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The Rarita-Schwinger formalism for fex~on fields is brought to a Lagrangian form in the
case of arbitrary spin. The requirement that all differential equations of the field should
follow from the variation of an action integral necessitates +e introduction of additional
fields in the theory. By demanding that these auxiliary variables vanish in the case of no
interaction, an explicit form is obtained for the Lagrangian. The resulting theory is found
to reproduce the usual formalism in the case of spin &2, and turns out to be in agreement
with results obtained by Chang for spin values 2 and Ii. The Galilean limit of the minimally
coupled equations yields the minimal Galilean-invariant theory of Hagen and Hurley. The g
factor turns out to be 1/s, in accordance with a long-standing conjecture.

I. INTRODUCTION

(2a)

ss (t(+) —() (2b)

Our aim is to write down a set of Lorentz-invari-
ant first-order differential equations which yield
(2) and are obtainable from a Lagrangian. ' Note
that since Eq. (2b) follows from (2a) and (1), it
would appear that one has only to obtain Eq. (2a}.
The latter, however, is not a Lagrange equation
since it does not consist of traceless terms,
whereas an equation obtained from a Lagrangian
by varying it with respect to a symmetric trace-

In the preceding paper' a Poincard-invariant
Lagrangian theory was presented for a massive
boson field of arbitrary spin. The spin-s boson
field was taken to be a symmetric traceless tensor
of rank s, which, along with symmetric traceless
tensors of ranks 8 —2, 8 —3, . . . , 0, allowed the con-
struction of the second-order Lagrangian. This
Lagrangian was then brought to first-order form
and some simple aspects of the resulting theory
were studied. In this paper' the corresponding
program is carried out for a massive arbitrary-
spin fermion field.

Following the Rarita-Schwinger scheme' we
select the spin-s fermion field to be a symmetric
tensor-spinor (t(") of rank n (—=s ——', ) which satis-
fies the spinor trace condition'

&s ~(~) 0

Thus P(") transforms according to the Lorentz-
group representation &(s(s + 1), s tt) PD( —,

' s, &(I + 1})
and satisfies

less field such as P(') should consist only of sym-
metric traceless terms. ' The correct I agrange
equation corresponding to (2a) is

(-iy s+m)|t(„",). . .„„

a result which reduces to (2a) provided (2b) is
satisfied. However, the latter result is not ob-
tainable from (8), and more equations and con-
sequently more fields are needed. The resulting
equations should be such as to imply that all the
auxiliary fields vanish, and in addition (2b} should,
be obtained.

In Sec. II we consider the question as to, what
types of auxiliary fields are to be used. The ar-
guments and procedure are similar to those used
in the preceding paper. Since the number of
auxiliary-Geld components should be kept to a
minimum, we restrict ourselves to tensor-spinors
of rank less than n. In view of the fact that these
can couple only to (Sg(")), one can restrict con-
sideration to symmetric, traceless objects. %'e

start by analyzing the situation for some lower
spin values. A pattern emerges which is then
used to construct the Lagrangian for the general
case. In Sec. III minimal electromagnetic inter-
actions are introduced End the Galilean limit of
the resulting equations is obtained. The result
is found to coincide with the Galilean-invariant
theory of Hagen and Hurley. '

II. THE FREE FIELD

As noted in the previous section, the Lagrange
equation (3) does not reduce to (2a) unless (2b) is
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satisfied. The problem is thus seen to be that of
eliminating (8$ " )—a tensor-spinor of rank n-1
It is natural to try an equation involving tensor-
spinors of that rank. We therefore introduce a
symmetric traceless tensor-spinor |t " " of rank
n-1. In the spin-& case, then, the most general
Lagrange equations involving )I)(') and P(" are' (-i y 8 + m) g

' -Tr = )L (8)("jsr, (9)

(6). Again the obvious choice is the introduction
of a symmetric traceless tensor-spinor y

" ' of
rank n-2.

