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We present a significantly improved determination of the Bjorken sum for 0.6 ≤ Q2 ≤ 4.8 GeV2 using
precise new gp1 and g

d
1 data taken with the CLAS detector at Jefferson Lab. A higher-twist analysis of theQ2

dependence of the Bjorken sum yields the twist-4 coefficient fp−n2 ¼ −0.064� 0.009�0.032
0.036. This leads to

the color polarizabilities χp−nE ¼ −0.032� 0.024 and χp−nB ¼ 0.032� 0.013. The strong force coupling

is determined to be αMS
s ðM2

ZÞ ¼ 0.1123� 0.0061, which has an uncertainty a factor of 1.5 smaller than
earlier estimates using polarized deep inelastic scattering (DIS) data. This improvement makes the
comparison between αs extracted from polarized DIS and other techniques a valuable test of QCD.
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I. INTRODUCTION

The Bjorken sum rule [1] is a cornerstone in the study of
nucleon spin structure. It has been investigated via polar-
ized deep inelastic scattering (DIS) at SLAC, CERN,
DESY [2–8] and Jefferson Lab (JLab) [9–12]. In the limit
of infinite squared four-momentum transfer Q2 the sum
rule is [1]

Γp−n
1 ≡ Γp

1 − Γn
1 ≡

Z
1

0

dxðgp1 ðxÞ − gn1ðxÞÞ ¼
gA
6
; ð1Þ

where gp1 and gn1 are the spin-dependent proton and neutron
structure functions, respectively, gA is the nucleon flavor-
singlet axial charge, and x is the Bjorken scaling variable.
At a finite Q2 large enough so that partonic degrees of
freedom are relevant, the Bjorken sum rule has been
generalized to account for perturbative QCD (pQCD)
radiative corrections (the leading-twist term) and non-
perturbative power corrections (higher-twist terms). In
the MS scheme, the sum rule becomes [13]

Γp−n
1 ¼ gA

6

�
1 −

αs
π
− 3.58

�
αs
π

�
2

− 20.21

�
αs
π

�
3

þ � � �
�

þ
X∞

i¼2;3…

μp−n2i ðQ2Þ
Q2i−2 ; ð2Þ

where the strong coupling αs has itself the form of a
perturbative series depending on Q2, and the Q2 depend-
ence of the higher-twist coefficients μp−n2i ðQ2Þ is calculable
from pQCD. The logarithmic Q2 dependence induced by

the pQCD radiative corrections that dominate for αs ≪ 1
has allowed QCD to be established as the correct theory of
the strong force. In turn, the higher-twist power corrections
μ2i=Q2i−2 characterize QCD in a stronger coupled regime
with typically αs > 0.3. Here, at lower Q2, partons start to
interact strongly and react more and more coherently to
the probing particles. Thus, the higher twists describe the
transition between the partonic and hadronic degrees of
freedom for the strong force.
The isovector nature of the Bjorken integral makes

it a simpler quantity to understand theoretically than the
integrals for the proton or neutron separately. This is
particularly useful for nucleon structure calculations per-
formed in different Q2 ranges that reflect large or small αs.
These regimes,with their suitable calculation techniques, are
summarized below.

(i) For Q2 above a few GeV2, the partonic degrees of
freedom are relevant. Here, pQCD can be tested
through the leading-twist part of Eq. (2). The
subtraction of Γn

1 from Γp
1 removes the nucleon

matrix elements a0 and a8, and provides a rigorous
QCD prediction. The subtraction also cancels the
gluon and quark-singlet contributions to the Q2

dependence of the sum rule.
(ii) At intermediate Q2 (from a few GeV2 down to a

few tenths of GeV2), nonperturbative contributions
affect the Q2 dependence. Lattice QCD is the
leading calculational technique in this regime. The
isovector nature of Γp−n

1 simplifies lattice calcula-
tions by removing all disconnected diagrams, which
are CPU expensive to compute [14].

(iii) At low Q2 (below a few tenths of a GeV2), chiral
perturbation theory, which uses effective hadronic,
rather than fundamental partonic, degrees of free-
dom, is applicable. The suppression of the Δ1232
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resonance contribution to Γp−n
1 facilitates the chiral

perturbation theory calculations, making these pre-
dictions more robust [15].

