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The process p(q} p{p}+ anything, the process in @4 theory analogous to e++ e hadron
+ anything, is examined in P4 field theory fox' large values of q2. Some heuristic arguments
as to the strength of mass singularities in a particular two-particle irreducible amplitude
make it possible to argue that a light-cone-like expansion exists when q2 ~. This light-cone
expansion has virtually all of the properties of the usual light-cone expansion except that it is
not an expansion in terms of invariant amplitudes associated with local operators. In case
$4 theory has an eigenvalue, P(gg = 0, the moments of the annihilation cross section will
have a power behavior in q, a power unrelated to the powers of q appearing in any deeply
inelastic scattering process. Also, at an eigenvalue the avexage multiplicity of particles
produced, a quantity governed by the Callan-Symanzik equation in this theory, grows like
a fractl. onal power of q .

I. INTRODUCTION

Two types of reactions occupy a very special
position in high-energy physics. These two reac-
tions are e'e total annihilation into hadrons and
deeply inelastic electron scattering off hadrons.
In each of these reactions, one is testing the short-
distance behavior of the underlying theory of had-
rons. This is the region where the physical
masses of the hadrons, and indeed the physical
hadrons themselves, do not play an essential role.
The case of e'e total annihilation is the simpler
of the two cases. The total annihilation cross
section, o(q'), is proportional to

where j(x) is the hadronic part of the electromag-
netic current. (We neglect vector indices for this
casual discussion. ) When q' becomes large,
x'-1/q'. The Wilson expansion' then tells us that
the large-q' behavior depends only on the proper-
ties of the underlying zero-mass theory, and that
these properties are severely constrained by re-
normalization requirements. "

Deeply inelastic electron scattering is propor-
tional to

-i d Ãe Pj x j 0 P = 4), g

where p represents some hadron and &u = -2p q/q'.
In this case, for large q', the moments

f'„(q')= d~~ "f'(~, q')

factorize, f~(q2) =F» f„(q'), and f„(q'}depends only
on the short-distance behavior of the theory,
on the other hand, depends on the details of the

particular hadron off which the electrons scatter.
It is the light-cone expansion, "which extracts
particular invariant amplitudes from a Wilson ex-
pansion, that guarantees that f„(q') depends only
on the underlying zero-mass theory.

It is probably not obvious whether e'e inclusive
annihilation into hadrons has properties similar
to those of the above-mentioned processes. ' "
The cross section for e'e hadron (p)+anything
is proportional to

7'(P', , q''I = -i fd'xd'y d'z e'

x (&(i~(y)j(x))A j~(x)j(o)&. ,

where j„(x)is an hadronic source function, F de-
notes an anti-time-ordered product, and norv w

=2p q/q', with q' timelike. When &u is fixed and
q'-~, kinematically x' 0 just as in the case of
deeply inelastic electron scattering. How&ever,
here the Wilson expansion does not apply. Even if
x„-0, there may still be operators between j(x)
and j(0) and no analog of the Wilson expansion has
been established for products like

lim j(x)j(z}j(0).
x~O

If the Wilson expansion is not valid one cannot ex-
pect that the light-cone expansion vali be valid.
The following question presents itself: Is the q'

~ limit, and simultaneously x' l/q' 0, in e'e
inclusive annihilation simply a kinematic region on
the light cone, or is there an analog of the light-
cone expansion, related to an underlying zero-
mass theory, "which applies to this case/ In this
paper it mill be argued that the latter is in fact
vrhat occurs. That is, there is an expansion which
resembles an ordinary light-cone expansion in all
its details except that local operators, or particu-
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lar invariant amplitudes coming from local oper-
ators, do not occur in the expansion. Thus, if one
defines

f kgp2 q 2) ~ d () T))(p2 q 2)
+0

then

»m (g('q') ,p(='!,.((')(, .(~')

so long as Hen&0 ((p~ theory). tgq') has no de-
pendence on the produced hadron h, obeys a cou-
pled Callan-Symanzik equation, ""and is deter-
mined by the zero-mass theory. The theory which
will be examined in detail in this paper is g' theory
for which the above equation and statements are
true in each order of perturbation theory.

An outline of this paper may be helpful. In Sec.
II a familiar problem, that of deeply inelastic
electron scattering, or at least a (t)' analog of that
process, is worked opt in detail. This will be re-
ferred to as the spacelike case since q' is space-
like. The light-cone expansion and Callan-Syman-
zik equation are derived by means of a diagonaliza-
tion of the Bethe-Salpeter equation along with some
additional subtractions. The spirit, but not the
details, follows treatments given by Symanzik in
deriving the %ilson expansion from the Bethe-
Salpeter equation. " The essential ingredient
needed in order to obtain the light-cone expansion
is the statement that the two-particle irreducible
part of the forward four-point function, V(p, q),
behaves as if it were not evaluated at an excep-
tional momentum. (Here two-particle irreducibil-
ity is in the channel of zero four-momentum. )
That means

V(p v q )- V(0 (d q )

is the order of p'/q' for q'-~ and &u fixed. This
property can be obtained in a number of ways. In
particular, Zimmermann's proof of the Wilson
expansion can be used. "

In Sec. III the problem of an annihilation ampli-
tude, the timelike case, is worked out in detail.
The procedure is imitative of the spacelike case.
The diagonalization procedure is only slightly dif-
ferent from that of Sec. II. The subtraction pro-
cedure is much as in Sec. II given the important
property of the two-particle irreducible part,

lim ( dc'(() V(p, (d, q )
((f2~ eo ~ 0

pl
d~&u'V(0, v, q') =0

0

so long as Reo & -j.. A light-cone expansion, Eq.
(30), and a Callan-Symanzik equation, Eq. (42),

are obtained. It should be mentioned, however,
that there is no analog of the Wilson expansion
given for this process.

In Sec. IV an example is worked out in detail
both for the spacelike and timelike cases.

The major part of this paper is an attempt ta
establish the fact that the zero-mass theory can
determine many aspects of the large-q' behavior
of an amplitude which has timelike q' and for
which the Wilson and operator light-cone expan-
sions do not apply. There has often been reluc-
tance about applying renormalization-group tech-
niques to timelike regions. The apparent cause
for concern is the absence of Vfeinberg s theorem. "
%e feelthat timelike regions are not essentially
different from spacelike regions as far as the pos-
sibility of using renormalization-group and Callan-
Symanzik techniques. Consider, for example, the
simplest of all possible amplitudes in (t) theory,
the propagator,

&;(u')= f d'xe' (r((x)((0))"..

