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Relativistic Hamiltonians, derived from the path integrals, are known to provide a simple and useful
formalism for hadron spectroscopy in QCD. The accuracy of this approach is tested using the QED
systems, and the calculated spectrum is shown to reproduce exactly that of the Dirac hydrogen atom, while
the Breit-Fermi nonrelativistic expansion is obtained using Foldy-Wouthuizen transformation. The
calculated positronium spectrum, including spin-dependent terms, coincides with the standard QED

perturbation theory to the considered order O(a*).
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I. INTRODUCTION

The path integral approach to QCD and QED has been
actively developed since the first formulation in [1,2] (see [3]
for reviews, references, and discussions). The particular line
of development is the so-called Fock-Feynnman-Schwinger
representation (FFSR) [4-6], where both relativism and
gauge invariance are made explicit. In this latter framework
one derives the path-integral relativistic Hamiltonian, which
is called the relativistic Hamiltonian (RH), originally ex-
ploited in a simple form in [7].

Recently a new integral form of the hadron Green’s
function and a rigorous derivation of the RH were given in
[8], and we use this latter form in what follows.

The RH formalism is one of the most powerful methods in
QCD, which allows us to predict spectra and wave functions
of hadrons using a minimal input: current quark masses,
string tension, and Agcp. Therefore, it is very important to
check its validity for different systems and the accuracy of
results. In the course of the derivation, some approximations
have been given, the significance of which can be made clear
by comparison with other relativistic approaches. In the case
of the one-particle system in an external field, the basic
approach is that of the Dirac equation, and one can compare
results of two approaches—the path integral Hamiltonian
and Dirac equation in external fields, e.g., for the Coulomb
case in QED. In the case of the linear potential in QCD,
results can be compared with lattice and experimental data.

It is important that the FFSR is derived for the Green’s
functions, and the RH appears in the kernel in the exponent
and depends on additional integration variables, which play
the role of virtual particle energies. Therefore, one encoun-
ters the problem of the proper definition of the RH as
an operator and its excited states. This topic will also be
discussed in comparison with the Dirac formalism, the
QED perturbation theory for positronium, and relativistic
quark models. As a result, we shall estimate the accuracy of
approximations made and shall give the scheme of calcu-
lations for the ground and excited states, both in one-particle
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and two-particle systems. As an additional topic, we
compare nonrelativistic expansions for the RH with the
known Breit-Fermi expansion.

The plan of the paper is as follows. The short derivation
of the RH is done in Sec. II. Section III is devoted to the
Breit-Fermi expansion of the RH. In Sec. IV the spectrum
of the RH for the hydrogen atom is compared with Dirac
and Salpeter equations. The case of positronium and the
accuracy of the spectrum of the RH is considered in Sec. V.
The last section is devoted to the discussion of results and
perspectives.

II. DERIVATIVES OF THE RELATIVISTIC
HAMILTONIAN

We start with the FFSR for the fermion propagator in the
external gauge field A, in QED, as well as in QCD in the
Euclidean space-time

S=(m+D)'=(m _f))(mz _f)z)—l
= (m— D) /oo dse=s(m*=D?)
0
= (m-D) /Ooo ds(D*z)e KW, (1)

o, - Ly
X exp [ip (;Az(k) - (x- y))} ,

Ne =, (2)

where the kinematic kernel is

1 (s /d 2
K—mzs—l-Z/O <%> dr, (3)

and the generalized Wilson line is
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We(x,y) = Pyexp (ig/ A,dz, +g/ aﬂDFﬂydT>,
y 0
(4)

where P, is the ordering operator in the case of the non-
Abelian field A,. Note that matrices y, enter W only in the
term

[ 6B oEg
O-ﬂl/FMl/ - (O'EE B )7 (5)

and here Ej is the Euclidean electric field, which should
be replaced by E,, = iE in the Minkowskian case. Hence,
all connections of large and small Dirac components are
provided by the electric field in W and the factor (m — D)
in (1).

As will be seen, the main differences between the RH

and the Dirac equation are as follows:

(1) The RH is a quadratic operator, which stems from
the quadratic combination (m? — D?), while the
Dirac operator is linear in momenta and fields
A,. This difference can be seen in the resulting
nonrelativistic expansion of both operators and
eigenvalues, and is cured by the Foldy-Wouthuizen
transformation taking into account the factor
(m — D) in (1).