New data from the JLab CLAS EG1-DVCS experiment,
taken on polarized proton and deuteron targets, have become
available [16]. The kinematics of new data largely overlap
the higherQ2 coverage of earlier JLab data [9,11], but with
smaller statistical errors. On the other hand, the previous
JLab polarized data set covers lower Q2 and higher x. Put
together with these data, the EG1-DVCS data allow us to
study the Bjorken sum at higher Q2 and with improved
statistical precision. Studies of the earlier data showed the
necessity of precise measurements at moderately large Q2,
greater than ≃2 GeV2, in order to extract higher twists,
because of the small magnitude of their total contribution.
AsEq. (2) suggests, itmay seem tobebeneficial to determine
higher twists at lower Q2 where the unmeasured low-x
contribution to Γp−n

1 is smaller, the data are more precise,
and the higher twists are enhanced. However, in the standard
perturbative approach, this may not be reliable due to the
following effects:

(i) Higher-order twist effects at lowQ2 rise quickly and
the short Q2 range over which this rise occurs is too
small to disentangle these higher twists.

(ii) There is an increasing uncertainty on the twist-2 part
because the proximity of the Landau pole magnifies
the uncertainty on αs.

(iii) While higher-order leading-twist terms are necessary
at low Q2, the renormalon problem [17] jeopardizes
the convergence of the series and increases the
uncertainties due to truncations.

It is possible to avoid part of the difficulty by developing
expressions for theBjorken sumrulewithbetter convergence
properties, as explored in [18]. We will not pursue this

interesting path, and will instead remain consistent with the
previous analyses [9,11,19], using the standard expansion,
Eq. (2), since the higher Q2 kinematics of EG1-DVCS are
suited to this approach.

II. ANALYSIS

A. Bjorken sum

The extraction of gp1 and gd1 from the EG1-DVCS data is
described in Ref. [16]. TheQ2 coverage and the integration
limits are given in Table I. Since moments must be
integrated over all x, a model must supplement the data
at low x. We describe the model in the next section. TheQ2

values for Γp
1 and Γd

1 often differ slightly. When combining
them into Γp−n

1 , theQ2 was chosen as the mean between the
proton and deuteron Q2 values, weighted by the statistical
uncertainties on Γp

1 and Γd
1 . Both Γp

1 and Γd
1 were linearly

interpolated to the common Q2 before being combined
into the Bjorken sum, Γp−n

1 ¼ 2Γp
1 − Γd

1=ð1 − 1.5ωdÞ, with
ωd ¼ 0.05� 0.01 [20]. (Here, Γd is calculated as “per
nucleus,” not as “per nucleon.”) The result for Γp−n

1 is
plotted in Fig. 1 together with data from the previous
experiments conducted at SLAC [3,5], DESY [7], JLab
[9–11], and CERN [8]. The elastic contribution (x ¼ 1) is
not included. Overall, the Q2 behavior of Γp−n

1 is smooth
within systematic uncertainties. There is good agreement
between the world data on Γp−n

1 and EG1-DVCS, including
cases where the neutron moment, Γn

1 , is obtained from a
3He target [4,7,9]. We also plot the leading-twist next-to-
next leading order (NNLO) pQCD calculation based on
Eq. (2) (gray band). The width of the band stems from the
uncertainty in the strong coupling αs.

TABLE I. Kinematic ranges and partial and full Bjorken sums. Columns 2 and 3 give the x ranges over which the proton and deuteron
data are measured, respectively. Column 4 provides the partial sum Γp−n

1;meas from EG1-DVCS. Column 5 gives the measured sum
supplemented by a fit to earlier JLab data in the high-x domain, Γp−n

1;measþhi:x. The experimental systematic uncertainty is denoted by σsystmeas.
The high-x interpolation is σsysthi:x. Column 8 gives the total Γp−n

1;tot sum, and σsyst and σstat are the total (experimental, high-x and low-x)
systematics and statistical uncertainties on Γp−n

1;tot , respectively. The ratio of the sum without the low-x estimate, Γp−n
1;measþhi:x, over the total

is given by Γp−n
1;measþhi:x=Γ

p−n
1;tot.