For q' spacelike the dominant q' behavior for any
given graph of ~~ is governed by the renormaliza-
tion group. %hat about timelike q'P Suppose one
is considering a graph of nth order in g. Then, if
the renormalized mass of the (I)) particle is m, the
highest possible threshold in q' is at q,

'
= [(n+1)m]'. So in order to reach an asymptotic
domain, even for q' spacelike, one needs ~q'~

»qq . If q' is timelike and q»q, 2 the thresholds
are far away and the mass m should be irrelevant
so long as renormalizations are carried out at a
mass A, independent of m. The question of wheth-
er q' is spacelike or timelike, then, should not be
relevant so long as the invariants are large com-
pared to the possible thresholds. Further, sup-
pose one takes the imaginary part of b,„' for q'
large and timelike. Taking the imaginary part is
just a numerical operation and cannot change the
origin of the asymptotic behavior. But taking the
imaginary part puts many internal particles on
their mass shells, so one might expect that mass
dependences could not disappear in this case. A
little thought, however, convin es one that setting
internal particles on their mass shells does not in
general introduce a mass dependence. Mass de-
pendence arises when internal groups of particles
are near thresholds. In the case of the propagator,
the theorems on mass singularities" "guarantee
that these threshold dependences will be weak.

For the amplitude which is the topic of this
paper, inclusive annihilation, the rigorous- mass-
singularity arguments do not apply, as different
internal propagators may have different signs for
their i& terms. However, the strengths of the
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for large 'q' with T~ as used previously in this
Introduction, and o(q') the total annihilation cross
section. Thus the Callan-Syrnanzik equation
governs the average multiplicity of produced had-
rons. We can obtain more information by using
the energy-momentum sum rule"

"0

so that

dc'(d T'((d, q )~o(q ),

f,d&o (d T"(a), q')
yt))(q')~ if d(d(d T ((d, q )

If the theory has an eigenvalue, P(g„) =0, then the
moments

rl
d(d '(d'T((u, q')

+ 0

behave as (q') ~ for large q'. Now c(, must be a
monotonic nonincreasing function of e, for real o,
so n~(q') (x (q')"& ~ with n, ~ n„and the average
multiplicity grows like a power of q'.

This is reminiscent of the bootstrap scheme of

mass singularities in the two-particle irreducible
part of the amplitude can be estimated, heuristic-
ally, and are found to be sufficiently weak that re-
normalization-group ar guments apply. The full
amplitude can be handled exactly as in the case of
deeply inelastic electron scattering by making ad-
ditional subtractions in the Bethe-Salpeter equa-
tion.

I et me now comment on a few topics which are
not considered in this paper.

(1) Other theories. The only theory dealt with in
this paper is gP' theory. I suspect that similar
results will hold for other field theories also.
gT() y,$4) and gf+ theories are probably not very
difficult to handle, and probably all the results
which have been obtained in this paper will carry
over there including the calculation of average
multiplicities from the Callan-Symanzik equation.
Massive quantum electrodynamics is a much more
difficult theory to handle because of the spin-one
meson and gauge invariance. Presumably the q'
dependence for fixed m will still be governed by the
zero-mass theory, but quite likely the very small
~ region, at which relatively few particles are
produced in (t&' theory, is quite important in this
theory and will not be governed by the zero-mass
theory. '9

(2}Average multiplicities of produced particles.
The average number of produced particles of the
type h is

wl t)){ 2)
n„(q ') c(.-, da) (d T'((d, q') = '

o(q') .. ' o(q')

Polyakov. "
(3) The (d -0 limit. For large q' write'

r) fII+C~
T(P', ~, q ') =

2ws
do (d ' 'tgp', q'),

tgp, q )= ' d(d(d T(p, (d, q ) .
)))&0

Now

II. SPACELIKE EQUATIONS

Consider the amplitude f(p q, q ') given by

f(D as') if d'xe' (Pl((=)g(D&l)&)l(r' — ')'.

[In what follows only a theory of the type 2,(x)
=-(g/4!)p~(~) will be considered. ] Equation (1)
represents the scattering of an off-shell field, p,
on a particle of mass m. This amplitude is anal-

The large-q' behavior of tgq') is constrained by
renormalization and thus the large q' behavior of
'f(p', (d, q') is constrained for fixed ap. When &o

becomes small ((d' must be greater than 4p'/q'},
the u ' ' factor would indicate that the 0 contour
should be distorted to the left. Ho~ever, at 0 =0
there are singularities in t, in perturbation the-
ory, and as the example of Sec. IV shows, these
singularities may even sum to an essential singu-
larity at o = 0. In the region [(p'/q '), (m'/q')]
«(d' « I, the (d behavior of T(p', (d, q') should be
determined by the zero mass since the singulari-
ties near v=0 of jody&ry'y(p', (d, q') are deter-
mined by the zero-mass theory.

(4} Continuation from the spacelike region. '" "
The continuation from the nonforward spacelike
region to the timelike region is tortuous, and the
singularity structure is difficult to determine.
However, it seems clear that one could, heuris-
tically, use continuation arguments to show that
the timelike V(p, (d, Q) [see Eq. (28)] becomes in-
dependent of P when & is fixed and Q is large if .

the analogous nonforward spacelike quantity has
this property.

(5) Other amplitudes. Finally, the question arises
as to which other sorts of amplitudes have their
light-cone behavior constrained by renormalization
requirements. %e have not attempted to answer
this question in any detail. It seems reasonable,
though, that Wightman functions in genexal should
have such constraints and possibly also such am-
plitudes as occur in p. -pair production in proton-
proton collisions.
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pIQ. 1. An illustration of Eq. (5).

ogous to amplitudes which occur in studies of
deeply inelastic electron scattering. Further, de-
fine the completely off-shell amplitude

r((z' p z z')=(f z' z'zz'*z"*"""-'

ments of T (Refs. 4 and 26) utilized the light-cone
expansion and thus cannot be easi. ly generalized.

A. Integrsl equation and diagonalization

An integral equation for T can be given in terms
of a two-particle irreducible kernel, the potential
po

&P,P q, q }=V(P', P q q'}
where h~ is the full, renormalized propagator for
the (afield, and 1' denotes the anti-time-ordered
product. Now, when q' and p' are below their
thresholds

+ J~ d'k gp', p u, k')jar'(a')P

XV(k, k q, q'}. (5)

disc&~, ,&21'(p', p q, q') =2ilm1'(p', p q, q')
= &(p', p q, q'), (2)

i'(p' p z z'(=if z'zd'zd'zz"'"z' '
x (Z'p(x)p(y)p(z}$(0))o

x [a '(p')a '(q')]-' (4)

is the ordinary, amputated, time-ordered prod-
uct. When q' is above its threshold Eq. (2) ceases
to be true.

