. 9 (color online). The allowed parameter region for the
general parametrization ðκV; κgÞ at the 68.27% (red), 95%
(green), and 99.7% (blue) confidence levels. The color palette
in the right side shows the value of the Δχ2 for the allowed
parameter.
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FIG. 10 (color online). The allowed parameter region for the
parameters (sφ; sL) in the model at 95% C.L.
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are not allowed. The constraint on sφ is expected, since all
the NP corrections in the total cross section are proportional
to s2φ. The constraint on sL mainly comes from the gluon
fusion production cross section and the h → γγ decay
branching ratio. The constraints on the parameters (u,
mT) are quite weak, and there is no constraint on mS at
all. For the scale u, it appears only in the combination sφ

u ,
inside the gg → h and h → γγ loops. Since sφ cannot be
large, there is no constraint for a TeV scale u. Because of
the saturated behavior of the function A1=2ðτTÞ for a heavy
mT , the constraint on the mT is weak.

VII. HADRON COLLIDER SEARCHES

There are many direct searches on the vectorlike quarks
which couple predominantly to the third-generation quarks
at the Tevatron and the LHC. At the LHC, the vectorlike
quark could be produced in a pair through QCD production
pp → TT̄ or be singly produced via electroweak process
pp → Tb̄. For a light vectorlike fermion, the pair produc-
tion cross section is larger than the one in the single
production, while for a heavy vectorlike fermion the single
production is more efficient. The main decay channels of
the heavy vectorlike fermion are

T → tZ; T → bW; T → th; ð98Þ

and T → tS only if the scalar is much lighter than the
vectorlike fermion. In the model, the tree-level partial
decay widths are given by

ΓT→bW ¼ s2Lm
3
T

32πv2

�
1þO

�
m2

W

m2
T

��
; ð99Þ

ΓT→tZ ¼ s2Lm
3
T

64πv2

��
1 −

m2
t

m2
T

�
3

þO
�
m2

Z

m2
T

��
; ð100Þ

ΓT→th ¼
s2Lc

2
Lc

2
φm3

T

64πv2

�
1þ 5m2

t

m2
T
þO

�
m2

h

m2
T
;
m4

t

m4
T
;
v2

u2

��
:

ð101Þ

By taking the limit mT ≫ mt;mh, the partial decay widths
have the following pattern:

ΓT→bW∶ΓT→tZ∶ΓT→th ≃ 2∶1∶1: ð102Þ

This can be understood in the following way. By using the
Goldstone equivalence theorem [24–26], the partial decay
widths can be estimated by calculating the corresponding
Goldstone boson final state instead:

ΓT→bW ≃ ΓT→bπ� ; ΓT→tZ ≃ ΓT→tπ0 :

Because of the custodial symmetry in the scalar sector, the
partial decay widths have

ΓT→bπ�∶ΓT→tπ0∶ΓT→th ≃ 2∶1∶1: ð103Þ

In a recent CMS analysis [38], using the 8 TeV data
collected up to integrated luminosity of 19.5 fb−1, the up-
to-date lower limits on the mass of the heavy fermion are
set to be around 687–782 GeV depending on different
patterns of the vectorlike quark decay branching ratios.
Setting the pattern of the branching ratio as 2∶1∶1, we
could put a limit on the vectorlike fermion mass: 696 GeV.
In the model, the heavy scalar is CP even, the same as

the SM Higgs boson. The search limits on the high mass
Higgs boson at the Tevatron and the LHC could be used to
set constraints on the mass and couplings of the heavy
scalar. The production mechanism is similar to the Higgs
boson, dominated by the gluon fusion with the production
cross section σgg→S. The decay channels of the heavy scalar
are

