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drp(s, r;r)p(r, s; p —r)=p(s, s; p),

we obtain

C = PJ
d sp(s, s; P)W{s) .

From the relation8

(4 4)

From (4.6) and (2.4), it follows that g(C) = —a.
Since it has already been shown that g{H) =A,„and
since it is clear from Eq. (2.4) that g(H+C) =g{H)
+g(C), we see from Eq. (8.4) that

g(Zs ) ~A0 —R .(o)

P(r, r; P)-(2mPa'/m) '~'( y(0, r) (', P- (4.5)

with $(0, r}denoting the zero-energy limit of the
outgoing scattering solution f(k, r) of the Schro-
dinger equation(E-„— H)ttt =0, it then follows that

C - (2 wP a'/ m)
'~'a P- ~

In view of Eq. (4.8) and the relation

HP(0, r) = 0,

the VUB on Ao can also be written as

g(Zso~)=A. ,+ a, dr P(0, r)Hg{0, r),
F

(4.8)

o. =- a, dr&*(0, r)W(r}g(0, r).
g

(4 'I) which is the desired result.
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A comprehensive discussion is given of the renormalization of gauge theories, with or
without spontaneous breakdown of gauge symmetry. The present discussion makes use of
the %ard-Takahashi identities for proper vertices (as opposed to the identities for Green's
functions) recently derived. The following features of the present discussion are significant:
(1) The present discussion applies to a very wide class of gauge conditions. (2) The present
discussion applies to any gauge group and any representation of the scalar fields. (3) The
yeno~~liged $ matrix is shown to be gauge-independent. (4) Dependence of counterterms
on the gauge chosen is discussed.

I. INTRODUCTION

In an earlier publication, ' we have given a der-
ivation of the Ward-Takahashi (WT) identity for
the generating functional of proper vertices in non-
Abelian gauge theories. Previous discussions on
the renox malizability of gauge theories' were
based on the Vizard- Takahashi identities fox Gx'een's
functions. "The renormalization procedure is
usually stated in terms of proper vertices, so that
the WT identities for pxoper vertices would facili-
tate enormously the discussion of renormalizability.

In this paper we shall reexamine the renormal-
izability of gauge theories in terms of the WT iden-
tities for proper vertices. In addition to rederiv-
ing many results of Refs. 2, 8, and 5 (which we
shall xefer to as LZI, LZII, and LZIV, respective-
ly), we shall add the following elements to our dis-
cussions: (I) We shall discuss the renormalizabi|i-
ty of gauge theories in a wide class of gauge con-

h

ditions. The gauge conditions we shall considex
are linear in field variables and of dimension 2 or
less. Most gauge conditions considered in the lit-
erature"' are of this kind. (2) We shall consider
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all possible gauge symmetries based on semi-
simple compact Lie groups. Thus, the gauge sym-
metry G is assumed to be a direct product of n
simple groups G, xG, x ~ ~ x G„. Our discussion
mill apply also to groups which are not completely
reducible (i e ., .to groups in which the product of
two irreducible representations R and 9' contains
a third 8"more than once). We consider arbi-
trary representations for scalar fields under G.
We shall consider theories consisting of gauge
vector bosons and any number of scalar bosons.
In an anomaly-free gauge theory9'0 spinor fields
do not present any new problems 'x and may be
treated in much the same may as scalar fields.
(3) We shall show that the renormalization proce-
dure leads to the same renormalized 5' matrix ir-
respective of the gauge chosen in spontaneously
broken gauge theories (SBGT). (4) Dependence of
renormalization counterterms Rnd constraints on
the gauge chosen is studied.

In our discussion of renormalizability, me shall
be deliberately unspecific as to the finite parts of
mass-renormalization eounterterms and the finite
multiplicative factors of renormalization constants,
so as to make the discussion fx'ee from any spe-
cific renormalization conditions one might adopt.
There is a price to be paid for this, and it is that
one must regularize the theory first in order to
give a sensible discussion. We miQ adopt the
gauge-invariant dimensional-regularization meth-
od of 't Hooft and Veltman, "in the form discussed
in Ref. 13.

In Sec.II me review the WT identities for Green's
functions Rnd for proper vertices. In Sec. IG me
discuss the renormalizatlon transformations of
field variables and parameters of the theory Rnd

study their effects on the %T identities for proper
vertices. In See. IV me discuss the renormaliz-
ability of unbroken gauge theories in the so-called
8 gauges, "This discussion supersedes that of
LZI. In Sec. V the considerations of Sec. IV are
extended to arbitrary linear gauges. Section VI
is a discussion of the renormalizability of SBGT
in any linear gauges and augments that of LZII.
Section VII is an elaboration on the gauge indepen-
dence of the renormalized S matrix in SBGT.

II. NARD- TAKAHASHI IDENTITIES- A REVIEW

A. Notations

In discussing gauge theories, unless we agree
on a highly condensed notation, we are apt to be
defeated by the complexities of indices. For this
reason, we shall agree to denote all fields by P, .
The index i stands for all attributes of the fields.
For the gauge field b„"(x), i stands for the group

=0, otherwise (2.2)

mhexe g„g=g 5„~ is the gauge-coupling-constant
matrix. If the group G is a direct product of n
simple groups G, xG, x ~ ~ xG„, there are in gen-
eral n gauge coupling constants g„g„.. . , g„.
Within the same factor group G„me have of
coux'se g~= g8.