The most general equations for the spin--', case,
in view of the above discussion, are

(-iy 8+m)$(p +~iy„( 8|))")=c[8„+~y.„(y 8)]y(') (4)

and

(8$ ')=-((iy 8+—,'m)g "—Tr j+ c,(8X "j~r

(10)

(8t/I ")= —(i y 8 + a m))/) (5)

The real coefficients c and a are to be determined
from the requirement that (4) and (5) yield g

0 = 0
= (8$("). Contracting (4) with 8" and subsequently
eliminating (8$(C) with the help of (5), one obtains

[(1--,' c)8'+ (2-a)(-i my 8)-2am'] g(o) = 0 .

This will imply g
0 =0 [hence (8 t)) ")=0 from (5)]

if and only if the coefficients of the derivative
terms vanish and that of the last term is nonzero.
The coefficients c and a are thus uniquely de-
termined to be 3 and 2, respectively, thereby
leading to the Lagrangian

(8$(")=(-i y 8+ d, m)X ',
where the values of c and a, obtained above have
been substituted. A simple calculation convinces
one of the fact that these equations cannot be
adjusted to yield X

' =0, and the introduction of
only X(" is consequently not sufficient. The simp-
lest choice is to add another scalar-spinor P(0),

yielding

&' = (c,X'"+ c,')I)'")P(8$'")

1 (I)(1)) P(i y 8 m)g(O —$(0)P(8$(&))

——,
'

g ')P(iy 8+2m))1)

Introducing a new vector-spinor P„(which is not
traceless) by

c —a i (e + —')-i y(o)

this is seen to reduce to the one-parameter family
of Lagrangians used in the usual formulation of
the spin-& field. '

In the general case, the analogs of Eqs. (4) and

(5) are"

',x("-f-( d', y 8-+d. )x(')

—-,' c,b, g
' P(ia', y 8+a, m)y '

-c,X "p(-ie, y 8+b, m)g 0

(o) R (o) (12)

as the most general form (up to an over-all con-
stant) for that part of the spin--,' Lagrangian which
involves X(') and P(". Since the auxilary fields are
required to vanish, the results should not be
altered by the replacement

(-iy 8+m)(t" -Tr=c(8$ "j~~

(8$" ) =-(iy 8+a, m)(()
' -Tr.

(6) where R is an arbitrary real, nonsingular 2 x 2
matrix. Consequently one can fix any four of the
coefficients in 8' at will without any loss of
generality. We set c,'=e, =0, d,'=a,'=1. The re-
sulting Lagrange equations are (9), (10),

These imply P(" ') =0= (8$(")) only when c =2n'/
(2n+1), a,= (n+1)/n, and

(8y(N 8) (88'(n)) 0 (6)

and

(8$ ') =(-iy 8+d, m) X '+b m$ '

mX ' =-(iy 8+ a, m) g
' . (14)

The latter result cannot be obtained from Eqs. (6)
and (7) if the above values for c and a, are used,
so more equations are needed in order to obtain

Now it is straightforward to verify that the nec-
essary and sufficient conditions for these equa-
tions to imply g

' = 0 [hence X
' = 0= (8$ ')= (88$ ')]
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are

d, =a, =3I

The resulting Lagrangian is

p = —g( })'"p(i ye a-m)g '} + ag ' "p(ag ' ) + '(I) ""p—(i y. a +—'m)(() '

+ (~)'[)(('}p(a())('))-—', X p(-iy a+ 3m))( s+ ~ m()(' p(r} +g ' p)(")+ +(I) p(iy a+ 3m)()) ];

the formalism is invariant under the transforma-
tions

(()
"-const(} '

and (12).
The same procedure can be carried out for

spin ~N . It turns out that in addition to g('), (1)('),

g ", and )( ", one must introduce two "scalar-
spinors" ((I

N and )((". We omit the details here
and pass on to the general case.

