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An intriguing opposite sign of the CP-violating asymmetry from that expected within the Standard
Model was recently measured in the tau decay modes τ� → Ksπ

� ν
ð−Þ

τ by the BABAR collaboration. If this
result is confirmed with higher precision, the observed decay rate asymmetry ACP can only arise from
some nonstandard interactions occurring possibly in both the hadronic as well as in the leptonic sectors.
We illustrate that, while a simple charged scalar interaction cannot yield this rate asymmetry, it will be
possible to generate this in the presence of a tensor interaction. Parametrizing the strength and weak
phase of this nonstandard interaction contribution, the observed branching ratio and the decay-rate CP
asymmetry for the particular mode τ� → Ksπ

� ν
ð−Þ

τ are used to determine the CP-violating weak phase
and the coupling of a tensorial interaction that can give a consistent sign and magnitude of the
asymmetry.
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I. INTRODUCTION

While the Kobayashi Maskawa ansatz for CP violation
within the Standard Model (SM) [1] in the quark sector has
been clearly verified by the plethora of data from the B
factories, this is unable to account for the observed baryon
asymmetry of the Universe. Hence, one needs to look for
other sources of CP violation, including searches in the
leptonic sector. Apart from the CP phases that may arise in
the neutrino mixing matrix, the decays of the charged tau
leptons may allow us to explore nonstandard CP-violating
interactions.
In fact, CP violation through decays of tau leptons was

studied in a series of papers by Tsai [2], around the time of
the preliminary design for a tau-charm factory. Various
experimental groups have been involved in exploring CP
violation in tau decays in the last decade or more. In 2002,
the CLEO collaboration [3], and more recently the Belle
Collaboration [4], studied the angular distribution of the
decay products in τ� → K0

sπ
� ν
ð−Þ

τ in search of CP viola-
tion; however, neither study revealed any CP asymmetry.
The BABAR collaboration [5] for the first time reported a
measurement of the rate asymmetry ACP in this decay mode
to be

AExp:
CP ¼ ð−0.36� 0.23� 0.11Þ%: ð1Þ

On the theoretical side, for τ�→K0
sπ

� ν
ð−Þ

τ→ ½πþπ−�Kπ� ν
ð−Þ

τ,
Bigi and Sanda [6] predicted the CP asymmetry to be

ASM
CP ¼ ðþ0.33� 0.01Þ%; ð2Þ

where the CP violation arises from the known K0 − K̄0

mixing. Recently, Grossman and Nir [7], comparing the
rate asymmetries for decays to neutral kaons of the taus
with that of D mesons, pointed out that since τþðτ−Þ
decays initially to a K0ðK̄0Þ whereas DþðD−Þ decays
initially to K̄0ðK0Þ, the time-integrated decay-rate CP
asymmetry (arising from oscillations of the neutral kaons)
of τ decays must have a sign opposite to that of D decays.
Further, they emphasized that the decay asymmetry is
affected by the reconstruction efficiency as a function of
the Ks → πþπ− decay time. Using the parametrization of
Ref. [7], BABAR has obtained a multiplicative correction
factor for the decay-rate asymmetry and predicts the SM
decay-rate asymmetry to be

ASM
CP ¼ ðþ0.36� 0.01Þ%: ð3Þ

As reported in Refs. [8–11], the CP asymmetry in D� →
πKs decay has been measured to be ð−0.54� 0.14Þ%.
The observation of a CP asymmetry in tau decays to Ks

having the same sign as that in D decays, and moreover of
the same magnitude but opposite in sign to the corrected
SM expectation, implies that this asymmetry cannot be
accounted for by the CP violation in K0 − K̄0 mixing.
Apart from this mixing contribution to CP violation, within
the SM, since there is only a single amplitude with the W
boson mediating the decay process, the observed CP
asymmetry cannot be explained. Hence, this may be a
signal of physics beyond the Standard Model, if confirmed
to a higher statistical significance.
It should be pointed out that the BABAR collaboration

has accounted for the modification of the decay-rate
asymmetry due to different nuclear interaction cross sec-
tions of the K0 and K̄0 mesons with the detector material
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through a correction, calculated on an event by event basis.
Also, BABAR [5] claims that, using a control sample in data
and Monte Carlo simulations, they have verified that no
significant decay-rate asymmetry is induced by their
detector or the selection criteria. Further, the Standard
Model asymmetry is identical for decays with any number
of π0 mesons and hence can be searched for, in all the

modes τ� → π�K0
sð≥ 0π0Þ νð−Þτ. We note that all the experi-

ments CLEO, Belle, and BABAR assume that the CP
asymmetry is conserved at the tau production vertex.
In the presence of an additional new physics (NP)

amplitude with a complex coupling, along with the strong
phases from the K − π scattering, which can be large
particularly in this resonance-dominated region, the ob-
served CP asymmetry may be attainable. This nonstandard
interaction (NSI) could possibly affect both the hadronic
and leptonic currents. The Feynman diagrams for the SM
decay mode of tau via W exchange and via exchange of
some exotic particle X, in the presence of NP, are shown
in Fig. 1.
Naively, one would expect a charged scalar boson

exchange to provide the required additional diagram,
where, with a complex weak coupling and the difference
in the strong phases of the scalar and vector hadronic form
factors, a CP violating asymmetry could arise. However,
such an asymmetry appears only in the difference of the
τ� → KSπ

