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Relativistic Hamiltonians, derived from the path integrals, are known to provide a simple and useful
formalism for hadron spectroscopy in QCD. The accuracy of this approach is tested using the QED
systems, and the calculated spectrum is shown to reproduce exactly that of the Dirac hydrogen atom, while
the Breit-Fermi nonrelativistic expansion is obtained using Foldy-Wouthuizen transformation. The
calculated positronium spectrum, including spin-dependent terms, coincides with the standard QED
perturbation theory to the considered order Oðα4Þ.
DOI: 10.1103/PhysRevD.90.013013 PACS numbers: 13.40.-f

I. INTRODUCTION

The path integral approach to QCD and QED has been
actively developed since the first formulation in [1,2] (see [3]
for reviews, references, and discussions). The particular line
of development is the so-called Fock-Feynnman-Schwinger
representation (FFSR) [4–6], where both relativism and
gauge invariance are made explicit. In this latter framework
one derives the path-integral relativistic Hamiltonian, which
is called the relativistic Hamiltonian (RH), originally ex-
ploited in a simple form in [7].
Recently a new integral form of the hadron Green’s

function and a rigorous derivation of the RH were given in
[8], and we use this latter form in what follows.
The RH formalism is one of the most powerful methods in

QCD, which allows us to predict spectra and wave functions
of hadrons using a minimal input: current quark masses,
string tension, and ΛQCD. Therefore, it is very important to
check its validity for different systems and the accuracy of
results. In the course of the derivation, some approximations
have been given, the significance of which can be made clear
by comparison with other relativistic approaches. In the case
of the one-particle system in an external field, the basic
approach is that of the Dirac equation, and one can compare
results of two approaches—the path integral Hamiltonian
and Dirac equation in external fields, e.g., for the Coulomb
case in QED. In the case of the linear potential in QCD,
results can be compared with lattice and experimental data.
It is important that the FFSR is derived for the Green’s

functions, and the RH appears in the kernel in the exponent
and depends on additional integration variables, which play
the role of virtual particle energies. Therefore, one encoun-
ters the problem of the proper definition of the RH as
an operator and its excited states. This topic will also be
discussed in comparison with the Dirac formalism, the
QED perturbation theory for positronium, and relativistic
quark models. As a result, we shall estimate the accuracy of
approximations made and shall give the scheme of calcu-
lations for the ground and excited states, both in one-particle

and two-particle systems. As an additional topic, we
compare nonrelativistic expansions for the RH with the
known Breit-Fermi expansion.
The plan of the paper is as follows. The short derivation

of the RH is done in Sec. II. Section III is devoted to the
Breit-Fermi expansion of the RH. In Sec. IV the spectrum
of the RH for the hydrogen atom is compared with Dirac
and Salpeter equations. The case of positronium and the
accuracy of the spectrum of the RH is considered in Sec. V.
The last section is devoted to the discussion of results and
perspectives.

II. DERIVATIVES OF THE RELATIVISTIC
HAMILTONIAN

We start with the FFSR for the fermion propagator in the
external gauge field Aμ in QED, as well as in QCD in the
Euclidean space-time

S ¼ ðmþDÞ−1 ¼ ðm − D̂Þðm2 − D̂2Þ−1

¼ ðm − D̂Þ
Z

∞

0

dse−sðm2−D̂2Þ

¼ ðm − D̂Þ
Z

∞

0

dsðD4zÞe−KWF; ð1Þ

ðD4zÞxy ¼
Z

d4p
ð2πÞ4

Y
k

d4ΔzðkÞ
ð4πεÞ2

× exp

�
ip

�X
k

ΔzðkÞ − ðx − yÞ
��

;

Nε ¼ s; ð2Þ

where the kinematic kernel is

K ¼ m2sþ 1

4

Z
s

0

�
dzμ
dτ

�
2

dτ; ð3Þ

and the generalized Wilson line is
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WFðx; yÞ ¼ PA exp