In the region of large spacelike q', fixed &
= -2p q/q ', and fixed p' the behavior of the time-
ordered product and that of the discontinuity are
the same since the discontinuity is trivially re-
lated to the time-ordered product. (The fact that
the time-ordered product and the discontinuity
hRve the same behavior ln the Bjorken scRling re-
gion is also guaranteed by the light-cone expan-
sion. ) When q becomes timelike and Eq. (3)
ceases to hold, there is no known relation between
the time-ordered product, Eq. (4), and the dis-
continuity, Eq. (2), in the q'-~, (d fixed limit. '
Clearly the Wilson expansion does not directly ap-
ply to an amplitude like T in Eq. (2), since the op-
erators (p(x) and qb(0) may. have additional operators
between them as x-O.

In this section q spacelike is assumed. The
Callan-Symanzik"" equation will be derived for
the amplitude Tby a method which can be general-
ized to timelike q2. The previous methods of ob-
taining Callan-Symanzik equations for the mo-

Equation (5) is illustrated in Fig. l. V(p', p q, q')
is defined as in Eq. (2), except only those graphs
are included which do not have two-particle states
in the channel of iteration. Because absorptive
amplitudes are used, the Bethe-Salpeter equation,
Eq. (5), is finite once internal subtractions are
performed in V and az. Equation (5) is an exact
equation in renormalized perturbation theory.

Equation (5) is a four-dimensional equation with
one trivial variable. This equation can be reduced
to a one-dimensional equation as pointed out by
Nussinov and Rosner. " To this end introduce the
variables Q, K, P, cosh/, cosh'„cosh/, defined
by

q
' = -Q, O' = -E', p' = -p',. 2

-q k=QEcoshg„k p=EPcoshg„

p q=PQcoshg.

%8 have chosen, for convenience, p' spacelike.
When p' and q' are spacelike, kinematics requires
that k also be spacelike so that Q, P, X are real
and positive. We may write the volume of integra-
tion in terms of these new variables

d'k = . dK dcoshg, dcosht; e(g —g, —g,),2nz'
sinhf

(6)
where (q —k)' «4m', (k+p)2 «4m' has been' used to
put the step function in the form used above.

Now define

8-og
sinh /de q{P, Q, l),sinhg
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with the inversion

~&+]~ ag

M, q, ~)=, , d „.~, q.(P, Q), (6)

where it is assumed that

t.(P, Q) = v.(P, Q)

p OO

+
2 s z'dz t.(P, fc)l~,'(z)l'v. (z; q) .
o' +p

(cosh')~" T(P, Q, g}~=„0 .
Equations (6) and (7), along with the expression

jm a(f~g~f)
8(g —g, —t, ) = . lim do

e
2WZ &~p+ ~~ (7+6

Now for large Q and fixed P

t~(P, Q) = d&u &u T(P, Q, u),

(12)

(13a)

give, when substituted into (5),

q'O', Q) = V&, q)

+ —'" tff'«», If)I~.(ff)I'vj&, q) .
0'

(9}
Equation (9) is a one-dimensional equation for the
absorptive part T in terms of the potential V. We
wish to study this equation as Q- ~. To simplify
this task it is helpful to recast this equation into
one where additional subtractions have been per-
formed.

B. Subtraction procedure and behavior of the two-particle

irreducible part

The equation
00 e-a&

rp', q)= sinh'pe .
h

q(P, Q, f, )sinhg

can be written in a slightly different form in terms
of the variable

& = -2p q/q
2 =—cosh/ .2p

Q

v, (P, Q) = d~~ 'V(P, Q, &u), (13b)

where the corrections are of the order m'/Q' and
P'/Q'. When Pie fixed and Q is large

v, (P, Q) —v, (0, Q) -0, (14)

with corrections again of order P'/Q'. That is,
v, (P, Q) loses its P dependence when Q becomes
large. In the case of spacelike q' the situation
under discussion here, Eq. (14) follows from the
light-cone expansion":

(pip(x}g(0)lp) g E„( ')x"~x 2 ~ ~ x".
x2~p; n W

p @fixed

x(plo(o).. .Ip),

where

O(x). .=X„„Q(x)a„s " e. y(x)).

But,

&.(x')(pl o(o)...,. ...„ lp }

is immediately related, by Fourier transform, to

Thus,

cosh/ = —
and

Q „Q~
P.,P, "P.„t.(P, Q),

while

P.P.,"P.„.(P, Q)

is related to the two-particle irreducible part of

TAP, 0)= ( ) ),(P, ))),

where
~ oo v'2- g

tP') Q)= eke + 1+ 1—
»+(H+4P)/Q Q'co'

E„(x'}(plo(0) ... Ip),

which can have no p dependence other than

Pa, &a,
' ' '&n„~

To obtain the desired subtraction procedure, "
begin inductively. Write

Similarly, defining

XZ+, Q, ~). (10)
v (P, q)=lv (P, Q) —v (o, q)]+v (o, q)

= v.~ (P, q) + v. (O, q),
v.(P, Q) =

moo 1/2- a
d(g) ~ 1+ 1-

~ i+(4~'+ P)/CP Q2 2

x V(P, Q, w), (»)

where

v.~(p, q), „=.O.
P fixed

Eq. (9) becomes Also, write
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g

v(:)(p, q)= " K'dzv. (p, z)viz, q)(A'(Z)i'

v(a)(p q) v(2)rag(p q)+r(&)(p)v ((0 q)

rate potentials, f+, q) can be written as

fp, q) =f.- (p, q)+~+, q)

+
" K'iA '(K})'dzf."I(P, z)ngz q)0'

2g"
v(2)~(P, q) = K'id, (K}i'

x [v+, E)- vgO, E)]

x [vjZ, q) —v/0, q)],

20r(') (P) = " K'}A„'(K) i'dz

or
fp, q) =f~(P, q)+r p)f/0, q),

where t',& is defined by

f' (p q)=(1- ) p', q)

+
" K'}}r,"(K}I'dz

(16)

Clearly

x [v,((p, K) —v,(0, K)] .
x fp(p, E)(1 —y)v (E, q) (17a)

&:)~,q) =., 0,
P fixed

so to second order in the potential

v~, q)+ v(:)(p, q), , [1+r(.')(p)]vg, q)
P fixed

+v',"(0,q) .
This looks like the start of a Wilson expansion.
The iteration procedure can be completed by de-
fining the standard renormalization operator r by

rP ) =1+ K'}(d.,'(Z)i'dzfy(P, Z) . (1+)
4

Equations (16) and (1V) constitute a light-cone
expansion, arith 0 a continued index of the oper-
ators in that expansion. In order to obtain the
Callan-Symanzik equation we need an equation for
the four-point function with a mass insertion.

rv, (Z q}=v,(0, q) .
Then E(l. (12) can be written as

fP, q)=(1-~+r) .(P, q)
1

z'i~ (z)i'dzfg, z)

C. Mass insertion and Callan-Symanzik equation

The operator

[m'()/()m'+ p(g)s/sg -2ey(g)]

inserts the operator

I*((((}Jd'wN(('(I)}

(18)

x (1- ~+&)viz, q) .