�ντðν̄τÞ decay angular distributions but vanishes
in the integrated difference of the decay rates for τþ and τ−,
measured by BABAR. In fact, CLEO had used their non-
observation of an asymmetry in the distribution, to set a
bound [3] on the imaginary part of the complex coupling of
the scalar boson, such as a charged Higgs. Similar limits
were set by Belle [4] on the CP-violation parameter
modifying the scalar form factor, since their differential
asymmetry was compatible with zero. The new physics
amplitude that can account for a decay rate asymmetry
therefore has to appear from a different kind of interaction,
and we investigate whether a tensor interaction can produce
the asymmetry reported by BABAR and, in fact, use the
measured branching ratio and asymmetry to constrain the
parameters of this kind of new interaction.

In Sec. II, we evaluate the decay-rate asymmetry in the
presence of any generic NP amplitude. The decay rate for
the SM case is calculated in Sec. III, while in Sec. IV, the
total rate is evaluated in the presence of the new additional
tensor interaction term. The observables, the branching
ratio, and the decay-rate asymmetry are used to estimate the
parameters of this new interaction in Sec. V, and in Sec. VI,
we conclude.

II. BRANCHING RATIO AND RATE ASYMMETRY
IN τ → Kπντ IN THE PRESENCE OF A GENERIC

NEW PHYSICS AMPLITUDE

The amplitude for the decay of τþ → Ksπ
þν̄τ in the

presence of NSI can be written as

A ¼ ASM þANSIeiϕeiδ; ð4Þ
where ASM and ANSI are the magnitudes of the SM and NP
amplitudes, respectively, while ϕ is the weak phase of the NP
contribution (since Vus is real, there is no weak phase in the
SM contribution, except that coming from the neutral K
meson mixing, which is accounted for, separately in the
theoretical SM expectation). The relative strong phase of the
ðKπÞ system, δ, between the NP amplitude with respect to
the SM contribution is a function of the Kπ invariant mass
squared. The amplitude for the antiprocess τ− → Ksπ

−ντ has
the opposite weak phase but the same strong phase.
In the presence of a NSI for which the interference with

SM is nonvanishing even after the angular integrations,1

the general expression for the differential decay rate of
τ → Kπν may be written as

dΓ ∝ jAj2 × dQ2; ð5Þ
∝ ½jASMj2 þ jANSIj2
þ 2jASMjjANSIj cosðϕþ δðQ2ÞÞ�dQ2; ð6Þ

whereQ is the sum of the hadron momenta. The differential
decay rate for the antiprocess is

dΓ̄ ∝ jĀj2 × dQ2; ð7Þ
∝ ½jASMj2 þ jANSIj2
þ 2jASMjjANSIj cosð−ϕþ δðQ2ÞÞ�dQ2: ð8Þ

The branching ratio for τ → Ksπν is the ratio of the average
of the width of τþ → Ksπ

þν̄ and τ− → Ksπ
−ν to the total

width of τ (Γtotal). Hence,

BRðτ → KsπνÞ ¼
Γþ Γ̄
2Γtotal

: ð9Þ
Now,FIG. 1. The Feynman diagram for the Standard Model decay

mode via W exchange is shown in the left panel, and that for the
New physics exchange diagram via some exotic particle X is
shown in the right panel.

1Details about the integration variables are specified in the next
section.
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dΓ
dQ2

þ dΓ̄
dQ2

∝ 2½jASMj2 þ jANSIj2 þ 2jASMjjANSIj cosðϕÞ cosðδðQ2ÞÞ�; ð10Þ

∝ 2ASMj2½1þ ðrðQ2ÞÞ2 þ 2rðQ2Þ cosðϕÞ cosðδðQ2ÞÞ�;
ð11Þ

where rðQ2Þ is the ratio of the amplitude of the NSI contribution to the SM contribution. Therefore,

BRðτ → KsπνÞ ¼
R
dQ22jASMj2½1þ ðrðQ2ÞÞ2 þ 2rðQ2Þ cosðϕÞ cosðδðQ2ÞÞ�

2Γτ
: ð12Þ

Similarly, the difference is

dΓ
dQ2

−
dΓ̄
dQ2

∝ −4jASMjjANSIj sinðϕÞ sinðδðQ2ÞÞ; ð13Þ

∝ −4rðQ2Þ sinðϕÞ sinðδðQ2ÞÞ dΓ
SM

dQ2
: ð14Þ

Hence, the integrated rate asymmetry is

Aτ
CP ¼ Γ − Γ̄

Γþ Γ̄
¼ −

R
4rðQ2Þ sinðϕÞ sinðδðQ2ÞÞ dΓSM

dQ2 dQ2

Γþ Γ̄
:

ð15Þ

As pointed out in Refs. [12] and [13], this CP asymmetry
being linear in the new physics amplitude has a higher
sensitivity to it than effects like lepton-flavor violation,
electric dipole moments, etc., which depend quadratically
on the NP amplitude, rendering this observation to play an
important role in uncovering physics beyond the SM. Using
Eqs. (12) and (15) and the Particle Data Group [14] value of
the branching ratio and the rate asymmetry measured by
BABAR, the weak phase and the magnitude of the new
physics contribution can be estimated.

III. DECAY RATE OF τ → Kπν IN
THE STANDARD MODEL

The tau leptonic and the hadronic decay amplitudes can
be factorized into a purely leptonic part including the tau
and the neutrino and a hadronic part, where the hadronic
system is created from the QCD vacuum via the charged
weak current.

Hence, the differential decay rate of the process τðpτÞ →
KðpKÞ þ πðpπÞ þ νðpντÞ [15] may be written as

dΓðτ → KπνÞ ¼ 1

2mτ

G2
F

2
sin2θcLμνHμνdPSð3Þ; ð16Þ

where Lμν is the leptonic term,

Lμν ¼ ½ν̄τγμð1 − γ5Þτ�½ν̄τγνð1 − γ5Þτ�†; ð17Þ

and the hadronic term,

Hμν ¼ J μðJ νÞ†; ð18Þ

is given in terms of the hadronic vector current,

J μ ¼ hKðpKÞπðpπÞjVμð0Þj0i: ð19Þ

The hadronic matrix element for the transition from
vacuum to two pseudoscalar mesons state will have scalar
and vector components of the weak charged current,
corresponding to JP values of 0þ and 1−, respectively.
The hadronic vector current in Eq. (19) is parametrized in
terms of the scalar and the vector form factors as

J μ ¼ FKπ
V ðQ2Þ

�
gμν −

QμQν

Q2

�
ðpk − pπÞν þ FKπ

s Qμ;

ð20Þ

where Qμ ¼ pμ
k þ pμ

π . The decay rate involves only the
mod squared of the vector and scalar form factors but no
scalar-vector interference term. In the hadronic rest frame
where ~pk þ ~pπ ¼ 0, it takes the form

dΓSM ¼ 1

2mτ
×
G2

Fsin
2θc

2
VusSEWðm2

τ −Q2Þ
��

2Q2 þm2
τ

3Q2

�
4½PðQ2Þ�2jFV j2 þ

m2
τ

Q2

ðm2
K −m2

πÞ2
Q2

jFSj2
�
dPSð3Þ; ð21Þ

where SEW ¼ 1.02 [16] is the electroweak correction factor and PðQ2Þ≡ j ~pkj is the momentum of the kaon in the Kπ rest
frame, which is a function of the Kπ invariant mass squared Q2 and may be expressed as
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PðQ2Þ ¼ 1

2
ffiffiffiffiffiffi
Q2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Q2 − ðmk þmπÞ2�½Q2 − ðmk −mπÞ2�

q
:

ð22Þ
After integrating out the neutrino momentum, the phase
space in the Kπ rest frame is

dPSð3Þ ¼ 1

ð4πÞ3
ðm2

τ −Q2Þ
m2

τ
j ~pkj

dQ2ffiffiffiffiffiffi
Q2

p d cos β
2

; ð23Þ

where β is the direction of the kaon with respect to the tau
direction, denoted by n̂τ, viewed from the hadronic rest
frame, i.e., cos β ¼ p̂K · n̂τ, where p̂K ¼ ~pK

j~pK j. Hence, the
differential decay rate takes the form

dΓSM

d
ffiffiffiffiffiffi
Q2

p ¼ G2
Fsin

2θcm3
τ

3 × 25 × π3Q2
SEW

�
1 −

Q2

m2
τ

�
2
�
1þ 2Q2

m2
τ

�

× PðQ2Þ
�
PðQ2Þ2jFV j2 þ

3ðm2
k −m2

πÞ2
4Q2ð1þ 2Q2

m2
τ
Þ
jFSj2

�
:

ð24Þ

The hadronic current is dominated by many resonances,
the vector ones [K�ð892Þ, K�ð1410Þ, and K�ð1680Þ]
and the scalar ones [K�

0ð800Þ and K�
0ð1430Þ]. The form

factors can be parametrized in terms of Briet–Wigner forms
with energy-dependent widths. Hence, the vector form
factor may be written as [17]