One can discern the following pattern: The re-
sult (ag(")) =0 can be obtained by introducing a
symmetric traceless traceless tensor-spinor
g(" "of rank n-1, provided that Eq. (8) is satis-
fied. The latter situation can be achievedby succes-
ively obtaining p" ~ =0= y~" ~ for A. =n, n-1,
n-2, . . ., ~2, where

ih(f3 & I ~) = Q&2o ~ ~ Q& g&h&N
&~~+ ~

are symmetric traceless tensor-spinors of rank
n-A, . At each stage one needs to introduce two
symmetric traceless tensor-spinors each of the
same rank as (()("' }, i.e.c,y two symmetric trace-
less tensor-spinors of ranks 0, I, 2, . . . , n-2
have to be introduced in addition to g(" ". Thus
one has a f (n+ 1)(n'+2n+3)-component theory
involving the representations

D(N (n+1), Nn)QD(Nn, N(n+I))

D(N n, N(n-1})p D(N(n-l), N n)

2 g [D(-'U+I), -'j) 9 D(-'j, '(j +)I)]-

and

,f, (~.~) = ~t i. ..~vq, i, (~)
Iatp'py ~ ~ ~ p g p ~ ~ O +

of the Lorentz group.
The most general Lagrangian involving these

fields is

8 =
N

g(")p(i y a-m)(()(")

+ cfog
II )}p(ay(N) ) + y

Il I}p($ y a + g m)y(N b} + C g
II p(ay Il ))) + C I y(N N) p(ay(N 1))

-c, [-,' ")(' p( id,'y a-+ d m))(" ' )(' ' p-(ie, y a-b, m)g " '

+ I} g
N 2) p(i ly ()a + em)g(N 2) (C P( 9) +C I X(N-P))P(a )((N-N}) + CIIP g(N-s) p(ap(N-N))]]

ft q-I
+ cc Q (-) 11 cia) (I " ' p(ab '+")+(c,'bi" ' ''I+c,"I" ' ")p(ali" 'I)

Q-3 fc2

+Cpal q( -N-l}p(a~( -N))+ l ~( -a) p(idiy a+d m)g(N N}

+I" 'IP(ie, y a a, m)bi" ' ='l, l" 'P(ie,'-y a+e, m)b" e)I.

The coefficients are to be so adjusted that the
equations imply Eq. (8) and (()

~ =)(~ = 0, 0 ~P
~~ n-2.

Before embarking on the program the following
fact should be noted: Since all the auxiliary fields
are required to vanish as the end result, the
transform ations

~(N -)} y(N -l)

(IS}

should not affect the procedure; p is an arbitrary
nonzero real number and R~ is any real non-
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ai e, =0,

singular 2x 2 matrix. Using this freedom one can
set"

()((~' ) is defined in a similar fashion), one obtains
the conditions for Eqs. (17, 1), . . . , (1V, X+1) to
imply P(" ) =0. Contracting Eqs. (1V, q) with
8)'i ~ ~ 8 "&-~+i, q = 1, 2, . . . , X+1, and using (18)
one obtains

and

a' = d' = 1 c"= c'"= 0 for 2 ~ q +na a ~ a a (-t n-A, +1
y 8+m y(" ) =cg(O, )i}8'((( x ~ ")

n+1
without any loss of generality. With these sub-
stitutions the equations are

(19, 1)

( iy-8 + m) g
' -Tr = c(8$ "

(8)l)
" ) = -[(i y 8+a,m)g " ' -Tr]

+ c,(8)((" '&}g.,
(8$ " "=[(-iy 8+ d, m))(

" ' -Tr]
+ b, mg ' ' + c,'(8$ '

)~Y,
m)((" ' =-[(iy 8+a, m)y " ' -Tr]

+ c,mfsx(" ")aT,

(1V, 1)

(1V, 2)

(1V, 3a)

(17, 3b)

~(.. ) . n-A. +1 y'a+a nc
n 1

+ c g(1 )i)8~)((n-&, x)

-i x x+x, ~)x' "". n-A, +1
n-1

+ mb, )|)
" " + c,'g(2, X}8'g " '~),

(19, 2)

(19, 3a)

(8$" +n) =[(-iy 8+ d m))(("-&)

+ ( iy s-e, + b, m}$(" ')-Tr]

+ cx(8~(xx-a-i) j (1V, q+ 1 a)

m)(" ' = — i yxs+ a m
. n-X+1

n-1

+ c,g(2, )).}8'X(" ") (19, 3b)

r
I

(8)(" '+")+ [(-ie,y'8+b, m))(" ')-Tr]
a lCa 1

x a+x ~) x'" ""n-X+ 1
n-q+1 a

=-b [(iy 8+ a, m)$ " ' -Tr]+ b, c,(8)((" ' '))~z

q = 3, 4, 5, . . . , n 1(1V,q+ 1b)-
(8)1 ")=(-y 8+d„m))( +(-ie„y 8+ b„m}g~",

(1V, n+1a)

. n-A, +1 ey 8+bmn-q+1 a

~ cxyq ) )sag(n-q-x, k)

c'Ca-, (g-a+l X)
X

(19, q+ 1a)

and

(
c'

(8)( ")+(-ie„y 8+b„m))( e
~e -1CN -l

b„(i y 8-+a.m)(((').

