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A novel method to study the bulk thermodynamics in lattice gauge theory is proposed on the basis of
the Yang-Mills gradient flow with a fictitious time t. The energy density ε and the pressure P of SUð3Þ
gauge theory at fixed temperature are calculated directly on 323 × ð6; 8; 10Þ lattices from the thermal
average of the well-defined energy-momentum tensor TR

μνðxÞ obtained by the gradient flow. It is
demonstrated that the continuum limit can be taken in a controlled manner from the t dependence of the
flowed data.
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The symmetric energy-momentum tensor (EMT), Tμν,
which is the generator of the Poincaré transformations,
is a fundamental operator in quantum field theory [1].
Since T00, Ti0, and Tij correspond to the energy density, the
momentum density, and the momentum-flux density,
respectively, the EMT and its correlation functions provide
useful information on the bulk and transport properties at
finite temperature (T). For example, the energy density ε
and the pressure P are given by hT00i and hT11;22;33i,
respectively, with h·i being the thermal average. Also, the
shear viscosity η can be extracted from the two-point
correlation, hT12ðxÞT12ðyÞi. In quantum chromodynamics
(QCD), these observables are particularly important in
formulating the relativistic hydrodynamics for the quark-
gluon plasma [2]. Therefore, high precision and non-
perturbative evaluation of the n-point EMT correlations
in lattice QCD is called for.
To calculate such correlations in numerical lattice

simulations, we first need to define proper EMT on the
lattice which is ultraviolet (UV) finite and is conserved in
the continuum limit. Such a construction is not a trivial task
due to the explicit breaking of the Poincaré invariance on
the lattice. (See Refs. [3–6] for recent developments.)
This is the reason why ε and P at finite T have been
mainly studied by an indirect “integral method” without the
explicit use of the EMT [7].
Recently, one of the present authors has shown that the

proper EMT keeping all the nice features can be naturally
constructed [8] on the basis of the Yang-Mills gradient flow

[9–11]. (See, also, related works, Refs. [12–16].) In this
paper, we demonstrate, for the first time, that the thermal
SUð3Þ gauge theory can be studied by the direct lattice
measurement of the proper EMT by considering ε and P as
examples. The key idea is to represent the EMT in the
continuum limit by UV-finite and local operators obtained
from the gradient flow. Then, by taking the limit of small
flow time and small lattice spacing in an appropriate way,
as discussed later, accurate thermodynamic observables are
obtained with modest statistics.
Let us first recapitulate the basic idea of Ref. [8] in the

continuum space-time. The Yang-Mills gradient flow is a
deformation of the gauge configuration AμðxÞ along a
fictitious Euclidean time t; ∂tBμðt; xÞ ¼ DνGνμðt; xÞ with
Bμðt ¼ 0; xÞ ¼ AμðxÞ, where Dμ and Gμνðt; xÞ are the
covariant derivative and the field strength of the flowed
gauge field Bμðt; xÞ, respectively. The color indices are
suppressed for simplicity. A salient feature of the gradient
flow is its UV finiteness: Any correlation functions of
Bμ1ðt1; x1Þ, Bμ2ðt2; x2Þ, … for ti > 0 are UV finite without
the wave function renormalization if they are written in
terms of the renormalized coupling [10]. This is owing to
the fact that the diffusion in t naturally introduces a proper-
time regulator of the form e−tp

2

, where p denotes a typical
loop momentum. In particular, the correlation functions
are free from UV divergences even at the equal point,
ðt1; x1Þ ¼ ðt2; x2Þ ¼ � � � for positive ti. For example, the
following gauge-invariant local products of dimension four
are UV finite for t > 0: Uμνðt; xÞ≡ Gμρðt; xÞGνρðt; xÞ −
1
4
δμνGρσðt; xÞGρσðt; xÞ and Eðt; xÞ≡ 1

4
Gμνðt; xÞGμνðt; xÞ.

For t → 0þ, local products of flowed fields can be
expanded in terms of four-dimensional renormalized local
operators with increasing dimensions [10]: The expansion
coefficients are governed by the renormalization group
equation and their small t behavior can be calculated by
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perturbation theory thanks to the asymptotic freedom. For
the operators mentioned above, we have [8,17]