�
ig
Z

x

y
Aμdzμ þ g

Z
s

0

σμνFμνdτ

�
;

ð4Þ

where PA is the ordering operator in the case of the non-
Abelian field Aμ. Note that matrices γμ enterWF only in the
term

σμνFμν ¼
�

σB σEE

σEE σB

�
; ð5Þ

and here EE is the Euclidean electric field, which should
be replaced by EM ≡ iE in the Minkowskian case. Hence,
all connections of large and small Dirac components are
provided by the electric field inWF and the factor (m − D̂)
in (1).
As will be seen, the main differences between the RH

and the Dirac equation are as follows:
(1) The RH is a quadratic operator, which stems from

the quadratic combination (m2 − D̂2), while the
Dirac operator is linear in momenta and fields
Aμ. This difference can be seen in the resulting
nonrelativistic expansion of both operators and
eigenvalues, and is cured by the Foldy-Wouthuizen
transformation taking into account the factor
(m − D̂) in (1).

(2) The new element in the relativistic path integral, as
compared to its nonrelativistic analog, is the time
path in the quantum paths. As shown explicitly in
[8], the integration dsðD4zÞxy in Eq. (1) can be
written, using the relations

s ¼ T
2ω

; T ≡ jx4 − y4j; dτ ¼ dtE
2ω

;

so that

Z
dsðD4zÞxye−KWFðx; yÞ

¼ T
Z

∞

0

dω
2ω2

ðD3zÞxye−KðωÞhΦzðx; yÞiΔz4 ; ð6Þ

where

KðωÞ ¼
Z

T

0

dtE

�
ω

2
þm2

2ω
þ ω

2

�
dz
dtE

�
2
�
; ð7Þ

and one can split the time element in (4), dz4 →
Δz4 ¼ ΔtE þ Δ~z4, so that ΔtE is a monotonic Euclidean
time interval, while Δ~z4 is a stochastic one, withP

N
k¼1 Δ~z4ðkÞ ¼ 0. Correspondingly, in the integral

ðDz4Þx4y4 ¼
R dp4

2π

Q
k
dΔz4ðkÞffiffiffiffiffi

4πε
p exp½ip4ð

P
kΔz4ðkÞ − TÞ� of

the Wilson line (4), one can write

hΦzðx; yÞiΔz4 ¼
Z

ðDz4Þx4y4WFðx; yÞ

¼ WFðx; yÞ
ffiffiffiffiffiffiffiffiffi
ω

2πT

r
φfAμg: ð8Þ

Here φfAμ ¼ 0g ¼ 1 and also φ ¼ 1 for Aμ independent
of z4. As it was argued in [8], the difference (φfAg − 1)
takes into account the creation of additional particles and
hence higher Fock components in the total wave function
and higher Fock matrix elements in the Hamiltonian.
In terms of one- or two-particle Green’s functions, these
contributions can be considered as radiative corrections,
which are absent in the simplest form of Dirac or Bethe-
Salpeter equations. In what follows we shall consider only
the minimal Fock component and use the condition
φfAg≡ 1.
Now the monotonic part W̄F depends only on 3d

trajectories zμ ¼ fzðtEÞ; tEg and is equal to

W̄Fðx; yÞ

¼ exp

�Z
T

0

dtE

�
igA4ðtEÞ þ igAi

dzi
dtE

þ g
σμνFμν

2ω

��
:

ð9Þ
In what follows we shall test the approximation of smooth
trajectories with φfAμg≡ 1 and compare the correspond-
ing results with exact calculations of the Dirac equation for
the Coulomb potential.
As a result, from (6), (7), and (8) one can write the

Hamiltonian for a fermion in the electromagnetic field
fAðz; tÞ; A0ðz; tÞg,

HðωÞ ¼ ðp − eAÞ2
2ω

þm2 þ ω2

2ω
þ eA0 −

eðσBÞ
2ω

−
ieðαEÞ
2ω

;

α ¼
�
0 σ

σ 0

�
: ð10Þ

One can see, that the obtained Hamiltonian contains the
parameter ω, which plays the role of the virtual particle
energy, to be integrated over in the expression (6) for the
Green’s function. There are several ways to proceed and get
the final spectra, which are discussed in what follows. In
the next section we compare H with nonrelativistic expan-
sions of the Dirac equation.