(17,n+ lb)

As seen above, one proceeds step by step in the
following way. Given where

n-X+1
y a+& m X("-" )' n-q+1 a

=-b i y 8+am. n-X+1
n-q+1 a

+ b, c,g(q X)8')((" ' '"),

q=3, 4, 5, . . . , X, (19, q+lb)

and

y(')=)(o')=o, p&n-)i

(16)
g(q, )x) ~()i-q)(2=n-)).-q+2)(n-q) '(n+1-q) '.

y(p, )x+ x) (p, x+ i)

for any integer X, 2 &A. &n, where~

,Il(&-as% =/Pl ~ ~ QP& a y/, (~ a)
~&&a+l &na ~&l ' %a

Next the fields (()
~' and )(

~' (with p~ n-&+1)
and X" " are eliminated from Eqs. (19). The
necessary and sufficient conditions for the re-
sulting equation to yield 0 " " =0 are obtained by
requiring that the coefficient of each of the de-
rivative terms in that equation vanish, and the
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coefficient of the term with no derivatives be non-
zero.

As seen above, this procedure for A. =1 yields
c=2s'/(2m+1), a, =(a+1)+. Using these values,
one obtains for A. =2

and

n+1
n-1 '

2n + 1
2n-1

2(a+ 1)'
2n+1

Next consider X=3. The necessary and sufficient
conditions to obtain g~ @=0, after some simpli-
fication, are found to be

b,c,(b,-a,d, ) e 0, (20)

» I 2(n -2)*
C2, C2+

(n-2)(2s-1) n+ 1
2(n-1)(2s+1) ' s-2 ' J

(n + 1}(2n-1), c,' b,c,' n'

2(n-1)(2m+1) ' (s-2)(2s+1) 8(n-1)' 4(s-1)'(2s-1)

n+183- =0,3 n-2

(21)

(22)

(23)

(24)

(n+ 1)(2s-l), c,'
2(s-1)(2s+ 1) ' ~ 4(s-1)(s-2)

4(s-1) (2s-1) ~ (2s-3) ~ s 8(s-1)'(n-2)'

and

283-@3+41&= 0. (25)

2n'c=
2n+ 1

(27, 1)

As shown in Appendix A, these conditions uniquely
determine c,' to be zero, i.e., g

" ' does not
couple to any field of rank higher than itself.
Therefore a replacement

n+1
g =d=

n +1-q

(q-1)(2n-q + 3)
2n-2q+ 3

(27, 2)

(27, 3)

"(„,) -R&"-" "(„,)
with R,", ' =0 does not affect any part of the La-
grangian determined so far. Thus one can, using
the above transformation, set e,=0 without any
loss of generality; the remaining coefficients
are uniquely determined as

n+1c, =d, =
n-2

2n'
C2 =

2n-1 y

4n
5 =-

2n-3

We can now proceed to a general value of X. We
prove the following: X et

and

c '-e -0
e a (27, 4)

c, , =2(n-q+3)'(2s-2q+5) ' (27, 5)

for q &A.-l. Then the requirement that Eqs. (19)
imply X

+' = g
~' l = 0 for p & n-X determines the

coefficients cq „cg „aq, bq, dq, and eq unique-
ly [up to the arbitrariness implied by transfor-
mations (15)] to be as given by Eqs. (27, 2)-(27, 5)
with q=X. From the values of the coefficients
determined so far it can be seen that Eqs. (27) are
satisfied for q ~3. It follows by induction, then,
that all the coefficients are given by (27).