Considering (1- r)vp', q) and rv, (P, q) as sepa-

into the n-point amputated vertex function in ((}'
theory. " [p(g), y(g), and p(g), not to be confused
with the field gx), are defined as in Symanzik. "]
Thus,

8 8 A

m' ——,— + P——4y T(P, q, (()) = T(P, q, ru)ts g

=2jlmm'(t}(g)
~

d'xd'yd'zd'N}e'

x &1"y(~)y(y)y(~)y(0)~Q'(~)]).[~,'(p')~ '(e')]-'.

Applying (18) to (12) one obtains

,}(p(}&},~@+ 'J&'I~'((}I'«(u', ((}~i~, ((}+& 'if(('I~'(~}~"(el«(P, &)~g~, ((}

+ K'ir,'(E)}'dzQS, Z)v jz, q), '
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p

FIG. 2. An illustration of Eq. (25).

where the caret means that the amplitude has a
mass insertion included. Now

v+, Q),
J' arbitrary

up to corrections of the order m'/Q', so for large
Q Eq. (19) reads

2 n'
It (P, Q) =2

J
K'In.~(K)h„'(K)IdKt+, K)vgK, Q)

+ ' K'It,'(K)I'dKtp, K)v.(K; q) .
(20}

The kernel of Eq. (20) is the same as Eq. (12}so
we can immediately conclude that

ip, q) „.r.(p)tgo, q),
. P fjxed

where, for completeness,

rp)= ' Jr*dr~~~, (N~~'U~, z)rgz)

2 'm"
3+2 K'Ih '(K)lL'(K)IdKtp', K)r.(K)

+ I
K'I &~«) I'«')'I &~(K'}I'

x dKdK'tp', K)v (K, )KgrK') .
(21b)

Combining (16), (18), and (21) one obtains

(iii) Eqs. (16) and (21) which follow directly from
(14).

Thus, the key to the Callan-Symanzik equation
is the relation

v.(p, q) - vgo, q),—„.o,

which will be generalized to the case of timelike
q' in $ec. Ql.

III. TIMELIKE EQUATIONS

A. Integral equation and diagonalization

Consider, again, the amplitude 7(p', p q, q') as
given by Eq. (2), but now suppose that p' and q'
are timelike and p,q, —

I pI I gI =p q &0. It is con-
venient to let p--p so that p q&0 and po&0. The
integral equation (5) follows immediately as it is
simply a property of the topology of the Feynman
graphs. Again, introduce variables Q, K, P,
cosh/, cosh/„cosh), by

q2 = Q2 jp —K2 p2 —P2

q p =QPcoshp q k=QKcoshg, k p =KPcoshg, .
The momentum flow of the integral equation is in-
dicated in Fig. 2. When q and p are timelike, K
is real and positive. Now

d'k = . dK dcosh&, dcoshg,4 2wK

sinhg

m' + P——4y r.(P)tgO, Q) = f'.(P)tgo, Q) .Bm' 8g
x [e(g- I4-41)-e(g-g, -g,}j (23)

Now rgo) = 1 by our method of subtraction while

1;(0)= a„some function of g calculable, order by
order, in perturbation theory. Thus

(
m' + p——4y —a, t,(0, Q}=0,

Bm Bg
(22 }

which is the desired result.
There are only a few key steps involved in ob-

taining Eq. (22):
(i) the integral equation (12) which is simply a

property of the topology of 4') theory, and is easily
generalized to the case of timelike q',

(ii) Eq. (14) which follows from the light-cone
expansion when q

2 is spacelike, but which must
be rederived when q' is timelike, and

replaces (6). Equation (7) no longer diagonalizes
the integral equation because the step functions in
(6) and (23) are quite different. Equation (7}rep-
resents a diagonalization by means of representa-
tions of O(3, 1) in a noncompact O(2, 1) basis, often
called O(3, 1}functions of the second kind. Such
representation functions are appropriate when

k, P', and q' are spacelike, since the little group
of a spacelike vector can be taken to be O(2, 1).
Here k, p, and q are timelike so the natural
representation functions are those of O(3, 1) in the
compact O(3) basis. When the external particles
are spinless these functions are"

sinho g
sinhg
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No group theory is needed if one simply observes
that

2i '" do—sinho g sinhvg1 sinho g2 .
1T J ] (T

Using this expression along with

with
(28}

1y(P ~nt2)/Q —

4p 2 1/2- a
v.(p, Q) = dhl (d 1+ ~ 2 2

2P/Q u) Q

OO

T,(P, Q) =2 sinh'gdg . Z(p, Q, l') (24a)
sinh&

x V(p, q, (d).

Now define the renormalization operator r by

(29)

(24b)
vv.(p, q)= (~) vgO, q) —(~). v QO, q)

the equation

TP, q) = VP, Q)

+ —
Jt K dKl 6r'(K) l T (P, K) V/K, Q)

(25)
is achieved. Equation (25) looks the same as Eq.
(9), but it should be remembered that the regions
of integration are quite different as are the defini-
tions of T, in the two cases.

B. Subtraction procedure and behavior of
the two-particle irreducible part

With the definition cu = 2p q/q
' = (2P/Q)cosh/, Eq.

(24a) can be written as

Then,

Ta(p, Q}=(1—r+ r) Vgp, Q)

+ —" K'l d.,'(K)l'dK

/x T,(P, K)(1 —r+r)V, (K Q)

as in the spacelike case. Thus, we can write

T.(p, q) = Tp(P, q)+ +fr, .(p, q)t, J0, q),

where
(30)

where

1+(P -4' )/Q2 V'& - a
fa(p, Q)= d(a(o)' 1+ 1—

P/Q (()

x T(P, Q, (()) . (27)

Similarly,

+ —
l

3K'dKlde(K~I'Ta N(P) K)

and T,"I obeys the integral equation

(31)

q a+1 q -a+1
Tp(P, Q) =

2 [v+, Q) —v,(0, Q)] —
2P [v,(p, Q) —v $0, Q)]

-a+1
+ —

J
K'dKln, '(K)l'T ~(P, K) — [vgK, q)- vgo, q)]- — [v gK, q)-v $0, q)]

(32)

vp, q) —vgo, q},.„.o
as in the spacelike case, then 'T(QP) will go to
zero in the above limit, and Eq. (30) is the analog
of the light-cone expansion. It should be empha-
sized, however, that in the spacelike case I'~}
represented part of the matrix element of a local
operator when 0 =0, j., 2, . . . , while in the time-

like case there is no obvious connection between
I'„(P) and the matrix elements of any local oper-
ators. It should be noted that (30) and (31) give
the equation

vgsq);. (—', )'"rp, q)(,goq),
F„,Qt 0, Q
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for Rev&0, and that both terms on the right-hand
side of this equation are equally important in gen-
eral. Also I"gP, Q) has poles in o, for example,
at cr =1, but these poles do not appear in the as-
ymptotic form of t,(P, Q) given above.

