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Note that the transmission-coeff icient formula is
the same for zeroth- and first-order approxima-
tions. However, the parameter E in Eq. (14) sat-
isfies the first-order approximation given by Eq.
(7) rather than the zeroth-order approximation
given by Eg. (6).

The calculated transmissions coefficients to
zeroth and first orders for the Eckart potential
are shown in Table I along with the exact results.

We see a remarkable improvement in the results
by including the first-order terms 8'.
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An explicit form is obtained for the Lagrangian of an arbitrary-spin boson field. This is
achieved by introducing auxiliary field variables which are required to vanish in the free-
field limit. For s «4 the results are found to be in agreement with those obtained by Chang.
Canonical commutation rules are derived and the equations of motion are brought to first-
order form, thereby facilitating the introduction of minimal electromagnetic coupling. It is
found that, upon taking the Galilean limit, the (6s +1)-component Galilean-invariant theory
of Hagen and Hurley results. The g factor is found to be 1/s, thereby confirming a long-
standing conjecture.

I. INTRODUCTION

The long-standing problem of how to construct a
theory of higher-spin fields was first undertaken
by Dirac' as a generalization of his celebrated
spin--,' equation. In that paper he wrote that "the
underlying theory is of considerable mathematical
interest. " And so it has turned out to be. After
more than three decades of intensive investigations
the problem is still only partially solved, and has
turned out to be among the most intriguing and
challenging in theoretical physics. It touches upon
some of the most basic ingredients of present-day
physical theory —causality and the positive-defi-
niteness of the Hilbert-space metric.

Various approaches have been tried —equations
describing many masses and spins, non-Lagran-
gian theories, and theories with indefinite metric. '
In this paper' we consider the "simplest" formula-
tion, namely a Lagrangian formalism for fields of
unique mass and spin. At present Lagrangian field

theory is the only formalism which provides a
unified framework for the study of all aspects of
the operator formalism of a given theory ('e.g.,
equations of motion, canonical commutators,
Green's functions, and the energy-momentum ten-
sor).

All relativistic field theories are based on in-
variance under the full Poincars group (including
reflections). ' Thus an "elementary" free field is
taken to transform according to an irreducible
representation of this group. ' The two group in-
variants

=-J J&+2 J&~J2 Plj pX v

define the two basic quantum numbers, mass and
spin, respectively, of the field through

(i) P'=-m'
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D(zs, ks) = QD(i },

that is, all spin values from 0 to s are present.
However, (ii) implies that all lower spin values
shouM be eliminated, a result which is mell known

to be accomplished by imposing the "Lorentz con-
dition"

gg l.y(s) —0Py' ' '&s (lb)

Since me shall be using a Lagrangian formulation
here, it is appropriate to recall that the necessity
of such an approach mas first pointed out by Fierz
and Pauli. ' They noted that the introduction of
minimal electromagnetic interactions in Eqs. (1)
leads to inconsistencies which can be avoided by
requiring that all equations involving derivatives
be obtainable from a Lagrangian. They further
noted that it is impossible to construct a Lagran-
gian that will yield (1) by using only P~'~, and that
additional fields (the so-called auxiliary fields)
have to be introduced. A procedure for introducing
these fields and constructing Lagrangians mas later
suggested by Fronsdal' and by Chang. ' Although

the latter author obtained the Lagrangians for
g =2, 3, and 4, the method does not yield a closed
form for the Lagrangian of a, general-spin field.

In this papex me obtain the Lagrange function for
the general ease and study some of its simple
properties. In Sec. II me review in part the work
of Fierz and Pauli in an attempt to motivate the
introduction of auxiliary fields. The explicit form
is found for the Lagrangian of an arbitrary-spin

(ii) S'=s(s+I).
In this paper me restrict ourselves to massive
boson fields, i.e., to fields with m' & 0 and integer
$'s