Q2 ðGeV2Þ x range (p) x range (d) Γp−n
1;meas Γp−n

1;measþhi:x σsystmeas σsysthi:x Γp−n
1;tot σsyst σstat Γp−n

1;measþhi:x=Γ
p−n
1;tot

0.600 0.0695–0.072 0.070-0.074 −0.0001 0.0612 0.0001 0.0029 0.0940 0.0048 0.0005 0.651
0.698 0.0795–0.091 0.081–0.094 0.0031 0.0670 0.0002 0.0054 0.1056 0.0068 0.0005 0.634
0.840 0.0970–0.119 0.099–0.123 0.0079 0.0707 0.0004 0.0079 0.1164 0.0089 0.0006 0.607
0.972 0.110–0.155 0.113–0.168 0.0110 0.0674 0.0008 0.0088 0.1210 0.0099 0.0007 0.557
1.184 0.136–0.210 0.139–0.228 0.0169 0.0628 0.0016 0.0093 0.1257 0.0105 0.0007 0.500
1.361 0.151–0.304 0.168–0.322 0.0414 0.0606 0.0036 0.0082 0.1358 0.0103 0.0009 0.446
1.590 0.179–0.494 0.189–0.494 0.0580 0.0642 0.0083 0.0006 0.1470 0.0098 0.0011 0.437
1.915 0.213–0.804 0.233–0.733 0.0552 0.0542 0.0171 0.0007 0.1524 0.0181 0.0011 0.356
2.316 0.263–0.864 0.271–0.798 0.0523 0.0515 0.0177 0.0001 0.1621 0.0188 0.0008 0.317
2.707 0.304–0.825 0.326–0.769 0.0398 0.0388 0.0157 0.0008 0.1636 0.0173 0.0006 0.237
3.223 0.362–0.901 0.385–0.799 0.0322 0.0311 0.0152 0.0000 0.1697 0.0171 0.0005 0.183
3.871 0.438–0.893 0.463–0.762 0.0227 0.0206 0.0121 0.0002 0.1721 0.0150 0.0004 0.120
4.739 0.531–0.909 0.663–0.738 0.0145 0.0113 0.0081 0.0002 0.1684 0.0126 0.0002 0.067
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In order to evaluate the unmeasured parts of Γp
1 and Γn

1 at
low x, we need a model for gp1 and gn2 covering a wide
kinematic range. The model that we use here is built upon
fits to the world data of the asymmetries A1 and A2, and the
unpolarized structure functions F1 and R. Those were
modeled using a parametrization of the world data that fits
both the DIS and resonance regions with an average
precision of 2% to 3% [21]. The systematic uncertainty
was calculated by varying either F1 or R by the average
uncertainty of the fit (2%–3%) and recalculating all
quantities of interest.
For A1 and A2 we used our own phenomenological fit to

the world data, including all DIS results from SLAC,
HERA, CERN and Jefferson Lab and data in the resonance
region from MIT Bates [22] and Jefferson Lab. The
asymmetry A2 in the DIS region was modeled using the
Wandzura-Wilczek relation [23]. For systematic variations,
we included a simple functional form for an additional
twist-3 term introduced by E155 [5], and a model con-
strained by the Soffer bound [24].
At very low values of x, uncertainties in the model

increase rapidly, so we imposed a lower limit at x ¼ 0.001.
Below this value, we extrapolate directly the isovector part
of the structure function g1 using the Regge parametrization
gp−n1 ðxÞ ¼ gp−n1 ðx0Þðx0=xÞ0.89. We chose the power 0.89 so
that the Bjorken sum at Q2 ¼ 5 GeV2 from the world data
satisfies the Bjorken sum rule. Such a parametrization
agrees within 50% with the low-x parametrization

determined in Ref. [25]. We assumed a 100% uncertainty
on this contribution. The part below x ¼ 0.001 contributes
up to about 5% of the total sum.
EG1-DVCS does not cover the higher-x values. There,