Before directly confronting the question of the P
independence of ~, Q} for large Q, 1st us first
discuss a problem, many of whose aspects may be
more familiar to the reader. Consider, then, the
self-energy amplitude, Z(q'), defined by

[Z~e(q')-(q'-m')] ' =i e"*d'x&Ty(s)y(0)), .

We envision a "g4 type" field theory where there
are two massive scalar mesons P and y, whose
renormalized masses ax'e m, and m2, interacting
by means of g,p, g, )(', and gsp')(2 terms in the
Lagrangian. Begin by regulating the theory, in a
Pauli-Villars manner, with a regulator mass A.
Considex, first, any particular graph contributing
to Ze&(q') which does not have any internal self-
energy parts Z@&, 5&„, or Z„„. Such a graph we
denote by Ze&(q'). The full functional dependence
of Zis given by

Z~~(q') =R~e(q', A', m, ', m, '),
where only coupling dependences, irrelevant for a
fixed graph, have been suppressed. Now for A',

[»mg ~ m2 &

Z~e(q')-Ze e(q', A') =Zee{q', A', 0, 0) . (33)

The total discontinuity obeys (34) trivially from
(33), but (34) is very nontrivial when a particular
discontinuity is involved. To show that (34) is cor-
rect it is enough to show that

g
lim m~ 2 disc) Zyy(q ) =0

g
em~

2= 2 ~
Nt2 =Ptttj I

P fixed

That is, all m, and m2 dependence disappears from
Z when ~q'~ and A are much greater than m, ' and

m, ' (Ref. 2), independently of whether, q' is space-
like, timelike, or complex. If subtractions are
performed at a point large compared to m, and m2
then the renormalized amplitude will also be as-
ymptotically independent of m, and m2. These state-
ments are at the heart of the renormalization-
group approach to large off-shell behavior.

In Fig. 3 a typical discontinuity of 2&@, corxe-
sponding to an intermediate state i, is shown.
Straight lines indicate p particles, while wiggly
lines indicate y particles. We claim that for any
particular discontinuity i of Z e&(q ),

disc, R@e(q')p ~2„„, disc, Z~~(q', A', 0, 0) .
(34)

FIG. 3. A particular discontinuity of a self-energy
graph.

along with a similar statement with the roles of
m, and m, interchanged. To show that (35}is cor-
rect we need to show that the strength of the mass
singularity of (s/sm')disc, . Ze&(q') is only loga-
rithmic. This is the same as showing that the
strength of the possible mass singularity of
disc, Z&e(q') is only like m'(lnm')' in the approach
to the zero-mass theory. (For the purposes of
counting the over-all strength of mass singularities
it is not necessary to distinguish m, from m, .)

The possible mass singularities in disc, Z&&(q')
occur when the invariant mass of some subset of
the particles in the state i approaches the zero-
mass thresholds of A and B (see Fig. 3). Thus the
important region of phase space is where some
set of particles (1, 2, . . .,j) in the state i have mo-
menta such that (k, +k, + ~ ~ ~ +kz)'-0. What needs
to be ascertained is the strength of the singularity
in the amplitudes 3, and J3 versus the suppressing
factor of the phase space when a zero-mass
threshold is approached. Call K~ = k, + 02+ ~ ~ ~ + k&.

Then, as shown in Appendix B,

d

2

I ~ I d

~

~~ ~ I I ld"k d' d k~ ~ ~ ~ 54{& + p + ~ ~ ~ + )'t -Z )

xe(a'-A, .')e(q, -&„)~(o')' '

for small a when the particles 1, 2, . . . ,j are
massless. Thus a mass singularity in disc, Zu(q')
like lnm' will occur if the product of the strengths
of the threshold singularities in A and Bare like
(o ) ". If j is an even number the maximum
strength of the threshold singularity of A occurs
when the j particles go into two particles. Then 4
has a singularity like (o ) ~ & 2& t', similarly for ~.
Thus, the total strength of the mass singularity is

2~g -j.-2(y-2) /2
'La J
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k,

ik Q ikQ liQ

FIG. 4. A particular discontinuity of a self-energy graph where discontinuities over internal propagators are added.

for even j so that no mass singularity occurs. If
j is odd the maximum strength of the cP singularity
of p is (a') (~ '~~ if the j particles can go into a
minimum of three particles, and (a') (~ '~ ' if the j
particles can go into a single particle; similarly
for B. If the j particles could go into a single par-
ticle in both A and B the total singularity would be
like

(P)f -1-2(j -1)/2 (P)0

and a mass singularity would occur But, . such a
case is ruled out by our assumption that Z&& has
no internal self-energy parts. Thus, the maximum

singularity occurs when the j particles go into a
single particle in one of the amplitudes, A or B,
and into three particles in the other amplitude.
Then the singularity is like

II 2%4 -j.-(f -1)/2 (j -3)/2 2=a,
and disc, Z&& (q'} has mass singularities only like
m'[lnm']". This completes the argument that if
Z &&(q'} is an amplitude without internal self-ener-
gy parts then

disc(Zyy(q'y A'y m, 'y m2')

We now proceed to v, (P, Q). For any given dia-
gram, contributing to V(P, Q, (d},

V(P, Q, (0)r sp

I+ (P I-@ma) /Q I 4*2 1/I
=mQ QP dc')

2P/q ~1@%

x V(P, Q, (d)

corresponds to a sum of discontinuities of the type
shown in Fig. 5, where one of the internal lines
has been given a mass P, and thus singled out
from the other internal lines. Since V is two-par-
ticle irreducible the line p cannot be part of any
self-energy insertion. Thus,

j, + (Perm I)/qI 4 I j/2
d&o(d 1- I ~ V(P, Q, (d) =vz(P, Q)

p
2P/0 @I~2

p ~2„a 2 disc(Zee(q', A', 0, 0) . A

Furthermore, it is clear that one can add in-
ternal self-energy parts so long as discontinuities
are added in such a way that total discontinuities
are taken for all internal propagators. . As an ex-
ample, consider Fig. 4. If no three of the lines
kz, k, k~, k4, k, can go into a single line in both
A and B, and if no one of the lines k~, ka, ks, k~,
k, goes into a self-energy part in either the upper
or lower amplitudes A or B, then the sum of the
three discontinuities shown in Fig. 4 will have the
property (34) even though A and B may contain
numerous self-energy insertions.