%'e have

«a(~a» 4»+As) -«d&w4»+As }=f "'"(fl» 4»+&» )

(2 ~)

where f" ~ is the completely antisymmetric struc-
ture constant of the gauge group. The invarianee
of the Lagrangian under the gauge transformation
(2.1) may be formulated as

-(Iia+)a~ )
bf [4] (2.4)

8. Feynman rules

To quantize the theory, me shall choose a gauge
condition linear in @:

&.[y]=F„,y, =o, (2.5}

whel e

F„»=(g,)'~'g„»»A» (not summed over a),
for P»=b~(x)

„&,c, (not summed over a),
for P»= g,(x). (2.6)

VFe shaB be dealing with the ease in which c, is a
numerical constant. In Eq. (2.6) f is a positive
numerical parameter which can be varied.

The Feynman rules fox constructing Green's
functions can be deduced" from the effective action
~ eff'

L,[e, ,"]=I[~]--'P.[~]k'"'.b .[~]",
(2.'I)

index e, the Lorentz index p, , and the apace-time
variable x; for the scalar field g, (x), i stands for
the representation index g Rnd x. Summation and
integration over repeated indices shaB be under-
stood in this section unless noted otherwise. The
infinitesimal local gauge transformations of P»
may be written as

4-0»= »I»»+(A»'+ «»»Ib)»da (2 1)

where»d„=»d„(x„) is the space-time-dependent pa-
rameter of a compact Lie group G. We choose a
real basis for p» so that the matrix (f")»&= t»» is
real antisymmetric. The inhomogeneous term A~&

ln (2.1} ls of 'the form

C(8

A»"= — s„b4(x-x.), for y»b„'( )x
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where c~ and ca are fictitious anticommuting com-
plex scalar fields which generate the Feynman-
DeWitt-Faddeev-Popov ghost" "loops, and

M~g[(]]]] is given by"

.[ ]= f[ G '] [( ..[ G. , "] G ]]
satisfies the Ward-Takahashi (WT} iden):ity""'.

Mn8[e]= (Al+t()ey}g &
5F

E«—(A, +t(&(t]))8's~a

(not summed over o., P). (2.8)

In (2.9) the quantity

"II' [~]=o (2 9)

The operator M„)][(i]]is in general not Hermitian,
so the ghost lines are orientable.

C. Green's functions

We shall be dealing with unrenormalized, but
dimensionally regularized'~ quantities. (dimension
of space-time d= 4-c). The generating functional
of Green's functions

is the Green's function for the fictitious field c in
the presence of the external source J.

An important consequence of Eq. (2.9) is the
elucidation of the effects on Green's functions of
the change in the gauge-fixing condition (2.5).
When F is changed infinitesimally by ~, the
change induced in W~ may be viewed as a change
in the source term:

ss„ss[z]= f[d (s d]s s(ssss[(s((x [ ](sJ+{sG ( ('sss 'ass GMs]-' s[ ]GFxJ )) (2.10}

or

~((t(' "-~(((ti+(«+ti&(t»}M 's [(t)nF )
(2.11) L.,[4]—r, [4]=0, (2.16)

It was shown elsewhere' that I'[4] satisfies the
WT identity:

D; Proper vertices

The generating functional of proper (i.e., single-
particle irreducible) vertices I'[4] is given as
usual" by the Legendre transform:

w[J]= exp(iz[J]l,

where

r [4)=r, [e)--',(F.[41]'

I ([4)=s("+a' s(t()ey+)'~[49

(2.17)

(2.18)

r [41=g [~1-~(4(,
where

e,= bz [z]/bz, ,

(2.12)

(2.13)
z, = -br [4]/5 4, .

The expansion coefficients of I'[4] about its
minimum 4= v,

o=br[e]/54, ~, , „, , (2.14)

are the proper vertices from which Green's func-
tions are obtained by the tree-diagram construc-
tion.

For later use we define 6,&[4] by

y,"[4]= zt,', t »[4]G,„-[e) G-'„„[e].

In (2.18) we used the symbol [)P:

s( =5„(]8„5(x -xq), for tq=(b]„

=0, for (QJ},.= t]I

(2.19)

In (2.19), Gs~[4] is

Gs l(S]=lkf s (Gs(X —
) ( (2.20}

and is the generating functional of proper vertices
with two ghost lines, so that

n()[4]= -54(/5 J),
n„[e]5'r[4]/54, 54, = 5„, (2.15)

G '([~=-G '(]~[v]

is the inverse ghost propagator and

i.e., b,~[4] are the propagators when the fields (t]

are constrained to have the vacuum expectation
values C.

&8 .i=— [vl
5G

i

is the proper vertex of two ghosts at P and o. and



BENJAMIN W. LEE

the field at i, and so on. Furthermore, it follows
from (2.20) that

G 'e„[4]=FSlf«[4]f~ '/2 (not summed over p) .
(2.21)

In Fig. 1, we show a diagrammatic representa-
tion of (2.19).

III. RENORMAI. IZATION TRANSFORMATIONS

%'e shaQ proceed to the renormalizabQity of
gauge theories on the basis of our mastex equation
(2.16). As discussed in LZII and as we shall dis-
cuss in Sec. VI, the renormalizability of the un-
broken version of a gauge theory implies the re-
normalizability of its spontaneously broken ver-
sion which is obtained, for example, by manipula-
tion of the (renormalized) quadratic coefficients
of scalar fields in the Lagrangian. Thus, we shall
discuss in Secs. III, IV, and V only the unbroken
theory. The Lagrangian of the theory is written
as

it superficially convergent. That is, the divergent
parts of gauge boson couplings, quartic scalar
couplings, and couplings of scalar and gauge bo-
sons are not affected by cubic interactions of sca-
lar fields. The presence of cubic terms does af-
fect the renormalizations of scalar masses and
cubic scalar couplings themselves, but these can
be carried out without reference to gauge invari-
ance of the second kind.