FV ¼ 1

1þ β þ χ
½BWK�ð892ÞðQ2Þ þ βBWK�ð1410ÞðQ2Þ þ χBWK�ð1680ÞðQ2Þ�; ð25Þ

where β and χ are the complex coefficients for the relative
contributions of K�ð1410Þ and K�ð1680Þ resonances,
respectively, with respect to the dominant K�ð892Þ con-
tribution and BWRðsÞ is a relativistic Breit–Wigner func-
tion corresponding to R being K�ð892Þ, K�ð1410Þ, or
K�ð1680Þ for the vector case.
For each of the resonances, the Breit–Wigner function

has the form

BWRðQ2Þ ¼ M2
R

Q2 −M2
R þ i

ffiffiffiffiffiffi
Q2

p
ΓRðQ2Þ

; ð26Þ

where

ΓRðQ2Þ ¼ Γ0R
M2

R

Q2

�
PðQ2Þ
PðM2

RÞ
�ð2lþ1Þ

: ð27Þ

Here, ΓRðsÞ is the s-dependent total width of the resonance,
and Γ0RðsÞ is the resonance width at its peak. The orbital
angular momentum l ¼ 1, if the Kπ system is in a p-wave
or in a vector state and l ¼ 0, for the s-wave or scalar state.
The scalar form factor FS has K�

0ð800Þ and K�
0ð1430Þ

contributions and has the similar form

FS ¼ ϰ
Q2

M2
K�

0
ð800Þ

BWK�
0
ð800ÞðQ2Þ

þ γ
Q2

M2
K�

0
ð1430Þ

BWK�
0
ð1430ÞðQ2Þ; ð28Þ

where, ϰ and γ are the complex constants that describe the
relative contributions of the K�

0ð800Þ and K�
0ð1430Þ reso-

nances, respectively. The Belle collaboration had per-
formed fits to the Ksπ

− invariant mass spectrum (Q2)

distribution and had listed the values of the complex
constants β, ϰ, χ, and γ in Ref. [17]. Their fitted results
(as well as those of BABAR reported in Ref. [18]) dem-
onstrated that a K�

ð892Þ alone is not enough to describe the
Ksπ mass spectrum, but rather the distribution shows the
clear evidence for a scalar contribution in the low invariant
mass and another component at largeQ2. The fits were best
explained with either K�ð892Þ þ K�ð1410Þ þ K�ð800Þ or
K�ð892Þ þ K�ð1430Þ þ K�ð800Þ. Therefore, we have used
these two possibilities for our study and have excluded
K�ð1680Þ in our study as its inclusion worsens the fit
quality in the Belle analysis. Wewould also like to point out
that the Belle fit results are also consistent with a theoretical
description using chiral perturbation theory, described in
Ref. [19], and that of Ref. [20], which is based on analycity
and K − π scattering results.

IV. TOTAL RATE IN THE PRESENCE
OF A NEW TENSOR INTERACTION

We now propose an additional tensor contribution to the
amplitude. We explore if the interaction of the SM with the
new tensorial interaction can account for a nonvanishing
CP asymmetry in the decay mode τ → Kπντ. This tensor
interaction could arise in various NP models; however, our
approach is to study just the effect of this new structure and
keep the analysis as model independent as possible.
Interference of the SM with this tensor amplitude must
give a nonvanishing CP asymmetry for this particular
decay mode; moreover, the sign and magnitude the CP
asymmetry must be consistent with the observed result.
The effective Hamiltonian due to this new operator is

written as

HNSI
eff ¼ G0 sin θcðs̄σμνuÞðν̄τσμνð1þ γ5ÞτÞ; ð29Þ
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where G0 is a complex coupling,

G0 ≡ RTGFffiffiffi
2

p : ð30Þ

The new physics amplitude is then given by

AT ¼ G0½hKπjs̄σμνuj0i�½ūðpνÞσμνð1þ γ5ÞuðpτÞ�; ð31Þ

where σμν ¼ i
2
ðγμγν − γνγμÞ and the Hadronic current is

given by

hKðpkÞπðpπÞjs̄σμνuj0i ¼ i
FT

ðmK þmπÞ
½pμ

kp
ν
π − pν

kp
μ
π�;

ð32Þ

with FT being the form factor due to the tensor interaction.
InAT , we include only left-handed neutrinos, as the similar
term with a right-handed neutrino, in the interference of the
SM and NP contributions at the decay-rate level, will be
suppressed by the neutrino mass. We note here that the AT
is a special case of the generalized ANSI mentioned in
Sec. III. More specifically now, the effective amplitude A is
now given by