S → WW; S → ZZ; S → hh; S → tt̄; ð104Þ

and S → tT only if the vectorlike fermion is much lighter
than the scalar. Other decay channels, such as S → γγ=gg,
S → ff̄, where f is the fermion other than the top quark,
are negligible. The explicit formulas of the partial decay
widths are listed in Appendix D. Similar to the vectorlike
fermion case, in the limit mS ≫ mh;mt, one could estimate
the partial widths by calculating the decays to the corre-
sponding Goldstone bosons instead:

ΓS→WW ≃ ΓS→πþπ− ¼ s2φm3
S

32πv2

�
1þO

�
m2

Z

m2
S

��
; ð105Þ

ΓS→ZZ ≃ ΓS→π0π0 ¼
s2φm3

S

64πv2

�
1þO

�
m2

Z

m2
S

��
; ð106Þ

ΓS→hh ¼
s2φc4φm3

S

64πv2

�
1þO

�
m2

h

m2
S
;
v2

u2

��
: ð107Þ

A similar decay pattern holds here: ΓS→WW∶ΓS→ZZ∶
ΓS→hh ≃ 2∶1∶1. In an up-to-date analysis from the CMS
[39], the searches in S → WW and S → ZZ decay channels
are studied in the mass range between 145 and 1000 GeV. If
the high mass Higgs boson has the same coupling as the
SM, the mass range between 145 and 710 GeV is excluded
at the 95% C.L. We convert this constraint into the limit on
the heavy scalar in the model. After calculating the
production cross section and the decay branching ratios
of the heavy scalar, we perform a scan over the whole range
of the parameter space, which is shown in Fig. 12. It is
shown that a range of the parameter space with light scalar
mass and moderate mixing angle is ruled out.
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VIII. CONCLUSIONS

We investigated a vectorlike fermion coupled to a new
singlet scalar and the third-generation quarks. The singlet
scalar extended the Higgs sector, through the mixing with
the Higgs boson. In our setup, the mass of the vectorlike
fermion is purely generated from symmetry breaking of the
singlet scalar. We carefully examined the electroweak
vacuum stability and scalar perturbativity via the renorm-
alization group evolution of the Higgs quartic coupling
and the scalar quartic couplings. The matching condition
when integrating out heavy particles and the relation
between the running and physical parameters were con-
sidered. Although the vectorlike fermion provides negative
contributions to the running of the Higgs quartic coupling,
the new scalar contributes positively. In the matching of the
renormalization group, the Higgs quartic coupling obtains a
positive threshold shift at the scale of the scalar mass. By
taking the above two effects into account, it is likely that the
Higgs quartic coupling could stay positive up to the Planck
scale. We performed a scan over the parameter space and
found that a large range of the parameter space is allowed.
In this model, we also examined the constraints from the
precision electroweak observables, Higgs coupling preci-
sion measurements, and the LHC direct searches. In
Figs. 11 and 12, we summarized current constraints on
the parameter space of the top sector ðmT; sin θLÞ and the
scalar sector ðmS; sinφÞ. It is interesting to see that the
tightest constraints always come from the Higgs vacuum
stability and perturbativity in the ðmT; sin θLÞ and
ðmS; sinφÞ spaces. However, the constraints from the
perturbative unitarity are very weak. Concerning the

ðmT; sin θLÞ parameter space, the oblique parameters
S; T put a tight constraint on the parameter space, while
the constraints from the ZbLb̄L coupling and the Higgs
coupling measurements are weaker. The direct LHC
searches set the lower limits on the mass of the vectorlike
fermion at around 700 GeV. On the other hand, there is no
constraint on the ðmS; sinφÞ parameter space from the
oblique parameters S; T and ZbLb̄L coupling measure-
ments. The Higgs coupling measurements give rise to an
upper bound on the mixing angle sφ. Regarding to the LHC
direct searches, only a small range of the parameter space
with a moderate mixing angle and light mass is ruled out.
As shown in Figs. 11 and 12, a large region of the
parameter space is still unexplored.
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APPENDIX A: RELEVANT ELECTROWEAK
LAGRANGIAN IN THE MODEL