Our task is to show that the derivative I'[4]
about its minimum can be rendered finite (i.e., in-
dependent of e as e-0) by rescaling fieMs, cou-
pling constants, and F« in (2.7) (in the following
we will suspend the summation-integration con-
vention):

c~=Sg(t)c' c =c"

&.l„g=(&„„+5&.,«}[&,(~}&,{e)Z,(e)Z,(e)] ' ',

(3.1)

where Vis a G-invariant local quartic polynomial
of the scalar fields g, X stands collectively for the
coupling constants of scalar self-interactions, and
llf~ is the renormalized mass matrix which is as-
sumed to be positive definite. The potential V is
bounded from below for all real f

In the following, we shall assume that the poten-
tial V is invariant under g--g, so that cubic
terms in P do not appear This doe. s not cause
much loss of generality because the insertion of
cubic interactions in a vertex diagram which has
the superficial degree of divergence &= 0 renders

g -xg~. ca g -x/2g -z/ace)f(y)
n a a~ o a l2 a

or

(i not summed),

F«=(l'„')'/'5„, S, 6'(x„-x,), for y, =b~

1
(gr)g gc/o, fol' Ql=$o . (3.3)

slid by choosing 5M,~(e) appropriately.
function renormalization constants Z» ax e assumed
to satisfy

&~"~~~=~» &~~ ~ (3.4)

y' [C']

The c-number fields 4» transform covariantly
to P, (and &, contr~edientiy) under the transfor-
mation of (3.2):

(3 6)

~ es„[e]

&j) fc]

FIG. 1. Diagrammatic representation of y» [Cj of Eq.
(2.19).

Note that the rules of Eqs. (3.2) and (3.3) leave
the gauge-fixing term in I invariant:

F.[e]=F."[e"]=F„",e", .
%e shall study now how the master equation

(2.16) changes under the transformations {3.2) and
(3.3). We shall confine ourselves to the so-called
A gauges, "characterized by c, = O. In these
gauges, the effective action (2.7) is invariant un-
der the 6 transformations of the first kind, so that
we may write, for example,
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hl/[4]= -54) /5 J/ .
We define G6 by

Gs.[4]=~sG:.[4"]=Gs.[4"l~..

(3.7}

(8.8)

Then, Eq. (2.16) takes the form

I,„',[4"],I,"[4"]=0,

mhere

r,'[4', g", X",5f']=1,[4 g ~ 5fs+55fs]

(3.10)

Gs„[4]g =gsGs„[4] (a, P, not summed}

Gea[41& '=~a 'Gsa[4] ~

First we observed from (2.15) and (3.5) that

g j./2&~ g x/a
fj j

e (5 5a&r& S 5a(r&)s e
g (ss5a&r&)s

0 jf V V P jf

+Q C(r)tSSCtrl+ e g(S yr)S gyrMS yr
a

(4.1)

We expand proper vertices by the number of loops
a Feynman diagram contains.

. Suppose that our basic proposition is true up to
the (tl-1)-loop approximatxolL' l.e., lip to this ol'-
der, it has been shown that all divergences are re-
moved by rescalings of fields and parameters and
adjusting mass counterterms in the Lagrangian as
discussed in Sec. III. We suppose that me have de-
termined the renormalization constants and coun-
terterms up to the (n-I)-loop approximation:

Z, (e)=1+z„(a)+ ~ ~ ~ + s,(„,)(g),

2 (e)= I+X„,(e)+ ~ ~ ~ +j („,)(g),

[4] g -ag -x/sg x/sL r [4r] (3.11) X (C)=I+X„,(&)+ ~ ~ ~ +X &„»(&), (4.2)

e le I=e e&+e e.
I

Z»&e;+r, &'le 1I,
(3.12}

pre(y)-X] @,yg
+a(r) s g ts 5r [4r]Gg [4r] l [ ]jsa

kJs8s~

(3.13)

(Since we have suspended the summation-integra-
tion convention, we note the summation and inte-
gration over a catch-all index a by Qa.} Thus,
from the definition (3.9) and Eq. (2.21) we have-

~e»- lej} gr e [e]e=L&

'or, in the R gauges

(G(r)-l[4r]) g Ss5

(8.14)

+e'x I e JP& e +r'"&
&I

(8,15)

IV. RENORMALIZABILITY —R GAUGES

We are now in a position to show that all diver-
gences in proper vertices can be eliminated by the
rescaling transformations of (3.2) and (3.3). We
shall do this first in the 8 gauges in this section;
this demonstration wiQ then be extended to axbi-
trary linear gauges in Sec. V.

We mill develop the perturbation expansion of
proper vertices, starting with the unperturbed
Lagrangian given by

5A(e)~5K, (s)+ 5Xs(e)+ ~ ~ ~ + 5X (e)

5Ms(~)= 5M' (~)+ ~ ~ ~ + 5Ms„,(~) .
We wish to show that the divergences in the n-loop
approximation are also removed by suitably chosen
s,„(e), s«(e), x~(~), 5X„(e), and 5M'„(e). This in-
ductive reasoning makes sense starting from m=1,
since n-1=0 then corresponds to the tree approxi-
mation where there are no divergences.

Let us now consider a proper diagram mith I
loops, and carry out the BPH (Bogoliubov, Para-
siuk, and Hepp} renormalisation. " Since any sub-
diagram contains at most (n-I) loops, the diver-
gences associated with any subdiagrams are re-
moved by the previously determined counterterms.
To make an effective use of Eq. (2.16) we must .:
also construct L'„,[ ]4up to this order. In this
connection we must remark at this point that y, "~

defined in (3.13) contains divergent subdiagrams
shown in Fig. 2 by a shaded square. Such diver-
gent subgrams arise from a tmo-particle cut in
5(d "~ ')t /54s. As we shall establish, the diver-
gence associated with such a subdiagram is re-
moved by X~. Thus, lower-order terms in X
multiplying y, ~ "l in (3.12) will remove such diver-
gences, since these subdiagrams contain at most
m-I loops.

j
-i t"

I)