Proof. One can easily verify that the elimination
of g~ '+"" and y~ ' from Eqs. (19, q+la} and
(19, q+ lb), and
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(q-1)(2n-q+ 3), {„„,y) s+ I
(X-q+1)(2n-X-q+3 - a+ I-q

. n-X+1
n+1 y 8+m X&" '& (28, q)

with the use of (27), results in (28, q+1), i.e., the
equation obtained from (28, q) by the replacement
q-q+1. Now, eliminating p" l from E{ls. (19, 1)
and (19, 2), one obtains E{I. (28, 2), i.e., E{I.
(28, q) with q=2. It follows by induction that the
elimination of p~'""~ and }{~'"~ (p~@-X+2}from
E{ls. (19, 1)-(19,X-2 b) with the use of E{ls. (27)
results in (28, X-I). Further elimination of
q{a- k+ 2, k) .&, {g—k+ x ~ X) {s-k+ x ~ k) ~ {g- k}and X ~th
the help of E{Is.(19,X-I a)-(19, X+ Ib) yields

X ( fy-s}8 'm'y{" "'=0
j=0

The necessary and sufficient conditions for this
to imply g~ "~ = 0 are

A, WO; A&=0 for j ~5.

In terms of the coefficients g~, bq, g& „gz „d&,
and eq these conditions are

bxc~-i(b) -sA~) +0, (29)

(I-X+1)(2s-2K+5)cq, s+ I
2(X-2)(s-X+2)(2s-x+4) ' s-X+1 (31)

(m+1)(2n-2X+5)cg, dg (s-X+ 3)'c„,(b„+e„') b„c„,'
(X-2)(s-A. +1)(2s-X+4) I

' 2(X-2)(s-A. +2)(2n-X+4) 4(s-A. +2)'(2s-2K+5) 8(n-A. +2)'

(32}

n+1a~- =0,
g-A, +$ (33}

c~,
b

(s+1)(2s-21+5)c&,d&
4(s-1+1}(n-X+2) ' 2(A.-2)(s-X+2)(2n-X+4)

(n-X+3)'cq,
(b d b

(X-1)(2s-X+3) (b, (n+1)'bqcq, '
4(s-x+2)'(2s-2K+5} " " (2s-2X+ 3) - 8(s-X+ I)'(s-1+2)'

(34)

2'+ d),-cx =0.

As shown in Appendix A, these conditions yield
cq, ——0. Thus P{" l does not couple to fields of
rank higher than its own. Consequently one can
make a transformation

(~-~) -&' (~-~)

~th g,", "=0without altering any part of the La-
grangian determined so far, i.e., vrithout changing
Eqs. (16) or (27} for q «X-1. Thus one can set
e), =0 without any loss of generality. The re-
maining coefficients are then uniquely obtained to
be as given by Eqs. (27}with q = A. .

Thus it has been demonstrated that, in order
that E{Is.(17) reduce to (2) along with Q{~~= g

~ = 0
for 0 & p &n-1, the coefficients appearing in the
Lagrangian are as given by (27). The minimal"
Lagrangian for a spin-(s+ 2} field is thus
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S=-~g" p(iy s m)g" + cp" "p(sy'"')+-,'cp " ' p(iy s+s, m)p" "

+ccrc X" 8 ~ sX" -iy'8+ mX" -~mb2 XN ~
P

I + ~
X

g(a 2)p-(fy. s ~ s m)y(s-2)

+P(-)'(ll~~bi) h. ''ti(&4™"'l) lx-' 'p"( ~i &+&~)i~'
Q-3 )=2

the coefficients are given by (27).
As noted earlier, the formalism is invariant

under the transformations (15}, so different
choices of p and R ~ yield different Lagrangians
which are completely equivalent. '4 Appropriate
values of p and R+~ are seen to yield the Lagran-
gians obtained by Chang" for the spin values &,

2, and +~.
In view of the fact that all auxiliary fields vanish

in the absence of interactions, many of the free-
field properties can be obtained without the knowl-
edge of the full Lagrangian. The free-field La-
grangian becomes

g =-,'y&"&P(fy s-m)it&"&,

the field equations being (1) and (2). Using ~Nese

and the action principle" the free-field anti-
commutators have been found by Chang" to be

f(fy s+ m)-e&„,~„i(s)(a2= ~ &(x-x', m'),

0 -i)