Let us summarize the relevant Lagrangian as follows.
The interactions of the SM quarks ðt; bÞ reads

LW ¼ −
g2ffiffiffi
2

p t̄γμðcLPLÞbWþ
μ þ H:c:; ðA1Þ

LZ ¼ −
g2
cW

t̄γμðc2LT3
uPL −Qs2WÞtZμ; ðA2Þ
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FIG. 11 (color online). Exclusion plot on the parameters
mT − sin θL with all current constraints included. The exclusion
zones are on the shadow side of each line. The allowed region is
shown as the zone delimited by the tightest constraints from the
stability and the LHC.
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FIG. 12 (color online). Exclusion plot on the parameters mS −
sinφ with all current constraints included. The exclusion zones
are on the shadow side of each line. The allowed region is shown
as the zone delimited by the tightest constraints from the
perturbativity, the stability (λH < 0), and the LHC.

MING-LEI XIAO AND JIANG-HAO YU PHYSICAL REVIEW D 90, 014007 (2014)

014007-14



LH ¼ −
ffiffiffi
2

p
πþ

v
t̄ðmbcLPR −mtcLPLÞbþ H:c: −

�
mtc2L
v

ðϕ − iπ0Þ þmts2L
u

χ

�
t̄t; ðA3Þ

where ϕ ¼ cφhþ sφS and χ ¼ −sφhþ cφS. The interactions with the gluon and the photon are the same as in the SM. The
interactions of the heavy quark T are

LZ ¼ −
g2
cW

T̄γμðs2LT3
uPL −Qs2WÞTZμ; ðA4Þ

LH ¼ −
�
mTs2L
v

ðϕ − iπ0Þ þmTc2L
u

χ

�
T̄T: ðA5Þ

Finally, the terms involved in a T and a ðt; bÞ are

LW ¼ −
g2ffiffiffi
2

p T̄γμðsLPLÞbWþ
μ þ H:c:; ðA6Þ

LZ ¼ −
g2
cW

t̄γμðsLcLT3
uPLÞTZμ þ H:c:; ðA7Þ

LH ¼ −
ffiffiffi
2

p
πþ

v
T̄ðmbsLPR −mTsLPLÞb −

�
ϕ − iπ0

v
−
χ

u

�
t̄ðmtsLcLPL þmTsLcLPRÞT þ H:c: ðA8Þ

APPENDIX B: RENORMALIZATION GROUP EQUATIONS

In this section, we listed the one-loop RGEs in different effective field theories.

1. Renormalization group equations in our model

At the scale μ > MS;MT , both the heavy scalar and the vectorlike fermion are involved in the RGE running. The gauge
coupling RGEs are

dg21
d ln μ2

¼ g41
ð4πÞ2

�
41

10
þ 16

15

�
; ðB1Þ

dg22
d ln μ2

¼ g42
ð4πÞ2

�
−
19

6

�
; ðB2Þ

dg23
d ln μ2

¼ g43
ð4πÞ2

�
−7þ 2

3

�
; ðB3Þ

where g21 ¼ 5g2Y=3 is the hypercharge gauge coupling in GUT normalization. The Yukawa coupling RGEs are

