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We extend the general formalism of two-photon exchange to elastic lepton-nucleon scattering by
accounting for all lepton mass terms. We then perform a numerical estimate of the muon-proton scattering
at low momentum transfer in view of the future MUSE experiment. For this purpose, we estimate the two-
photon exchange corrections to muon-proton scattering observables by considering the contribution of the
proton intermediate state, which is expected to dominate at very low momentum transfers. We find that the
two-photon exchange effect to the unpolarized muon-proton scattering cross section in the MUSE
kinematical region is of the order of 0.5%.
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I. INTRODUCTION

The proton charge radius measurements from the
hydrogen spectroscopy [1] are in good agreement with
the measurements from the unpolarized elastic electron-
proton scattering [2]. In contrast, the recent measurements
of the proton charge radius in the muonic hydrogen [3,4]
are in strong contradiction with the electronic results. This
“proton charge radius puzzle” has not been solved yet.
One of the possible directions to understand the dis-

crepancy is to verify the lepton universality by comparing
measurements of the proton electromagnetic form factors in
the unpolarized elastic muon-proton scattering with their
counterparts using electron-proton scattering. The new
muon-proton scattering experiment (MUSE) was proposed
for these studies [5]. The precise determination of the
proton charge radius requires an account of the two-photon
exchange (TPE) corrections to the unpolarized elastic
scattering. These corrections are expected to be of the
order of 1% of the cross section.
An estimate of lepton mass effects in the elastic piece of

the TPE corrections in lepton-nucleon scattering in the
momentum transfer range 1–2 GeV2 [6] showed a small
difference between the corrections for the muon- and
electron-proton elastic scattering.
For the momentum transfer range of the MUSE experi-

ment Q2 ≲ 0.1 GeV2 we expect the main contribution to
TPE corrections from the elastic, i.e., nucleon, intermediate
state. In this work we develop the general formalism for
elastic muon-proton scattering including TPE and estimate
this contribution in a model with a proton intermediate state.
We introduce the general formalism of elastic muon-

proton scattering in Sec. II. The evaluation of the two-
photon box graph with the assumption of an on-shell virtual
photon-proton-proton vertex is described in Sec. III. We
present results of our calculations for the MUSE kinematic
region in Sec. IV and conclusions with outlook in Sec. V.

II. ELASTIC MUON-PROTON SCATTERING

The kinematics of the elastic muon-proton scattering
μðk; hÞ þ pðp; λÞ → μðk0; h0Þ þ pðp0; λ0Þ, with hðh0Þ and
λðλ0Þ denoting the helicities of incoming (outgoing)
muons and protons, respectively, (see Fig. 1) can be
completely described by two Mandelstam variables, e.g.,
Q2 ¼ −ðk − k0Þ2, the squared momentum transfer, and
s ¼ ðpþ kÞ2, the squared energy in the muon-proton
center-of-mass (c.m.) reference frame.
In the c.m. reference frame with muon scattering angle

θcm the momentum transfer is given by

Q2 ¼ −ðk − k0Þ2 ¼ 2j~kj2ð1 − cosðθcmÞÞ

¼ Σ
2s

ð1 − cosðθcmÞÞ; ð1Þ

with Σ≡ ðs − ðmþMÞ2Þðs − ðm −MÞ2Þ, and mðMÞ
denotes the muon (proton) mass, respectively.

In the laboratory frame with p¼ðM;0Þ;k¼ðE;~kÞ;
k0 ¼ ðE0; ~k0Þ;p0 ¼ ðE0

p;~k−~k0Þ the momentum transfer Q2 ¼
2MðE − E0Þ and s ¼ M2 þm2 þ 2ME. The laboratory
frame scattering angle θlab and the momentum transfer
are given by

