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Effective chiral symmetry restoration for heavy-light mesons
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We study the spectrum of heavy-light mesons within a model with linear instantaneous confining
potential. The single-quark Green function and spontaneous breaking of chiral symmetry are obtained from
the Schwinger-Dyson (gap) equation. For the meson spectrum we derive a Bethe-Salpeter equation. We
solve this equation numerically in the heavy-light limit and obtain effective restoration of chiral and U(1) ,

symmetries at large spins.
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I. INTRODUCTION

Confinement and chiral symmetry belong to the most
important properties of low-energy QCD. On the classical
level the massless QCD Lagrangian is invariant under the
U2),xUQR2)g=SU2)xxSU(2), xU(1),xU(1), group
of chiral symmetry [1]. However, the SU(2), and U(1),
parts of chiral symmetry are dynamically broken. The
U(1), symmetry is also broken by a quantum anomaly
[2-4].

Dynamical symmetry breaking is responsible for the
mass generation of low-lying hadrons. For instance, from
the chiral symmetry point of view the pion is a pseudo-
Goldstone boson associated with the spontaneous broken
axial part of chiral symmetry [5]. On the other hand, recent
lattice simulations demonstrated the existence of hadrons,
even when chiral symmetry is artificially restored [6-8].
This implies that it is not only the breaking of chiral
symmetry that contributes to the hadron masses. At the
same time excited hadrons can be arranged in the approxi-
mate multiplets of chiral and U(1), groups [9-15] and this
may be considered as an indication of effective restoration
of chiral symmetry [16]. However, such effective restora-
tion still requires further experimental confirmation, which
involves a discovery of missing hadronic states.

In the case of effective restoration, the system does not
undergo a phase transition and the chiral order parameter
does not vanish. This means that the quark condensate of
the vacuum still persists, but becomes unimportant. This
may be understood considering the quarks in the meson rest
frame. In hadrons with large spins the quarks have a little
probability to be in a state with low momentum and thus
they decouple from the quark condensate.

The phenomenon of effective chiral symmetry restora-
tion has been illustrated in [17] within the chirally
symmetric confined model [18,19]. This effect has been
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proven analytically and by the direct calculations of the
meson spectra in the heavy-light case for the quadratic
potential [20] and in the light-light case for the linear
potential [21,22]. The effective restoration has also been
discussed within different approaches in [23-29]. In this
work we consider the heavy-light limit of the system of two
quarks with masses m; and m,, confined by a linear
potential. Such potential is observed in Coulomb gauge
lattice simulations [30] and can be considered as the most
realistic one from the phenomenological point of view. In
the case of massless quarks, the Hamiltonian (3) obeys
SU2), xSU(2)g xU(1), x U(1),, symmetry.

When the mass of the heavy quark m, — oo, the spin and
the isospin of the heavy quark and the total angular
momentum j; of the light quark are separately conserved
[31-34]. Heavy quark symmetry, which unifies the heavy
spin and heavy flavor symmetries, leads to independent
dynamics of the light quark with respect to the isospin and
spin of the heavy quark. All mesonic states can be classified
by quantum numbers of the light quark. For the fixed total
angular momentum j; # 0, heavy spin symmetry implies
the existence of degenerate states with total spin J = j; + %
In Fig. 1 we present a general view of the spectrum
respecting heavy spin symmetry. The heavy flavor sym-
metry leads to a doubling of all states in the spectrum,
because of the two possible orientations of the heavy quark
isospin, i.e., each line in Fig. 1 should be considered as
an isospin doublet. The bare interaction in the model (3) is
isospin independent. It is also isospin independent in all
orders of perturbation theory, since we perform all com-
putations in the large N, approximation, where all fermion
loops are suppressed. This leads to a doubling of all states
in the spectrum also with respect to the light quark isospin
projections.