dy2t
d ln μ2

¼ y2t
ð4πÞ2

�
9y2T
2

þ 9y2t
2

þ 3y2b
2

þ y2τ −
17g21
20

−
9g22
4

− 8g23

�
; ðB4Þ

dy2b
d ln μ2

¼ y2S
ð4πÞ2

�
3y2t
2

þ 9y2b
2

þ 3y2T
2

þ y2τ −
g21
4
−
9g22
4

− 8g23

�
; ðB5Þ

dy2τ
d ln μ2

¼ y2τ
ð4πÞ2

�
3y2t þ 3y2b þ 3y2T þ 5y2τ

2
−
9g21
4

−
9g22
4

�
; ðB6Þ

dy2T
d ln μ2

¼ y2T
ð4πÞ2

�
9

2
y2T þ 9

2
y2t þ

3

2
y2b þ y2τ þ

1

4
y2M −

17

20
g21 −

9

4
g22 − 8g23Þ

�
; ðB7Þ
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dy2M
d ln μ2

¼ y2M
ð4πÞ2

�
y2T þ 9

2
y2M −

8

5
g21 − 8g23

�
: ðB8Þ

The RGEs in the Higgs sector are

dλH
d ln μ2

¼ 1

ð4πÞ2
�
λH

�
12λH þ 6y2t þ 6y2b þ 2y2τ þ 6y2T −

9g21
10

−
9g22
2

�

þ
�
1

4
λ2SH − 3y4t − 3y4b − y4τ − 3y4T − 6y2t y2T þ 27g41

400
þ 9g42

16
þ 9g22g

2
1

40

��
; ðB9Þ

dλSH
d ln μ2

¼ 1

ð4πÞ2
�
λSH

�
2λSH þ 6λH þ 3λS þ 3y2t þ 3y2b þ y2τ þ 3y2T þ 3y2M −

9g21
20

−
9g22
4

�
− 6y2Ty

2
M

�
; ðB10Þ

dλS
d ln μ2

¼ 1

ð4πÞ2 ½9λ
2
S þ 6y2MλS þ λ2SH − 3y4M�: ðB11Þ

2. The standard modelþ vectorlike fermion singlet

At the scale μ < MS, and μ > MT , only the vectorlike fermion is involved in the RGE running. The gauge coupling
RGEs are

dg21
d ln μ2

¼ g41
ð4πÞ2

�
41

10
þ 16

15

�
; ðB12Þ

dg22
d ln μ2

¼ g42
ð4πÞ2

�
−
19

6
þ 0

�
; ðB13Þ

dg23
d ln μ2

¼ g43
ð4πÞ2

�
−7þ 2

3

�
: ðB14Þ

The Yukawa coupling RGEs are

dy2t
d ln μ2

¼ y2t
ð4πÞ2

�
9y2T
2

þ 9y2t
2

þ 3y2b
2

þ y2τ −
17g21
20

−
9g22
4

− 8g23

�
; ðB15Þ

dy2b
d ln μ2

¼ y2b
ð4πÞ2

�
3y2t
2

þ 3

2
y2T þ 9y2b

2
þ y2τ −

g21
4
−
9g22
4

− 8g23

�
; ðB16Þ

dy2τ
d ln μ2

¼ y2τ
ð4πÞ2

�
3y2t þ 3y2T þ 3y2b þ

5y2τ
2

−
9g21
4

−
9g22
4

�
; ðB17Þ

dy2T
d ln μ2

¼ y2T
ð4πÞ2

�
9

2
y2T þ 9

2
y2t þ

3

2
y2b þ y2τ −

17

20
g21 −

9

4
g22 − 8g23

�
; ðB18Þ

and the RGE in the Higgs sector is

dλ
d ln μ2

¼ λ

ð4πÞ2
�
12λþ 6y2T þ 6y2t þ 6y2b þ 2y2τ −

9g21
10

−
9g22
2

�

þ 1

ð4πÞ2
�
−3y4T − 6y2Ty

2
t − 3y4t − 3y4b − y4τ þ

27g41
400

þ 9g42
16

þ 9g21g
2
2

40

�
: ðB19Þ
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3. The standard modelþ real scalar singlet