FIG. 1 (color online). Elastic muon-proton scattering.
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cos θlab ¼
EE0 −m2 −MðE − E0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 −m2ÞðE02 −m2Þ

p ; ð2Þ

Q2 ¼ 2M
ðE2 −m2ÞðM þ Esin2θlab −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −m2sin2θlab

p
cos θlabÞ

ðEþMÞ2 − ðE2 −m2Þcos2θlab
: ð3Þ

For the MUSE muon beam momenta k ¼ 0.115,
k ¼ 0.153, and k ¼ 0.210 GeV [5], the kinematically
allowed momentum transfer is 0 < Q2 < 4M2ðE2 −m2Þ=
ðm2 þMð2EþMÞÞ or 0 < Q2 < 0.039, 0 < Q2 < 0.066,
and 0 < Q2 < 0.116 GeV2, respectively. For the scattering
angles of the experiment 200 < θlab < 1000, the momen-
tum transfer varies in the region 0.0016–0.026, 0.0028–
0.045, and 0.0052–0.080 GeV2, respectively. In the case of
electron scattering with the same momenta and experi-
mental scattering angles the momentum transfer varies
in the region 0.0016–0.027,0.0028–0.046, and 0.0052−
0.082 GeV2.
It is convenient to introduce the averaged momentum

variables P ¼ ðpþ p0Þ=2; K ¼ ðkþ k0Þ=2, the u-channel
squared energy u ¼ ðk − p0Þ2 and the crossing symmetric
variable ν ¼ ðs − uÞ=4 which changes sign with s ↔ u
channel crossing. The crossing symmetric variable can be
expressed in terms of the laboratory frame variables as
ν ¼ MðEþ E0Þ=2. Instead of the Mandelstam invariant s
or the crossing symmetric variable ν, it can be convenient in
experiment to use the virtual photon polarization parameter
ε, which varies between ε0 ¼ 2m2=Q2 and 1 for the
momentum transfer Q2 > 2m2 and between 1 and ε0 for
the momentum transfer Q2 < 2m2. For the massless case, ε
has the physical interpretation of the degree of the
longitudinal polarization in the case of the one-photon
exchange. The high energy limit corresponds to ε ¼ 1. In
terms of Q2 and ν the photon polarisation parameter is
defined as

ε ¼ 16ν2 −Q2ðQ2 þ 4M2Þ
16ν2 −Q2ðQ2 þ 4M2Þ þ 2ðQ2 þ 4M2ÞðQ2 − 2m2Þ :

ð4Þ

The value of the critical momentum transfer Q2 ¼ 2m2,
corresponding to ε ¼ 1 for all possible beam momenta, is
given byQ2 ≃ 0.022 GeV2. This value is inside the MUSE
kinematic region for all three nominal beam momenta.
To describe lepton-nucleon scattering, there are 16

helicity amplitudes Th0λ0;hλ with arbitrary h; h0; λ; λ0 ¼
�1=2 in Fig. 1. The discrete symmetries of QCD
and QED (parity and time-reversal invariance) leave
just six independent amplitudes: T1 ¼ T1

2
1
2
;1
2
1
2
; T2 ¼ T1

2
−1
2
;1
2
1
2
;
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2
−1
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2
;1
2
1
2
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2
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1
2
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2
1
2
;1
2
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The helicity amplitudes for the lN elastic scattering can
be expressed by the sum of six different tensor structures
and generalized form factors (FFs). It is common to divide
the helicity amplitudes into a part without lepton helicity-
flip which survives in the lepton massless limit Tnon flip, and
the part with lepton helicity-flip Tflip which is proportional
to the mass of the lepton [7] (where the T matrix is defined
as S ¼ 1þ iT)

Tnon flip ¼ e2

Q2
ūðk0; h0Þγμuðk; hÞ · ūðp0; λ0Þ

×

�
GMγ

μ − F 2

Pμ

M
þ F 3

γ:KPμ

M2

�
uðp; λÞ; ð5Þ

Tflip ¼ e2

Q2

m
M

ūðk0; h0Þuðk; hÞ · ūðp0; λ0Þ

×

�
F 4 þ F 5

γ:K
M

�
uðp; λÞ þ e2

Q2

m
M

F 6ūðk0; h0Þγ5
× uðk; hÞ · ūðp0; λ0Þγ5uðp; λÞ: ð6Þ

The helicity amplitudes can be expressed in terms of the
generalized FFs and vice versa, as given in Appendix A.
In the one-photon exchange approximation the two

surviving helicity amplitudes for μp elastic scattering
can be expressed in terms of the Dirac F1 and Pauli F2 FFs