FIG. 2. Divergent subdiagram (shaded area) arising
from the insertion of gs&j in Fig. 1.
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NA

0 t .j---k

FIG. 3. Definitions of proper vertices. See Eq. (4.3). ANe
NA+Ne N

g'a 'N -I =0
B

In order to obviate infrared divergences, it is
prudent to choose as the subtraction point for n-
point proper vertices the point at which P, '=a',
P, P, =a'/(n-1). We may write down the proper
vertex as the sum of terms, each being the pro-
duct of scalar function of external momenta and a
tensor covariant, which is a polynomial in the com-
ponents of external momenta carrying available
Lorentz indices. Except for the scalar self-
masses, all other renormalization parts have D= 0,
or l. (As we shall see, the self-masses of gauge
bosons are purely transverse in the R gauges, and
therefore have effectively D=0: The latter is also
true in other linear gauges, as we show in Sec. V.)
Thus only the scalar functions associated with ten-
sor covariants of lowest order are logarithmically
divergent. If we expand such a scalar function
about the subtraction point, only the first term in
the expansion is divergent. Among the vertices
derived from L«[4] only the two- and three-point
vertices are linearly and logarithmically divergent,
so the same remark applies here too (The .reader
is invited to verify this statement and that the four-
point vertices derived from L„,[C] are superficial-
ly covergent. ) Thus when we discuss the relation-
ships among the divergent parts of proper vertices,
we need focus only on these terms.

Equation (3.10) contains all possible relation-
ships among proper vertices which follow from
gauge invariance of the second kind. To make use
of this equation it is convenient to resort to a dia-
grammatic approach. We shall represent (we will
drop the superscript x; all quantities and equations
are renormalized ones)

FIG. 5. The WT identity for proper vertices. g
means summation over all partitions of N„+N~-1
external lines into two groups of N„and Nz-1 members
each.

Equation (3.10) may be represented diagrammati-
cally as in Fig. 5.

In examing (3.10) in the n-loop approximation,
the following simplification will be noted. In the
n-loop approximation, we have

(a) =0

(b)
I

+ WWW 0

(c) h-

{L.,},~~ (r,}„+(L„,}„~{r,},

=-(L.,},—(rj„,+ ~ ~ ~, (4.5)
5

5(n)L [@]
af;f~ ~ ~k (4.3)

as in Fig. 3, and

(4.4)

.zQ =0

as in Fig. 4 (in the present case, v=0). We shall
use the notation (e)

.xQ , yg =0

FIG. 4. Definitions of proper vertices. See Eq. (4.4).
FIG. 6. The WT identities for renormalization parts

in the R gauge.
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where {}„denotes the quantity evaluated in the
m-loop approximation. Since the right-hand side
of (4.5) involves only quantities with less than n

loops, it is finite by the induction hypothesis.
Thus, we have, denoting by {} the divergent
part,

{L,}, {I',}„"+{L„,}„"—{I'J =finite, (4.6)

5,A (p') p~r,'„„(p)=0, (4 7)

which shows that I's„(p) must be transverse:

scalar lines vanishes in the R gauges.
(a) Let 5 si'+„(p) be the Fourier transform of

5'I', /5B&5B„~O and 5„sp„A"(p') the Fourier trans-
form of L~[O=O] for P,=bs T. hen we have

which means that the left-hand side is independent
of z as e 0. By differentiating (4.6) with respect
to 4 N times and setting C =0, we obtain equations
connecting {I',. . .&}„"and {L„,.&. . .,}„".

We need consider five equations which follow
from (3.10). These equations are shown in Figs.
6(a}-6(e). We distinguish here the vector-boson
lines (wiggly lines) and scalar-boson lines (straight
lines). Note that any vertex with an odd number of

r,„„(p)=(g„„p'-p„p„)v,(p') . (4.8)

{A (P')}„"=A"(-a')+s „, etc.

(b) Equation (4.6) corresponding to Fig. 6(b) is

Both {s,(P')}„"and {A"(P')}„aremade finite by
wave-function renormalizations, i.e., by counter-
terms z „and z „, because

P"{A (P')}.'"{I &(P, q, r)}.+P'{A (P'}}.{I'~~(P,q. r)}.'"

+g{L &„,),&s»(p, r, q)}„"(g,„r' r,r,) +g-{L&„,&.&s»(p, r, q)},(g,„r'-r,r„){v'(r')}s"=finite

(n and y not summed), p+q+r. =0, (4.9)

where the quantities I ~t„"(p,q, r) and
L &s».&z»(P, q;r) are defined in Fig. 7, and+'
means sum over the terms gotten by the inter-
change (q, p, P)—(r, v, y}.

The first and the last terms on the right of (4.9)
are finite by the renormalizations performed in

(a), so we have

p, a,X

rs7sv

rs7s&

=I), y(p, q, r)

p+q+r =0

p'{I'k„'."(p,g, r)}.'"+g'{L.&„. s (p, r;q}}.'"

&& (g,„r'-r,r„)= finite . (4.10)

Pv qPII (p ) ( „)(P,g )

p+q+r =0

From Lorentz invariance and a remark made pre-
viously, we have

{I'~„&(p,q, r)},"=g~„(ap„+bq„+ cr„)

Psas fs7s V

s,s,p

a y8= I' ( p, q, r,s)l.prp
p+q+r+s =0

=Ep (a px+b qx+crx)

=g„~(a"p +b "q +c"r ), (4.11)

where a=a" &(e), etc. , are constants and

{L~s»;&~,)(p q r)},"=g~vL ey(~) ~ (4 I&)

We ask under what circumstances p {I'~„&(p,q, r)}
can be a linear combination of (g»r'-r„r„) and