A ¼ ASM þ jAT jeiϕeiδ
jAj2 ¼ jASMj2 þ jAT j2 þ 2ReðASMA

†
TÞ; ð33Þ

where

ReðASMA
†
TÞ ∝ 16mτRT ½ðpν · pkÞ · ðpk · pπÞ − p2

kðpν · pπÞ
− p2

πðpν · pkÞ þ ðpν · pπÞ
· ðpk · pπÞ�jFV jjFT j cosðδV − δTÞ ð34Þ

and

jAT j2 ∝ 32jRTFT j2½2ðpν · pπÞðpτ · pkÞðpk · pπÞ
þ 2ðpν · pkÞðpτ · pπÞðpk · pπÞ
− 2m2

piðpτ · pkÞðpν · pkÞ − 2m2
kðpτ · pπÞðpν · pπÞ

þm2
km

2
πðpτ · pνÞ − ðpτ · pνÞðpk · pπÞ�: ð35Þ

The observables used in this study are obtained after the
integration over the angular variables of the different
contributions in Eq. (33). In the interference term of the
new tensor contribution with the SM contribution
[Eq. (34)], the term that arises from the symmetric (Qμ)
part of the standard current vanishes after this angular
integration, and hence only the interference of the tensor
with the vector form factor appears. The full differential
decay rate may hence be written as

dΓ≡ 1

2mτ
½jASMj2 þ jAT j2 þ 2ReðASMA

†
TÞ�dQ2

¼ dΓ1 þ dΓ2 þ dΓ3; ð36Þ

where

dΓ1 ¼ G2
Fsin

2θcSEW
m3

τ

64π3

�
m2

τ −Q2

m2
τ

�
2 PðQ2Þ
ðQ2Þ3=2 ×

�
PðQ2Þ2

�
2Q2 þm2

τ

3m2
τ

�
jFV j2 þ

1

4

ðm2
K −m2

πÞ2
Q2

jFSj2
�
dQ2; ð37Þ

dΓ2 ¼ G2
Fsin

2θcSEW
m3

τ

64π3

�
m2

τ −Q2

m2
τ

�
2 PðQ2Þ
ðQ2Þ3=2 ×

�
PðQ2Þ2Q2

�
Q2 þ 2m2

τ

3m2
τ

�
R2
T jFT j2

�
dQ2 ð38Þ

and

dΓ3 ¼ G2
Fsin

2θcSEW
m3

τ

64π3

�
m2

τ −Q2

m2
τ

�
2 PðQ2Þ
ðQ2Þ3=2 ×

�
2PðQ2Þ2RT jFV jjFT j

Q2

mτ
cos ðδTðQ2Þ − δVðQ2Þ þ ϕÞ

�
dQ2: ð39Þ

For the conjugate tau decay mode, only the interference term in Eq. (39) will differ, having the opposite weak phase ϕ.

As mentioned above, the interference of the scalar
contribution of the SM and the antisymmetric tensor
contribution vanishes. This is similar to the vanishing of
the scalar and the vector interference contribution in the SM
itself. Note that the scalar term is even under parity, while
both vector and tensor are odd under parity, resulting in

only the vector-tensor interference being even under parity
and hence surviving after the full (parity-even) phase space
integration. In other words, once the angular integration is
performed, terms that are odd in cos β vanish; however, the
parity-even interference of the vector and tensor terms
contributes to the decay rate even after this integration.
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We wish to point out that after completion of this work
we became aware of some earlier papers in which tensor
interactions had been introduced in semileptonic tau
decays, namely, Refs. [21], [22], and [23]. We notice
several differences in our approach and these earlier papers.
First, Ref. [21], claims that the tensor amplitude does not
interfere with the SM amplitude; however, as shown in our
calculations in this section, this is not true. In fact, it is
exactly this interference that can possibly account for the
CP-violating rate asymmetry. Reference [22] generates a
very tiny CP asymmetry (≈10−12) by second-order weak
interactions, and Ref. [23] has given a numerical estimate
of such an asymmetry, but in the context of a supersym-
metry model, unlike our analytical formulas for a generic
tensor interaction. Moreover, since this paper preceded the
BABAR rate asymmetry measurement, they have not used
the observables to constrain the NP parameters, which we
attempt in the following section.

V. ESTIMATION OF THE NEW PHYSICS
PARAMETER FROM OBSERVABLES

To estimate the parameters of the new tensor interaction
term, we need to numerically compute the total decay rates
for τþ → Ksπ

þν̄ and τ− → Ksπ
−ν, using Eqs. (36)–(39).

We can write the vector and the scalar form factors in terms
of the magnitude and the strong phases as

Fv ¼ jFvjeiδvðQ2Þ; and Fs ¼ jFsjeiδsðQ2Þ: ð40Þ
Having expressed the form factors in terms of the combi-
nations of Briet–Wigner forms of the various resonances,
given in Eqs. (25) and (28), the strong phases of the scalar
and the vector form factors can be simply extracted from
these complex forms. We have used this vector form factor
strong phase (Q2 dependent) for our results below. As
mentioned in Sec. III, Belle proposed two fit models for the
Q2 distribution of their data, which had comparable χ2

values, both having the vector K�ð892Þ resonance where
the data peak as well as the scalar K�ð800Þ. In the region
around 1.4 GeV, since the data lay much higher than the
fitted curve, the inclusion of either K�ð1410Þ or K�ð1430Þ