~ ~ ~

Q

FIG. 5. An integrated inclusive cross section as
related to a discontinuity of a self-energy amplitude.
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must be independent of P for Q large so long as
internal renormalizations are done at some point
A. (However, it is clear that the P dependence of
the above integral cannot depend on the point of re-
normalization, so we may in fact renormalize at
a point proportional to m if we choose. ) Thus,

Here,

)'„(P,Q)= —r)C [6'(K)1 dzv ()).;)r,, (If(.)),

+ — K [6'(K)]'(K')*[t),'(K')]2m '

r
1

&uv(P, Q, (())de= vi(P, Q)

must have this same property. Since we do not ex-
pect delicate cancellations in the integration over
&o, we can conclude that v, (P, Q) becomes indepen-
dent of P for large Q, so long as Re0~1. A some-
what extended argument is given in Appendix C,
which indicates that v, (P, Q) becomes independent
of P for large Q, so long as Reo &-1.

x dKdK'T, (P, K)

x V.(KCi K')r, .(K', Q)

+2 —Ksh, ' KL' K T P, K F, K, Q.

(40)

Now, for -I&Reo& I we may write (39) in detail

C. Mass insertions and the Callan-Symanzik equation

The operator

m', +p—

T = V, + Ta[t).] V—2' (25')

Applying the C allan-Symanzik operator to (25'),
one obtains

A A 2|t 4m
T,= V, + T, [n.]'V,+ ——T,b.t).V,

B B
m ~+p —-4y

Bm Bg

inserts m~p(g) J d4a)N~((I)I((v)) into the amplitude
T,(P, Q) or V, (P, Q) exactly as in the spacelike
case. The argument then proceeds as in Sec. GC.
Write (25) symbolically as

x [r (P, Q)t (O, Q)-I' (P, Q)t (O, Q)]

=r.(P, Q)t. (O, Q)-i .(P, Q)t .(o, Q).

Now, let P-0 to get

+p—-4y t, O, Q
, B B

Bm~ Bg

=~t.(0, Q)

a+j,
= lim — I', (P, Q)t, (0, Q)s-p Q

+ —'T. [~]*v.. (36) ~ "'Z .P, Q t. O, Q

4m A

T,= T,bB,V,+ T—[t)]'V, . — (3V)

Since the kernel of (3V) is the same as in (25') we
can write -1&Reo&1,

T,(P, Q) Q tr (P, Q)t„(O, Q),
Q~oo f=&
P fixed

gZ, .P, Q t,.O, Q . 39

For Q large we may drop the 0, terms. [Remem-
ber V, stands for V, (P, Q) for the first 0 in (36)
and V (K, Q) for the second V in (36).] Then

Calling

a+ j.
lim — r, (P, Q)=a, ;j-p Q

lim — I', P, Q = —I.

one obtains

and

&t (O, Q)=a t (O, Q)- ~ b t (O, Q)a&aa&~R

These equations can be written as

m'
X)t (O, Q)=a ~t ~(O, Q)- I b t~(O, Q) ~«a p «a «a $ Qg
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m2
(m-a, )t, (o, q=-

Q, b, t, (o, q}, (4la)

(41b)

IV. TWO EXAMPLES

As examples we shall consider the set of graphs
generated by the Bethe-Salpeter equation, Eq. (5},
when the potential is given by the graph shown in
Fig. 6:

or

m2 ~ 1
( — .) b

( — .)t.(o, Q)

m'
b t, (0, q) ~ (41c)

a, and 5, depend on g in a manner similar to p
and y. Equations (41) and (42) should be valid in
the whole 0 plane, although the identification of
t,(0, Q} with lim~, t, (P, Q) is only valid for Reo
&0. For the examples of Sec. IV Eq. (41) reduces
to

where s = (p+q)n in the spacelike case and s
=(P —q)' in the timelike case.

where

x v, (K, 0), (42)

A. Spacelike cases

The diagonalized equation is obtained from (12}
and reads

(,(P, 4()=v, (P, ())v f C'II(d(()l'diC((P((), ,

(~-a.)t.(0, q) = 0,

but we cannot expect an uncoupled equation to hold
in the general circumstance. and

-i 1
(2n) K +m

i+&&'+4 ')/4)' - q ~ - 1 —(P')/Q'(~ —1) (48)

with Reo & -1. We can go directly to the Callan-
Symanzik Eq. (22}with P=y =0. Thus,

2'n A K'dK i), (0, K)a, = lim m',
4)m' o

()
IK'+m'l' (2n)'

em'
2

—ao &a o«@ =o«

where

(44) d wg2 K3dÃ
= limm'

Bm2 8n O +2+yg2)2

a, = I', (0) .

In order to evaluate 1,(0) one needs to know the
solution for t, (P, Q), as is clear from (21b). How-
ever, to order g' we can calculate a, trivially as

1 —(4m')/P'(tv —1) )'v
l+(c m2)/E2 (2n)s

=lim m2
sm' 16o(2n)', (y+1)'

-g' (A'/m'}'
„16()(2n)8[(A'/m2}+ I]'

OO 4m2
Xrdew 1-

&1* d (v 1))

g2
16 o(2n)'

FIG. 6. A potential used in the Bethe-Salpeter equation.
g2

(2n)'16a(a —1) (45}
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so that

00

q 2 E~/(2)()818()( a I)
d(u(u uT(P, Q, (u) ~

1 Q~oo m

g2 1X—
8x cr-1

in the leading logarithmic approximation.

(46)

B. Timelike case

When q2 = Q2& 0 the potential V has the same
form as in the spacelike case.