Uμνðt; xÞ ¼ αUðtÞ
�
TR
μνðxÞ −

1

4
δμνTR

ρρðxÞ
�
þOðtÞ; ð1Þ

Eðt; xÞ ¼ hEðt; xÞi0 þ αEðtÞTR
ρρðxÞ þOðtÞ; ð2Þ

where h·i0 is the vacuum expectation value and TR
μνðxÞ is

the correctly normalized conserved EMT with its vacuum
expectation value subtracted. Abbreviated are the contri-
butions from the operators of dimension six or higher,
which are suppressed for small t.
Combining relations Eqs. (1) and (2), we have

TR
μνðxÞ

¼ lim
t→0

�
1

αUðtÞ
Uμνðt; xÞ þ

δμν
4αEðtÞ

½Eðt; xÞ− hEðt; xÞi0�
�
;

ð3Þ

where the perturbative coefficients are found to be [8]

αUðtÞ ¼ ḡð1=
ffiffiffiffi
8t

p
Þ2½1þ 2b0s̄1ḡð1=

ffiffiffiffi
8t

p
Þ2 þOðḡ4Þ�; ð4Þ

αEðtÞ ¼
1

2b0
½1þ 2b0s̄2ḡð1=

ffiffiffiffi
8t

p
Þ2 þOðḡ4Þ�: ð5Þ

Here, ḡðqÞ denotes the running gauge coupling in the MS
scheme with the choice, q ¼ 1=

ffiffiffiffi
8t

p
, and s̄1 ¼

7
16
þ 1

2
γE − ln 2≃ 0.032960651891, s̄2 ¼ 109

176
− b1

2b2
0

¼ 383
1936

≃
0.19783057851, with b0 ¼ 1

ð4πÞ2
11
3
Nc, b1 ¼ 1

ð4πÞ4
34
3
N2

c, and

Nc ¼ 3. Note that a nonperturbative determination of
αU;EðtÞ was also proposed recently [17].
The formula Eq. (3) indicates that TR

μνðxÞ can be obtained
by the small t limit of the gauge-invariant local operators
defined through the gradient flow. There are two important
observations: (i) The right-hand side of Eq. (3) is inde-
pendent of the regularization because of its UV finiteness,
so that one can take, e.g., the lattice regularization scheme;
(ii) since flowed fields at t > 0 depend on the fundamental
fields at t ¼ 0 in the space-time region of radius≃ ffiffiffiffi

8t
p

, the
statistical noise in calculating the right-hand side of Eq. (3)
is suppressed for finite t.
Our procedure to calculate the EMTon the lattice has the

following four steps.
Step 1: Generate gauge configurations at t ¼ 0 on a

space-time lattice with the lattice spacing a and the lattice
size N3

s × Nτ.
Step 2: Solve the gradient flow for each configuration to

obtain the flowed link variables in the fiducial window,
a ≪

ffiffiffiffi
8t

p
≪ R. Here, R is an infrared cutoff scale such as

Λ−1
QCD or T−1 ¼ Nτa. The first (second) inequality is

necessary to suppress finite a corrections (nonperturbative
corrections and finite volume corrections).

Step 3: ConstructUμνðt; xÞ and Eðt; xÞ in Eqs. (1) and (2)
in terms of the flowed link variables and average over the
gauge configurations at each t.
Step 4: Carry out an extrapolation toward ða; tÞ ¼ ð0; 0Þ,

first a → 0 and then t → 0 under the condition in Step 2.
The thermodynamic quantities are obtained from the

diagonal elements of the EMT: A combination of ε and P
called the interaction measureΔ is related to the trace of the
EMT (the trace anomaly):