resulted in a significant improvement in the goodness
of fit. Hence, in our analysis, we consider both the pos-
sibilities, K�ð892Þ þ K�ð1410Þ þ K�ð800Þ and K�ð892Þþ
K�ð1430Þ þ K�ð800Þ, considering these two cases one at a
time and naming them as case I and case II, respectively.
Note that a relative orbital angular momentum l ¼ 2 of

the Kπ system would get contribution from a symmetric 2þ
state; however, since our NP amplitude consists of an
antisymmetric tensor contribution, such a resonant2 con-
tribution to the Kπ is not feasible. We take the tensor form
factor to be real, and hence δ appearing in Eq. (15) in the
presence of the new tensor interaction will be δ ¼ δv, since
δT ¼ 0. A similar tensor form factor had been introduced in
the analysis of Ke3 and Kμ3 data, and in fact the Particle
Data Group [14] gives the constraint on the ratio of jfT=fV j
for these decays. However, with no such existing analysis
from experiments nor any theoretical lattice estimates of the
tensor hadronic form factor in the Q2 range relevant for the
tau decay being considered here, we assume the tensor
form factor to be a constant for simplicity and determine the
product of this constant and its coupling strength from the
tau decay observables.
In the presence of this tensorial NSI, the experimentally

measured CP asymmetry AExp
CP will be a result of the

combination of the CP asymmetry arising from the K0-K̄0

mixing and direct CP asymmetry appearing in the tau
decay. If the CP asymmetry is a consequence only of the
mixing contribution, then this asymmetry depending on the
integrated decay times may be expressed as

AK
CP ¼

R t2
t1 dt½ΓðK0ðtÞ → ππÞ − ΓðK̄0ðtÞ → ππÞ�R t2

t1 dt½ΓðK0ðtÞ → ππÞ þ ΓðK̄0ðtÞðtÞ → ππÞ� :

ð41Þ
The Ks produced in the tau decay is observed through the
(πþπ−) final state with mππ ¼ mK. The τþ decays to K0 at
the time t1 of tau decay (τ− decays to K̄0 at t1), and the time
difference between the tau decay and the Kaon decay is of
the order of the Ks lifetime (τS). Hence, in presence of both
direct and indirect CP violation, we may express the
observed decay-rate asymmetries as

AExp
CP ¼ Γðτþ → Ksπ

þνÞ R t2
t1 dtΓðK0ðtÞ → ππÞ − Γðτ− → Ksπ

−νÞ R t2
t1 dtΓðK̄0ðtÞ → ππÞ

Γðτþ → Ksπ
þνÞ R t2

t1 dtΓðK0ðtÞ → ππÞ þ Γðτ− → Ksπ
−νÞ R t2

t1 dtΓðK̄0ðtÞ → ππÞ : ð42Þ

Interestingly, as shown below, this asymmetry can be factored into AK
CP and Aτ

CP defined in Eqs. (15) and (41), where Aτ
CP is

the CP violation due to the tensorial interaction. Defining

Γτ� ≡ Γðτ� → Ksπ
� ν
ð−Þ

τÞ; ΓK0
ð−Þ

ðtÞ≡ ΓðK0
ð−Þ

ðtÞ → ππÞ; ð43Þ
the difference of the decay rates in the numerator of AExp

CP in Eq. (42) can be written as

2A 2− state cannot decay to Kπ [for example, K2ð1770Þ does not decay to Kπ but to Kππ], as expected by parity conservation.

H. ZEEN DEVI, L DHARGYAL, AND NITA SINHA PHYSICAL REVIEW D 90, 013016 (2014)

013016-6



Γðτþ → Ksπ
þνÞ

Z
t2

t1

dtΓðK0ðtÞ → ππÞ − Γðτ− → Ksπ
−νÞ

Z
t2

t1

dtΓðK̄0ðtÞ → ππÞ

¼ Γτþ
Z

t2

t1

dtΓK0ðtÞ − Γτ−
Z

t2

t1

dtΓK̄0ðtÞ

¼ 2

�
Γτþ þ Γτ−

2

R t2
t1 dt½ΓK0ðtÞ − ΓK̄0ðtÞ�

2
þ Γτþ − Γτ−

2

R t2
t1 dt½ΓK0ðtÞ þ ΓK̄0ðtÞÞ�

2

�

¼ 1

2
fΓτþ þ Γτ−g

Z
t2

t1

dtðΓK0ðtÞ þ ΓK̄0ðtÞÞ½AK
CP þ Aτ

CP�

¼ Γτ�
av

Z
t2

t1

dtfΓK0ðtÞ þ ΓK̄0ðtÞg½AK
CP þ Aτ

CP�:
Similarly, the sum is

Γðτþ → Ksπ
þνÞ

Z
t2

t1

dtΓðK0ðtÞ → ππÞ þ Γðτ− → Ksπ
−νÞ

Z
t2

t1

dtΓðK̄0ðtÞ → ππÞ

¼ Γτþ
Z

t2

t1

dtΓK0ðtÞ þ Γτ−
Z

t2

t1

dtΓK̄0ðtÞ

¼ Γτ�
avð1þ AK

CPA
τ
CPÞ

Z
t2

t1

dtfΓK0ðtÞ þ ΓK̄0ðtÞg:

Therefore, the observed asymmetry and the branching ratio
for this decay mode can be written as

AExp
CP ¼ AK

CP þ Aτ
CP

1þ Aτ
CPA

K
CP

ð44Þ

and

BR ¼ Γτþ þ Γ̄τ−

2Γtotal
½1þ Aτ

CPA
K
CP�

Z
t2

t1

dtfΓK0ðtÞ þ ΓK̄0ðtÞg:

Using the time dependence of the widths of K0 and K̄0 to
ππ for t1 ≤ τS and τS ≤ t2 ≤ τL, we can show that
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FIG. 2 (color online). The figures on the left and the right show the
ffiffiffiffiffiffi
Q2

p
dependence of jFV j and jFSj, respectively, where the

parameters appearing in the combination of the Briet–Wigner forms for the resonances, K�ð892Þ, K�ð1410Þ, and K�ð800Þ, were used
from the Belle fits for case I.
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FIG. 3 (color online). The figure shows the
ffiffiffiffiffiffi
Q2

p
dependence

of δv as extracted from the complex form with contributions from
the combination of the two vector resonances, K�ð892Þ and
K�ð1410Þ, with parameters from Belle fits for case I.
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Z
t2

t1

dtðΓKðtÞ þ ΓK̄ðtÞÞ ¼ ΓðKs → ππÞ
ΓKs

jpj2 þ jqj2
4jpj2jqj2

¼ BRðKs → ππÞ; ð45Þ

where p, q, and ϵ are the standardK mixing parameters and
we ignore terms of order ϵ2 in the evaluation of the time
integrals of the time-dependent decay rates of K0 and K̄0 to
ππ, as was done in Ref. [7]. Hence, the branching ratio for
tau decay to Kπν may be written in the following form:

BR ¼ Γτ�
av

Γtotal
½BRðKs → ππÞ�ð1þ Aτ

CPA
K
CPÞ: ð46Þ

A. Case I

Here, we have used K�ð892Þ þ K�ð1410Þ þ K�ð800Þ.
For this case, Figs. 2 and 3 show the dependence of the
form factors and the strong phase δV , respectively, on

ffiffiffiffiffiffi
Q2

p
.

Substituting these Q2-dependent form factors and the
strong phase as well as the values of the masses, decay
widths of the various resonances, and the branching ratio of
the decay mode under consideration from PDG ([14,24]),
we compute the Q2-integrated results, Γτ� for both the
decay modes τ� → Ksπ

� ντ
ð−Þ

within the kinematic limits
ðmK þmπÞ2, and m2

τ . This results in the average effective

decay width dependent on the unknown parameters of the
new interaction: the product of coupling constant RT (ratio
with respect to the SM) and the tensor form factor FT,
which is assumed to be a constant in this work and the CP-
violating weak phase ϕ. Numerically, the effective widths
in MeV are given by

Γτ� ¼ 8.336 × 10−12 þ 1.668 × 10−12ðRT jFT jÞ2 þ 2.757

× 10−12RT jFT j cosϕ∓RT jFT j sinðϕÞ8.52674
× 10−13: ð47Þ

In the above equation, the first number is the integrated
width for the SM, the second is the width corresponding to
the mod squared of the tensor contribution, and the last two
terms are from the interference of the SM and tensor parts
and hence dependent on the strong phase (Q2 dependent,
which has been integrated out). The last three terms have
been computed in terms of the unknown parameters of NP,
the weak phase ϕ, and the product of the tensor coupling
and form factor. From Eq. (15), we compute the second
observable, the direct CP asymmetry, again in terms of the
NP parameters to be

Aτ
CP ¼ 2ðRT jFT jÞ sinϕ × 8.527 × 10−13

Γτþ þ Γτ−
; ð48Þ

TABLE I. Table showing the two solutions [(i) and (ii)] for the NSI parameters: the product of the ratio of the NSI coupling strength to
the SM value and the tensor form factor, RT jFT j and the cosine of the weak phase cosϕ, allowed by the observables: the branching ratio
and the CP asymmetry. Columns 4, 5, and 6 show the ratio of the contribution of the tensor mod-squared term, the interference terms
involving the cosine of strong and weak phases, and that involving the sine of the phases, respectively, with respect to the SM
contribution. The SM part uses the vector and scalar form factors corresponding to case I described in the text.