T ¼ e2

Q2
ūðk0; h0Þγμuðk; hÞ · ūðp0; λ0Þ

×

�
γμF1ðQ2Þ þ iσμνqν

2M
F2ðQ2Þ

�
uðp; λÞ: ð7Þ

It is customary in experimental analyses to work with Sachs
magnetic and electric FFs

GM ¼ F1 þ F2; GE ¼ F1 − τF2; ð8Þ

with τ ¼ Q2=ð4M2Þ. In the one-photon exchange approxi-
mation, the structure amplitudes defined in Eqs. (5), (6),
can be expressed in terms of the one-photon exchange FFs
GM ¼ GMðQ2Þ;F 2 ¼ F2ðQ2Þ;F 3 ¼ F 4 ¼ F 5 ¼ F 6 ¼ 0.
The exchange of more than one photon gives corrections of
order OðαÞ, with α ¼ e2=ð4πÞ≃ 1=137, to all these
amplitudes.
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The TPE correction to the unpolarized elastic muon-
proton cross-section is given by the interference between
the one-photon exchange amplitude and the sum of box and
crossed-box graphs with two photons. The correction can
be defined through the difference between the cross section
with accounts of exchange of two photons and the cross
section in the 1γ-exchange approximation σ1γ by

σ ¼ σ1γð1þ δ2γÞ: ð9Þ

It can be expressed in terms of the TPE structure
amplitudes as

δ2γ ¼
2

G2
M þ ε

τG
2
E

�
GMℜG1 þ

ε

τ
GEℜG2

þ 1 − ε

1 − ε0

�
ε0
τ
GEℜG4 −GMℜG3

��
; ð10Þ

where we defined for convenience the following amplitudes

G1 ¼ GM þ ν

M2
F 3 þ

m2

M2
F 5; ð11Þ

G2 ¼ GM − ð1þ τÞF 2 þ
ν

M2
F 3; ð12Þ

G3 ¼
m2

M2
F 5 þ

ν

M2
F 3; ð13Þ

G4 ¼
ν

M2
F 4 þ

ν2

M4ð1þ τÞF 5: ð14Þ

For the terms proportional to G1, G3, and G4 in Eq. (10), the
contribution to δ2γ starts from 0 when Q2 vanishes. In this
limit, the amplitude proportional to G2 dominates, and
reduces in the massless lepton limit to the Feshbach
correction [8]. Note that the amplitude G4 appears in the
expression for the beam normal spin asymmetry up to the
factor ν

M2 [7]. The contribution to δ2γ which is linear in
the amplitude F 6 vanishes, as well as its contribution to the
beam normal spin asymmetry [7]. The amplitude F 6 only
shows up in double polarisation observables.

III. BOX DIAGRAM MODEL CALCULATIONS

In this section, we will use a model to estimate the TPE
effect to elastic muon-proton scattering at low momentum
transfer. For such kinematics, we expect the dominant con-
tribution to be given by the TPE direct box and crossed box
diagram with proton intermediate state, as shown in Fig. 2.
The helicity amplitude contribution from the direct and

crossed TPE graphs (see Fig. 2) can be expressed as [9]