In the case of the heavy-light system m; = 0, m, — oo,
at large angular momenta the restoration of chiral and
U(1), symmetries of the light quark is expected. The chiral
properties of mesons are defined by the representations of
the parity-chiral group [16], consistent with left and right
isospins (I;,1z) and with J* quantum numbers. The
isospin of the heavy quark doesn’t influence the dynamics

© 2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.90.014004
http://dx.doi.org/10.1103/PhysRevD.90.014004
http://dx.doi.org/10.1103/PhysRevD.90.014004
http://dx.doi.org/10.1103/PhysRevD.90.014004

V.K. SAZONOV, G. SCHAFFERNAK, AND R.F. WAGENBRUNN

Energy E

[ [ [
0 1 2
Meson quantum number J

FIG. 1. Expected spectrum for heavy spin symmetry.

of the light quark, so the only possible representation of the
parity-chiral group for the heavy-light mesons is

(I, 1g) & (Ig, 1) = (1/2,0) @ (0,1/2), (1)

where 1/2 is the isospin of the light quark, and the
direct sum of two irreducible representations forms a state
of well-defined parity. The possible mesons for this
representations are

Digne = 1/2,J° = (j; £1/2)*
< Lign = 1/2,0" = (j; £1/2)". (2)

The sign <> connects the states which must be degenerate
in the chirally symmetric mode. Therefore, the restoration
of chiral symmetry implies the appearance of parity
doublets. The general view of the meson spectrum with
restored chiral symmetry is shown in Fig. 2. Combining the
heavy spin and chiral symmetry one comes to the expected
spectrum for the heavy-light system in the chiral
mode, Fig. 3.

In the following sections within a framework of the
chirally symmetric model with the linear confining poten-
tial [18,19] we study the aspects of effective restoration of
chiral symmetry in heavy-light mesons.

The paper is organized as follows. In Sec. II we describe
the model Hamiltonian and the confining potential.
Section III is dedicated to chiral symmetry breaking in
the vacuum in the considered model. We derive the Bethe-
Salpeter equation for heavy-light mesons and show the
appearance of the heavy spin symmetry in Sec. IV. In
Sec. V we demonstrate the cancellations of the infrared
divergences in the Bethe-Salpeter equation. Numerical
results for the meson spectrum and for the corresponding
wave functions are presented in Secs. VI and VII,
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FIG. 2. Expected spectrum given chiral symmetry restoration
for the light quark.
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FIG. 3. Expected spectrum for heavy spin symmetry and chiral
symmetry.

respectively. In Sec. VIII we discuss effective restoration
of chiral symmetry and properties of the BSE without the
spontaneous breaking of chiral symmetry. We conclude
in Sec. IX.

II. CHIRALLY SYMMETRIC MODEL
WITH CONFINEMENT

To study effective restoration of chiral symmetry, one has
to choose a confining model with spontaneously broken
chiral symmetry in 3 4 1 dimensions. The latter remark is
of great importance, since effective chiral symmetry resto-
ration doesn’t appear in 1 4 1 dimensions, because of the
absence of rotational motion and spin. Here we consider a
model [18,19] which may be viewed as a straight-forward
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generalization to the 3 4+ 1 dimensional case of the 1 4 1
dimensional 't Hooft model [35,36]. It was intensively
studied in the context of chiral symmetry breaking [37] and
chiral properties of hadronic states [20,21,24].

The Hamiltonian of the model is based on the instanta-
neous current-current interaction with linear potential of the
Coulomb type,

A

i = [ dxiGan=i7 -9 4 mwiG)
1 - - o -
+5 [ @I EOKEG -G, ()

where i = 1,2 represents a summation over two different
quark masses and quark fields w; = (u;,d;). The quark
current is J4(x, 1) = w;(X, 1)y, 5 wi(x. 1) and the potential
looks like

- -

KZS(X - y) = gyogyoéabv(pé _5;

); 4)

where a, b and u, v are color and Lorentz indices,
respectively.

In the case of two massless quarks, the Hamiltonian
obeys SU(2), x SU(2)p x U(1), x U(1),, symmetry for
both quarks. When m; =0 and m, # 0 the symmetry
SU(2), xSU((2)p x U(1), x U(1),, is applicable only to
the first quark. For further calculations we absorb the color
Casimir factor in the string tension ¢

A424
4

V(r) =or. (5)

The Fourier transformation of the linear potential is ill
defined and requires an infrared regularization. The regu-
larization should be removed, or equivalently the infrared
limit should be taken in the final result. All physical
observables must be finite in this limit and independent
of how the potential was regularized. At the same time, the
single quark Green function can be divergent in the infrared
limit, which demonstrates that a single quark cannot be
observed within the framework of the considered and
manifestly confined model.