It is important to note that even the specification
of (i) and (ii) does not determine uniquely the
transformation properties of the field under the
Lorentz group, inasmuch as one can choose a set
of functions transforming according to any of the
representations D(s —2n, —,n) SD(-,n, s ——,n),
0 ~ n ~ s, of the (proper orthochronous) Lorentz
group. However, me make the usual choice by
selecting the representation D(—', s, —,'g}, for which
case the field Q~' is a symmetric traceless ten-
sor of rank s, which by condition (i) is seen to
satisfy the IQein-Gordon equation with mass m,
1,e,

y

(-s'+m')y". . . =0.
P j.' ' 'Ps

Under the subgroup 0(3) of spatial rotations, the
representation D(,'8, —,'s) -is reducible:

,field. The basic requirement on the equations is
that the auxiliary fields vanish in the free-'fieM
ease. Consequently the fx ee-field commutation
rules, ete. ean be obtained without detailed knowl-
edge of that part of the Lagrangian which depends
on the auxiliary fields. These have been derived
by Chang' and will be summarized in Sec. III. In
Sec. IV minimal electromagnetic interactions are
introduced and the Galilean limit obtained. The
latter is found to coincide with the Galilean-in-
vaxiant theory of Hagen and Huxley. '

II. FREE-FIELD EQUATIONS

Our aim is to write down Lorentz-invariant, lin-
ear, second-order differential equations which re-
duce to (1) for Q~', and are obtainable from a
Lagrangian. The latter requirement demands that
the equation obtained by the variation of the La-
grangian with respect to a certain field should
carry the symmetry of that field, i.e., an equation
obtained by varying the I agrangian with respect to
a symmetric, traceless tensor should itself con-
sist of symmetric, txaceless terms.

Let us start with spin 1, for mhi. eh case one has
a vector field Q„. It is well known that Eq. (1) can
be obtained from

-8"(s„p„-B„p„) m+$2„=0. (2)

Contraction with &" yields &"$„=0 (m'o0 is cru-
cial), and (2) trivially reduces to the Klein-Gordon
equation.

In the general case, then, one might be tempted
to try

for the symmetric, traceless field Q'„'I. . .„.
These, however, are not Lagrange equations, as
they do not carry the symmetry of the field; the
second term is neither symmetric nor traceless in
the p.,-. Thus for the spin-2 field the correct form
18

(- s'+m'}y'„", +2( &„(&y"')„) =0, (4)
~ ~

where the subscript S.T. is used to indicate that
the symmetric, traceless part of the enclosed ten-
sor is taken —a notation used throughout this work.
Contraction of (4) with 8" yields (ay&'&)„=0 only if
the coefficient of the second term is 2, and (88/@')
=0. However, (&8/"') =0 cannot be obtained from
Eq. (4). Thus one needs more equations and con-
sequently more fields, i.e., auxiliary fields are
required. The resulting equations shouM imply
(sap~") =0 and in addition the auxfliary fields
clearly should vanish for the case of no interac-
tion.
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The question now arises as to what types of aux-
iliary fields should be introduced; we bear in mind
that one would like to keep their number at a mini-
mum. Thus it is natural to look for tensors of
ranks lower than s. As these can couple only to
(8(t) ' ), one needs to consider only symmetric,
traceless obj ects.

Returning momentarily to the spin-2 case one
sees that since a scalar, namely (88$(2)), is to be
eliminated, the obvious choice is a scalar equa-
tion. One consequently introduces a scalar field

This can couple to (t)(2) only through a term
(ag(2))„(82'(' ), thereby yielding the most general
Lagrange equations, '

(-8'+m2)y(2) +2{8„(ap(2))„}„=c{a„a„y(')}„
(5)

Once the latter result is obtained, contraction of
(8) with 8'8~ and elimination of (88$(2))„with the
help of (9) yields the necessary and sufficient con-
ditions for P(„" and (88(I))(2))„ to vanish as c=—„
a, =-,'. With these values for c and a» it is im-
possible to obtain (10) from Eqs. (8) and (9). More
equations and hence more auxiliary fields are
needed. Again scalar variables are to be elimi-
nated so that the most economical choice is a
scalar field Q(') . The restriction to second-order
equations dictates that it couple only to Q") .
Equation (8) is thus unchanged, while (9) is modi-
fied to

(88(t)( &) (8 s m )y( )+8 8 (ay( ))

+ c,m 8„(t)('& .

the additional equation is

m(ag(')) = (8' —a,m') Q (12)

(88$ ")= (8' —a m') Q (6)

Contracting (5) with 82 a" and eliminating (aay(2))
with the help of (6), one gets

[(1—2c)8'+(2 —a)m'82-2am'J p( ) =0. (7

Thus the desired result (l)") =0 =(88(t)(2)) is ob-
tained if and only if c=-'„a =2. All the coefficients
are thus uniquely determined.