we used a fit to earlier JLab data [9,11].
The new determination of Γp−n

1 is shown together with
phenomenological models in Fig. 2. The Burkert-Ioffe
model (black line) is an extrapolation of DIS data based
on vector meson dominance, complemented by a para-
metrization of the resonance contribution [26]. The Soffer-
Teryaev model (red line) uses the smoothness of g1 þ g2
with Q2 to extrapolate DIS data to lower Q2 [27]. The two
other lines are from Ref. [28]. They are updates of the
Soffer-Teryaev model using standard perturbation theory
(PT, blue line) and ghost-free analytical perturbation theory
(APT, green line) which now includes the higher-twist
terms μ4 and μ6. The higher-twist values were obtained
from fits to the JLab data [18]. The APT formalism aims at
reducing the influence of the Landau pole divergence
at ΛQCD.
The precision of the new determination of Γp−n

1 allows us
for the first time to see that the data lie systematically below
the leading-twist NNLO pQCD prediction shown by the
hatched band in Fig. 1. Although a large point-to-point
correlated contribution to the systematic uncertainty could
still make the data compatible with the leading-twist
calculation, this difference and the steeper Q2 evolution
of the data compared to the leading-twist calculation for
Q2 > 1.5 GeV2 suggest a negative higher-twist contribu-
tion to Γp−n

1 . These features are quantitatively analyzed in
the next section.
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Γ 1p-
n JLab EG1-DVCS
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FIG. 1 (color online). The Bjorken sum Γp−n
1 . The solid blue

circles give our results. The blue band is the systematic
uncertainty. Other symbols show the world data. For those, the
inner error bar indicates the statistical uncertainty and the outer
error bar the quadratic sum of the statistic and systematic
uncertainties. The gray band represents the leading-twist NNLO
pQCD calculation in the MS scheme.
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FIG. 2 (color online). The Bjorken sum Γp−n
1 from EG1-DVCS

(solid blue circles) compared with the phenomenological models
described in the main text.
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B. Higher-twist analysis

In this section, we determine quantitatively the higher-
twist contributions to Γp−n

1 . In addition to the EG1-DVCS
data, we use all other world data, including the Q2 ¼
10 GeV2 SMC data [6] not visible in Fig. 1.
The moment Γp−n

1 can be expanded in powers of 1=Q2;
see Eq. (2). The coefficient of the first power correction
is [29]

μp−n4 ¼ M2

9
ðap−n2 þ 4dp−n2 þ 4fp−n2 Þ; ð3Þ

where M is the nucleon mass. The coefficient ap−n2 is the
twist-2 target mass correction expressed as

ap−n2 ¼
Z

1

0

dxðx2gp−n1;LTÞ; ð4Þ

in which gp−n1;LT is the leading-twist part of gp−n1 . The twist-3
matrix element dp−n2 is given by

dp−n2 ¼
Z

1

0

dxx2ð2gp−n1 þ 3gp−n2 Þ; ð5Þ

and fp−n2 is the twist-4 contribution to be extracted. These
coefficients depend logarithmically on Q2 but apart from
fp−n2 , we will neglect this small dependence in our analysis
and use their values at Q2 ¼ 1 GeV2. The leading order
pQCD dependence of fp−n2 is accounted for using its
anomalous dimension [29]. The coefficient a2 is a kin-
ematical higher twist [30] containing no additional infor-
mation than is provided by the leading-twist parton
distributions. The dynamical higher-twist d2 can be mea-
sured directly from polarized lepton scattering off trans-
versely and longitudinally polarized targets. We are
interested here in the dynamical higher-twist f2 which
can be obtained only from studying the Q2 evolution of the
moment of g1.
For a consistent higher-twist analysis, the elastic contri-

bution to Γp−n
1 must be added [31] because it contains large

higher-twist terms, as witnessed by the fast decrease of the
elastic form factors with Q2. At Q2 ∼ 1 GeV2, the elastic
contribution remains sizable and cannot be neglected. To
determine it, we used the elastic form factor fits from
Ref. [32] for the proton and Ref. [33] for the neutron. The
strong coupling αs enters in Eq. (2). We computed it in the
MS scheme to next-to-leading order (β1) in the αs’s β series.
A fit of polarized parton distributions [34] was used to
determine ap−n2 . At Q2 ¼ 1 GeV2, ap−n2 ¼ 0.031� 0.010.
The proton twist-3 dp2 matrix element is obtained from [10].
Data from Refs. [10,19,35–37] and lattice calculations [38]
suggest that for theneutron,dn2 is negligible atQ