There exists an infinite amount of physically equivalent
regularizations. Following [38], we define the potential as

8o

I AL

(6)

With the given prescription one can solve the Schwinger-
Dyson (gap) and Bethe-Salpeter equations, since all inte-
grals in them are well defined. In the case of the linear
potential there are no ultraviolet divergences. For other
kinds of potentials the ultraviolet regularization and
renormalization might be necessary. For instance, this is
the case if the Coulomb interaction is added. In the
following we restrict ourselves only to the linear potential.
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ITII. CHIRAL SYMMETRY BREAKING
AND THE GAP EQUATION

The interaction with gluon fields (or in our case self
interaction via confining potential) leads to the dressing of
the Dirac operator,

D(po, p) =iS7'(po, p) = Do(po. ) = Z(po. P),  (7)

where Z(p,, p) is the quark self-energy and the bare Dirac
operator is

Dy(po, ) = poro—p -7 —m. (8)
For an instantaneous interaction the self-energy,

- 1

d“q p— (]|)70
185" (q0-9) — Z(q)

=(5) = [ V(P

70,
9)

is independent of the energy p,. Representing the self-
energy in terms of Lorentz-invariant amplitudes,

X(p) = A(p) —m+7y-p(B(p)—p), (10)

and combining Egs. (7) and (9) we arrive at a system of two
coupled integral equations

ao =+ [ S hvip-a) A,
B0 =p+ [ Gesvip-a) 2D pea. (1
where
», =\/A(p)* + B(p)* (12)

is the single quark energy. Introducing a Bogoliubov
(chiral) angle

A B
sing, = a()p) cosp, = a()p) (13)
p p

one can reduce the system (11) to a single integral equation,
psing, —mcos@,
1 [ dq .
=— | =L ry(p-
5 | G V=)
- (sing,cosp, — p-gsing,cosgp,)}. (14)

Then the expressions for the amplitudes A(p) and B(p)
become
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1 [ dq I
A(p)=m+1 / L9 yp-i)sing,.  (15)

2) (2xn)
Bp)=p+3 [ G VUp=ip-acose, (16

and the single quark energy can be determined via

W, = pcos@, + msing,

3
+5 | G vip =)

- (sing, sing, + p-gcosp,cosq,)}. (17)
The single quark energy

o

=— 18
Uk ( )

@)

as the energy of any color state is infinite in the infrared
limit. The energies of all color-singlet states are finite and
well defined. This is the manifestation of confinement
within the considered model.

At the same time, the integral in (14) converges at p = g,
since the infrared divergence of the potential exactly
cancels in the sum of the two integrand terms.
Consequently, the chiral angle and the dynamical mass

M(p) = ptang, (19)

are finite and can be found by the numerical solution of the
gap equation (14). This solution leads to the nonzero quark
condensate,

N, [

(q9) = ——= |

dpp*sing, = —0.0126%2,  (20)
T

which signals spontaneous breaking of chiral symmetry. As
seen from the Fig. 4 and Fig. 5, the effect of chiral
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FIG. 4 (color online). Chiral angle solution for m = 0.

PHYSICAL REVIEW D 90, 014004 (2014)

0 0.5 1 15 2 25 3
0.2 | T NS S ST SN S S T N SN ST A SN ST ST SRR NS 0.2
0.15 - L 0.15
0.1 L 0.1
2 ]
= ] N
0.05 " 0.05
0 o
-0.05 -1+ -0.05
0 05 1 15 2 25 3

p

FIG. 5 (color online).
units of /.
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symmetry breaking is large at low momenta. At large
momenta these functions both approach zero. This property
of the chiral angle is crucial for the understanding of
effective chiral symmetry restoration.

IV. BETHE-SALPETER EQUATION FOR
THE HEAVY-LIGHT SYSTEM

To describe a bound state of quarks and antiquarks we
use the homogeneous Bethe-Salpeter equation (BSE) in the
meson rest frame

x(P.p) = —i/ (316)14 K(P.p.q)S, <q +§>

X(P.q)S, (q —§>,

where P is the mesons total momentum, p is the relative
momentum and ¢ is the loop momentum that has to be
integrated over, S; and S, are the propagators for the quark
and anti-quark. K (P, p, q) is the Bethe-Salpeter kernel and
finally y is the meson vertex function. In the rest frame of
the meson the total momentum becomes

(21)

P’ = (m.0,0.0), (22)

with m being the mass of the bound-state. For the model with
instantaneous interaction, the amplitude is energy indepen-
dent and in the ladder approximation the equation reads

- [ dq . - m .
x(m.q) = _I/WV(P_CID}’OSI <q0+5,q>
> m

x(m,q)S, 90 == +4 |10- (23)

To solve the Bethe-Salpeter equation (23) we expand the
meson vertex function y(m, ¢)¥,, into a set of all possible
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independent Poincaré invariant amplitudes consistent with
JP quantum numbers (see Appendix A). The mesons
constructed from two quarks with different masses can
be grouped in two categories:
Jt,J=2n
B:{

A:
{ J,J=2n+1.