(2) The new element in the relativistic path integral, as
compared to its nonrelativistic analog, is the time
path in the quantum paths. As shown explicitly in
[8], the integration ds(D4z) in Eq. (1) can be
written, using the relations

xy

T dtg
=5 TE - ) d — 5 >
w X4 = V4] T 2w

so that

/ ds(D*z), e KW (x, y)

:TA“%
- [ £o5(2)). o

and one can split the time element in (4), dzy —
Az, = Atp + AZy, so that Atg is a monotonic Euclidean
time interval, while AZ, is a stochastic one, with
SN L Azy(k) =0. Correspondingly, in the integral

(Dz4)y,y, = o Hk donill) exp[ip4(ZkAZ4(k) =T)] of

Vare
the Wilson line (4) one can write

(D3Z>xy€_K<w)<(I)Z<x’ y)>Az4’ (6)

where
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(@ (x.3)) e, = / (D24)o, Wr(x.3)

= Wg(x.y) \/Zi%fﬂ{/\ﬂ}- (8)

Here p{A, = 0} = 1 and also ¢ = 1 for A, independent
of z4. As it was argued in [8], the difference (p{A} — 1)
takes into account the creation of additional particles and
hence higher Fock components in the total wave function
and higher Fock matrix elements in the Hamiltonian.
In terms of one- or two-particle Green’s functions, these
contributions can be considered as radiative corrections,
which are absent in the simplest form of Dirac or Bethe-
Salpeter equations. In what follows we shall consider only
the minimal Fock component and use the condition
p{A} =1. .

Now the monotonic part Wy depends only on 3d
trajectories z, = {z(tg). 1z} and is equal to

V_VF@CJ’)

T dz; o, F
= diy |igA,(t jgA; = LS AN
CXP{/O E|:lg 4(tg) zth‘i‘g 2w ]}
)

In what follows we shall test the approximation of smooth
trajectories with ¢{A,} = 1 and compare the correspond-
ing results with exact calculations of the Dirac equation for
the Coulomb potential.

As a result, from (6), (7), and (8) one can write the
Hamiltonian for a fermion in the electromagnetic field

{A(z,1), Ay(z, 1)},

(p—eA)? m?+ o e(cB) ie(aE)
H = An — —
(@) 2w 20 +edo 2w 20
0 o
a= . 10
(o) (10)

One can see, that the obtained Hamiltonian contains the
parameter @, which plays the role of the virtual particle
energy, to be integrated over in the expression (6) for the
Green'’s function. There are several ways to proceed and get
the final spectra, which are discussed in what follows. In
the next section we compare H with nonrelativistic expan-
sions of the Dirac equation.

ITII. NONRELATIVISTIC EXPANSIONS IN RH
AND DIRAC EQUATIONS

We start with the Dirac equation for the hydrogenlike
atom, where Ay = — %, and take into account that the exact
form of the fermion Green’s function (for p{A} = 1) is

Gx.) \/87/7/ 3/2

= D), (x]e”#)Ty). (1)
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In (11) the Hamiltonian was defined in Minkowskian
space-time, while the final expression is written for the
Euclidean time 7' (see Appendix in [8] for details of the
derivation).

As the next step we consider the “projection operator”
(m — D), in the integral (11) and take into account that the
derivative a% is acting on the Wilson line (4), resulting in
the following expression (see Appendix 1 of the second
reference in [7]),

m=D)=p("2" P )

op w—m

At this point one needs to diagonalize the whole
expression under the integral (11), which allows us to give
the energy eigenvalues of the Hamiltonian H with the
account of the lower components of the wave function.
In this way one writes

o 2 2 0
By — gyt (@ VP Em )U,
( )=F ( 0 w—\/pz—i-m2
(13)
where
U <cos€ —sin9> _ s, [929:@
sind cos@ ’ m’

S iypf

= —Ba,0. (14)

In a similar way one can write

H(w) = UTH(w)U, H(w) = e®H(w)e ™. (15)