III. NONRELATIVISTIC EXPANSIONS IN RH
AND DIRAC EQUATIONS

We start with the Dirac equation for the hydrogenlike
atom, where A0 ¼ − Zα

r , and take into account that the exact
form of the fermion Green’s function (for φfAg≡ 1) is

Gðx; yÞ ¼
ffiffiffiffiffiffi
T
8π

r Z
∞

0

dω

ω3=2 ðm − D̂Þxhxje−HðωÞTyi: ð11Þ
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In (11) the Hamiltonian was defined in Minkowskian
space-time, while the final expression is written for the
Euclidean time T (see Appendix in [8] for details of the
derivation).
As the next step we consider the “projection operator”

ðm − D̂Þx in the integral (11) and take into account that the
derivative ∂

∂xμ is acting on the Wilson line (4), resulting in
the following expression (see Appendix 1 of the second
reference in [7]),

ðm − D̂Þ → β

�
ωþm σp
σp ω −m

�
: ð12Þ

At this point one needs to diagonalize the whole
expression under the integral (11), which allows us to give
the energy eigenvalues of the Hamiltonian H with the
account of the lower components of the wave function.
In this way one writes

ðm − D̂Þ ¼ βUþ
�
ωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
0

0 ω − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p �
U;

ð13Þ

where

U ¼
�
cos θ − sin θ

sin θ cos θ

�
¼ eiS; tg2θ ¼ σp

m
;

S ¼ iγpθ
p

¼ −βα2θ: ð14Þ

In a similar way one can write

HðωÞ ¼ Uþ ~HðωÞU; ~HðωÞ ¼ eiSHðωÞe−iS: ð15Þ

Our reasoning below and in the next section follows the
arguments from the book [9], and ~HðωÞ can be found as a
series (see chapter 2 of [9])

~HðωÞ ¼ HðωÞ þ i½S;H� − 1

2
½S; ½S;H�� −…: ð16Þ

As one can see in (14), the series in (16) is in powers of
ðpmÞ and gives the higher orders of the nonrelativistic
expansion, whereas the first two orders are contained
already in HðωÞ. Indeed, keeping for simplicity the first
three terms in (10), which we denote as H0ðωÞ,

H0ðωÞ ¼
ðp − eAÞ2

2ω
þm2 þ ω2

2ω
þ eA0; ð17Þ

and taking into account that at large T the integration over
dω in (11) can be done using the minimum of H0ðωÞ in
momentum space at some ω ¼ ω0, one has

ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − eAÞ2 þm2

q
; H0ðω0Þ ¼ ω0 þ eA0:

ð18Þ

Now the nonrelativistic expansion of ω0 and H0ðω0Þ in
powers of ðpmÞ yields the first terms of the Breit-Fermi
expansion, namely, the so-called Pauli Hamiltonian [10],
or to be more precise, its positive energy part. Another root
of ω0, ω0 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − eAÞ2 þm2

p
is out of the integration

region, and in the full Minkowskian integral one would
obtain instead

Hþ=−ðω0Þ ¼ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − eAÞ2 þm2 − eðσBÞ

q
þ eA0: ð19Þ

We now turn to the next two terms in (16) and take

into account that cos θ ≈ 1 − p2

8m2, sin θ ≈ σp
2m, and hence,

additional terms from eA0 and βσE in (10) yield

UþHðωÞU ¼ cos θeA0 cos θ þ � � � ¼ eΔA0

8m2
þ � � �

¼ −
edivE
8m2

þ � � � : ð20Þ

In a similar way as in (20) one obtains the full Oð1=m2Þ
form,

~H ¼
�
mþ ðp − eAÞ2

2m
−

p4

8m3

�
þ eA0 −

e
2m

σB

þ
�
−

e
4m2

σðE × pÞ
�
−

e
8m2

divE;