2 > 2 GeV2.
We use dn2 ¼ 0.000� 0.001 at Q2 ¼ 5 GeV2. Evolving
dn−p2 from Q2 ¼ 5 GeV2 to 1 GeV2 using the anomalous

dimension calculated in [29], we obtain dp−n2 ¼ 0.008�
0.0036.
The world data on Γp−n

1 , including those in Table I,
except for the Q2 ¼ 4.7 GeV2 point for which the esti-
mated low-x contribution to the integral is large, were fit to
extract fp−n2 using Eqs. (2) and (3) with αs, a

p−n
2 and dp−n2

determined as discussed above. To account for twist-6
and greater, we add a coefficient μ�p−n6 =Q4 to the fit.
The asterisk reminds us that this coefficient includes not
only the true μp−n6 =Q4 correction, but also compensa-
tions for higher-order terms μp−nN with N > 6. That is,
μ�6 ¼ μ6 þ Σi¼2;4;…μiþ6=Qi. The equation shows explicitly
that μ�6 depends on Q2 (beside its logarithmic dependence
that we neglect). Approximating μ�6 to beQ

2 independent is
justified if the power series converges, and this should
affect f2 minimally but may lead to a μ�6 significantly
different from the actual μ6. We have two completely free
parameters, f2 and μ�6, in the fit, plus a third parameter, the
axial charge ga, which is bounded by its experimental
uncertainty range (ga ¼ 1.27� 0.04).
As published, the world data on Γp−n

1 are corrected for
the missing low-x contribution using various estimates,
depending on the publication. For the consistency of
this analysis, the low-x estimates of the world data were
recalculated using the model discussed in the Bjorken sum
section. For all JLab data sets (Refs. [9,11] and the present
data), the point-to-point uncorrelated uncertainties have
been separated from the correlated ones using the unbiased
estimate, and added in quadrature to the statistical uncer-
tainties. The correlated systematics were propagated inde-
pendently into the fit result, as was the uncertainty arising
from αs. The uncertainties stemming from ap−n2 and dp−n2

are negligible. Table II gives the best fits for several Q2

ranges, since there is no prescription as to where in Q2 the
fit should start. The results are consistent. The first
uncertainty listed is the quadratic sum of the statistical
and point-to-point uncorrelated uncertainties. The second is
the point-to-point correlated uncertainty. We do not report
the parameter gA in Table II. Its fit value is always
ga ¼ 1.305, which corresponds to the upper bound of its
variation range. This is due to the positive elastic contri-
bution that dominates the Q2 dependence of the sum for
Q2 ≲ 1 GeV2. For Q2 ≲ 1 GeV2, the Q2 dependence of
the elastic contribution is less steep than that of the 1=Q4 or
1=Q6 higher-twist terms. These too-steep behaviors are
compensated in the fits in part by a negative fp−n2 and in
part by an increased leading-twist contribution, i.e. by a
larger gA. This compensates for the too-steep Q2 behavior
of μ6 or μ8 compared to the data, since both the leading-
twist and the f2 contributions have slopes of opposite signs
(their values increase with Q2) to that of μ6 or μ8 (their
values decrease with Q2).
To assess the convergence of the twist series in Eq. (2),

we give in Table III the best fits when an additional
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μ�p−n8 =Q6 coefficient is used (the asterisk has the same
meaning as for μ�6). In these four-parameter fits, μ6 now
gives more properly the 1=Q4 power correction. Similar
convergence studies were done in [9] and [11], and results
for μ�p−n8 were consistent with zero with large uncertainties
ranging from 0.04 to 0.09 depending on the Q2 at which
the fit starts. Now, the precision of the data allows us to
determine the magnitude and sign of μ�p−n8 . The question of
the convergence of the higher-twist series arises naturally,
since Refs. [9] and [11] indicated that μp−n4 and μ�p−n6 are of
similar magnitudes but opposite signs at Q2 ≃ 1 GeV2.
This suggested a poor convergence of the twist series, at
least in the Q2 ranges concerned. With better data, it now
appears that μ�p−n8 and μp−n4 are of similar size while μp−n6 is
small. This indicates that Eq. (2) converges only for
Q2 ≳ 1 GeV2. The central value of μp−n6 is significantly
smaller than that of μ�p−n6 , once μ�p−n8 is accounted for.
However, μp−n6 and μ�p−n6 are still compatible within
uncertainties. A systematic study done with the models
[26] and [27] is described in Ref. [39]. It was performed to
better understand the convergence of the twist series given a
truncation at μ�max (corresponding to μ�6 for the three-
parameter fit and to μ�8 for the four-parameter fit) and a
choice ofQ2