(g „q'-q„q„). It turns out that it can happen only
if

p,a,k

q, a

r, b

rt7i v s,8p

pa -~ q, ,p, a(Py, );(yv)(8p)
p+ q+r+s =0

=I+ (p;Q, r)
aab

p+q+r=0

{r&.'(p, q, r)}. =W.s, (~)[g&(p-q).+g„.(q-r)

+g.~(r-p}J

q, a

Ps n, b =L (p;q, r)aab

p+Q+r =0

+B sq(~}(g~p„-g„),p„). (4.13) FIG. 7. Definitions of vertices appearing in Fig. 6.
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(4.14)Aasy(s)= A-say(s)= -A ay s(s),
i.e., A 8& is completely antisymmetric in e, P,
and y. Furthermore, Eq. (4.10) shows that we can
adjust the finite part of A„s„(s) so that

Aas„(s)=L sy(s) . (4.15}

Now the Bose symmetry applied to the three-point
boson vertex tells us that

B~„(s)=0

parts, a derivative of (4.8), the last term on the
left-hand side of Fig. 6(c) does not contribute be-
cause

(La(sp);(yv)(s p))a

is not a renormalization part for n~ 1 and =0 for
n= 0. Since

(L (aS)pl(yv))o f asygpv s

(I'a+(P q r))o=f s„[If) (P q). +-gp.(q r)), -

(c) Consider now the relation depicted in Fig.
6(c). In the equation which deals with divergent we have

+If..(r-p)„], (4.16)

f s,(r',y'„(P+q, r, s))„'"+L„s,(I'~&„'(p+q, r, s)),

+[cyclic permutations of (q, p, ))), (r, y, p), (s, 5, v)]'+p'(I', &ys(p, q, r, s))„=finite. (4.1'l)

From Lorentz invariance and power-counting argu-
ments, we have

Since D (s) is of the form

Da(t)=Da(t)+x~(s), (4.20)

(4.18)fsy, L.as=f as, L,s), ~

By multiplying Eq (4.18) by.fs„and summing
over P andy, we find that

L sy(s)=D„(s)f s (a not summed),

where

(4.19)

In (4.17), the term (A")„"(I', ~ys), does not ap-
pear because the first factor is finite the wave-
function renormalization z „. Consider the terms
proportional to (q-r}„in Eq. (4.17}, taking into
account (4.14), and (4.15). The last term on the
left-hand side of (4.17) does not contribute. Equa-
tion (4.17) tells us that the finite part of L s„may
be adjusted so that

([fs, Ly] [fy, L ]}as-=(f L +L fs)ay,
where (f )„y=f sy, (L ) y=L„S„(s). Since

[f,L']=f. „L,
as follows from the fact that L 8& is a G-invariant
tensor operator, we have

(~„"(P;q, r})'."=(q-r)„~."(s),

( -'(P;q, .})'"=."( ),

where T"„and M ~ are divergent constants, we
find that

T"„(s)= S„(s),
S =-S

j},

(4.21)

(4.22)

we can choose x to cancel the divergent part of
D' L sy(s) is made independent of s as s-0 by so
doing, and so is (I'~sy) s", by (4.13)-(4.15).

Actually, Eq. (4.1'l) contains information on
(I'"„„ys)s" as well. However, it is not necessary
to dwell on it here.

(d) First of all, the inverse scalar propagators
are made finite by 5M (s} and z,(s}. Now look at
Fig. 6(d). The treatment of this relation proceeds
in much the same way as that of Fig 6(b). .If we
define (see Fig. 7 for the definitions of I'„"and
L aav)

D (s)=E„(s)/C„ [Sa MP] =0 (4.23)

f syfssy=5 SCp.
~ ]f

~

~f asyLssy(s)=()asEa(s) .
~j

[Equation (4.14) is sufficient to establish (4.19) for
well-known groups such as SU(2) and SU(3}, but
the point of this demonstration is to avoid too much
reliance on group theory. ]

where M' is the scalar mass-squared matrix.
(e) The relation depicted in Fig. 6(e) can be pro-

cessed similarly to (c) above. Making use of
(4.21), (4.22), and

(r"„"(p; q r))o=(q-r)„&"o

(L "(P;q, r)),= f „,
[t S'].v=f s)Syv
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one finds that

S„(e)=D„(e)t„(anot summed) . (4.24)

notice that

L,(((l, c) L-,s(f, 0}=--,' +26"P„c,i(,-a,a

Thus the choice of x„„(e)made in (c) above [see
Eq. (4.20) et seq. ] will make both {r„")„and
{L"")„finite.

Let us summarize the results so far. We have
shown that by suitable choices of 5M'(e), Z, (e)
={Z (e), Z,(e)], 2 (e), and X„(e), all two-point
and three-point vertices derived from I', [C] and

L «[4] can be made finite. More importantly,
since only the two- and three-point vertices of
L«[4] are renormalization parts, {L«[4"]]„is
made finite by the above counterterms. (We shall
restore the superscript r for "renormalized"
from here. )

Therefore, from (4.6), we find that

~{L'[c'"]). ~ {r'[4'"]).=o (4.25)

where, from (3.12),

[@ ]]o=s +R' (4.26)

Since {r",[4"]]„'" must be a local functional, at
most quartic in O', Eq. (4.25) can be solved. The
solution is

(r;(d'j)'." fd x( =A(»'B "=,& » B, ;&„—„

+g r f f38(r)~y(r))2a a8y g v

+ Lg(s @r t a/rd(r)q r)2
2 p a ab tf n

-v[@D (4.27}

where V is a G-invariant quartic polynomial in
+", where coefficients depend in general on e.
After the renormalizations outlined in (a)-(d)
above,

V. RENORMALIZABILITY —LINEAR GAUGES

We shall now extend the discussion of Sec. IV to
arbitrary linear gauges discussed in Sec. II. First

a

so the remaining divergences lie in the quartic
couplings. But these divergent quartic couplings
are G-invariant, so that the set {5)((e)) which con-
tains all possible quartic couplings will eliminate
these divergences.