Our reasoning below and in the next section follows the
arguments from the book [9], and H(w) can be found as a
series (see chapter 2 of [9])

F(w) = H(w) + S, H] - % S H]—.... (16)

As one can see in (14), the series in (16) is in powers of
(2) and gives the higher orders of the nonrelativistic
expansion, whereas the first two orders are contained
already in H(w). Indeed, keeping for simplicity the first
three terms in (10), which we denote as Hy(w),

(p—eA) ’

m? + w
H =
o(®) 2w + 2w

+ eAy, (17)

and taking into account that at large T the integration over
dw in (11) can be done using the minimum of Hy(w) in
momentum space at some @ = @, one has
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(p — eA)? + m?, Hy(wy) = wy + eA,.

(18)

Now the nonrelativistic expansion of @, and Hy(wy) in
powers of (£) yields the first terms of the Breit-Fermi
expansion, namely, the so-called Pauli Hamiltonian [10],
or to be more precise, its positive energy part. Another root

Wy =

of wy, wy = —+/(p — eA)? + m? is out of the integration
region, and in the full Minkowskian integral one would
obtain instead

Hy /- (@0) = By (b = eA + 12 = e(oB) + ey, (19)

We now turn to the next two terms in (16) and take

into account that cosd ~ 1 — 8’#, sinf ~ %, and hence,

additional terms from eA, and SoE in (10) yield

AA
U+H(a))U:cosHeA0cose+...268 20_'_“.
m
edivE
= —-_—— LI 20
sm? (20)

In a similar way as in (20) one obtains the full O(1/m?)
form,

- (p—eA)? pt e
H= AL VAR Ay — —oB
<m+ 2m 8m? tedo 2m6

e e .
+ <—WG(E X p)> _WdWE’
E = —VA,. (21)

Note, however, that divE ~ 5)(r) and the higher in (£)
terms bring about even higher derivatives of the ¢ function,
which makes the evaluation of this Hamiltonian question-
able. Therefore, it is more convenient from the beginning
to consider the exact solution of the Dirac equation and
compare it with the exact eigenvalues of H(w) (10), in this
way finding the accuracy of approximations made in the
path integral method. This is done in the next section.

IV. EXACT DIRAC SPECTRUM FROM RH FOR
THE HYDROGENLIKE ATOMS

Here we study the energy eigenvalues of hydrogenlike
atoms. From (10) the RH is

2 2, 2 ;
p° m+w ie(aE)

H(w) =+ 4 eAy— .
(@) 2w+ 2w +edo 2w

(22)

At this point one has two possibilities:
(1) To calculate eigenvalues M, (w) of H(w) and then
find the stationary point @y of M,(w), yielding the
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actual eigenvalue M, (w). This choice was used in
[7] and called “the einbein method.”
(2) To define @ = w, from the condition aggu) lo—w, =0,
finding in this way the “stationary value” of the
Hamiltonian. This brings us to the (generalized)
Salpeter equation [11], extensively studied in the
framework of RH, e.g., in [12] and in the relativistic
quark model [13] (see [14] for reviews). In our case
AO = —Z—ra and E = —VAO = %n.
We start with the simplest (einbein) procedure for the
ground state, solving the equation

p’> Za w(Za)?
-~ =&y, E=——""—>H ",
20 1 v v 2n?

n=172....
(23)
Inserting € in (22) and neglecting the last term on the right-

hand side, one obtains the expression for the total eigen-
value M, (®):

m?> +w*  o(Za)?
H<a)>\pn :Mn(a))qln’ Mn(w) = 2w - 2092
(24)

As prescribed by the @ integration in (11), the actual
energy eigenvalue M, (@) should be obtained from M, (@)
by the minimization procedure

oM, (w)
Ow

Za
n

=0, @wy=m 1—( >2:Mn(w0)'

(25)

0=y

This form should be compared with the exact Dirac
Hamiltonian eigenvalues M% (see [9]):

5j:j+;—\/<j+;>2—(2a)2. (26)

It is remarkable that for the ground state with n =1,
j :% the einbein approximation gives exactly the same
answer, i.e.,

i(on) =P (1= 1)

However, for higher levels the predictions of (25)
and (26) differ by O(m(Za)*). Moreover, M, (w,) does
not depend on j. In general, the einbein method gives a
reasonable approximation for QCD bound states that are
not highly excited [12] but, in principle, does not ensure the
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orthogonality of different wave functions. To overcome
this, we turn to the second possibility—the square root or
Salpeter equation.