Sl.No RT jFT j cosϕ j T
SM j2 IntðSM�TÞ

SM2 (cos term) IntðSM�TÞ
SM2 (sin term)

(i) −0.303 −0.97 0.01837 0.09721 0.00753
(ii) −1.945 −0.99 0.75853 0.63750 −0.02809
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FIG. 4 (color online). The figure on the left shows the
ffiffiffiffiffiffi
Q2

p
dependence of jFV j, and that on the right shows the

ffiffiffiffiffiffi
Q2

p
dependence of

jFSj, when these form factors include the Briet–Wigner contributions from the vector resonance K�ð892Þ and the scalars, K�ð1430Þ and
K�ð800Þ, as used in the Belle fits for case II.
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where the difference of the widths for τþ and τ− is
computed, using the difference of Γ3 and Γ̄3 [after
integrating the expressions in Eq. (39) corresponding to
those for τþ and τ−].
Using the average width, ðΓτþ þ Γτ−Þ=2 evaluated from

Eq. (47) and the CP asymmetry due to direct CP
violation calculated in Eq. (48), in the expressions
for the observed branching ratio and CP asymmetry
derived earlier [Eqs. (46) and (44)], we can find the
solutions for the unknowns RT jFT j and cosϕ. This
results in two feasible solutions, displayed in Table I.
Obviously, only the first solution is viable, as the NP
contribution has to be much smaller than the SM
contribution, since there is no glaring evidence of it,
other than the unexpected direct CP violation seen. The
smaller magnitude of the tensor mod squared and
interference term relative to the SM contribution allows
the Q2 distribution of the SM alone to be reasonably
consistent with the Belle data.

B. Case II

Here, the combination K�ð892Þ þ K�ð1430Þ þ K�ð800Þ
is used. Figures 4 and 5 show the dependence of the form

factors and strong phases, on
ffiffiffiffiffiffi
Q2

p
in this case. The

complete decay rate is computed to be

Γτ� ¼ 8.294 × 10−12 þ 1.668 × 10−12ðRT jFT jÞ2 þ 2.633

× 10−12RT jFT j cosϕ∓5.418 × 10−13RT jFT j sinϕ:
ð49Þ

From Eq. (15), we get

Aτ
CP ¼ 2RT jFT j sinϕ × 5.418 × 10−13

Γτþ þ Γτ−
: ð50Þ

Similar to the first case, using the above two equations, we
get two feasible solutions for RT jFT j and cosϕ shown in
Table II below, where again only the first solution is
meaningful.
In the future, once the hadronic form factor for the tensor

contribution is estimated theoretically, hopefully from
lattice calculations or a fresh analysis of the larger data
sample that may be available3 is performed by the exper-
imental groups, including the fits with a new tensorial
contribution to the amplitude, then, with some handle on
the tensor form factor (including its possible Q2 depend-
ence), the coupling strength as well as the weak phase of
NP can be pinned down further. Note that the Q2 depend-
ence of the mod squared of the tensor amplitude is quite
different from that of the other terms, which will enable its
extraction from data.

VI. CONCLUSIONS

CP violation in the quark sector, observed through
decays and mixing of K and B mesons, is consistent with
its parametrization within the Standard Model. However, it
fails to explain the large baryon asymmetry of the Universe
and necessitates searches for CP violation beyond the
Standard Model. Leptonic decays along with semileptonic
decays of hadrons may offer a clean environment for
searches of CP-violating new physics beyond the
Standard Model.
The recent observation of a CP-rate asymmetry ACP by

BABAR [5] in the tau decay mode τ� → Ksπ
� ντ
ð−Þ

seems to
hint at some new physics, with the observed decay rate
asymmetry being approximately 2.8 standard deviations
away from the Standard Model predictions of an asym-
metry that arises from K0 − K̄0 mixing. The presence of
various resonances in the vicinity of the decay hadrons
invariant mass facilitates the availability of strong phases,
while complex couplings in a new physics amplitude could
provide the weak phase, enabling the possibility of a direct
CP asymmetry. A charged scalar contribution can provide a

TABLE II. Table showing the allowed values of the NSI
parameters, RT jFT j and cosϕ, as well as the ratio of the
contribution of the tensor mod-squared term with respect to
the SM contribution, as well as that of the interference contri-
butions, corresponding to the SM form factors for case II.

Sl.No RT jFT j cosϕ j T
SM j2

IntðSM�TÞ
SM2

(cos term)

IntðSM�TÞ
SM2

(sin term)

(i) −0.213 −0.816 0.0091 0.05518 0.03909
(ii) −3.333 0.999 2.2341 1.05703 0.04731
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FIG. 5 (color online). The figure shows the
ffiffiffiffiffiffi
Q2

p
dependence

of δv corresponding to the vector form factor for the Belle fits of
case II.

3The Belle collaboration, for example, has about three
times larger statistics and has plans to repeat the τ → KSπν
analysis. [25]
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CP-violating asymmetry in the angular distribution but
fails to produce an integrated rate asymmetry. However,
this is achievable with a generic nonstandard tensorial
interaction. We calculated the effective decay rate in the
presence of the additional tensor interaction and in fact
used the observed branching ratio and CP asymmetry to
obtain the parameters of the new physics, the weak phase ϕ,
and the product of tensorial coupling and the form
factor.
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