Δ ¼ ε − 3P ¼ −hTR
μμðxÞi: ð6Þ

Also, the entropy density s at zero chemical potential reads

sT ¼ εþ P ¼ −hTR
00ðxÞi þ

1

3

X
i¼1;2;3

hTR
iiðxÞi: ð7Þ

To demonstrate that the above four steps can be, indeed,
pursued, we consider the SUð3Þ gauge theory defined on a
four-dimensional Euclidean lattice, whose thermodynamics
has been extensively studied by the integral method
[18–21]. For simplicity, we consider the Wilson plaquette
gauge action under the periodic boundary condition on
N3

s × Nτ ¼ 323 × ð6; 8; 10Þ lattices with several different
β ¼ 6=g20 (g0 being the bare coupling constant). Gauge
configurations are generated by the pseudoheatbath algo-
rithm with the over-relaxation mixed in the ratio of 1:5.
We call one pseudoheatbath update sweep plus five over-
relaxation sweeps as a “sweep.” To eliminate the autocor-
relation, we take 200–500 sweeps between measurements.
The number of gauge configurations for the measurements
at finite T is 300. Statistical errors are estimated by the
jackknife method.
To relate T=Tc and corresponding β for each Nτ, we first

use the relation between a=r0 (r0 is the Sommer scale) and
β given by the ALPHA Collaboration [22]. The resultant
values of Tr0 ¼ ½Nτða=r0Þ�−1 are then converted to T=Tc
by using the result at β ¼ 6.20 in Ref. [18]. Nine combi-
nations of ðNτ; βÞ and corresponding T=Tc obtained by this
procedure are shown in Table I.
The gradient flow in the t direction is obtained by solving

the ordinary first-order differential equation. To increase its
numerical accuracy and efficiency, the third-order Runge-
Kutta method in Ref. [9] is generalized to a fourth-order
one [23] in which the error per step (t → tþ ϵ) is reduced
toOðϵ5Þ. We take ϵ ¼ 0.025 so that the accumulation errors
become sufficiently smaller than the statistical errors. This

TABLE I. Values of β and Nτ for each temperature.

Nτ 6 8 10 T=Tc

β 6.20 6.40 6.56 1.65
6.02 6.20 6.36 1.24
5.89 6.06 6.20 0.99
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fourth-order integrator turns out to be almost twice faster
than the third-order one to reach the same t.
To extract the EMT from Eq. (3), we measure

Ga
μρðt; xÞGa

νρðt; xÞ written in terms of the cloverleaf repre-
sentation on the lattice. To subtract out the T ¼ 0 con-
tribution, hEðt; xÞi0, we carry out simulations on a 324

lattice for each β in Table I. Note that this vacuum
subtraction is required for the trace anomaly Δ, but not
for the entropy density s. For ḡ in αUðtÞ and αEðtÞ in
Eqs. (4) and (5), we use the four-loop running coupling
with the scale parameter determined by the ALPHA
Collaboration, ΛMS ¼ 0.602ð48Þ=r0 [24]. We confirmed
the previous finding [9] that the lattice data of t2hEðt; xÞi0
in the fiducial window match quite well with their pertur-
bative estimate in the continuum, t2hEðt; xÞi0 ≃ 3ḡ2=
ð4πÞ2½1þ 1.0978ḡð1= ffiffiffiffi

8t
p Þ2=ð4πÞ� with the four-loop run-

ning coupling and the above ΛMS.
Shown in Fig. 1 are our results for the dimensionless

interaction measure [Δ=T4 ¼ ðε − 3PÞ=T4] and the dimen-
sionless entropy density [s=T3 ¼ ðεþ PÞ=T4] at T ¼
1.65Tc as a function of the dimensionless flow parameterffiffiffiffi
8t

p
T. The bold bars denote the statistical errors, while the

thin (light color) bars show the statistical and systematic
errors including the uncertainty of ΛMS. In the small t
region, the statistical error is dominant for both Δ=T4 and
s=T3, while in the large t region the systematic error from
ΛMS becomes significant for s=T3. For instance, the

statistical (systematic) errors of the data for Nτ ¼ 8 are
2.4% (0.48%) for Δ=T4 and 0.83% (4.7%) for s=T3

at
ffiffiffiffi
8t

p
T ¼ 0.40.