FIG. 7. A potential used in the Bethe-Salpeter equation.

r d~~ T(P()', ~)-,(,)
(47)

where now s = (P —q)'. Equation (47) is shown in

Fig. 7. Now in the leading logarithmic approxi-
mation

g2X—
8m 0+1'

ACKNOWLEDGMENT

(49)

m 2-ao to 0, =0,

where

2P '1-
s, =lim — I', (P, Q).g--

P~p

To first order in g2
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APPENDIX A

Thus

8 2 KdK
em'(2s)so IK'-m'I' ~ '

In this appendix two examples will be given which
show how T(P, Q, (u) and V(P, Q, (u) behave for large
values of Q. We begin with the contribution to
T(P, Q, (u} shown in Fig. 8:

()m' (2v}'8o, 2 IK'-m'I'

1 (4~ /~) 4 ppg2 1/2JX K'(I —(u}

T(p, e)" dk, dk,
E E

e((e p a,-I,)')e(e-. p-;E;E,) (-Al)
((a, + u, +p)'i'

A /m

em~ (2s)816o ~ ly —ll~
where internal particles have been taken to have
zero mass. Write

x d& 1-

g' -(A'/m')(A'/m' )
(2r}816o I (A'/m'} —l l'

1 (4~ /A) 4 ppg2 1/2

rx d(u(u' 1 —
A'(1 — )0

g2 1

2v)816o

Thus

(2r)816o(o+ 1)
' (48)

FIG. 8. A two-particle reducible amplitude.
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k,

P

FIG. 9. A two-particle irreducible amplitude.

where

k, =(E„k„k~); E, = (k,'+k~') '~', k, =(k~, k2„),

k =(E„k„k,P); E, =(k2 +k,~ )'~', k2=(k~, k2„) .

Now, choose a coordinate frame where

q = (Q, 0,0,0),

vQ P' co

then

(2, +2, +2)'= '(1P+ 2
E, +E

and k„and the volume d'k, d'k, is four-dimen-
sional. Also the logarithmic singularity occurs
when k„and k„are proportional to ~~@, while
)0, ( and (k, ( are on the order of P. The singu-
larity occurs because the single-particle poles
are reached when k„k„and P are essentially
parallel and proportional momenta. As described
in Sec. III the volume of phase space for (p+k, +k)'
= P' is proportional to (P')' which almost balances
the (P') ' coming from the two propagators, re-
sulting in a lnP' term.

The second example to be discussed involves the
contribution to V(P, Q (2)) shown in Fig. 9.

+ (2)Q[(E2-k,P) + (E2-k2g)]

+ 2(E,E, k„k„-k, k-, )

y,2 ++2x ljm Im r'-m'+ gE'

I

if we are interested in finding the strength of the
singularity at P'=0 for fixed &u (k, +k, +P)' must
be the order of P'. To achieve this it is necessary
that Q -k„so that

Ef kfg~tk
jg

where r =q-P-k and the term in curly brackets is
the g' term of the propagator in (I))' theory. Again
the zero-mass limit has been taken. In the co-
ordinate system where

and so

(2, +2, +P)'=P (1+2'k~+k~ p=
2
+,0 0,

we write

d k dk,' d'k= lgdxdy,

+ '~k+ k, -2k, k . A2
2g gg

with

Clearly the result is a logarithmic divergence in
P', since (A2) is a positive definite quantity in k,

x=E, y =E-k .
Thus for fixed cu
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, P'[1+(2x/(uQ)]+ (u Qy
0 0

())'(1-(u) +P'(1-2/(u +2x/(uQ) + (ugly-2/x+A'x lim Im
Q (1-(u)+P (1-2/(u+ 2x/(u()))+ (u())y-2@x-m +fr2 2

p(a', m')da'
,„2 (a' +A')[a'-Q'( 1-(u)-P'(1- 2/(u+2x/(uQ)-(u())y+2())x i&-] j

The dominant contribution to V comes from x-y~
which gives V~ln'Q. In order tn obtain the dom-
inant P dependence y -P'/Q while x-Q so that

V -C,(P'/Q')ln'(P'/-A')

+ C,(P'/Q')rn(P'/-A') + C,P'/Q' .
If (d is small then the dominant P dependence
comes from x-Q, y-P'/(u'Q. Then the P' depen-
dence looks like

for small P'. The x integration can be done ex-
plicitly to give

)
w f'K' )(* '~, )'*((/~)+h())

Let y= (P2/Q(u')». Then

xP2 (02(d2/A(&-&)/(2~) P~(r +»}
dz ln'

(d Q -@PA

V —C,(P'/(u'Q') ln'(P'/-A'(u)

+ C, (P'/(u'())')1n(P'/-A'(u) + C,(P'/(u'())') .

Note that when x» y as is the case above,

The singularity in P2 occurs, roughly, when s is
finite so that V has the form

V ~ C, (P'/(L)'(u2)ln'(P'/-A'(u)

+ C,(P'/Q'(u')ln(P'/-A'(u) + C, (P'/()'(u)')

so that k, -()) while I k I-P j(u. Only when (u be-
comes as small as P/Q are

~
k

~
and k, comparable.

The above example illustrates the general case
that so long as (u»P/Q the dominant P depen-
dence comes when a low mass system of particles
moves parallel to P and with the same velocity as
P 0

As a special case of the last example we con-
sider the graph in Fig. 10. Here

for the dominant P dependence.

APPENDIX 8

In this appendix the e-particle phase space near
the threshold of a zero-mass theory will be given.
Let

d4 = ' ' ~ ~ ~ " 54(k +k + ~ ~ ~ +k -p),
1 2 tt

V(P, ()), (u)

P'(1+ 2x/(uQ) + (u(()ydx ln'
0 y

-A

x 5((L)'(1-(u}-2@x+(u())y)

where (k, )& (k, )"=k' =0. Although d@„is an invari-
ant function of P2 = p2 we shall find it convenient to
choose a coordinate frame where p0»P. Thus we
write

p„= p+ —,0, 0,p

FIG. 10. A tv'-particle irreducible amplitude.

lc 24 ~ ~ nk' de de ~ ~ de1 2 n
1 2 n

P2
XQ g +E +so ~ +Q -p-—1 2 n 2p

x5(k, +k~+ ~ ~ ~ +k„,-p)
«(k, +k, + +k„).