In Appendix B we rewrite the BSE for two different quark
masses n; and m, as systems of coupled integral equations,
where each system corresponds to a certain category of
mesons. For each value of J the categories A and B contain
chiral partners, hence when chiral symmetry is effectively
restored, the equations for both categories must coincide.

To derive the Bethte-Salpeter equations for the heavy-
light mesons we assume m; = 0 and m, — oo. The latter
limit means that the heavy quark chiral angle becomes
constant ¢, — 7. To shorten notations we denote the light
quark chiral angle ¢; as ¢ and

J=,J=2n
JH,J=2n+1

PHYSICAL REVIEW D 90, 014004 (2014)

(1 +sing(p))(1 + sing(q))
(1 — sin w(p))(l —singp(q))

[,

w(p) =

NI»—‘Q

—

(p)) (24)

wl(p

The mass of the whole meson can be splitted into the mass
of the heavy quark and the binding energy ¢ = m — ms,.
The heavy quark energy is replaced by w,(p) — m, + T

where the last term is the corresponding infrared diver-
gence. All wave functions, propagating backwards in time,
vanish in the heavy-light limit, when the interaction is
instantaneous [20]. The remaining wave functions for the
forward motion in time are identified as y; , =y; (see
Appendix C).

Equations for category A for J > 0 become

<W(p) + 2/% - e>l//1 (p) = /q{ {QP,(;S q) +r_ U+ I)P’“(’;i) ;r PP ‘?)} wi(q)
VD00 = P et
(w(p) + 2/% - e> wa(p) = /q{ {uP,(ﬁ q)+r- PP ) J;J(f: DPyi (P Q)} y>(q)
-0 - P (-0 23
and for J = 0 there is only one equation,
( (p) + % - €> wi(p) = /q[m +rp-qyi(q). (26)
Equations for category B for J > 0 become
(0t0) + 5= Yoo = [{[r-psp-a) ¢, ot EBE LD D
P 0= Pt (@) @
<w(p) - ﬁ - e) va(p) = /q{[r_PJ(i) g+, TP (zﬁg ;L PP Q)] v2(q)
e S 0= P )} 9
and for J = 0 the equation is
(000) + 37— Jwal) = [+ 7 (29)
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The given heavy-light equations exhibit heavy-quark
spin symmetry, which involves a degeneration of states
with fixed parity and J = j, i%. To prove heavy spin
symmetry, we diagonalize the Egs. (25)-(29).
Symbolically, the matrix equations for categories A and
B read

(30)
|

Cy(p) = Dy (q).

/, <r+ Py +r <J+1)PJ+1(i"l?)+JPJ—1(f7'@)>

PHYSICAL REVIEW D 90, 014004 (2014)

with C already being in diagonal form for both categories,

0) +:2 —¢ 0
c:cA:cB:( (P)+ 30 )

0 w(p) +5-—€

(31)

Matrix D is different for categories A and B and given by

b 2741
A =
J(J+1 A A Ny _(pa
fq (”— —2J(+1 >[PJ+1(P q) = PJ—1(P : Q)]) fq <V+PJ +re PP ")Eﬁﬁ””’ (24)
J(J+1 A N
fq (r_PJ +ry S q)gﬁfll)PH(p q)> fq (”+ 21(+1 ) [Pr(P-q) =Py (P ‘1)}) -
D, =
? JU+D) PP Aa (+DPyy (p-@)+IPs_y (p-G) G2)
5 (5P ) = P p-a)l) S, (Pt L)
D, and Dy can be transformed into diagonal form
b J, (r-Pyy + 1y Py) 0 ) D J, (ri Py +r_Py) 0 (33)
A= B = .
0 S, (rePyy 41 Py) 0 S, (ryPy +r_Py)

For the case J = 0 the matrices C are

ClI0 = O = w(p) +———¢ (34)
24
and the matrices D are
DiZO = / (V+PO + I"_Pl)
q
D'{;ZO = / (r+P1 + r_Po). (35)
q

For each J > 0 the spectrum of J~ consists of one part
that coincides with (J — 1)~ and one part that coincides
with (J +1)”. The same is true for positive parity
solutions, what finishes the proof of the heavy quark spin
symmetry.