At the scale μ > MS, and μ < MT , only the vectorlike fermion is involved in the RGE running. The gauge coupling RGEs
are

dg21
d ln μ2

¼ g41
ð4πÞ2

�
41

10

�
; ðB20Þ

dg22
d ln μ2

¼ g42
ð4πÞ2

�
−
19

6

�
; ðB21Þ

dg23
d ln μ2

¼ g43
ð4πÞ2 ½−7�: ðB22Þ

The Yukawa coupling RGEs are

dy2t
d ln μ2

¼ y2t
ð4πÞ2

�
9y2t
2

þ 3y2b
2

þ y2τ −
17g21
20

−
9g22
4

− 8g23

�
; ðB23Þ

dy2b
d ln μ2

¼ y2b
ð4πÞ2

�
3y2t
2

þ 9y2b
2

þ y2τ −
g21
4
−
9g22
4

− 8g23

�
; ðB24Þ

dy2τ
d ln μ2

¼ y2τ
ð4πÞ2

�
3y2t þ 3y2b þ

5y2τ
2

−
9g21
4

−
9g22
4

�
; ðB25Þ

and the RGEs in the Higgs sector are

dλH
d ln μ2

¼ λH
ð4πÞ2

�
12λH þ 6y2t þ 6y2b þ 2y2τ −

9g21
10

−
9g22
2

�

þ 1

ð4πÞ2
�
1

4
λ2SH − 3y4t − 3y4b − y4τ þ

9g42
16

þ 27g41
400

þ 9g22g
2
1

40

�
; ðB26Þ

dλSH
d ln μ2

¼ λSH
ð4πÞ2

�
2λSH þ 6λH þ 3λS þ 3y2t þ 3y2b þ y2τ −

9g21
20

−
9g22
4

�
; ðB27Þ

dλS
d ln μ2

¼ 1

ð4πÞ2 ½9λ
2
S þ λ2SH�: ðB28Þ

APPENDIX C: CALCULATION OF THE OBLIQUE PARAMETERS S;T

In this section, we present the computation of the S; T parameters with Passarino-Veltman functions [34].

1. General formulas for gauge boson self-energy

We list the general formulas for the gauge boson self-energy functions Πij, where i; j denote the gauge boson species. In
the formulas, only the one-point PV function A0ðm2Þ and the two-point PV functions B0ðp2; m2

1; m
2
2Þ and B00ðp2; m2

1; m
2
2Þ

are involved. In the calculation of the oblique parameters, all the self-energy functionsΠij and their derivativesΠ0
ij ¼ dΠ

dp2 are

computed at p2 ¼ 0. Various contributions from fermion and scalar loops are summarized as follows.
(i) Fermion loop contribution:

Πff
ij ¼ −

Nc

16π2
½ðgiLgjL þ giRgjRÞð4B00ð0; m2

f1; m
2
f2Þ − ðm2

f1 þm2
f2ÞB0ð0; m2

f1; m
2
f2Þ − A0ðm2

f1Þ − A0ðm2
f2ÞÞ

þ 2mf1mf2ðgiLgjR þ giRgjLÞB0ð0; m2
f1; m

2
f2Þ�; ðC1Þ
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Π0ff
ij ¼ −

Nc

16π2
½ðgiLgjL þ giRgjRÞð4B0

00ð0; m2
f1; m

2
f2Þ − ðm2

f1 þm2
f2ÞB0

0ðm2
f1; m

2
f2Þ þ B0ð0; m2

f1; m
2
f2ÞÞ

þ 2mf1mf2ðgiLgjR þ giRgjLÞB0
0ð0; m2

f1; m
2
f2Þ�; ðC2Þ

where giL and giR are the left-handed and right-handed
couplings, respectively, of the gauge boson labeled i to the
fermions running in the loop, from the vertex

f̄1γμðgiLPL þ giRPRÞf2Aμ: ðC3Þ

(ii) Scalar tadpole contribution:

Πs
ij ¼ −gA0ðm2

sÞ; ðC4Þ

Π0s
ij ¼ 0; ðC5Þ

where g is the coupling strength of the s − s − V − V
four-point coupling.

(iii) Scalar loop contribution:

Πss
ij ¼ 4gigjB00ð0; m2

s1; m
2
s2Þ; ðC6Þ

Π0ss
ij ¼ 4gigjB0

00ð0; m2
s1; m

2
s2Þ; ðC7Þ

where gi is the coupling strength of the s − s − V
three-point coupling involving the gauge boson
labeled i.