The fiducial window discussed in Step 2 is indicated by
the dashed lines in Fig. 1. The lower limit, beyond which
the lattice discretization error grows, is set to beffiffiffiffiffiffiffiffiffiffi
8tmin

p ¼ 2a, where we consider the size 2a of our
cloverleaf operator. The upper limit, beyond which the
smearing by the gradient flow exceeds the temporal lattice
size, is set to be

ffiffiffiffiffiffiffiffiffiffi
8tmax

p ¼ 1=ð2TÞ ¼ Nτa=2.
The data in Fig. 1 show, within the error bars, that

(i) the plateau appears inside the preset fiducial window
(2=Nτ <

ffiffiffiffi
8t

p
T < 1=2) for each Nτ, and (ii) the plateau

extends to the smaller t region as Nτ increases or,
equivalently, as a decreases. Similar plateaus as in
Fig. 1 also appear inside the fiducial window for other
temperatures, T=Tc ¼ 1.24 and 0.99, with comparable
error bars. These features imply that the double extrapo-
lation ða; tÞ → ð0; 0Þ in Step 4 is, indeed, doable.
Our lattice results at fixed T with three different lattice

spacings allow us to take the continuum limit. First, we pick
up a flow time

ffiffiffiffi
8t

p
T ¼ 0.40, which is in the middle of the

fiducial window. Then we extract Δ=T4 and s=T3 for each
set of Nτ and β. We have checked that different choices of t
do not change the final results within the error bar as long
as it is in the plateau region. In Fig. 2, resultant values
taking into account the statistical errors (bold error bars)
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FIG. 1 (color online). Flow timedependenceof the dimensionless
interaction measure (top panel) and the dimensionless entropy
density (bottom panel) for different lattice spacings at fixed
T=Tc ¼ 1.65. Thecircles (red), the squares (blue), and the diamonds
(black) correspond toNτ ¼ 6, 8, and 10, respectively. The bold error
bars denote the statistical errors, while the thin error bars (brown,
cyan, and magenta) include both statistical and systematic errors.
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FIG. 2 (color online). Continuum extrapolation of the thermo-
dynamic quantities for T=Tc ¼ 1.65, 1.24, and 0.99. Solid lines
and dashed lines correspond to the three-point linear fit and two-
point constant fit as a function of 1=N2

τ , respectively. Extrapo-
lated values of the former (latter) are shown at 1=N2

τ ¼ 0
(1=N2

τ ¼ −0.001). The cross symbols in the top panel are the
data of Ref. [18] with the same lattice setup.
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and the statistical plus systematic errors (thin error bars) are
shown. The lattice data forΔ=T4 with the same lattice setup
at Nτ ¼ 6 and 8 in Ref. [18] are also shown by the cross
(green) symbols in the top panel; the statistical error of our
result on 323 × 8 lattice for β ¼ 6.4 (β ¼ 6.2) is about 3.33
(2.69) times smaller than the one in Ref. [18] obtained on the
same lattice. In this way, our results with 300 gauge configu-
rations have substantially smaller error bars at these points.
The horizontal axis of Fig. 2, 1=N2

τ , is a variable suited
for making continuum extrapolation of the thermodynamic
quantities [18]. We consider two extrapolations: A linear fit
with the data at Nτ ¼ 6, 8, and 10 (the solid lines in Fig. 2)
and a constant fit with the data at Nτ ¼ 8 and 10 (the
dashed lines in Fig. 2). In both fits, the correlation between
the errors due to the common systematic error from ΛMS is
taken into account. The former fit is used to determine the
central value in the continuum limit whose error is within
�12% even at our lowest temperature. The latter is used to
estimate the systematic error from the scaling violation
whose typical size is �4% at high temperature and �24%
at low temperature.
We have analyzed various systematic errors: the pertur-

bative expansion of αU;EðtÞ, the running coupling ḡ, the
scale parameter, and the continuum extrapolation. We
found that the dominant errors in the present lattice setup
are those from ΛMS and the continuum extrapolation, which
are included in Fig. 2. To reduce these systematic errors,
finer lattices are quite helpful: They make the plateau inffiffiffiffi
8t