We have shown that the scale transformations
(3.2) make ro[C „]finite in each order of loopwise
perturbation theory in the R gauges. Further,
from (2.17) and (3.6), we find that

r"[@,]= r."[+"]--'9"[@'P
is finite in this gauge.

".&.,d,) ...
n, aa, b

(5.1)
where L,~(r, c} is the effective Lagrangian con-
sidered as a function of gauge-fixing parameters

and c,. We note here that c, is of the form

c,= t,"~A, (n not summed), (5.2)

5r"[C "]
M" =v,B& =0

=0 (5.3)

Proper vertices in the general linear gauge are
given by variational derivatives of I"[4 "] with re-
spect to 4" evaluated at 4"= v. Alternatively, the
proper vertices may be obtained by writing

g. g(.)+~a a a (5 4)

and defining the c-number fields 4,' "' as the ex-
pectation values of g,' " in the presence of the ex-
ternal sources J('), and expanding I'"[4] about
0,'(')=0 and B„'=0. The quantity 2), in (5.4) is to
be determined by the condition that |t},' not have
vacuum expectation values. In perturbation theory

where A, is a constant vector in the space of g,
and A, =A, if a and P belong to the same factor
group.

Equation (5.1) tells us that the difference between
the effective Lagrangians in the R gauge and the
general linear gauge for the same & is a sum of
terms of lower dimensions (c3). It follows from
this observation that the insertion of vertices that
appear on the right-hand side of (5.1) in a vertex
diagram of D=O will make the diagram superficial-
ly convergent. This means that the counterterms
(Z, 1) (Z -1),(X„-1), and N. defined in Sec. IV
[for L ff(f 0)] will render finite these vertices.

Thus our task is to show that the divergences in
vertices of lower dimensions are either absent,
or, if present, may be removed by a gauge-invari-
ant manipulation. The possible candidates for di-
vergent vertices of lower dimensions are the b„',
((S2b„, p, p, and etc/ vertices and the ((t-vacuum

'transition. Note that the invariance g--g is bro-
ken by terms on the right-hand side of (5.1).

The fact that p can develop nonvanishing vacuum
expectation values, even when M'&0, in a general
linear gauge is of importance here. These vacuum
expectation values v arise from loops, and must
be determined from the solutions of
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p~ p„)11,' (p )+q „w'e~()
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Ps + p, o +L (P )
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aQ
ab

(p~)

q, b

p,a~
r,c

abc

p+ q+r*Q

~ Xl +

aQ

r,o

p, e ~- q, pg„ ~ ega
(p, q, r)

p+ q+r *Q

FIG. 8. The %T identities for additional renormalima-
tion parts in linear gauges. FIG. 9. Definitions of vertices appearing in Fig. 8.

5~=XVej+X 5~2+ ' ' '
y

where x is a fictitious expansion parameter (@=1)
of the loopwise perturbation expansion. When Eq.
(5.4) is substituted in the effective Lagrangian,
there mill emerge a number of near terms. One of
them is a linear term in g, with a coefficient
which is a function of e,. This term must serve
as the counterterm to cancel g,' vacuum diagrams
(the so-called tadpole diagrams). This require-
ment mill fix e,„. There mill also appear quadra-
tic and cubic terms in g ' by this substitution.

We shall proceed inductively as in Sec. IV: We
shall assume that up to the (n-1)-loop approxima-
tion Z„Z„,X, 5X (as determined in Sec. 1V),
5M'(f', c') (satisfying

[5M'(0", c"), t "].,=0, (5.5)

determined up to this order), and

&O= ~OX+uS+' ' '+~I(n-~) P

remove divergence from renormalization parts,
and we shall show, based on (4.6), that suitable
choices of n-loop counterterms do the same in the
e-loop approximation. To determine the renormal-
ization parts of dimensions ~3, we look at the four

equations of Fig. 8. The double lines in Figs. 8
and 9 refer to external 4 ' " lines. The relevant
vertices that appear in Fig. 8 are defined in Fig.
9

(a) Since T"'(p') and f, , vanish in the tree ap-
proximation, me have

{vzas(pR)}dlv 0 (5.V)

(b) We have

{Iaa}&~(pi Ma)as+pa{1 nb}M O (5.8)

Consider, now the limit P' -0: %'e learn that

lim {I"'(p')}.'"=p'f "'(p*) (5 ())

(5 ~ 10)

and f"(p') is convergent, because f. '(p') has
superficially D=0. Further', Eq. (5.8) tells us that
{Fo }„1sf1111'te.

(c) The first term on the left-hand side is made
finite by Z and X; the second term does not con-
tribute io the left-hand side of (4.6) because both
L ' and I'"' vanish in the tree approximation; the
last term does not contribute because L „'and
To

' vanish in the tree approximation. Thus ere
have



RENOaMALIZATION OF GAUGE THEORIES —UNBROKEN. . .

because(L "},is made finite by@ „. Writing

(~co(j d)}div pd5ooff o(&)+ciao(&)

we see that H'(d) is removed by z,„, and F"(c) is
removed by [5M',o(f", c.', e)}„satisfying (5.5).

(d} Repeating an analysis similar to (c) above,
we find that

(t „.5oo 5d, + t oo.5„5„
+ t „,5„,5„,) (I """(pqy)}„'"=0. (5.11)

L,„(l",c",Mo')+Qy, g;, (6.1)

vrhere y, 's are finite constants. The vacuum ex-
pectation values of g of this theory, u, (y), are
given by the solution of

the condition N' &0 is violated. For the following
discussion, it is convenient to keep in mind a com-
parison theory given by the same g" and V, but
with a positive definite M0~.