Tdirect ¼ −e4
Z

i
d4k1
ð2πÞ4 ūðk

0; h0Þγμðk̂1 þmÞγνuðk; hÞN̄ðp0; λ0ÞΓμðP̂þ K̂ − k̂1 þMÞΓνNðp; λÞ

×
1

ðk1 − P − KÞ2 −M2

1

k21 −m2

1

ðk1 − K − q
2
Þ2 − μ2

1

ðk1 − K þ q
2
Þ2 − μ2

; ð15Þ

Tcrossed ¼ −e4
Z

i
d4k1
ð2πÞ4 ūðk

0; h0Þγμðk̂1 þmÞγνuðk; hÞN̄ðp0; λ0ÞΓνðP̂ − K̂ þ k̂1 þMÞΓμNðp; λÞ

×
1

ðk1 þ P − KÞ2 −M2

1

k21 −m2

1

ðk1 − K − q
2
Þ2 − μ2

1

ðk1 − K þ q
2
Þ2 − μ2

; ð16Þ

with the virtual photon-proton-proton vertex Γμ and the infinitesimal photon mass μ, which regulates the IR
divergencies. The structure amplitudes entering Eq. (10) can be expressed as combination of helicity amplitudes with
the help of Eq. (A2).

FIG. 2 (color online). Direct and crossed TPE diagrams.
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The box diagram calculation was performed with the
assumption of an on-shell form of the virtual photon-
proton-proton vertex

ΓμðQ2Þ ¼ γμF1ðQ2Þ þ iσμνqν
2M

F2ðQ2Þ; ð17Þ

and by using (for simplicity) the dipole form for the proton
electromagnetic FFs

GM ¼ F1 þ F2 ¼
κ þ 1

ð1þQ2=Λ2Þ2 ;

GE ¼ F1 − τF2 ¼
1

ð1þQ2=Λ2Þ2 ; ð18Þ

with κ ¼ 1.793 and Λ2 ¼ 0.71 GeV2.
Due to the photon momentum in the numerator of the

term multiplying the form factor F2, the high energy
behaviour of the amplitudes can be different depending
on whether F1 or F2 enters the vertex. We denote the
contribution with two electric coupling vertices by F1F1,
two magnetic couplings by F2F2 and two contributions
from the mixed case by F1F2 (see Fig. 3). The inclusion of
FFs in the dipole form leads to a UV finite results for the
structure amplitudes.
We used LOOPTOOLS [10,11] to evaluate the four-point

integrals and derivatives from them, and to provide a
numerical evaluation of the structure amplitudes. The
calculation was done with the subtraction of the IR
divergent term according to the Maximon and Tjon
prescription [12]. TPE amplitude GM in the case of
scattering of two point charges (i.e., F1F1 contribution
with F1ðQ2Þ ¼ 1) has the IR divergent term

GIR;0
M ¼ s −M2 −m2ffiffiffi

Σ
p

�
ln

� ffiffiffi
Σ

p
− sþ ðmþMÞ2ffiffiffi

Σ
p þ s − ðmþMÞ2

�
þ iπ

�

×
α

π
ln

�
−

t
μ2

�
−
u −M2 −m2ffiffiffiffiffi

Σu
p

× ln

� ffiffiffiffiffi
Σu

p
− uþ ðmþMÞ2

−
ffiffiffiffiffi
Σu

p
− uþ ðmþMÞ2

�
α

π
ln

�
−

t
μ2

�
; ð19Þ

with Σu ≡ ðu − ðmþMÞ2Þðu − ðm −MÞ2Þ. The IR diver-
gent contribution to GM is given by F1ðQ2ÞGIR;0

M for the
F1F1 vertex structure. The IR divergent contribution to
GM and F 2 is given by F2ðQ2ÞGIR;0

M for the F1F2 vertex
structure. The other amplitudes are IR finite in case of the
F1F1 and F1F2 vertex structures. The F2F2 vertex structure
is IR finite.
We also checked explicitly that the imaginary parts of the

structure amplitudes evaluated through the box diagram
calculation are in agreement with results of the calculation
based on unitarity relations.