Next consider spin 3. The tensor (&))(„'„)~ satisfies

(-82+m2)g(„2„), +3{ 8( 8(&()(2))„j,

= terms involving auxiliary fields .
Since one needs (88$(2))„=0 in order to obtain
(lb), a vector field Q2(') must be introduced. The
analogs of Eqs. (5) and (6) are thus

(-8'+m')p(2), +3{8„(a(t('&)„~}, =c{S„B„(()(,'&}

(6)

(88(t)(») —(8 g m2)y(»+I) 8 (ay(») (9)

(8@ '
) =0 = (ease ) (10)

In this case, however, p2(') and (88$"))„cannot be
eliminated unless

Equations (6), (11), and (12) are the most general
ones involving these fields. A straightforward cal-
culation now shows that these yield Q( ' =0 [con-
sequently (10) from (12) and (11)] if and only if
52 = -,', c, =-', , and a2=2. [One contracts (8) with
82a" a" and (11)with 8", eliminates (asap(2)) and
(8(t)(") from the reaulting equations and (12), and

equates to zero the coefficients of various powers
of a' in the equation so obtained. ]

The following pattern emerges: One must suc-
cessively obtain P' ~) =0 for )(=s, s —1, s —2,
. . ., 2, where

$($ k) = 82) 8& g P($)
&),+Z' ' 'I' s

is a symmetric, traceless tensor of rank s —X. At
each stage an auxiliary field —a symmetric, trace-

-less tensor of the same rank as Q~'~' —is needed.
Thus one introduces symmetric, traceless ten-
sors of ranks 0, 1, 2, .. ., g-2. These wi11 be la-
beled Q"; g(", . . . , P

' ", respectively, and
correspond to the representations D(,'j, —,

' j ), -
j=0, 1, 2, . .., z-2, of the Lorentz group. Thus the
second-order theory requires (s+1) + —2's(s —1)
x (2s —1) field components.

The most general quadratic second-order La-
grangian involving these fields is" "

g —~ Q($)(82 m2)(l)($)+ ~+(ap($))2

+ c y($-2)(aay($)) Ly($-2)(82 m2)y($-2 & + & 8 (ay($-2))2 d y($-4)(aay($-2))

1

11~}(-4' '("— .~')'4' '-l$ ('4' ')' ~4' '('4' "')'$4' ' '("'4' ')I"
k =2.

yielding the equations



LAGRANGIAN FORMULATION FOR ARBITRARY SPIN. I. 901

(-8'+m2)y ' +s{a(ay '))} =c{88&(' )].
S.T.

(88(t)(s)) (82 a m2)(t)(s-2) + b {8(ay(s-2))} +mc {8$(s-3)} +d {aay(s-4)}
~ ~ ~ ~

m(ap' ")=(8' —a,m')y ' "+b,{a(a@' ")} +mc, {84' "} +d, {aa@('-')}
~ ~ ~ ~ ~ ~

mc 2c, ,(ap ' '" ) —d, 2(88(t) ' '+ )=c, 2c, ,[(8 —a, m )P ' ')+b {8(a(t)(' '}-}
~ ~

+mc {84)(&-a-&)} +d {884)(s-a-2)}
J

(13,0)

(13,2)

(13,3)

q=4, 5, . . . , s —2 (13,q)

mc, , c, ,(a(t)")) d, ,(aay")) =c,c,(a' a m')y(') . (13, s)

The coefficients are to be determined so as to
yield Q

~ =0, p =0, 1, 2, . . . , s —2, and (aap(')) =0.
This, as seen above, happens in steps. One first
obtains P ~"=0, P = s, s —1, s —2, s —3, .. . , 0,
where~

82~ s m2 y(s, k)
(s —1}'f,(&)

f (g) 844 (8 2, k) (15 0)(s - 1)'

=0, p (s -)( —10)