In the presence of interactions the auxiliary vari-
ables do not necessarily vanish, so in order for
the formalism to be consistent the resulting equa-
tions should be such that 2(2s+1}field components
satisfy equations of motion (i.e., equations in-
volving time derivatives) while all remaining
components are to be determined in terms of the
aforementioned ones through equations of con-
straints (equations involving no time derivatives).
Because of the enormous complexity of the equa-
tions in the presence of interactions a consistency
proof has not been worked out for the arbitrary-
spin case, and the discussion here is consequently
limited to a consideration of the Galilean limit.
For this purpose it is convenient to use complex
fields (i.e., a representation of the charge space
in which q is diagonal) and the standard repre-
sentation of the Dirac matrices. We introduce the
following conventions: The factors of c are to be
written explicitly, e.g., m-mc, x'-ct. The rest
energy is separated by writing

where e(s) is a spin projection operator intro-
duced by Fronsdal" and subsequently used by
Chang, "and n(x-x', m') is the invariant function

n(x-x', m2) =g e'~'&* '~ e(p)5(p'+m').
(2s)'

The positive-definiteness of the anticommutator
is readily verified; the reader is referred to
Chang's paper (Ref. 15) for details.

E eD --i —+mc+ -A
c c

E =is/st being-the "nonrelativistic" energy Un-.
less otherwise specified, trace in the following
means the three-dimensional spinor trace (i.e.,
contraction with y for four-component spinors
and with o~ for two-component ones). We also
define

III. ELECTROMAGNETIC INTERACTIONS

One readily introduces minimal electromagnetic
interactions by doubling the number of field com-
ponents and making the replacement

u =au-ieqAu

and

gy ~ ~ ~ Q

Tr 4 '''k 1(fg)
s I n

in the field equations, q being the two-dimensional
matrix

where p, g, Q, and X are two-component objects
in the spinor space. In view of y"g~„". ~=0, one
has, then,
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a
,],(a) ~ ~~g' ' '~N-X
~ OIty' ' '~n-j,~ ~

~»k~' ' 'kk g j
Thus the tensor-spinors Q, }(, and $ are all sym-
metric and traceless in the Galilean limit.

Using Eqs. (36)-(39), the traceless part of Eg.
(1V, 1) with all tensor indices nonzero yields, to
order c ',

i (E +eh»)Q», ~ ..»

It is sho~ in Appendix 8 that for &~+-2

yfA&l llltkl-g, ( y)
1

(36)

~

~

2n
(O'D)X,,...A + D, g

S.T.

wh~re tj~' (X~' ) is the component of f k ()(~),
with A. nonzero tensor indices. It is also shown

yltk-I ~k 1) 0 (c»y)

2mx» ... „=-i{((r'D)y»,.. .»„-Tr) .

Similarly the traceless part of Eg. (IV, 1) with one
tensor index zero yields

' ' 'kk y k rk»y '' 'kk-yA (42)

(38)

&»g 0 (39}

It follows from (36) and (38) that, to order c ',
P=f and

Equations (39)-(41)'are the desired set. One can
immediately see that the (6s+ 1}-component
Galilean-invariant theory of Hagen and Hurley7 has
been reproduced. Substituting for the dependent
fields }t and $ into (40), one obtains

or

r
D2 leE+ +eA T»y' ' 'kk (2s+ I)mc k ~ »»Ate k~l y»»f» kp gled y py gh~g»gt~ I

g
~ ~ 'Ik8 +e 5 5 - ~ 5 5 0 ~ e

e
+

2(2m+ I)mc Bc&

2

E + + 8AO Q», ~ ~ » — (Es f)
D e
2m s 2mc ~, ~ ~ a„,t, ~ ~ ~ s„r, ~ ~ ~

which yields the value 1/s for the g factor.