IV. RESULTS AND DISCUSSION

The predictions of the TPE corrections in the elastic
muon-proton scattering in terms of the different vertex
structures are shown on Fig. 4 for the MUSE experiment
kinematical region.
One notices from Fig. 4 that the F2F2 vertex structure

does not contribute significantly to the cross section, while
the main contribution comes from the F1F1 vertex struc-
ture. The contribution from the F1F2 vertex structure rises
when increasing the momentum transfer. This contribution
is significant only for largest values of momentum transfer
of the MUSE experiment. In magnitude, the TPE correction
varies between 0.25% and 0.5%.
We show a comparison between the TPE corrections to

elastic electron-proton and elastic muon-proton scattering in
Fig. 5. One sees that the TPE correction in the case of muon-
proton scattering is smaller than the correction in the case
of electron-proton scattering with the same lepton beam
momenta. The contribution of the helicity-flip amplitudes
plays a significant role for μ−p scattering in the kinemati-
cal region of the proposed experiment. It contributes with
a sign opposite from the contribution of the amplitudes
without helicity flip and significantly reduces the correc-
tion. We found that for the higher momentum transfer
Q2 ∼ 1–2 × GeV2 the contribution of helicity flip ampli-
tudes does not play a significant role and the predictions
for μ−p elastic scattering only slightly deviate from the
predictions for e−p elastic scattering, in agreement with
the findings of Ref. [6].
We show theTPEcorrections as a function of ε for the fixed

momentum transfer in Figs. 6 and 7. The results for elastic
electron-proton scattering in the zero electron mass limit are
nearly indistinguishable from the results with finite electron
mass, which are shown in Fig. 6. These results are in
agreement with the results of previous calculations [2], which
were based on Ref. [9]. The slight difference between our
results comes from the different parametrizations of electric
and magnetic form factors in our work and in Ref. [9].

FIG. 3 (color online). F1F1 (upper left panel), F2F2 (upper
right panel), and F1F2 (lower panels) structure of photon-proton-
proton vertices. The vertex with (without) the cross denotes the
contribution proportional to F2 (F1) form factor.
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FIG. 4 (color online). TPE correction to the unpolarized elastic μ−p cross section for three different muon beam momenta. The total
correction is shown by the black solid curves, the contribution from the F1F1 structure of photon-proton-proton vertices is shown by the
red dashed curves, the contribution from the F1F2 structure by the green dashed-dotted curves, and the contribution from the F2F2
structure by the blue dotted curves.
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FIG. 5 (color online). TPE correction to the unpolarized cross section for three different muon beam momenta. The TPE correction to
elastic μ−p scattering is shown by the blue solid curves, the black dashed-dotted curves show the elastic e−p scattering correction, the
elastic μ−p scattering correction without account of muon helicity flip is shown by the red dashed curves.
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V. CONCLUSIONS AND OUTLOOK

In this work we have extended the general formalism of
TPE corrections to the elastic unpolarized scattering of a
finite mass lepton off a nucleon target. We have estimated
the cross section correction for the future MUSE experi-
ment in a model for the TPE correction with proton
intermediate states. The estimates for the TPE correction
of the muon-proton scattering cross section vary between
0.25% and 0.5%. These estimates are up to a factor three
smaller, as compared with TPE corrections for the case of

electron-proton elastic scattering in the same lepton
kinematical region. This is due to the contribution of
lepton helicity-flip amplitudes, which have an opposite
sign as compared with the contribution of nonflip
amplitudes and significantly reduce the correction. To
go to larger momentum transfer, a next step will be to
include inelastic state contributions within a dispersive
formalism.

ACKNOWLEDGMENTS

This work was supported in part by the Deutsche
Forschungsgemeinschaft DFG in part through the
Collaborative Research Center [The Low-Energy
Frontier of the Standard Model (SFB 1044)], in part
through the Graduate School [Symmetry Breaking in
Fundamental Interactions (DFG/GRK 1581)], and in part
through the Cluster of Excellence [Precision Physics,
Fundamental Interactions and Structure of Matter
(PRISMA).