(t)(P, X.+1) p p ) (14)

and a~ranges the equations (13, 0) ~ ~ ~ (13, )() so as
to obtain Q

~ =0, p) s —X. To this end one con-
tracts Eqs. (13,q) with 8"' ~ ~ 8"i-~. Using (14),
one obtains

P(s It. k) -—BPy. . . BPg & y(s-q)
&g-q +1 ' '"s-q l 1' ' &g-q '

Given this, one next obtains p' ' "=0v p, and so
on. In short, for 2(X ~s, one assumes

p' "={[1+5f ()()]8' a m'}y -'~

+mc, f, ()L)a'y('-' ~)

+d, f,()(}f() )84''-4»

m4)(s-2, » {[1+/ f (y)] 82 a m2} y(s ~, x)

+mc, f, ()()8'y( -")
+ d,f,()()f,()()84'(~-'»,

(15,2)

(15, 3)

mc, , c, ,y(' '+' »-d y(' ~+'~) = ,c, ,c,({[ 1+Bf ()()J 8' —a, m'} y(' '") +mc,f,(y)a'4)' ' '~)

+d,f,()()f„,()()8 P(' ' ~ )), q=4, 5, . . . , X (15,q) .

4
(s.2) (82 a m2}4 (s-2)

Eliminating Q '", there follows

(15, 2)'

where

f (A.) —= 2(s —q) (A. —q)(2s —A. —q+ 1) .
One then eliminates Q

~ ~', P = (s —X+1},
(s —X+2},. . . , s, from Eqs. (15) and equates to
zero the coefficients of 8'"Q ' "' in the resulting
equation, thereby obtaining the necessary and suf-
ficient conditions for the equations to imply
4

(s-i) p
Let us start with X=2. Equations (15) are then

(~ + m
s (2s —1) ca ey(s-2) (15 p)Is-1 s(s -1)'

(2s —1)c
s (s —1)'

+ —a 8'm' — a,m' (()(' ')=0.s S
s-1 2 s-

The necessary and sufficient condition for this to
imply Q

' ' =0, which in turn yields y& ')=0
from (15,2)', is that the coefficients of terms with
~'" vanish. This uniquely fixes c and a, to be
s(s —1) /(2s —1) and sos —1), respectively.

Next consider A. = 3. A straightforward though
cumbersome calculation, upon substituting above
values for c and a» leads to
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(s —1}'
b2=

2s —1

s'(s —2)'
(s —1)(2s —3)(2s —1) '

Now we can consider the general case. We prove
the following: Let

q(2s —q+ l)(s —q+ 2)
2(2s —2q+3)(s —q+ 1) '

3 (s —1)'
(s —2)(2s —3)

as the necessary and sufficient conditions for the
equations to yield Q(' ') =0, which in turn implies

Q
"= Q

' "=0. Similarly, .using the values of
the coefficients determined so far, and carrying
out the same procedure for A. =4, one obtains

b
(s —q+ 1)'
2s -2q+5 '

(q —l)(s —q + 1}'(s—q + 3)(2s —q+ 3)
2(s —q+2)(2s —2q+3)(2s —2q+5) '

d, , =o

(17)

d2=0,

(s -3}'
b, =

2s —3

3(s —3)'(s —1)(2s —1)
2(2s —3)(2s —5)(s —2) '

2(2s —3)(s —2)
(2s —5)(s —3)

fOr /=2~33. ~ ~ ~A. 1.
Then (17}also holds for q =X in order that. the

equations imply Q'~ ~ =0, P ~ s -~. Looking at the
coefficients determined so far, one can see that
(17) is true for q =2, 3, 4. It follows by induction,
then, that (17) holds for all q.

aloof. Setting d, = 0, 2 & q & X —3, Eqs. (15) be-
come

a2+ s sf (A.)m2 (s, X) fO C()4y(3-2, X)

(s —1)f,()() (s —1)' (15, 0}"

P(s, z) {[1+I)f ()()]()2 a m2}y(s-s, x)+mc f ()()()2y(s-s, x)

my'-"'"={[1+5f ()()]()2—a, m'] y'- "' +mfc, ( ) )((y)2' '4 ",--3 &q&)(-3
my(s-1+3. x) {[ 1+I) f ()()] S2 a m2] p(s-x+2, x)+mc f ()(}()2$(s-k+1.x)