Consider the effective action

This means that (I""'}d" must be an invariant un-

.der G. But this is impossible unless +a s (6 2)

(+abc }dir (5.12)

because the group theoretic structure of I"~' must

be of the form

(I""}d'" =ddt'o' x const, (5.18)

VI. RENORMALIZATION OF SBGT

This section is devoted to augmenting the dis-
cussion of LZII on the renormalizability of spon-
taneously broken gauge theories (SBGT), so as to
make it applicable to arbitrary linear gauges. The

Higgs mechanism" (for a historical review of the

subject, see Ref. 21) takes place in general when

where A.d is the constant vector defined in (5.2)
and t"~ is a G-invariant tensor. [Note that the
terms which break the i'--g invariance in (5.2)
are all proportional to c, .]

This concludes the proof that Z&(P, O), ZgV, 0),
& (l", 0), snd 5M'(V, c') remove divergences from
the perturbation series for proper vertices in the
linear gauge specified by the thoro sets of parame-
ters g" and c" after the vacuum expectation values
of g, are duly taken into account. The question as
to whether 5M'(K', c") is also independent of er can-
not be discussed meaningfully in the context of an

unbroken theory because of the impossibility of de-
fining the 9 matrix. We shall return to this ques-
tion after me discuss the renormalization of spon-
taneously broken theories.

satisfying the positivity condition that F"be convex
at 4"=u, 8„"=0. Here I'" is the generating func-
tional of proper vertices of the theory given by

I,„(M,'}. In perturbation theoryw, e may define
ys(r) by

q r(v)+~

u u 0+u 1+u 2+

and determine u„by the condition that

5LIK(Mo ) I

0 ] Ij) -tt 0db —0

(6.3)

(6.4)

(6.5)

1.«(p, c', ~')+$ r. r:,
where M' is no longer positive definite. The sca-
lar propagators of the theory are of the form

(6.6)

subject to the positivity condition, where I ',„ is
the effective action with all counterterms set equal
to zero, and u„by the condition that the g' tad-
poles vanish in the I-loop approximation.

It is easy to see that the proper vertices of the
theory (6.1) are rendered finite by the counter-
terms [Z,(Mo')-1], [Z (Mo')-1], [X„(Mo')-1],
M.(Mo'}, and 5M'(M, ') of the comparison theory
L s(Mo'}. The argument involved here is complete-
ly analogous to that given for the o model, "(see
also Ref. 23} and relies on the so-called spurion
analysis. "

Let us now consider the theory

-1
&C0&e0

1

Id 1 Mo' P' u~udo -Q —-Q -+ ho 1-Mo -P lu oudo Q Q

W'

x(Md-M d) ' ko 1 -M Puooudo-Q —-Q"
a e
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[t', 5M (M, Mo, y)]~q=0.

When we let y= 0, we have

u, (y=O)= v, v, eO,

(6.8)

and we have an (intermediately) renormalized
SBGT.

To recapitulate: A SBGT is renormalizable in
any linear gauge (V, c') by the vertex and field re-
normalization transformations of a comparison un-
broken theory L„f(i",c', M, '&0) [also of
L,ff(P, O, MO'); see Sec. V] and a suitably chosen
G-invariant mass counterterm 5M'(M') = 5M'(M, ')
+ 5M'(M', M, ', y= 0). It is to be noted" that in a
linear gauge, the vacuum expectation values of

are in general infinite and gauge-dependent—
they are not observables. This in no way implies
the nonfiniteness of renormalized vertices, since
the role of the infinite vacuum expectation values
is precisely to cancel another infinity.

VII. GAUGE INDEPENDENCE OF THE S MATRIX

Left so far unresolved is the question whether
5M is gauge-dependent. To answer this question,
we must consider the S matrix. Fortunately for
SBGT, at least in the presently contemplated
applications to weak and electromagnetic inter-

where u„=u,o(y, M') are obtained from (6.5} with

L,« =L,«(M'), subject to the positivity condition
[which guarantees that M'+Puu+(I/g)Q is positive
semidefinite], and where P' and Q" are matrices
acting on the scalar-field indices. Now consider
a renormalization part of the theory (6.16}. If we
substitute the right-hand side of (6.7) for every
scalar propagator in the diagram, there will re-
sult a number of terms. The first term, in which
all scalar propagators are replaced by the first
term on the right-hand side of (6.7), is the corres
ponding renormalization part of a theory of the
form (6.2) with a different set of y's [because u~
appearing here is u,o(M', y) and not u„(M,', y).
But we can choose y's such that u,o(M2, y)
=u, (0M,', y')], and this term is made finite by a
counterterm of the comparison theory L,«(M, '). If
the superficial degree of divergence D of the re-
normalization part in question is zero, the rest
of the terms are superficially convergent, and we
require no more over-all subtractions. If D is 2
(scalar self-energy), the terms in which only one
scalar propagator is replaced by the second term
on the right-hand side of (6.7) are still logarith-
mically divergent, but this divergence is removed
by a suitable choice of the mass counterterm

5M'(M', M, ', y):

actions, it is possible to do so, because the in-
frared singularities of these models are no worse
than that of quantum electrodynamics.

Thus we adopt here the conventional (and per-
haps unsatisfactory) tactics of assigning the photon
a small mass p. , and keeping it finite until physical
quantities —cross sections, etc.—are computed,
and then taking the limit p. -0 accounting at the
same time for the particular experimental setups
in measurements. There is a problem, here,
though and it has to do with the introduction of the
photon mass in a way not destroying the under-
lying non-Abelian gauge symmetry. This one can
do easily if the gauge group in question has an
Abelian factor group as in the Weinberg-Salam
theory" simply by giving the Abelian gauge boson
a mass. In a theory such as the Georgi-Glashow
theory, "the above option is not available, and one
must invent some other ways —for example, by
including more (fictitious) scalar mesons as was
done by Hagiwara. "

Therefore, it suffices to consider the case in
which all physical particles are massive. We shall
call a pole in the propagator of a regularized the-
ory physical, if the location of the pole does not
depend on the gauge-fixing parameters g and c.
What we have described in previous sections is an
intermediate renormalization procedure, after
which renormalized Green's functions are Gnite.
It is therefore possible to normalize asymptotic
physical particle states to unity by final, finite
multiplicative renormalizations. Henceforth Z,
will refer to the complete renormalization constant
when i refers to a physical particle.