E ¼ −∇A0: ð21Þ

Note, however, that divE ∼ δð3ÞðrÞ and the higher in ðpmÞ
terms bring about even higher derivatives of the δ function,
which makes the evaluation of this Hamiltonian question-
able. Therefore, it is more convenient from the beginning
to consider the exact solution of the Dirac equation and
compare it with the exact eigenvalues of HðωÞ (10), in this
way finding the accuracy of approximations made in the
path integral method. This is done in the next section.

IV. EXACT DIRAC SPECTRUM FROM RH FOR
THE HYDROGENLIKE ATOMS

Here we study the energy eigenvalues of hydrogenlike
atoms. From (10) the RH is

HðωÞ ¼ p2

2ω
þm2 þ ω2

2ω
þ eA0 −

ieðαEÞ
2ω

: ð22Þ

At this point one has two possibilities:
(1) To calculate eigenvalues MnðωÞ of HðωÞ and then

find the stationary point ω0 of MnðωÞ, yielding the
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actual eigenvalue Mnðω0Þ. This choice was used in
[7] and called “the einbein method.”

(2) To define ω ¼ ω0 from the condition ∂HðωÞ
∂ω jω¼ω1

¼ 0,
finding in this way the “stationary value” of the
Hamiltonian. This brings us to the (generalized)
Salpeter equation [11], extensively studied in the
framework of RH, e.g., in [12] and in the relativistic
quark model [13] (see [14] for reviews). In our case
A0 ¼ − Zα

r and E ¼ −∇A0 ¼ Zα
r2 n.

We start with the simplest (einbein) procedure for the
ground state, solving the equation

�
p2

2ω
−
Zα
r

�
ψ ¼ εψ ; ε ¼ −

ωðZαÞ2
2n2

; n ¼ 1; 2…:

ð23Þ

Inserting ε in (22) and neglecting the last term on the right-
hand side, one obtains the expression for the total eigen-
value MnðωÞ:

HðωÞΨn ¼ MnðωÞΨn; MnðωÞ ¼
m2 þ ω2

2ω
−
ωðZαÞ2
2n2

:

ð24Þ

As prescribed by the ω integration in (11), the actual
energy eigenvalueMnðω0Þ should be obtained fromMnðωÞ
by the minimization procedure

∂MnðωÞ
∂ω

����
ω¼ω0

¼ 0; ω0 ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
Zα
n

�
2

s
¼ Mnðω0Þ:

ð25Þ

This form should be compared with the exact Dirac
Hamiltonian eigenvalues MD

n (see [9]):

MD
n ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð Zα
n−δj

Þ2
q ;

δj ¼ jþ 1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
jþ 1

2

�
2

− ðZαÞ2
s

: ð26Þ

It is remarkable that for the ground state with n ¼ 1,
j ¼ 1

2
the einbein approximation gives exactly the same

answer, i.e.,

M1ðω0Þ ¼ MD
1

�
j ¼ 1

2

�
: ð27Þ

However, for higher levels the predictions of (25)
and (26) differ by OðmðZαÞ4Þ. Moreover, Mnðω0Þ does
not depend on j. In general, the einbein method gives a
reasonable approximation for QCD bound states that are
not highly excited [12] but, in principle, does not ensure the

orthogonality of different wave functions. To overcome
this, we turn to the second possibility—the square root or
Salpeter equation.
To this end one keeps inHðωÞ [Eq. (10)] the last term for

the hydrogenlike atoms, A ¼ 0, A0 ¼ − Zα
r , and (10) has

the form

HðωÞ ¼ p2 þm2 þ ω2 − ieαE
2ω

−
Zα
r
;