min, the lowestQ
2 used in the fit. The conclusion

from the present experimental higher-twist extraction
agrees with the model-based conclusions of Ref. [39]:

(i) The extraction of fp−n2 is stable as Q2
min and μmax are

modified in the ranges 0.6 ≤ Q2
min ≤ 3 GeV2 and

μp−n6 ≤ μp−nmax ≤ μp−n12 for the model study, and in the
range 0.6 ≤ Q2

min ≤ 1 GeV2 and with μp−nmax ¼ μp−n6

or μp−n8 for the present experimental study.
(ii) The coefficient μp−n6 is small, typically a factor of 6

smaller than fp−n2 for the model and a factor of 3
smaller for the data, although a three-parameter fit

gives a larger μp−n�6 of similar magnitude to fp−n2 .
Increasing the number of parameters decreases
μp−n6 . This implies the convergence of the series
for Q2 ≳ 1 GeV2.

(iii) At Q2 ≃ 1 GeV2, there is an approximate cancella-
tion of the higher-twist terms (independent of Q2

min).
The overall uncertainty on fp−n2 is dominated by the
unmeasured low-x region. The uncertainty from αs
becomes important only for fits starting at the lowest
Q2

minð0.66 GeV2Þ since the effect of the Landau pole
becomes important as Q gets close to ΛQCD. The JLab
data were all taken with beam energies of up to about 6 GeV.
The upcoming 12 GeV program at Jefferson Lab will
significantly reduce this dominant uncertainty since the
measured fraction of Γp−n

1 above Q2 ¼ 2.5 GeV2 will at
least double compared to the present measurement [40].
The twist-4 coefficient fp−n2 obtained from the three-
parameter fit over the 0.84–10 GeV2 Q2 range is plotted
in Fig. 3 along with the results of Refs. [11] and [9] obtained

TABLE II. Values of fp−n2 and μ�p−n6 at Q2 ¼ 1 GeV2 from the three-parameter fit (the parameter ga is not
reported in this table; see main text). The two uncertainties given for fp−n2 and μ�p−n6 are the point-to-point
uncorrelated (first number) and point-to-point correlated uncertainties (second numbers). The last column gives the
χ2 per degree of freedom of the fit, with only the point-to-point uncorrelated uncertainties accounted for.

Q2 range ðGeV2Þ fp−n2 μ�p−n6 ðGeV4Þ χ2=d:o:f

0.66–10.0 −0.093� 0.006�0.026
0.037 0.087� 0.002�0.033

0.022 1.03
0.84–10.0 −0.064� 0.009�0.032

0.036 0.070� 0.004�0.023
0.018 0.71

1.00–10.0 −0.057� 0.010�0.039
0.043 0.065� 0.005�0.021

0.019 0.72

f 2
p-

n Sum rule (2)

Sum rule (1)

Bag model

Instanton
(2002)

Instanton
(2006)

Present study PRD 78 032001 (08) PRL 93 212001 (2004)
–0.3

–0.25
–0.2

–0.15
–0.1

–0.05
0

0.05
0.1

FIG. 3 (color online). Three-parameter fit result for fp−n2 from
the present study (square) and Refs. [11] (triangle) and [9]
(circle). The inner error bar represents the point-to-point un-
correlated uncertainty and the outer error bar is the quadratic sum
of the point-to-point correlated and uncorrelated uncertainties.
Theoretical calculations [41–44] are shown on the right.

TABLE III. Same as Table II but for the four-parameter fit.