V. INFRARED PROPERTIES OF THE
BETHE-SALPETER EQUATION

It is crucially to note that all infrared divergences,
appearing in functions A(p), B(p) and w(p) in the limit
uir — 0, exactly cancel in all BS equations. This ensures
the existence of finite solutions for the binding energy
spectrum and meson wave functions. Here we demonstrate
the cancellation on the example of the J = 0 equation for
category A (26).

[
Using the representation for the Dirac delta function,

. HIR 3 1 -
im % [ g = £(@)
k=0 7 (P =) + uig)?
— [ et~ 0)1@ = 7). (36)
for u;p — 0 from Eq. (26) we obtain
6 |- N R _— -
A e e 5 S
o e e e S T e e il
B -
s, |
‘I - -
0
{0-, 17} {0*, 1%} {1, 27} {1+, 2%} {2-, 37} {2*,3*} {3-,47} {3*,4*} {4-,57} {4+,5*}

FIG. 6 (color online). in

units of /o.

Heavy-light meson binding energy
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TABLE I. Orbital, j,, heavy-light meson binding energy.
0+1 1-1 2-1 1414 2+1 3-1 4-1 3+1 4+1 5-1
o) {0y (m2) (n2) (3 (R34 (R4 (S) (hsy)
1.84 2.04 2.84 2.82 3.47 3.48 4.02 4.02 4.49 4.49
2.87 3.08 3.67 3.63 4.18 4.19 4.65 4.65 5.07 5.07
3.71 391 4.38 4.32 4.80 4.82 5.23 522 5.60 5.60
4.42 4.61 5.01 4.94 5.37 5.39 5.76 5.75 6.09 6.10
dq 7*5(p - q) we compare the chiral partners’ ground state wave func-
E% (p) 21)3 o UiR tions for different values of j;. As can be seen from the

respective plots, the ground state multiplets with j; :%
have different wave function shapes, while for j; :% the
wave functions are much closer to each other and they
practically coincide for j, = %, see Figures 9-11.

“[(1+sing(p))

+ (1 =sing(p))p - plwi(p).  (37)

The relation (37) is an identity and proofs the cancellation
of infrared divergences in the BSE.

VI. NUMERICAL RESULTS FOR THE SPECTRUM

The diagonalized equations (33) may be solved numeri-
cally (see Appendix D). In Fig. 6 we present results for the
binding energy spectrum of the heavy-light mesons.
Collecting the values for the heavy-quark spin multiplets,
in Table I we show explicitly the orbital and spin quantum
numbers for the light quark j, =17+ s, as well as the
corresponding heavy-spin multiplet for the meson.

The energy gap between opposite parity members of the
same chiral multiplet, generated by chiral symmetry break-
ing, goes rapidly to zero with increasing angular momen-
tum, see Table II. In Fig. 7 the angular Regge trajectories
for the ground states of chiral partners are shown. The
trajectories exhibit asymptotically linear behavior and
coincide with each other. These numerical results prove
the effective chiral symmetry restoration for the heavy-light
mesons at large angular momenta for the considered model.
On the contrary the radial Regge trajectories do not
coincide, see Fig. 8. This demonstrates that the phenome-
non of effective chiral restoration is strongly related to the
angular momentum. For instance, it cannot appear in 1 + 1
dimensions [39] because of the absence of the rotational
motion.

VII. WAVE FUNCTIONS

Since the spectrum exhibits the effective restoration of
chiral symmetry, it must be seen also at the level of wave
functions. Continuing the classification of the states with
respect to the total angular momentum of the light quark,

TABLE II. Energy gap between opposite parity members of the
same chiral multiplet.
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Spin multiplet
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FIG. 11 (color online). Chiral partners for j, = %, n=0.