Let us choose a particular gauge (f'„c',) and
write the effective Lagrangian always in terms of
renormalized fields and constants appropriate to
this guage. We reall the important conclusion'
which follows from (2.4); for the same Lagrangian,
a change in the gauge-fixing term has the same
effect on Green's functions as a change in the
source term. In particular, this means that

6( (k; f",c; e) =z)(k' r, c; po, co,' e)L( (k; fo, c;E)

+ terms not having poles at k =m&,

(7.1)

where b, , (k; g", c"; e) is the full regularized propa-
gator in the gauge (g', c') for the physical field
p; a.s renormalized in the fiducial gauge (g, c", ).
Since for physical particles the two propagators
appearing on both sides of (7.1) have the pole at
the same value of k'=m, ', the mass counterterm
5M' is the same in all gauges provided that the
renormalization conditions for the scalar masses
are expressed in terms of observables, i.e., "the
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physical mass of the stable particle i shall be

m, ." One must give precisely as many conditions
of this type as there are independent parameters
inM .

The value of z, at k'=m, ' is the relative field
renormalization constant:

&g(~g r-", c'Lp cp) =Z((e, c")/Z/(ep, cp), (7 2)

renormalization constant z, is in general infinite,
except where g" =gp, because in the latter case
both Z, 's are relatively finite with respect to
Z, (g', 0;M p') of Sec. V.

The renormalized (with respect to external
lines) physical T-matrix elements T are the same
in all gauges:

T(k~, kp, . . . , k„;f, c")= T(k„k2, . . . , k„;r p, cp),
where the Z&'s are the complete renormalization
constants in the respective gauges. The relative where

(7.3)

T(h k R L c ) llm ll g Ihg m, )IG 'pk„. . . , k„; L c', v'„, c', ),
kg& pup [z((f ~ c y gp, cp)]

g~p . 5=z

k, +k, + + k„=0 (7.4)

and G(f", c";g, c', ) is the momentum-space
Green's function in the gauge (f", c"), wherein the
fields are renormalized with respect to the fidu-
cial gauge. This was the main conclusion of LZIV.
Now if we adopt the renormalization conditions
that g is the value of the T-matrix element for
a particular trilinear coupling of three vector
bosons, then it follows that

r

which appears in (3.2) is relatively finite. A
similar statement can be made also for the quartic
scalar couplings: With on-mass-shell renormal-
ization conditions on these vertices, we find that

[1+X'."& '5X„„(g",c'))

x [Z. (C", &)Z, (C", c")Z, (V, c')Z„(C", c')]"'.

Y (g", c")
[Z„(g', c")Z~(P, c')Z), (g', c")]' ' (7.5)

is gauge-independent.
In conclusion, the renormalized S matrix, start-

ing from the same Lagrangian, is the same in all
linear gauges.

is independent of (f", c"), where Y, (g', c" ) is the
vertex renormalization constant which will meet
the on-mass-shell renormalization condition, and
the indices ci, P, and y refer to the same factor
group. Note that the ratio in (7.5) and

~(Z', 0)
Z 'I'(g", 0)Z„(g', 0)
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Application of conformal symmetry to quantum electrodynamicse
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Conformal symmetry is used to determine the position-space vertex function I'&(x,y;z)
of massless quantum electrodynamics in terms of the current-current correlation function

n&, (x,y) and coefficients E~ and E2 appearing in the Wilson expansion of the product
g(y)lt}(x) of Fermi fields. This relationship holds order by order in perturbation theory for
graphs containing a single electron line, evaluated in a special position-dependent gauge.
The relationship provides an explicit and perhaps simplified method for computing the
vacuum-polarization amplitude F&(n)and is used to analyze the behavior of single-electron-
loop amplitudes in quantum electrodynamics for values of the coupling constant n near a
zero of F

& (~).

I. INTRODUCTION

We study the short-distance behavior of the
connected, improper vertex function I'~(x, y, z)
computed in quantum electrodynamics from graphs
containing a single electron line. Examples of
such graphs, with the position coordinates x, y,
and z labled, are shown in Fig. 1. Throughout
this paper we wi11 work with amplitudes in posi-
tion space' and achieve the short-distance limit by
setting the electron mass equal to zero.

It is demonstrated in Sec. II that such zero-mass
Feynman amplitudes, corresponding to graphs
containing a single electron line, are conformally
covariant' provided they are computed in a special
gauge. ' In this gauge the free photon propagator
is given by
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The new gauge parameters B„, 1&p&4, must be
transformed as the coordinates of a position four-
vector in order to realize conformal covariance.
rn the limit K=o, Bp-~ the abo ve propagator re-
duces to the usual Feynman gauge propagator.
The parameter K is chosen as that power series
in 0.,

3Q
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which makes the electron wave-function renormal-
ization constant Z2 finite. '

In Sec. III the vertex function I'~(x, y; z) is first
studied in the generalized Landau gauge with pho-
ton propagator
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D „(x-y)=,+-,'x ln(x-y)'.

u ~ (x-y)' ' ax„ay„

Conformal symmetry is then used to determine
the dependence of the improper vertex function
I'z~(x, y; z), evaluated in the gauge (1), on the
gauge parameters B„. It is found that the limit