The 5 functions require that k„» )0, [ unless ~k, ~

and k„are both of the order P'/2p. For the mo-
ment suppose that k„» ~k, ~. Then
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dk„dk~ dk„.
k1, k2, k„,

X5(k, yk2+ ~ ~ +k }

k1 k2

x 5(k„+k„+ .+k„, -p) .
Set k), = aq p; then

~ ~ e ff d2k d2k ~ ~ ~ d2k
dA d~- dA

8 ~ ~ ~ 1 2
1 2 8

X5(k, +k, + ~ ~ ~ +k„)

k1 k2 k„+— +oo 0+
Q1 Q2 ~n

X5(1 —a —a —~ ~ —a )

where 0&+, ~1. But

'Id2k, d2k, "d2k„5(k, +k + ~ ~ +k )

+ ~ + ~ e e+k1 k2 k„
Q1 CP2 . G„

~n-1
~ ~ a (p2)2 2

2)i 1 2 n

J
1 1dada ~ ' ~ da 5(1-a -a —~ ~ ~ -a)=1 2 2 1 2 2 g 1)(

V(P, Q, ~) —V(o, Q, ~)-P'/Q',

and examples previously worked out in Appendix
A suggest that

V(P, Q, &u) —V(0, Q, 21)-P'/Q'~' (Cl)

2=1, 2, .. .,~

so that the j particles align with p. Now as (d be-
comes small less alignment will occur until there
is no alignment at all when v-P/Q. This is il-
lustrated in the examples of Appendix A. More
quantitatively call

K k1+k2+ +k

when ~ is small. %e shall now give an argument
to indicate that Eq. (C1}should hold in general.

The argument given in Sec. III involved the prod-
uct of factors coming from the phase space of a
zero-mass theory times the threshold singulari-
ties present. Refer now to Fig. 5. Choose a co-
ordinate system

q = (Q, 0, 0, 0),

&uQ P' &uQ
p =

2
+ , 0, 0,

when ~» P/Q. Now, for fixed &o and large Q a
threshold involving p is reached when

(p+k, +k, + ~ ~ ~ k+)12P'.
As we have seen in Appendix A this means that

(n -1)!(n —2)i

If ~k, ~
and k„, for a particular i, are both of the

order P'/2p then an additional factor of P'/2p
occurs so that this region is not important and the
above result for d4„ is exact.

In Sec. III 8 it was argued that

r 41dld V(p, Q, (d)
0

becomes independent of P for large Q, and that the
correction terms are like P'/Q' up to logarithms.
In order to show that

1+02-~2&SQ2
d&u ra~[1+(I —4P2/212Q2)1~2] V(p Q ~)

"2alq

has this same property it is necessary to deter-
mine how V (p, Q, &o) behaves both when &u is finite
and when &o-2P/Q. The independence on P when
o =1 indicates that for the region of finite ~

(p +K)}2=P +2p 'K1 +K)

=P'+ ~Q(K» -K,.) + K1,+K,'2+2

fd
d'N, d'd, d di
E1 E2 E]

x52(Kq-k, -k, — -k1)

x e(s2 —(p+K, )') e(Q -K„)
attains a maximum when a2 is chosen to be P'j&o;
u2 cannot be chosen significantly greater than
P /&u 2or dg loses all P dependence:

dy- (s2)1-2J d'K, e(Q -K„)

Xe' a2 —CO@

2+2
E]0 -Kg

wQ

- (s')' '(p'/~) (p'/~')

- (s2)' '(p'/~2)
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The threshold singularity gives a factor (a') ~"
so altogether

~&+0 -4 )/Q
/~ ~~[I +(I 4P2/Q2~&)&~2]~y'(p Q ~)

v(P, Q, ~) —v(o, Q, ~)-&'/~'Q' (C2)

for large Q and small v. The factor of I/Q'
comes into (C2) as the only possible quantity to
set the scale for the mass singularity. Thus

=v. (P, Q)

will become independent of P for large Q, so long
as Reo&-1.

~K. Wilson, Cornell Report No. LNS-64-15, (1964);
Phys. Rev. 179, 1499 (1969).

2M. Gell-Mann and F. Low, Phys. Rev. 95, 1300 (1954).
3N. Bogoliubov and D. Shirkov, Introduction to the

Theory of Quantized Fields (lnterscience, New York,
1959).

4N. Christ, B. Hasslacher, and A. Mueller, Phys. Rev.
D 6, 3543 (1972).

R. Brandt and G. Preparata, Nucl. Phys. B27, 541
(1971).

8Y. Frishman, Phys. Rev. Lett. 25, 966 (1970).
~V. Gribov and L. Lipatov, Yad. Fiz. 15, 1218 (1972)

[Sov. J. Nucl. Phys. 15, 675 (1972)].
R. Gatto and G. Preparata, Nucl. Phys. B47, 313
(1972).

9J. Ellis and Y. Frishman, Phys. Rev. Lett. 31, 135
(1973).
R. Brandt and W.-C. Ng, Phys. Rev. D 9, 373 (1974).
The relationship between asymptotic behaviors in off-
shell variables and the properties of an, underlying
zero-mass field theory are discussed extensively by
K. Symanzik, Commun. Math. Phys. 23, 49 (1971); 34,
7 (1973).
C. Callan, Phys. Rev. D 2, 1541 (1970).

~3K. Symanzik, Commun. Math. Phys. 18, 227 (1970).
W. Zimmermann, in Lectures on Elementary Particles
and Quantum Field Theory, edited by S. Deser et al.
(MIT Press, Cambridge, Mass. , 1971), Vol. 1, p. 397.
S. Weinberg, Phys. Rev. 118, 838 (1960).
T. Kinoshita and A. Sirlin, Phys. Rev. 113, 1652 (1959).

~~T. Kinoshita, J. Math. Phys. 3, 650 (1962).
T. D. Lee and M. Nauenberg, Phys. Rev. 133, B1549
(1964).
P. Fishbane and J. Sullivan, Phys. Rev. D 6, 3568
(1972).
I wish to thank G. Preparata for suggesting that such
sum rules could prove useful.

~~A. Polyakov, Zh. Eksp. Theor. Fiz. 59, ' 542 (1970)
[Sov. Phys. —JETP 59, 296 (1970)].
R. Gatto, P. Menotti, and I. Vendramin, Nuovo
Cimento Lett. 4, 79 (1972).

23A. suri, Phys. Rev. D 4, 570 (1971).
4P. Landshoff and J. Polkinghorne, Phys. Rev. D 6,
3708 (1972).
H. Dahmen and F. Steiner, Phys. Lett. 43B, 217 (1973).

6P. Mitter, Phys. Rev. D 7, 2927 (1973).
S. Nussinov and J. Rosner, J. Math. Phys. 7, 1670
(1966).
Weinberg's theorem could presumably be applied to
obtain this result also.

29M. Naimark, Linea~ Representations of the Lorentz
Group (Macmillan, New York, 1964) p. 186.
Amplitudes related to the discussion of this section
have been considered by M. Baker and I. Muzinich
[Phys. Rev. 132, 2291 (1963)] in a spirit similar to
this paper and also in a related context by S.-J. Chang
and P. Fishbane [Phys. Rev. D 2, 1084 (1970)],
M. Kugler and S. Nussinov [Nucl. Phys. B28, 97 (1971)],
and R. Gatto and P. Menotti [Nuovo Cimento 2A, 881
(1971)].