p
T wider by reducing the lower limit of the fiducial

window so that the continuum extrapolation becomes easier.
We also note that our continuum extrapolation with fixed
Ns ¼ 32 would receive the finite volume effect especially
for lower T [12]. A larger aspect ratio Ns=Nτ would be
helpful to guarantee the thermodynamic limit. Moreover, the
scale setting procedure could be improved to have better
accuracy: Instead of the Sommer scale r0 adopted in this
paper, a more precise scale determination, e.g., by t0 orω0 in
the gradient flow approach [9,14], will be useful.
Finally, we plot in Fig. 3 the continuum limit ofΔ=T4 and

s=T3 obtained by the linear fit of the Nτ ¼ 6, 8, and 10 data
(the solid lines) in Fig. 2 forT=Tc ¼ 1.65, 1.24, and 0.99. For
comparison to the existing data with the same lattice setup,
the results of Ref. [18] obtained by the integral method are
shown by the grey lines in Fig. 3 in which Δ=T4 for Nτ ¼ 8

and P=T4 for Nτ ¼ 6 and 8 are adopted to estimate the
continuumvalues. The results of the two different approaches
are consistent with each other within the 2 sigma level.
In this paper, we have proposed and demonstrated a

novel way to study thermal SUð3Þ gauge theory on the
lattice. The key ingredient is the conserved and UV-finite
energy-momentum tensor TR

μνðxÞ defined from the the
UV-finite operators [Uμνðt; xÞ and Eðt; xÞ] obtained from
the Yang-Mills gradient flow with the matching coefficients
[αU;EðtÞ] [8]. From the simulations on 323 × ð6; 8; 10Þ
lattices with modest statistics (300 gauge configurations),

we found that the dimensionless interaction measure and
entropy density ðε − 3PÞ=T4 and ðεþ PÞ=T4 show plateau
structure inside the fiducial window (2=Nτ <

ffiffiffiffi
8t

p
T < 1=2)

with small statistical errors so that the double extrapolation
ða; tÞ → ð0; 0Þ can be taken appropriately for given T.
The major advantages of the gradient flow applied to the

lattice thermodynamics are as follows: (i) One can simulate
ε and P independently at any fixed T through the direct
measurement of the well-defined EMT. There is no need of
integration by β or T, which requires a boundary condition
and the numerical interpolation. (ii) There is no need of
constant subtraction in entropy density s. The interaction
measure Δ needs one subtraction of its T ¼ 0 value, which
is obtained by the accurate measurement of t2hEðt; xÞi0 or
by its perturbative evaluation at small t. (iii) The statistical
noise is substantially reduced at finite flow time t > 0 due
to the effective smearing of the operators with the radius
≃ ffiffiffiffi

8t
p

so that the extrapolation of the results back to t ¼ 0
is well under control.
Although we studied only the thermal average of EMT in

this paper, there is no conceptual difficulties in applying our
method to nð≥ 2Þ-point EMT correlations [8]. This opens
the door to investigate transport coefficients (such as shear
and bulk viscosities), fluctuation observables in the hot
plasma, and glueballs at zero and finite temperatures. Here
we note that there is no difficulty in measuring thermody-
namic quantities even at extremely high temperature in this
method since no temperature integration is necessary. It is
also an interesting direction to study the dilation mode or
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FIG. 3 (color online). Continuum limit of the interaction
measure and entropy density obtained by the gradient flow for
T=Tc ¼ 1.65, 1.24, and 0.99 with 300 gauge configurations. The
grey lines are the results of the integral method with typical error
�2% according to Fig. 7 of Ref. [18].

MASAYUKI ASAKAWA et al. PHYSICAL REVIEW D 90, 011501(R) (2014)

011501-4

RAPID COMMUNICATIONS



the a function of (nearly) conformal theory [25,26] using
the present method. Furthermore, including fermions in the
present framework extends the scope even further [27].
Some of these issues as well as the simulations with finer
lattice with larger volume are already started and will be
reported elsewhere.
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