(iv) Scalar-vector loop contribution:

Πvs
ij ¼ −gigjB0ð0; m2

v; m2
sÞ; ðC8Þ

Π0vs
ij ¼ −gigjB0

0ð0; m2
v; m2

sÞ; ðC9Þ

where gi is the coupling strength of the s − V − V
three-point coupling involving the gauge boson
labeled i.

2. The oblique parameters S;T

We present the contributions to the S; T from the fermion
loops and the boson loops, separately.

a. The fermion loops

The T parameter is computed as

αT≡ e2

s2Wc
2
Wm

2
Z
½Π11ð0Þ−Π33ð0Þ� ¼

ΠWW

m2
W

−
ΠZZ

m2
Z
−
2sW
cW

ΠZγ

m2
Z
;

ðC10Þ

where for fermion loops the last term on the right-hand side
does not contribute. In the SM, the fermion contributions
mainly come from the third-generation quarks:

ΠSM
WW ¼ Πtb;SM

WW ; ðC11Þ

ΠSM
ZZ ¼ Πtt;SM

ZZ þ Πbb;SM
ZZ : ðC12Þ

In our model, there are new contributions from the vector-
like fermion T:

ΠWW ¼ Πtb
WW þ ΠTb

WW; ðC13Þ

ΠZZ ¼ Πtt
ZZ þ 2ΠtT

ZZ þ ΠTT
ZZ þ Πbb;SM

ZZ : ðC14Þ

By subtracting the SM contribution, the NP correction on
the parameter T from the fermion loops can be obtained:

ΔTF ¼ 1

α

�
1

m2
W
ðΠtb

WW þ ΠTb
WW − Πtb;SM

WW Þ

−
1

m2
Z
ðΠtt

ZZ þ 2ΠtT
ZZ þ ΠTT

ZZ − Πtt;SM
ZZ Þ

�
: ðC15Þ

The S parameter is defined as

S ¼ 16πðΠ0
33 − Π0

3γÞ: ðC16Þ

In the SM, the fermion contributions are

Π0SM
33 ¼ Π0tt;SM

33 þ Π0bb;SM
33 ; ðC17Þ

Π0SM
3γ ¼ Π0tt;SM

3γ þ Π0bb;SM
3γ ; ðC18Þ

while the new model gives

Π0SM
33 ¼ Π0tt

33 þ 2Π0tT
33 þ Π0TT

33 þ Π0bb;SM
33 ; ðC19Þ

Π0SM
3γ ¼ Π0tt

3γ þ 2Π0tT
3γ þ Π0TT

3γ þ Π0bb;SM
3γ : ðC20Þ

Therefore the NP correction on the parameter S from the
fermion loops is

ΔSF ¼ 16π½ðΠ0tt
33 þ 2Π0tT

33 þ Π0TT
33 − Π0tt;SM

33 Þ − ðΠ0tt
3γ þ 2Π0tT

3γ þ Π0TT
3γ − Π0tt;SM

3γ Þ�: ðC21Þ
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b. The boson loops

To compute the boson contributions, it is convenient
to split them into the gauge parts ð ~Tv; ~SvÞ and the scalar
parts ð ~Ts; ~SsÞ:

TS ¼ ~Tv þ ~Ts; SS ¼ ~Sv þ ~Ss; ðC22Þ
where the tilde indicates there are divergences in each
part ð ~T; ~SÞ, while the total boson contributions to ðTS; SSÞ
are convergent. The gauge parts consist of the contribu-
tions from the W=Z loops, the ghost loops, and the
Goldstone loops, which are not altered in our model. So
the gauge parts will not contribute to ΔTS and ΔSS in our
model. The scalar parts ð ~Ts; ~SsÞ consist of all the loops
that involve the Higgs boson, or any new real scalars that
mix with the Higgs boson. In the following, we will
consider only the contributions to the ΔTS and ΔSS from
the scalar parts.
In the SM, the self-energy functions involving the Higgs