HΨ ¼ MðωÞΨ: ð28Þ

As prescribed in the second (square root or “Salpeter”)
method, we define ω from the minimum of the kinetic part,
written in the momentum space,

∂HðωÞ
∂ω

����
ω¼ω0

¼ 0; ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2 − ieαE

q
: ð29Þ

Hence Hðω0Þ acquires the form

~Hðω0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2 − ieαE

q
−
Zα
r
;

~Hðω0ÞΨn ¼ ~Mnðω0Þ ~Ψn: ð30Þ

Notice that in the chiral representation for γ matrices one
can write −ieαE →∓ iZα σn

r2 .
To find the eigenvalues of ~Hðω0Þ one can writeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2 − ieαE

p
Ψn ¼ ð ~Mn þ Zα

r ÞΨn and multiply it by
the Hermitian conjugated equation times β,

Ψ�
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþm2 þ ieαE

q
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2 − ieαE

q
Ψn

¼ Ψ�
n

�
~Mn þ

Zα
r

�
β

�
~Mn þ

Zα
r

�
Ψn; ð31Þ

obtaining in this way the Hamiltonian

�
p2 þm2 ∓ iZα

σn
r2

−
�

~Mn þ
Zα
r

�
2
�
Ψn ¼ 0: ð32Þ

Then, following the same procedure as in [9] for the same
Hamiltonian (see the Appendix for details of derivation),
one obtains the exact Dirac spectrum (26). In this way we
arrived at the Dirac spectrum starting from the square root
form (30), using the quadratic expression (32).
However, direct use of the square root form in the x space

brings about singularities around zero, as can be seen in the
following. Indeed,
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2−ieαE

q
Ψn

¼
�

~Mnþ
Zα
r

�
Ψn→

�
pþm2− ieαE−

�
~Mnþ

Zα
r

�
2
�
Ψn

¼XΨn ð33Þ

with

X ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2 − ieαE
q

;
Zα
r

�
: ð34Þ

One can see that X is a sum of the δ function and its
derivatives. These terms can be neglected if one excludes
the small region around the origin. It is interesting that
to solve Eq. (33) with X ¼ 0, one can use (32) with

ελ;n ¼ −MnðZαÞ2
2ðn−δjÞ2, and the resulting equation for ~Mn is

~M2
n ¼ m2 −

~M2
nðZαÞ2

2ðn − δjÞ2
; Mn ¼

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð Zα

n−δj
Þ2

q ; ð35Þ

with δj given in (25). Therefore, one obtains again the exact
spectrum Dirac equation if in the coordinate space one
solves the square root equation, excluding the near-zero
region.
Notice that the case of the Coulomb potential in the

square-root (Salpeter-type) equation was studied analyti-
cally in [15], and a singularity in the S-wave radial wave
function R0ðrÞ ∼ ðmrÞ−ν0 , ν0 ≈ 0.086583 was found there.
The spectrum was found in the form (l ¼ 0)

Mn0 ¼
2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2=4n2
p : ð36Þ

Note that the term (−ieαE) was not present in [15], and
hence δj does not enter in (36).

V. TWO-BODY QED HAMILTONIAN FROM
THE PATH INTEGRAL

For two-body systems there is no exact formalism to
compare with in QCD, since the Bethe-Salpeter equation is
not operative with strong nonperturbative forces. In QED
one can use standard perturbation theory and the Salpeter
equation, which ensure very high accuracy of the results.
Our aim in this section is to compare the RH spectrum for
two oppositely charged particles (e.g., positronium) with
the standard QED calculations. We consider the problem of
two charges e1 and e2 and write the two-body Green’s
function without stochastic time contributions (radiative
corrections) as in [8,16],