To this end one keeps in H(w) [Eq. (10)] the last term for
the hydrogenlike atoms, A =0, Ay = —Z—ra, and (10) has
the form

P +m* o’ —iecaE  Za
N 2w r’
HY = M(w)V. (28)

H(w)

As prescribed in the second (square root or “Salpeter’)
method, we define @ from the minimum of the kinetic part,
written in the momentum space,

wy = \/p* +m? —ieaE. (29)

Hence H(w,) acquires the form

~ Z
H(wg) = \/pz—f—mz—ieaE——a,
.

H(wo)¥, = M, ()T, (30)

OH(w)
ow

0=w

Notice that in the chiral representation for y matrices one
can write —ieaE —>F iZa‘%‘. B
To find the eigenvalues of H(w,) one can write
p>+ m? —ieaEV, = (M, + 22)y, and multiply it by
the Hermitian conjugated equation times f3,

U \/p +m? + ieaEﬂ\/p2 +m? —ieaEV,

- Zo ~ Za
= (Mn+7>ﬂ<Mn+7>\I/,,, (31)
obtaining in this way the Hamiltonian

_ on - Za\ 2
{p2+m2:|:zZar2—<M”+ >}\Iin:0. (32)

r

Then, following the same procedure as in [9] for the same
Hamiltonian (see the Appendix for details of derivation),
one obtains the exact Dirac spectrum (26). In this way we
arrived at the Dirac spectrum starting from the square root
form (30), using the quadratic expression (32).

However, direct use of the square root form in the x space
brings about singularities around zero, as can be seen in the
following. Indeed,
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\/p>+m?—ieaEV,
. Z . Za\?
= (M,,—i——a) v, — <p+m2—ieaE— <M,,—|——a> >\Iln
r r

— XU, (33)

with

z
X = {\/p2+m2—ieaE,—a} (34)
r

One can see that X is a sum of the ¢ function and its
derivatives. These terms can be neglected if one excludes
the small region around the origin. It is interesting that

to solve Eq. (33) with X =0, one can use (32) with
MII(Za>

Ein = T3 and the resulting equation for M is
- M3(Za)?
M%:mz_L“)z, M, = " . (35)

with §; given in (25). Therefore, one obtains again the exact
spectrum Dirac equation if in the coordinate space one
solves the square root equation, excluding the near-zero
region.

Notice that the case of the Coulomb potential in the
square-root (Salpeter-type) equation was studied analyti-
cally in [15], and a singularity in the S-wave radial wave
function R(r) ~ (mr)™, vy ~ 0.086583 was found there.
The spectrum was found in the form (I = 0)

2m
V1+ad/an?

Note that the term (—ieaE) was not present in [15], and
hence §; does not enter in (36).

MnO = (36)

V. TWO-BODY QED HAMILTONIAN FROM
THE PATH INTEGRAL

For two-body systems there is no exact formalism to
compare with in QCD, since the Bethe-Salpeter equation is
not operative with strong nonperturbative forces. In QED
one can use standard perturbation theory and the Salpeter
equation, which ensure very high accuracy of the results.
Our aim in this section is to compare the RH spectrum for
two oppositely charged particles (e.g., positronium) with
the standard QED calculations. We consider the problem of
two charges e¢; and e, and write the two-body Green’s
function without stochastic time contributions (radiative
corrections) as in [8,16],

dw, da)z
GeIE') 'x y 271_/ 3/2/ 3/2 (2))xy4trY1—*
x (W) exp(-K Kz), (37)
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where

1 A .
YF = Zrl(ml — lp])rz(mz - lpZ)’ (38)

T : m2 w: dz(i) 2
K; = dig| = L4 — . 39
: A E<2+2a)i+2<dtb~>> (39)
In (37) the function W is the vacuum averaged contour
integral over paths of charges ¢, and e, in the e.m. field A,