Q2 range ðGeV2Þ fp−n2 μp−n6 ðGeV4Þ μ�p−n8 ðGeV6Þ χ2=d:o:f

0.66–10.0 −0.044� 0.010�0.055
0.054 0.012� 0.010�0.024

0.034 0.032� 0.006�0.023
0.017 0.63

0.84–10.0 −0.035� 0.015�0.037
0.041 −0.005� 0.020�0.008

0.009 0.044� 0.014�0.019
0.010 0.66

1.00–10.0 −0.020� 0.032�0.025
0.031 −0.037� 0.032�0.019

0.019 0.073� 0.022�0.018
0.013 0.67
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using the same fit range, and theoretical predictions
[41–44]. The magnitude and sign of fp−n2 agree with the
analysis performed on g1ðxÞ in Ref. [45], which found
that twist-4 corrections to g1ðxÞ are sizeable but change
sign at x ∼ 0.4 for the proton, leading to a small integrated
value. Our result expressed as μp−n4 =M2 ¼ −0.021� 0.016
(three-parameter fit with the 0.84–10 GeV2 Q2 range) also
agrees with the several extractions done in Ref. [18], which
are typically around μp−n4 =M2 ∼ −0.05 with a spread of
0.02. Finally, our μp−n4 =M2 is also in agreement with the
higher-twist coefficients obtained in [46], which after
integrating them over x yield μ�p−n4 =M2 ¼ −0.058� 0.045.

C. Color electric and magnetic polarizabilities

The twist-3 and twist-4 terms of the μ4 coefficient,
Eq. (3), yield the color electric and magnetic polarizabilities
[41,47], χE ¼ 2

3
ð2d2 þ f2Þ and χB ¼ 1

3
ð4d2 − f2Þ respec-

tively. Using the value of fp−n2 from the three-parameter fit
starting at Q2

min ¼ 0.84 GeV2 and dp−n2 ¼ 0.0080�
0.0036, we obtain χp−nE ¼ −0.032� 0.024 and χp−nB ¼
0.032� 0.013. The point-to-point correlated and uncorre-
lated uncertainties on fp−n2 were symmetrized and added in
quadrature. The polarizabilities are compatible with those
reported in Ref. [11] with a factor of 2 improvement on the
uncertainties.

D. The strong coupling αs

The strong force coupling at the Z0 pole, αsðM2
zÞ, can be

extracted from the Bjorken sum data by solving Eq. (2) for
αs, and then evolving αs to the Z0 pole. However, the
relative uncertainty for this method is large, typically 30%,
and dominated by the model determination of the unmeas-
ured low-x region. Rather than using an absolute meas-
urement, we can obtain αsðM2

zÞ more precisely by fitting
the Q2 dependence of Γp−n

1 [48]. In our case, where we
include relatively low Q2 data points, we must account for
μp−n4 . We can neglect the higher orders since μp−n6 is small
and μ�p−n8 is suppressed as 1=Q4 compared to μp−n4 . Since
fp−n2 was obtained assuming the validity of the Bjorken
sum rule and using a theoretical αs, we must use an
independent determination of fp−n2 to form μp−n4 . We
choose fp−n2 from Ref. [44], for which we assumed a
50% uncertainty. We used a MS leading-twist expression of
Γp−n
1 up to order α5s and estimated the uncertainty due to the

truncation of the leading-twist pQCD series by taking the
difference between the fourth and fifth orders. We then
evolved the extracted αs to the Z0 mass MZ using the

evolution equation up to order β3 with ΛMS
QCD ¼ 0.214�

0.070 GeV.
Fitting the values of Γp−n

1;tot in Table I, starting at Q2
min ¼

2.316 GeV2 with gA and ΛQCD as fit parameters, we

obtain αMS
s ðM2

ZÞ ¼ 0.1123� 0.0061. The uncertainty is

dominated by the point-to-point uncorrelated uncertainty
�0.0050. The uncertainties from the truncation of the β
series and from ap−n2 , dp−n2 and fp−n2 are comparatively
small. The point-to-point correlated uncertainty is
�0.0037, which is dominated by the low-x estimate. To
assess this point-to-point correlated uncertainty, we sepa-
rated σsyst in Table I into a constant with respect to Q2,
which does not contribute to the uncertainty on αs, and a
Q2-dependent part. The latter is estimated by calculating
ΔΓ ¼ dðΓp−n