Ge1e2ðx; yÞ ¼
T
2π

Z
∞

0

dω1

ω3=2
1

Z
∞

0

dω2

ω3=2
2

ðD3zð1ÞD3zð2ÞÞxy4trYΓ

× hWi expð−K1 − K2Þ; ð37Þ

where

YΓ ¼ 1

4
Γ1ðm1 − ip̂1ÞΓ2ðm2 − ip̂2Þ; ð38Þ

Ki ¼
Z

T

0

dtE

�
ωi

2
þ m2

i

2ωi
þ ωi

2

�
dzðiÞ

dtE

�
2
�
: ð39Þ

In (37) the function W is the vacuum averaged contour
integral over paths of charges e1 and e2 in the e.m. field Aμ,

W ¼
	
exp

�X
k¼1;2

�
eik

Z
AμðzkÞdzkμ þ ek

Z
T

0

dtE
2ωk

ðσμνFμνÞ
��

≡ e−V̂T



: ð40Þ

In the case e1 ¼ −e2, W is the gauge invariant QED
analogue of the Wilson loop, and below we shall consider
this case for simplicity. To get rid of the c.m. motion, one
integrates over dðx − yÞ and obtains

Z
d3ðx−yÞGe1e2ðx;yÞ¼

T
2π

Z
∞

0

dω1

ω3=2
1

Z
∞

0

dω2

ω3=2
2

YΓd3

×ðx−yÞeiPðx−yÞ
×hxje−Hðω1;ω2;p1;p2ÞT jyi; ð41Þ

Hðω1;ω2;p1;p2Þ ¼
X
i

p2
i þm2

i þω2
i

2ωi
þ V̂

¼
X
i

m2
i þω2

i

2ωi
þ p2

2 ~ω
þ V̂ þ P2

2ðω1 þω2Þ
;

~ω¼ ω1ω2

ω1 þω2

: ð42Þ

Since the last term on the right-hand side in (42) vanishes,
one is left with the c.m. Hamiltonian,

Hðω1;ω2;pÞ ¼
X
i¼1;2

m2
i þ ω2

i

2ωi
þ p2

2 ~ω
þ V̂; ð43Þ

where the potential V̂ is found from the cluster expansion of
the Wilson loop. Keeping only the Oðe2Þ terms (bilocal
correlators), one has (see [16,17] for details)

V̂ ¼ VCðrÞ þ
ðσ1σ2V4ðrÞ þ S12V3Þ

12ω1ω2

þ
�
σ1L
4ω2

1

þ σ2L
4ω2

2

�
1

r
V 0
0ðrÞ þ

ðσ1 þ σ2ÞL
2ω1ω2

1

r
V 0
2ðrÞ;

ð44Þ
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where

VCðrÞ ¼
Z

r

0

λdλ
Z

∞

0

dνDð2Þðλ; νÞ; ð45Þ

V4ðrÞ ¼
Z

∞

−∞
dν

�
3Dð2Þðr; νÞ þ 2r2

∂Dð2Þðr; νÞ
∂r2

�
; ð46Þ

V3ðrÞ ¼ −r2
∂
∂r2

Z
∞

−∞
dνDð2Þðr; νÞ; ð47Þ

V 0
0ðrÞ ¼ r

Z
∞

0

dνDð2Þðr; νÞ;

V 0
2ðrÞ ¼ r

Z
∞

0

dνDð2Þðr; νÞ;
ð48Þ

and Dð2Þðλ; νÞ is the quadratic correlator,

e2hFμνðxÞFλρðyÞi

¼ 1

2

� ∂
∂uμ ðuλδνρ − uρδλνÞ þ

�
μ ↔ ν

λ ↔ ρ

��
Dð2ÞðuÞ; ð49Þ

with u ¼ x − y. To the lowest order Dð2ÞðuÞ is (e1 ¼
−e2 ¼ e)