‘ T dt
W= i A (ZK)dZk / ZE(s F
(o (35 f it [ B

= e—Vr>. (40)

In the case e¢; = —e,, W is the gauge invariant QED
analogue of the Wilson loop, and below we shall consider
this case for simplicity. To get rid of the c.m. motion, one
integrates over d(x —y) and obtains

da)l da)2 3
/ 3/2 / 3/2 Yrd

x(x—y)e”
« <X|€_H wl.wz.P1~P2)T‘y>, (41)

/d3(X_Y)Ge|ez ()C y

2 2, 2
p; +m; +w; o
H(w,@;.p1.P2) = Z . +V
m?+w?  p? P2
- et Vb,
Z 2w + )
@:M‘ (42)
W) + Wy

Since the last term on the right-hand side in (42) vanishes,
one is left with the c.m. Hamiltonian,

m2 + 2 2 ~
SR Ly @
5 2w, 2m

H(wy, @,,p) =
where the potential V is found from the cluster expansion of
the Wilson loop. Keeping only the O(e?) terms (bilocal
correlators), one has (see [16,17] for details)

& (616,V4(r) + 515V3)
V=V :
C(r) * 12601602
O'IL 0'2L 1 , (0'1 +O'2)L1 ,
—+ |-V -V
* <4a)% + 4a)%> r olr) + 2010, T 2(r),

(44)
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Velr) = A "2di A Z duD? (2, v), (45)

Vu(r) = /_ : dy<3D(2)(r,v)+2r2w>, (46)

where

or?
Vi(r) = —r —/ dvD®? (r,v) (47)

Vi(r) = r/00 dvD®? (r,v),
0

(48)
Vi(r) = rA dvD®?(r,v),
and D®? (4,v) is the quadratic correlator,
& (Fy(X)F ()
=3 e, = waa+ (570 [po0. @)

with u = x —y. To the lowest order D®(u) is (e; =
—ey =e)

2

2 _ 4a _
()(u)—ﬂu4, a= (50)
Note that the accurate derivation of the spin-dependent
terms, valid both for QCD and QED, taking into account
the proper positions of (m; — D;) terms, is done in [16]. In
the QED case substituting D@ from (50), one obtains the
familiar results [S;, = ; (361n6,n —6,6,)]

a 1, 1 . «a 3a
Vc(r):—;, ;VO:;VZZF’ V3 :F,
V, = 87as®(r). (51)

These expressions coincide with the corresponding
nonrelativistic spin-dependent potentials, when w; = m;,
but in our case (44) and (51) are applicable in the relativistic
case to the order O(a). Note that in the case of positronium
the additional term in V appears due to the annihilation
diagram, which in the nonrelativistic limit is

Vs = (6,65 +3). (52)

na
2m 2

One can now proceed as in (28) and (29), but treating all
terms in V (44) as a perturbation, except for V(r), and for
m; =my, =m, AV =V —V(r) one obtains

Hy_,=2\/p?+m> -S4 AV=Hy+AV.  (53)
r

Again, as in (32), for ‘l’ﬁlm, HO\IISL) 51 >‘l'£, >, one has
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2
{4(p2 +m?) - < o +g> }\Ifff’) -0, (54)
r

and the analog of the angular operator N2 (see the
Appendix) is now diagonal with eigenvalues A(1+ 1) =

a2 . . . Mff))(zt2
L(L+1) -9, yielding the eigenvalues e, = —=g&7,
n=n-— 5L’ with
1\2 & 1
5, =L— L+-) ——+=. 55
g ( * 2) 172 53)
Finally one obtains for M ,(,0),
2
m) =—= (56)

\/ 1 + 4112

The expansion in a® produces the expected result,

atm atm

Mf,o)z2m——+---z2m—

am 4. (57
472 4z To@). (57)

At this point we can compare the accuracy of our
expressions (56) with the account of the potentials V4,
Vs in (50) and (51) to the results of QED perturbation
theory for the orthopositronium (13S; —23S;) interval
AE (see reviews [18,19] for results and discussions).
From [18], Table V, one obtains, in perturbation theory,
AEpr = AEpr(a?) + AEpr(a*) + AEpr(a,n > 5), where