VIII. EFFECTIVE RESTORATION OF
CHIRAL SYMMETRY FOR MESONS

In the previous sections we discussed numerical aspects
of the effective restoration of chiral symmetry, here we
perform some more analytical considerations. The increase

PHYSICAL REVIEW D 90, 014004 (2014)

of the light quark total angular momentum causes the
growth of the quark relative momentum inside the meson.
This can be also seen from the wave function plots, where
the wave function’s peaks shift to the right with the increase
of j;. Then, effectively, for high j; only the high momenta
contribute to the integrals in the Bethe-Salpeter equation.
The dynamical mass M (p) and chiral angle ¢(p) approach
zero rather fast for p — oo and effectively vanish in the
BSE. Here we consider the consequences of such a
vanishing.

In terms of notations (25)—(32) the diagonalized version
of Egs. (25)-(29) can be written as

e o fq(’”—PFlJFhfPJ) 0
A:Cy(p) = ( 0 Jo (r-Pyyy +F+P1)>
xyr(p),
. Jo (roPy +r_P)) 0
B:Cy(p) = ( 0 [, (riPri +I"_PJ)>
xy(p), G38)

where the first and second equations describe categories A
and B of mesons, respectively. When the chiral angle is set
to zero, the coefficients r, and r_ are r, (¢ =0) =1,
r_(¢ = 0) = 1, therefore the equations for categories A
and B from (38) become identical. And the masses of the
states with opposite parities must coincide, which is the
direct signal of chiral restoration.

Analogous considerations are applicable to the case,
where m; =0 and m, is an arbitrary finite constant.
Therefore, in such kind of mesons the effective restoration
of chiral symmetry is also expected.

IX. CONCLUSIONS

Within a model with the linear instantaneous Coulomb-
like confining potential between quark currents we have
demonstrated a fast effective restoration of chiral symmetry
in the spectrum of heavy-light mesons. Effective chiral
restoration leads to degenerate masses of chiral partners
(mesons with opposite parity) and to the corresponding
degeneration in the wave functions.

Chiral symmetry breaking appears in this model in the
standard way through the nonperturbative quark self-
interaction, generating a nonzero dynamical mass of the
light quark. The dynamical mass is momentum-dependent
and vanishes at large momenta. For the heavy-light mesons
with large J the typical momentum of the light quark is
high, therefore it has a small effective dynamical mass and
all quantum (loop) effects are suppressed in this limit.

To describe bound states of the heavy-light system we
derived the Bethe-Salpeter equation for two quarks with
different masses, which corresponds to a system of coupled
integral equations. Then, by taking the limit m; — 0, m, —
oo we obtained a heavy-light version of the equations and
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proved the existence of heavy spin symmetry in this limit.
When the dynamical mass is zero these equations form
exact chiral multiplets (parity doublets). This is effective
chiral restoration. Since the main physics is the same, the
system of one quark with finite, not zero mass and one
massless quark must also provide effective restoration of
chiral symmetry.
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APPENDIX A

When the light-light mesons are constructed, they can be
classified with respect to J”¢ quantum numbers and fall
into four categories [22]:

'{J_+,J:2n H.{JH',JZZn
Jt-J=2n+1 NI u=2n+1
{J“,J—Zn {J*‘,J:2n

III: 1V:
JTH,J=2n+1 J . J=2n+1.

In the case of mesons built from the quarks with different
masses, the charge parity C is not a well-defined quantum
number. The classification of states should be done
according only to the parity P and to the angular momen-
tum J. Then to form states with definite parity and
undefined charge parity the categories I and III mix
and produce category A; categories II and IV produce
category B.

{J‘,J:2n {J*,J:2n
A: B:
JTJ=2n+1 J,J=2n+1.

As it is pointed out in [22], the instantaneous interaction in
the Bethe-Salpeter equation leads to the absence of the
states of category IV in the spectrum. However, this doesn’t
affect the case with different quark masses and category B
should be still considered as a union of categories II and IV.

The parametrizations for the vertex functions of catego-
ries A and B follow from their construction and are the
sums of corresponding parametrizations of categories I, III
and II, IV. Then using the formulas (A9), (A12), (A15),
(A18) from [22] one can obtain the meson rest frame vertex
functions for the instantaneous interaction.