Dð2ÞðuÞ ¼ 4α

πu4
; α ¼ e2

4π
: ð50Þ

Note that the accurate derivation of the spin-dependent
terms, valid both for QCD and QED, taking into account
the proper positions of (mi − D̂i) terms, is done in [16]. In
the QED case substituting Dð2Þ from (50), one obtains the
familiar results ½S12 ¼ 1

4
ð3σ1nσ2n − σ1σ2Þ�

VCðrÞ ¼ −
α

r
;

1

r
V 0
0 ¼

1

r
V 0
2 ¼

α

r3
; V3 ¼

3α

r3
;

V4 ¼ 8παδð3ÞðrÞ: ð51Þ
These expressions coincide with the corresponding

nonrelativistic spin-dependent potentials, when ωi ¼ mi,
but in our case (44) and (51) are applicable in the relativistic
case to the orderOðα5Þ. Note that in the case of positronium
the additional term in V̂ appears due to the annihilation
diagram, which in the nonrelativistic limit is

V5 ¼
πα

2m2
ðσ1σ2 þ 3Þ: ð52Þ

One can now proceed as in (28) and (29), but treating all
terms in V̂ (44) as a perturbation, except for VCðrÞ, and for
m1 ¼ m2 ¼ m, ΔV̂ ≡ V̂ − VCðrÞ one obtains

~He;−e ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
−
α

r
þ ΔV̂ ≡H0 þ ΔV̂: ð53Þ

Again, as in (32), for Ψð0Þ
n , H0Ψ

ð0Þ
n ¼ Mð0Þ

n Ψð0Þ
n , one has

�
4ðp2 þm2Þ −

�
Mð0Þ

n þ α

r

�
2
�
Ψð0Þ

n ¼ 0; ð54Þ

and the analog of the angular operator N̂2 (see the
Appendix) is now diagonal with eigenvalues λðλþ 1Þ ¼
LðLþ 1Þ − α2

4
, yielding the eigenvalues εn ¼ −Mð0Þ

n α2

8~n2 ,
~n ¼ n − δL, with

δL ¼ L −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Lþ 1

2

�
2

−
α2

4

s
þ 1

2
: ð55Þ

Finally one obtains for Mð0Þ
n ,

Mð0Þ
n ¼ 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2

4~n2

q : ð56Þ

The expansion in α2 produces the expected result,

Mð0Þ
n ¼ 2m −

α2m
4~n2

þ � � � ≈ 2m −
α2m
4n2

þOðα4Þ: ð57Þ

At this point we can compare the accuracy of our
expressions (56) with the account of the potentials V4,
V5 in (50) and (51) to the results of QED perturbation
theory for the orthopositronium (13S1 − 23S1) interval
ΔE (see reviews [18,19] for results and discussions).
From [18], Table V, one obtains, in perturbation theory,
ΔEPT ¼ ΔEPTðα2Þ þΔEPTðα4Þ þΔEPTðαn; n ≥ 5Þ, where

ΔEPTðα2Þ ¼ 1.2336907351 × 109 MHz; ð58Þ

ΔEPTðα4Þ ¼ −82.0056 × 103 MHz; ð59Þ

ΔEPTðα5Þ ¼ −1.5014 × 103 MHz: ð60Þ

At the same time our Eq. (56) contributes the same
amount in the order Oðα2Þ, ΔERHðα2Þ ¼ ΔEPTðα2Þ, while
in Oðα4Þ its contribution from Mð0Þ

n is ΔE0
RHðα4Þ ¼

23.9515582 × 103 MHz, and from the potentials V4, V5

one obtains ΔE00
RHðα4Þ ¼ −102.1933153 × 103 MHz, so

that the total contribution in the order Oðα4Þ is

ΔERHðα4Þ≡ ΔE0
RHðα4Þ þ ΔE00

RHðα4Þ
¼ −78.2417571 × 103 MHz; ð61Þ

which should be compared to ΔEPTðα4Þ, Eq. (59). One can
see that the difference between these numbers is of the
order Oð10−6Þ of the total result for ΔE, and is in the realm
of the Oðα5Þ corrections. Note, also, that the relativistic
Oðα4Þ corrections coming from the square root expression
(56) are of vital importance for the resulting accuracy.
In this way we have proved that the square root of the
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two-body Hamiltonian (53) is able to provide high accuracy
for the positronium spectrum.