AEpr(a?) = 1.2336907351 x 10° MHz,  (58)
AEpr(a*) = —82.0056 x 103 MHz, (59)
AEpp(a®) = —1.5014 x 103 MHz. (60)

At the same time our Eq. (56) contributes the same
amount in the order O(a?), AEgy(a?) = AEpr(a?), while
in O(a*) its contribution from MY s AEpy(a*) =
23.9515582 x 10°> MHz, and from the potentials V,, Vs
one obtains AERy(a*) = —102.1933153 x 10° MHz, so
that the total contribution in the order O(a?) is

AERH(O‘4) = AE%H(Oﬁ) + AEEH(C‘/‘)
= —78.2417571 x 10° MHz, (61)

which should be compared to AEpr(a*), Eq. (59). One can
see that the difference between these numbers is of the
order O(107) of the total result for AE, and is in the realm
of the O(a’) corrections. Note, also, that the relativistic
O(a*) corrections coming from the square root expression
(56) are of vital importance for the resulting accuracy.
In this way we have proved that the square root of the
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two-body Hamiltonian (53) is able to provide high accuracy
for the positronium spectrum.

VI. DISCUSSION OF RESULTS

We have calculated the spectrum of the hydrogenlike
atoms in QED, using our RH, derived in the framework of
the path integral. This spectrum exactly coincides with the
spectrum of the Dirac equation.

It was shown above that in the first approach (the einbein
approximation), where the eigenvalues are functions of
virtual energy @, one obtains a reasonable result for the
relativistic ground state energy; however, for higher eigen-
values corrections are of the order of (Za)*.

At the same time, the second approach, where the virtual
energy is defined on the operator level, provides the square-
root-type Hamiltonian, which yields the exact Dirac spec-
trum. In this way our results support the so-called Salpeter
approach in the relativistic quark models, which was so
successful in predicting hadronic states [12,13,17,20].
However, in QCD the string correction needs to be taken
into account to provide orbital and radial Regge trajectories
[12] in good agreement with experiment.

We have also shown how the Breit-Fermi nonrelativistic
expansion is obtained from our RH, when Foldy-
Wouthuizen transformation is applied.

Finally, the case of two oppositely charged particles
was considered, and all interaction terms, including spin-
dependent ones, were derived and included in the resulting
Hamiltonian. The latter contains both kinematic relativistic
effects and lowest order dynamic effects, and our formalism
allows us to distinguish between two contributions. A short
comparison to the standard QED perturbation results is
done for the (23S, — 13S,) energy interval of positronium,
showing a good accuracy of the RH for the positronium
spectrum.

Summarizing these results, one can consider RH as a
reliable tool for the studies in QED as well as of hadronic
properties in QCD with the proper comparison with lattice
and experimental results.

Another important line of development is the theory of
QED systems in a strong magnetic field, where the RH
approach was formulated in [8,16]; a new phenomenon of
the magnetic focusing can be found in [21].
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APPENDIX: EXPLICIT SOLUTION OF EQ. (33)
Following [9] we write Eq. (32) in the form

N? 27
{—A, +— ——aM,, — (M2 - mz)}y/,, =0, (Al)
r r

where N? in the chiral representation for the matrices ; in
the term (—iaE) is written in the diagonal form as F lzar@
For the total angular momentum J = L. + § with eigenval-

- _ 1 3
ueS‘]—z,i,..

states [, = j &1, which has the form

.., one can define N? as the matrix in the

A2 = <l+(l++1)—(Za)2 T iZa )

F iZa I_(I_+1)=(Za)?
(A2)
The eigenvalues of N2 are found from (A2) to be
N?> =204 +1),

12 12
A=ji+=) - (Za)? -1, j+=] = (Za)>,
2 2

(A3)

and writing 2= (j£3) —§;, one can define the radial
quantum number n,, pertinent to A,,n, =0,1,2,..., and
the solution of the reduced Coulomb problem [the first
three terms in (A1)] is

(ZayM,

2 (a4)

&, = —

where
fz:n,—|—/1+1:n,—}—j:t%—}—l—éj:n—éj, n=12,...
Finally, from (A1) one finds that M2 — m?> = 2M ¢, or

(AS)
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