+d,f,(x)f„,()t.) 8'(I)('

my(s-'" "={[I+5,,f, ,(Z)]()'- „a)my( "s ") -+mcf, ()()s'y -')

(15,2)"

(15, q)"

l(15, )( —2)"

(15, ~ -1)"

mc c y(s-x+1, k) d y(s-x+2, x) c c (S2 a m2)y(s-x)

Substituting for c, a„b„and c» and eliminating Q('~) from (15,0}"and (15, 2)", one gets

.r (0) s'
()2 2 m2 mg(s 2, X) [f ()()()2 f (Q)m2] p(s 3, X)

f, ()() f,(3)

(15, )()

(18,3)

A tedious but straightforward calculation shows that, using a„b„and c, from (17), the elimination of
from (15,q)" and

0) - 82
()2 fs-1 ) m2 p(s-4+1, A) [f (Z)()2 f (Q) m2] @(s-s,k)

f, ,( ) f, .(q)
(18, q)

results in (18, q+1), which is the equation ob-
tained from (18, q) by the replacement q-q+ l.
Consequently it follows that the elimination of
p" "', p=s, s —2, s —3, . . . , s-A, +4, from Eqs.
(15, 0), . .. , (15, )( —3) results in (18, X —2).

Further elimination of P '
and Q

' ~"" from Eqs. (18, A. —2), (15, )( —2)",
(15, )( —1)", and (15, X) results in

4
2f 82(4-f)~(s- X) 0f

where Af dePend on d], py c], y bg y and a„. The
necessary and sufficient conditions for this to im-
ply/' ~ =Oare

Ao=Ai =A2 =Ae=o
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f), 2 ~0(o)
a X X-1f ()(} t

which, after a lengthy calculation, are found to
yield

(2k[ mls+ uxH1+ ck-1 fx-1(")j =0 ~

~ 2()1 —1

H, =-a + [1+b f (X)]f'-'f ()(} f ()( - 1}

=0

These uniquely determine bg y cg y and a~ to be
as given by (17).

Thus we have demonstrated that in order that
Eqs. (13) reduce to (1) along with ()))

2 =0, 0 ~P
& s —2, the coefficients must be as given by (17).
The "minimal"" second-order Lagrangian is,
thus,

2 =-'(i)"(s' —m')(ll" + '-s(sy")'

s a-&

+ c Q(s-2)(S()y(s)) 1 Q(s-2)(S2 (1 2))2)y(s-2) + 1f) (()y(s-2))22 2 LL a
a=3 /=2

(19)

As noted earlier, ' the formalism is invariant un-
der the transformation

y(s-a) ~ y(s-a) 2 (q (s ~ g0

so different choices of the o.'s will yield equivalent
though different Lagrangians. Suitable choices of
the n's are easily seen to yield the Lagrangians
obtained by Chang for the spin values 2, 3, and 4.

The next task which must be undertaken is to ob-
tain a first-order formalism, i.e., a formulation
involving only first-order equations for the fields.
This is necessary in order that electromagnetic
interactions can be introduced in an unambiguous
fashion. For this purpose more fields have to be
introduced. There are many ways of doing this,
and analysis of the spin-2 case shows that the
theory of the interacting field is extremely sensi-

t

tive to the particular first-order formalism which
is chosen. Furthermore, in the presence of in-
teractions all auxiliary fields do not necessarily
vanish. Consistency demands that only 2(2s+1)
variables satisfy equations of motion (i.e., equa-
tions with time derivatives), and that all other
variables should be determined in terms of these
through constraints (i.e., equations with no time
derivatives). " This is not the case with all the
formalisms, and in some cases the number of con-
straints actually decreases with the introduction
of interaction. " Therefore we follow the obvious
generalization of Chang's formalism for spin 2

and introduce fields H(2). . .„,„(p=s, s —2,

of ranks (s+1), (s —1), (s —2), . . . , 0, respective-
ly, through"

(20, 0)

u(s-2) -2 Ig ~(s-&)
Pl' ' 'Ps-32Po ++ W$ ' Ps-3 (20, 2)

(20, q)

~(&) 8 y(&) 8 y(&)