boson are

ΠSM
WW ¼ 1

2
Πh;SM

WW þ ΠhW;SM
WW þ Πhπ�;SM

WW ; ðC23Þ

ΠSM
ZZ ¼ 1

2
Πh;SM

ZZ þ ΠhZ;SM
ZZ þ Πhπ0;SM

ZZ ; ðC24Þ

while there is no Higgs boson contribution in the two-point
function ΠZγ . Inserting the above self-energy functions
back to the T parameter definition, due to the cancellation
between the first terms in the W and Z self-energy
functions, we obtain the scalar part ~TSM

s :

~TSM
s ¼ 1

α

�
ΠhW;SM

WW þ Πhπ�;SM
WW

m2
W

−
ΠhZ;SM

ZZ þ Πhπ0;SM
ZZ

m2
Z

�
ðC25Þ

¼ 3

16πc2W
Δþ TsðmhÞ; ðC26Þ

where Δ is the divergent term Δ ¼ 2
4−d − γ þ ln 4πμ2 in the

MS scheme. Here the finite part is written as a function of
the scalar mass m:

TsðmÞ ¼ −
3

16πc2W

�
1

ðm2 −m2
ZÞðm2 −m2

WÞ
ðm4 lnm2 − s−2W ðm2 −m2

WÞm2
Z lnm

2
Z þ s−2W c2Wðm2 −m2

ZÞm2
W lnm2

WÞ −
5

6

�
:

ðC27Þ

The calculation is done in the MS scheme, without loss of generality.
In our model, the self-energy functions involving the Higgs boson and the new scalar are

ΠWW ¼ 1

2
ðΠh

WW þ ΠS
WWÞ þ ðΠhW

WW þ ΠSW
WWÞ þ ðΠhπ�

WW þ ΠSπ�
WWÞ; ðC28Þ

ΠZZ ¼ 1

2
ðΠh

ZZ þ ΠS
ZZÞ þ ðΠhZ

ZZ þ ΠSZ
ZZÞ þ ðΠhπ0

ZZ þ Πhπ0
ZZ Þ: ðC29Þ

Note that the first terms do not contribute to the T parameter, as in the SM. Similarly, we obtain the scalar part ~Ts:

~Ts ¼
1

α

�
ΠhW

WW þ Πhπ�
WW

m2
W

−
ΠhZ

ZZ þ Πhπ0
ZZ

m2
Z

�
þ 1

α

�
ΠSW

WW þ ΠSπ�
WW

m2
W

−
ΠSZ

ZZ þ ΠSπ0
ZZ

m2
Z

�
ðC30Þ

¼ c2φ

�
3Δ

16πc2W
þ TsðmhÞ

�
þ s2φ

�
3Δ

16πc2W
þ TsðmSÞ

�
ðC31Þ

¼ 3Δ
16πc2W

þ c2φTsðmhÞ þ s2φTsðmSÞ; ðC32Þ

where the divergent part is the same as the SM as
expected. As the new scalar only contributes to the part
~Ts via mixing with the SM Higgs, common factors sφ
and cφ could be extracted, leaving a SM-like ~TsðmÞ.
Hence the function TsðmÞ can be used to obtain a concise
form for the ~Ts in our model. Subtracting the SM
contribution ~TSM

s in Eq. (C26), we get a finite and very
concise result for ΔTS:

ΔTS ¼ Δ ~Ts ¼ s2φ½TsðmSÞ − TsðmhÞ�: ðC33Þ
The S parameter can be defined in an alternative way

using the hypercharge Y:

S≡ −16πΠ0
3Y; ðC34Þ

which reduces a lot of work for boson contributions. The
Higgs-dependent part ~Ss in the SM is
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~SSMs ¼ −16πðΠ0hZ;SM
3Y þ Π0hπ0;SM