PHYSICAL REVIEW D 90, 014004 (2014)

The vertex function of category A is

Xna(m, p) = vsY ()i (p) + myorsY e (P)x2(p)
+myoys{Y ;1 11(P) ® v} (p)
+ myors{Y,-1(P) ® 7} mxa(p)
+m{Y,;(p) ® 1}mxs(p)
+75{Y101(P) ® 7}umxs(p
+75{Y ;1 (P) ® 7}umx (P
+10{Y,(P) ® 7}imxs(p).

)
)

(A1)
where {a; ® I;JZ} su is the coupling of two spherical
tensors of rank J; and J, to a spherical tensor of rank J,
Y,;u(p) are spherical harmonics and we denote p = [p].

For J = 0 the components 4, 5, 7, 8§ are absent.
The vertex function of category B is

Y (P)er(p) +{Y551(P) ® 7} smx2(p)
+{Y,21(P) ® 7}ymx3(p)
+mys{Y;(p) ® v} mxa(p)
+myo{Y,11(P) ® 7}imxs(p)
+myo{Y;-1(P) ® 7}imxs(p)

+ myoY e (P)x7(p)

+rors{Y,(P) ® 7}ymxs(p).

XfM(m’f?) =

For J = 0 the components 3, 4, 6, 8 are absent.

APPENDIX B

Here we sketch the the derivation of the coupled integral
Bethe-Salpeter equations for category A, since the equa-
tions for category B may be treated in the same way.

The vertex function in the rest frame doesn’t depend on
po and it is easy to take the p, integral in the Bethe-Salpeter
equation (23)

xn.5)= [ Evwn

o lan(g)=m) + As(q) ~7-2Bag)

X)) —mP— ()

vo(wa(q)+m)+A,(q)—7-4B(q)
(@3(q) +m)—a(q)

(. Y002(q)+A2(q)—7-4By(q)
rlomd) 20s(a)

row1(q)+Ai(q)—7-4B:(q)
2601(61)

+

}707 (B1)

where k = |p — g|. Then we substitute the vertex meson
functions y7,,(m, p) from (A1) and (A2) to the BSE. The
interaction kernel mixes the initial Dirac structures. To
match left hand side BSE Dirac structures with right hand
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side ones, we project out the functions y;(p) on the left hand side. The projection involves taking the traces of Dirac
matrices and can be done by using of formulas (B1-B6) from [22]. This leads to a system of eight coupled integral
equations for the basis elements y;. However, not all of these equations are linear independent. Introducing new functions

+1

Ai(q) = cosp_(q)xi(q) - Y Tsing—(q)zs(q) + Y [sine—(a)x7(q)- (B2)

Ay(q) = Ai(q) +2w+(Q){sin(ﬂ+(Q)x (q) - ZJJJ:Lll cosp_(q)x3(q) + 2J1+ 1COS(P+(CI))( (q)}, (B3)
J J+1 .

Az(q) = Y ICOS¢+(61);(6(Q) VT lcosm(@m(cz) +sing, (q)xs(q), (B4)

Ma) = 4s(0) + 20\ 377 im0 + 55 psina- (@) + cos-adesta) | (B9

we end up with four coupled integral equations,

110 =5 [ v eoso-p)coso- (P, 0) 4 sing (p)sing(q) DAL P2 0)
m2
[ty U sing (peose () Yy (b 0) = Panap - 0)
+ +(4) 0t =2
« As(q) m* Aug
LU+<Q) i 4o, (q) 0% - TZ] } (B6)

1) = ai(p) + 252 [ ELvw ] lsing.(p)sing. ()P0

+cos @ (p)cosg.(q) U+ 1)PJ+1(I;[]+) IL BP9 w‘?(_q; —cos g, (p)sing_(q) 2JJ(J++1 .

+T
<11 )= Pl 2] 50} (87)
w0y =

3
asio) =3 | (‘;7?3%){ [ 0. (p)sin g ()P, (b - 3) + cos g, (p) cos g, (q)

<o wA(_q)] ~cos g () sin(a) V3 Py 2) ~ ()
doxoaerarre) o)
aup) = a5t + 242 [ L4y [cosg(p) cos-(a1Pp-a)
+sing_(p)sing_(q) el -9) J; J(it VP (P-2)
s (Pleosp 9 G X P (i) P (- 2 (09

where .. (p) =3 (w,(p) + wy(p)) and @4 (p) =5 (p1(p) £ @2(p)).
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The equations above lead to the equations for heavy-
light mesons if we define a wave function as (see
Appendix C)

viz(p) =5 {hi(p) t <1 + szm>gi(p):| . (B10)

where
mip) =21 (B11)
ar) = 20 = (B12)
i) = 210 (813)
0r(p) = ) (B14)
i (p) —"F
APPENDIX C

We derive the rest frame wave function and its projec-
tions on the components propagating backward and for-
ward in time [40].