1;totÞ=dQ2 × ðQ2 bin sizeÞ × ðΓ1;tot − Γ1;measÞ=
Γ1;tot for each Q2 point. For this expression, the relative
amount of the unmeasured low-x contribution, ðΓ1;tot−
Γ1;measÞ=Γ1;tot, can be obtained from the last column of
Table I. Each ΔΓ is treated as an additional uncertainty to
Γp−n
1 and is added in quadrature to the point-to-point

uncorrelated uncertainty.
The Regge exponent determining the (small) contribu-

tion to the integral below x ¼ 0.001 was obtained by
assuming the validity of the Bjorken sum rule at
Q2 ¼ 5 GeV2. This implies evolving Eq. (1) from infinite
Q2 to Q2 ¼ 5 GeV2. In the process, a value for αs must
be assumed. However, this initial assumption on αs does
not bias our determination of αs. The contribution from
x < 0.001 influences the absolute value of Γp−n

1 at the few
percent level. Our αs depends on x < 0.001 only via theQ2

dependence, for which we assigned the conservative
uncertainty just discussed.

Our value of αMS
s ðM2

ZÞ is compatible with the average

world data, αMS
s ðM2

ZÞ ¼ 0.1185� 0.0006, and it signifi-

cantly improves the precision on αMS
s ðM2

ZÞ from polarized
DIS last reported by the Particle Data Group [49]. It is in
excellent agreement with the result reported in Ref. [46],

αMS
s ðM2

ZÞ ¼ 0.1132�0.0056
0.0095, extracted from the (noninte-

grated) g1 world data. Our result is less precise than direct
measurements at the Z0 pole, but has similar precision to
some of the αs results reported by the Particle Data Group.
This demonstrates the viability of determining αs with
polarized DIS data, especially since, as already discussed
for Γp−n

1 , the leading uncertainty will be significantly
reduced when the 12 GeV JLab data will become available
[40] and a fortiori if the future polarized EIC becomes
available [50].

III. SUMMARY

New JLab CLAS data have allowed us to form the
Bjorken sum Γp−n

1 for 0.60 < Q2 < 4.74 GeV2. The sum is
consistent with previous JLab data and exhibits a character-
istically strong Q2 behavior in the hadron-parton transition
region. The statistical uncertainty is small compared to the
systematic uncertainty, which is dominated by the contri-
bution from the unmeasured low-x domain. While the
analyses of former JLab data covered the low and inter-
mediate Q2 regions where hadronic degrees of freedom
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play a role, the new data cover the intermediate and
partonic (high Q2) domains. This is particularly suited
for extracting higher-twist coefficients and color polar-
izabilities. These quantities were extracted from a global
analysis of the world data, including the new JLab data
presented in this paper. The twist-4 coefficient was
confirmed to be relatively large in absolute magnitude:
fp−n2 ¼ −0.064� 0.036 compared to the leading-twist
coefficient Γp−n;pQCD

1 ¼ 0.141� 0.013, the twist-2 coeffi-
cient ap−n2 ¼ 0.031� 010, and the twist-3 coefficient
dp−n2 ¼ 0.008� 0.003. The net higher-twist effect is small
around Q2 ¼ 1 GeV2 because of a cancellation between
twist-4 and the sum of higher power corrections that are of
opposite sign. Fits with four parameters reveal that the
twist-6 contribution is small and the cancellation comes
from twist-8 and/or higher contributions. This implies the
convergence of the twist series above Q2 ≃ 1 GeV2. The
color electric and magnetic polarizabilities were extracted
with a factor of 2 improvement on the uncertainty com-
pared to earlier analyses. The two polarizabilities are of
similar value but opposite sign. From the Q2 behavior of

Γp−n
1 and a model estimate of fp−n2 , we extracted

αMS
s ðM2

ZÞ ¼ 0.1123� 0.0061. The precision is a factor
1.5 better than earlier estimates from polarized DIS,
making Γp−n

1 a viable observable for determining αs. Its
agreement with the other αs determined from different
observables provides a consistency check of QCD.
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