3Y Þ ðC35Þ

¼ −
1

12π
Δþ SsðmhÞ; ðC36Þ

where

SsðmÞ ¼ 1

12π

�
lnm2 −

5

6
−
ð4m2 þ 6m2

ZÞm2
Z

ðm2 −m2
ZÞ2

þ ð9m2 þm2
ZÞm4

Z

ðm2 −m2
ZÞ3

ln
m2

m2
Z

�
: ðC37Þ

For the same reason as in the TS calculation, when we turn to the new model, it has a very concise form:

~Ss ¼ c2φ

�
−

Δ
12π

þ SsðmhÞ
�
þ s2φ

�
−

Δ
12π

þ SsðmSÞ
�

ðC38Þ

¼ −
Δ
12π

þ c2φSsðmhÞ þ s2φSsðmSÞ; ðC39Þ

and similarly

ΔSS ¼ Δ ~Ss ¼ s2φ½SsðmSÞ − SsðmhÞ�: ðC40Þ

APPENDIX D: THE PARTIAL DECAY WIDTHS OF THE HEAVY PARTICLES

The heavy scalar S mainly decays in the following channels with partial widths:

ΓðS → ZZÞ ¼ GFm3
S

16
ffiffiffi
2

p
π
s2φ × λð1; rZ; rZÞ12ð1 − 4rZ þ 12r2ZÞ; ðD1Þ

ΓðS → WWÞ ¼ GFm3
S

8
ffiffiffi
2

p
π
s2φ × λð1; rZ; rZÞ12ð1 − 4rW þ 12r2WÞ; ðD2Þ

ΓðS → hhÞ ¼ GFm3
S

16
ffiffiffi
2

p
π
s2φc2φ

�
cφ þ

v
u
sφ

�
2

× λð1; rh; rhÞ12ð1þ 2rhÞ2; ðD3Þ

ΓðS → TtÞ ¼ 3GFmSm2
T

8
ffiffiffi
2

p
π

s2Lc
2
L

�
sφ −

v
u
cφ

�
2

× λð1; rT; rtÞ12
�
1þ rt

rT

�
½1 − ðrT − rtÞ2�; ðD4Þ

ΓðS → ttÞ ¼ 3GFmSm2
t

4
ffiffiffi
2

p
π

�
sφc2L þ v

u
cφs2L

�
2

× λð1; rt; rtÞ32; ðD5Þ

where rX ¼ m2
X=m

2
S and the kinematic function λ is

λð1; r1; r2Þ ¼ 1þ r21 þ r22 − 2r1 − 2r2 − 2r1r2: ðD6Þ

Note that if tanφ ∼ v
u, the partial width in the Tt channel is suppressed, while if tanφ ∼ − v

u tan
2 θL, the tt channel is

suppressed.
The vectorlike fermion mainly decays in the following channels with partial widths:

ΓðT → ZtÞ ¼ GFm3
T

16
ffiffiffi
2

p
π
s2Lc

2
L × λð1; rZ; rtÞ12ð1þ rZ − 2rt − 2r2Z þ rtrZ þ r2t Þ; ðD7Þ

ΓðT → WbÞ ¼ GFm3
T

8
ffiffiffi
2

p
π
s2L × λð1; rW; rbÞ12ð1þ rW − 2rb − 2r2W þ rbrW þ r2bÞ; ðD8Þ
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ΓðT → htÞ ¼ GFm3
T

16
ffiffiffi
2

p
π
s2Lc

2
L

�
cφ þ

v
u
sφ

�
2

× λð1; rh; rtÞ12ð1þ 6rt − rh − rtrh þ r2t Þ; ðD9Þ

ΓðT → StÞ ¼ GFm3
T

16
ffiffiffi
2

p
π
s2Lc

2
L

�
sφ −

v
u
cφ

�
2

× λð1; rS; rtÞ12ð1þ 6rt − rS − rtrS þ r2t Þ: ðD10Þ

Also note that the St channel is suppressed due to the factor sφ − v
u cφ in its coupling.
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