VI. DISCUSSION OF RESULTS

We have calculated the spectrum of the hydrogenlike
atoms in QED, using our RH, derived in the framework of
the path integral. This spectrum exactly coincides with the
spectrum of the Dirac equation.
It was shown above that in the first approach (the einbein

approximation), where the eigenvalues are functions of
virtual energy ω, one obtains a reasonable result for the
relativistic ground state energy; however, for higher eigen-
values corrections are of the order of ðZαÞ4.
At the same time, the second approach, where the virtual

energy is defined on the operator level, provides the square-
root-type Hamiltonian, which yields the exact Dirac spec-
trum. In this way our results support the so-called Salpeter
approach in the relativistic quark models, which was so
successful in predicting hadronic states [12,13,17,20].
However, in QCD the string correction needs to be taken
into account to provide orbital and radial Regge trajectories
[12] in good agreement with experiment.
We have also shown how the Breit-Fermi nonrelativistic

expansion is obtained from our RH, when Foldy-
Wouthuizen transformation is applied.
Finally, the case of two oppositely charged particles

was considered, and all interaction terms, including spin-
dependent ones, were derived and included in the resulting
Hamiltonian. The latter contains both kinematic relativistic
effects and lowest order dynamic effects, and our formalism
allows us to distinguish between two contributions. A short
comparison to the standard QED perturbation results is
done for the (23S1 − 13S1) energy interval of positronium,
showing a good accuracy of the RH for the positronium
spectrum.
Summarizing these results, one can consider RH as a

reliable tool for the studies in QED as well as of hadronic
properties in QCD with the proper comparison with lattice
and experimental results.
Another important line of development is the theory of

QED systems in a strong magnetic field, where the RH
approach was formulated in [8,16]; a new phenomenon of
the magnetic focusing can be found in [21].
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APPENDIX: EXPLICIT SOLUTION OF EQ. (33)

Following [9] we write Eq. (32) in the form

�
−Δr þ

N̂2

r2
−
2Zα
r

Mn − ðM2
n −m2Þ

�
ψn ¼ 0; ðA1Þ

where N̂2 in the chiral representation for the matrices αi in

the term (−iαE) is written in the diagonal form as∓ iZαðσnÞ
r2 .

For the total angular momentum J ¼ Lþ σ
2
with eigenval-

ues j ¼ 1
2
; 3
2
;…., one can define N̂2 as the matrix in the

states l� ¼ j� 1
2
, which has the form

N̂2 ¼
�
lþðlþ þ 1Þ − ðZαÞ2 ∓ iZα

∓ iZα l−ðl− þ 1Þ − ðZαÞ2
�
:

ðA2Þ

The eigenvalues of N̂2 are found from (A2) to be

N̂2 ¼ λðλþ 1Þ;

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
jþ 1

2

�
2

− ðZαÞ2
s

− 1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
jþ 1

2

�
2

− ðZαÞ2
s

;

ðA3Þ

and writing λ ¼ ðj� 1
2
Þ − δj, one can define the radial

quantum number nr, pertinent to Δr; nr ¼ 0; 1; 2;…, and
the solution of the reduced Coulomb problem [the first
three terms in (A1)] is

εn ¼ −
ðZαÞ2Mn

2~n2
; ðA4Þ

where
~n¼ nrþ λþ 1¼ nrþ j� 1

2
þ 1− δj ¼ n− δj, n ¼ 1; 2;….

Finally, from (A1) one finds that M2
n −m2 ¼ 2Mnεn, or

Mn ¼
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðZαÞ2
ðn−δjÞ2

q : ðA5Þ
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