IV. SUMMARY

The Fierz-Pauli program of constructing the
Lagrange functions for higher-spin fields by using
auxiliary variables has been brought to a con-
clusion in this and the preceding paper. Although
a prescription for this process eras suggested by
Fronsdal and was later used by Chang to obtain
the Lagrangians for spin values less than or equal
to 4, the method failed to yield a closed form for
the Lagrangian in the general ease. In the present
papers the auxiliary fields needed in the general
case have in fact been determined. It turns out
that in the ease of a spin-s boson field represented
by a symmetric traceless tensor of rank s, one
has to introduce symmetric traeeless tensors of
ranks s —2, s-3, . . . , 0 in order to obtain a second-
order formalism; still more variables are re-

quired to bring the theory to a first-order form. '
In the case of a spin-s fermion field, a symmetric
traceless tensor-spinor of rank s -~ and two each
of ranks s —,s -'-, , . . . , 0 are needed. Using
these the explicit form for the Lagrangian of an
arbitrary-spin field has been obtained, thereby
enabling one to discuss higher-spin fields in a
unified fashion. Although the complicated nature
of the minimally coupled equations has prevented,
for the time being, a complete proof of their con-
sistency, '9 it has been possible to demonstrate
that the theory has a consistent Galilean limit.
In particular the g factor has been determined to
be I/s (as has been anticipated for some time),
and it has now been made possible, using the

,formalism presented here, to obtain all higher
electromagnetic moments of an arbitrary-spin
particle.
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APPENDIX A

2(n-A. + 1)'
2n-2A, +3 (Al)

Here we prove the assertions made in Sec. II to
the effect that conditions (29)-(35) imply c~z, =0.
Since conditions (20)-(26}are same as conditions
(29)-(35) with &= 3, it follows that the former set
implies c,'=0.

Equation (30) has two solutions: c)1,=0 or

pl+ 1
g-A, +1

Using (A2a), (Al), (A3), (32), and (34), one
readily obtains

(A3)

()(.-2)(n-X+ 2)(2n-X+4)
(n-)(+1)(2n-2)(. + 5)

Let us consider (A2a} first. Equations (33) and

(35) yield

We show that the assumption cq, 40 with con-
ditions (29)-(35) leads to inconsistencies. Equa-
tions (31), (33), and (35) yield

in clear violation of (29), which with (A3) reads

implying

(n-) + i)(2n-2)(+5}
I g 2 ~ /+2 2~ /+4

(A2)

Thus (A2a) cannot be true. Let us try (A2b).
Elimination of (bq+eq') from Eqs. (32) and (34}
and subsequent use of (29) results in

)(.(n-X + 2)'(2n-X +2)(2n-2 X + 5)
'

(n-)(+ 3)'(2n-2)(. +3)'

or

e),=0 (A2a)
Using (Al), (A2b), (A4), (33), and (35), Eq. (32)
becom es after some manipulations, .

n-X+ 3 4(n+ i)(n-)). + 2)'
n-A. +2 " (n-X+1)(n-)(. +3)(2n-2K+3)+, „, [2(n-)(. +2)(n-)(. +3)'+(X-l)(n-)(.+1)']= 0.4(X-1)(n-X+2)(2n —2X+ 5)

This clearly is absurd, since the left-hand side is
a positive-definite quantity. Thus it has been
shown that c~,=0 is the only value that can satis-
fy conditions (29)-(35).

APPENDIX B

Here the relations (36)-(38) are obtained. We

begin by proving (36), i.e., for )). &n 2, P~'"-) and
)(~' ~ are at most of order c "+"P.

Consider the field equations (17) with minimal
coupling, i.e., with

~ e8-D=8-i —A.
t v v c v

the highest-order terms (in powers of c) involving
a certain field component are the ones with either
Dn or )ND„acting on the component. Separating
these in the minimally coupled equations (17) with
)(, nonzero tensor indices and using (27), one ob-
tains after some simplification

(„g) . n(n-x)(n+x+2) („,g)

(2n+1)
(A5, 1}

y(n, X} ~ p, l, (n-x ~ k)

( +1n)'(n )+1()(n +-X + 1}
n(n-1)(2n + 1)

In view of the fact that

E eD =-z mc+ —+ —A0 c c

P E e-iy D =-P mc+ —+ —A +y D,P c c

+ O.T. ,

~(p+y, X) '&
y) ~(P.Q

p+1
f (n-p-1)(n +p + 3)

(2p+ 3)

(A5, 2)