APPENDIX: THE RELATION BETWEEN
HELICITY AMPLITUDES AND
STRUCTURE AMPLITUDES

Using the Jacob and Wick [13] phase convention for the
spinors, the helicity amplitudes Th0λ0;hλ for elastic lepton-
nucleon scattering are expressed in terms of the generalized
FFs by

Q2 =  0.005 GeV2

Q2 =   0.01 GeV2

Q2 =   0.03 GeV2

Q2 =    0.1 GeV2

0

0.5

1.0

1.5

2.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIG. 6 (color online). ε dependence of the TPE correction to the
unpolarized cross section for the elastic electron-proton scattering
for different momentum transfers.
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FIG. 7 (color online). ε dependence of the TPE correction to the unpolarized elastic μ−p cross section.
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Σξ2

e2
T1 ¼ 2

�
ΣQ2

Σ − sQ2
þ s −M2 −m2

�
GM − 2ðs −M2 −m2ÞF 2 þ

ðs −M2 −m2Þ2
M2

F 3 þ 4m2F 4

þ 2m2
s −M2 −m2

M2
F 5;

MΣ
e2

ξT2 ¼ 2M2ðs −M2 þm2ÞGM − ððs −m2Þ2 −M4ÞF 2 þ ððs −M2Þ2 −m4ÞF 3 þ 2ðsþM2 −m2Þm2F 4

þ 2ðs −M2 þm2Þm2F 5;

Σξ2

e2
T3 ¼ 2ðs −M2 −m2ÞðGM − F 2Þ þ

ðs −M2 −m2Þ2
M2

F 3 þ 4m2F 4 þ 2
m2ðs −M2 −m2Þ

M2
F 5;

Σ
me2

ξT4 ¼ −2ðsþM2 −m2ÞðGM − F 2Þ −
ððs −m2Þ2 −M4Þ

M2
F 3 − 2ðs −M2 þm2ÞF 4 −

ððs −M2Þ2 −m4Þ
M2

F 5;

MΣ
me2

T5 ¼ −4M2sGM þ ðsþM2 −m2Þ2F 2 − ðs2 − ðm2 −M2Þ2ÞðF 3 þ F 4Þ − ΣF 6 − ðs −M2 þm2Þ2F 5;

MΣ
me2

T6 ¼ 4M2sGM − ðsþM2 −m2Þ2F 2 þ ðs2 − ðm2 −M2Þ2ÞðF 3 þ F 4Þ − ΣF 6 þ ðs −M2 þm2Þ2F 5: ðA1Þ

These relations can be inverted to yield the generalized FFs in terms of the helicity amplitudes ~t ¼ T
e2 as

GM ¼ 1

2
ð~t1 − ~t3Þ;

ΣF 2 ¼ −2m2M2~t1 −Mððs −M2Þ2 −m4Þξ~t2 −M2ηðmÞ~t3 þ 2mM2ðs −M2 þm2Þξ~t4 −mMðs −m2 −M2Þð~t5 − ~t6Þ;
Σ
M2

F 3 ¼ −ðs −m2 −M2Þ~t1 − 2Mðs −M2 þm2Þξ~t2 þ ρ3~t3 þ 2mðsþM2 −m2Þξ~t4 − 2mMð~t5 − ~t6Þ;
Σ
M

F 4 ¼ −Mðs −m2 −M2Þ~t1 − ððs −m2Þ2 −M4Þξ~t2 þMρ3~t3 þ
Mððs −M2Þ2 −m4Þ

m
ξ~t4 −

ðs −m2 −M2Þ2
2m

ð~t5 − ~t6Þ;
Σ
M2

F 5 ¼ 2M2~t1 þ 2MðsþM2 −m2Þξ~t2 þ ηðMÞ~t3 −
ðs −m2Þ2 −M4

m
ξ~t4 þ

Mðs −m2 −M2Þ
m

ð~t5 − ~t6Þ;

F 6 ¼ −
M
2m

ð~t5 þ ~t6Þ; ðA2Þ

with

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2

Σ − sQ2

s
;

ηðmÞ ¼ 2m2ðΣþ sQ2Þ þ ΣQ2

sQ2 − Σ
;

ρ3 ¼
Σm2 þ ðm2 −M2Þ2ðM2 þQ2Þ þ s2ð2m2 þ 3M2Þ − sðm4 þQ2ðm2 þM2Þ þ 3M4Þ − s3

sQ2 − Σ
:
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