The wave function in the rest frame is

- . [dpo m .

5 - —S A

P) 1/ 5 1<P0+2 p)
m
2

X 2 (m. p)S, (Po - ,13>-

Wi (m

The quark propagator can be splitted into

S(p07ﬁ):S+(p07]_5)+s—(P07l_5)’ (Cl)
where
- ; T PiprO
S ,p)=i—————— Cc2
+(Po. P e Folp) Lk (C2)
1. (=«
T, =exp TRV P\5 TP (€3)
and projectors are
1+
p.=—1 (C4)

The integration over p, may be performed with the help of
equalities Py, = £P, TI,;/O =7yoT, and leads to

PHYSICAL REVIEW D 90, 014004 (2014)

T, P T, x50 (m. p)T,,P_T
P =y _ Lpd Tt p g\ P) 2 pol’ 1 p2
Wy (m. p) 2, (p) —m

Tp,IP—Tp,l)(_fI)M(m’ﬁ)Tp.ZP—Tp.Z
2w, (p) +m

(C5)

Since T}, = T,', the Foldy transformation of the wave
function v}, (m. p) = Tp W (m. P)sz is

Win(m, p) = Poy? jy(m, p)P_+ P_y?,\ (m, p)P,,
(Co)
where ‘+’ and ‘=’ components correspond to the propa-

gation forward and backward, respectively. The result for
the forward and backward propagating wave function for
category A is
=y1:(P)rsY, (D)

Ly (PH{YS(P) X7 m-

‘/’iJM(mv P)
(C7)

For category B, the wave functions obey

+ ‘174—1 ( )
\/2J+ s(p) g e (p
x{Y;1(p) x V}JM
\/2J+1"’“ ]

J+1
Vol
The wave function components for both categories l//,»,i( p)

X LY -1 (P) X7} -
are defined as

V/:I:JM

m

wix(p) = % [h,-(p) - <1 + ﬁ) gl-(p)] . (©9)

APPENDIX D

Here we present a procedure for the numerical solution
of the heavy-light BSE. The binding energy spectrum and
meson wave functions were calculated for three different
values of the infrared regulator p;z = 0.01\/0, u;r =
0.005\/6 and p;z =0.001,/6. The final results were
obtained by extrapolation to the infrared limit u;z — 0,
see Fig. 12.

The chiral angle and the single quark energy, inputs to
the BSE, are obtained from the iterative solution of the gap
equation.

Taking into account the diagonalization (Sec. IV), the
Bethe-Salpeter equation for an arbitrary J may be viewed as

(H(plw(p)) + €)w(p) =/qu(p,qlco(p),fﬂ(q))w(Q),
(D1)
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FIG. 12 (color online). Calculated data points, linear fit.

where ¢(p) is the chiral angle, w(p) is the single quark
energy and y(p) is the wave function. We solve equations
of this kind by expanding the unknown wave function in
the basis

w(p) =Y Ciéilp). (D2)

To match the appropriate boundary conditions, we choose

&i(p) = p’ exp(—a;p?) (D3)
for the mesons of category A and
&(p) = pVexp(—a;p?) (D4)

PHYSICAL REVIEW D 90, 014004 (2014)

for the mesons of category B. It is enough to use a relatively
small number of Gaussians for a sufficient accuracy of the
expansion. Then the truncated equation (D1) becomes a
system of linear equations,

(H(plo(p)) + €)Y _ Ci&i(p)
i—1
- / daF(p,alo(p) (a)) Y Céi(a). (D3
i=1

Multiplying (D5) by &;(p) and integrating over p, we end
up with the generalized eigenvalue problem,

eDC = (A + B)C, (D6)

where

D —/dpfi(P>5j(P),
Ay = [ dpe(p)é (P H(plo(p))
B;; :/dp/dqéi(p)éj(Q)F(p,qlfﬂ(p),(ﬂ(q»

The solution of the problem (D6) leads to the spectrum
of binding energies and to the corresponding meson wave
functions.
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