(A5, n-p+ l,a)
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x~s'}o =- &. 4o1
p+1

whence Eqs. (A5) immediately yield (A6). Now

for A.=O, this reads

~(o,o} X(o,o}=O(c (g ~"} Xb'0))

i(p+2)'(p-X)(p +X+2)
p(p+1)(2p+3)

(A5, }t-p +I, b)

that is

$0' } X(P }-O( (y( o X( +c)) (A8)

where

P =n-2, n-3, . . . , X,

Z, =-((s+ I)+(~+1)P),

and O.T. stands for "other terms" which are of
order y(r ~ &-C X(r, k-c,l, (r, x-s} X(r, k-o}

-x(g (g, k+ Q (g, X+ y},),(r, X} (y, X})

We proceed to show that Eqs. (A5} yield

P(o, k} (o,x} O( -x(,),(,k+ Q (,k+ C }
/y

~(r.~-2) (r,+-2),h(r. ~-g) (r.~-l))
yX

'
~y

'
yX

is true for X=O. Using this, (A6) reduces to (A8)
for X= 1. Also, if (A8) is true for X=Xo and
X=Xo+I, (A6) becomes (A8) for X=Xo+2. Con-
sequently, it follows by induction that (A8) is true
for all }}., whence (36}is immediately obtained.

In order to get (37}and (38), one contracts
(17, 1) with Ds . In view of (36) the resulting equa-
tion with all tensor indices nonzero is

[-iny D+(m+1)mc] (Dpi"})s ...s
c + O(cy(n-c y(o} )

(A6)

The following assertion is easily verified: The
elimination of P

+" and X+' from Eqs.
(A5, s-p+1) and

(o„g} i(p }}1+)(-p x+3+} ( ~}

(p + 1)(s-A.)(s+).+ 2)

(A'7, p}

results in (A7, p-1), which is the equation obtained
from (A7, P) by the substitution P-P-1. Since the
elimination of P

"'" from Eqs. (AS, 1) and (A5, 2)
yields (A7, 1-2), i.e., Eq. (A7, P) with P=n-2, it
follows by induction that subsequent elimination
of g

o+'" and }t~f' (p=n 2, n-3-, . . . , X) results
in (A7, X-l), that is,

y(k, x} O (c 1(y(r, &+ 0 }t(r, 'k+ 0 },i, (r, k-s} (r, k-2}

~(r, x-o (r, k-c y

A»o, Eq. (17, 2) can be written, using (36), a,s

(&0" ) .. . = —(iy o+ mc) yt, '~,

+ O(y(n-o)

The elimination of (Dp~"})s . ~ .s from these two
equations results in

m'c'g " " =O(g't" })
Q~

~ ~ ~ Q

whence gi,".", , =O(c 'g~"}), which is (37). Using
this, Eq. (A5, I) with A.=n-l immediately yields

-—O(c 'g),

whence Eq. (38}, i.e. ,

c /os o O(c g)

follows.
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The aim of this paper is to investigate a specific example of the two-point-function expres-

sion, as proposed in source theory by Sehwinger, which represents the inverse modified
propagation function as a spectral form. Since this expression for the propagation function
most naturally (but not exclusively) refers to spin-1 particles, our program is explicitly
carried out in the context of spin-1 electrodynamics, with the progagation function refer-
ring to the charged particle. The two-point transverse and longitudinal spectral weight
functions are calculated in lowest order. We find that the inclusion of those contributions
due to source radiation leads to spectral forms which are infrared-convergent and have
non-negative spectral weight functions. Furthermore, the spectral integrals are explicitly
evaluated and we see the expected rate of falloff, faster than 1/P2, of the propagation function
at large p2. The complex P2 poles of the propagation function are large and shown to be
physically acceptable within the fxamework of Source theory. We also demonstrate that
these results remain unaffected when magnetic and quadrupole couplings are present.

I. INTRODUCTION

By general source-theoretical arguments,
Schwingex' has shown that the spin-1 propagation
function has an asymptotic decrease at least as

rapid as (1/P )' and can approach (1/P')'. This is
the case if the spectral weight function A(M')
associated with the 6""G„„coupling, where G"" is the
usual antisymmetric spin-1 tensor field, increases
less rapidly than M' as M' approaches infinity.