H = (ey(')),
(20, s —1)

a av (20, s}
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where a and b are given in terms of another con-
stant A. by

s -1-A.
x(s+1)- (s —1) '

s(s -1)
(2s —1)[X(s+1)-(s -1)] '

A. and A., being arbitrary constants subject to the
restx ictions

X,v-(s-q+1) '.
These tensors have the following properties:

(i) They are antisymmetric with respect to p, and

e, and are symmetric and traceless in the re-
maining indices,

(ii) ~"'"~SH~~~ =0
P1 ~ PP ~, ya

and
(iii) g"»H * " =0.Py' ' 'Ps geP+
In the general case, i.e., s « 3, the representa-

tions of the Lorentz group involved are

D(-,'(a+1), -', (s -1))@D(-',(s —1), —,'(s+1))

8 D(-,'(s —1), —,'(s —1)),

D(2(s —1), 2(s —3))D(-, '(s —3), -', (s —1)),

D(1+,'j,-2j)SD(~j, 1+,'j )eD—(-,'j, —,'j),

j=0, 1, 2, . ..,s-4

and D(—,', —,'). Thus, in addition to the Q~~', Ss
+ &(2s —1)(s —2)(s —3)+4 components have to be
introduced in ordex' to bring the theory to first-
order form. The spin values 0, 1, and 2 are ex-
ceptions, however. As is well known, one has to
introduce a vector field in the spin-0 case, where-
as the spin-1 theory can be brought to first-order
form by introducing a second-rank antisymmetric
tensor corresponding to the representation
D(1, 0)$ D(0, 1). As for the spin-2 case, one can
see from Eq. (21, 2) below that H~" does not ap-
pear in the equations, so only the 20-component
field H ' corresponding to the representations
D(-,', —,')6 D(-,', ~ )8 D(-,', —,') is needed.

We omit the result of substituting Eqs. (20) into
(19) to obtain the first-order Lagrangian. It is
sufficient to remark that the resulting equations,
after some simple algebraic manipulations, re-
duce to (20) and

(21,0)

(s) s-2
8 e('-'& -a m' «'-" + 81+g(s + 1) j s-2 2s —1 j. s-3 s- g 'p( 1) &'''& ~ 2 1~ o'' PP -2'&j I "gz . p ++cat p 4'g ~ ~ .g js ~2 8.T.

»' ' &~ »e'-»&» ' '~a js T ' ~ )wi' ' '&e+n'c~-t ~ vi~ vm apjz Y ns-p~ ~p,

(21, 2)

s (H'„'„'+ag„Hj —m(sy" &)„+mc, , s„y&'& —n, gyp'&„'~ =0,
P =s -3,s-4, . . .) 2 (21, s-P)

(21, s —1)

S H~'& —o m'y"& -m(ey"&)=0,
where

&s-p(p+1) —1 —&.-p
1+X, ,(p+1)

P(a) = pv~(S )
P1,. ~ .PP y ~ Pg &P 2&, VPP

(21, s)

ciple. " According to this approach the generator
for an infinitesimal variation of the fields is ob-
tained from the surface terms resulting from the
variation of the action integral, i.e.,

Og

os = n gctx = t"(o,) —a(a, )
+ j

f[G X(&)] = ~X(&) ~

The Lagrangian for a free spin-s boson field re-
duces to"

It follows from the tensor properties (i)-(iii') that
H(~ is completely symmetric and traceless.

m. gUWNT&Z~Trow OF THE FREE neo
The commutation relations of the spin-s system

can now readily be obtained from the action prin-

@=2(p~ . . .p
B~H&&' ' '&s-i. &a&Px' ' 'Ps a

)Pl. ' 'Ps

+4H 'Ps y, /ex
4 P& Ps ~Pa
1 p~e e opPE Qp + g Q p
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the equations of motion being

Hu . . .u». u~ ~~uul us 1 u ~ul

[s H»' ' '&s i ps&) m'gpss
. ps 0A S.T.

(22)

(23)

Thus the fields appearing in the generator are
(1)=P . . . , H" ''', and

Hoki' ' 's-~ (1). Not all of these are independent
nor are their variations. They are related by
certain constraints resulting from the field equa-
tions, namely

=0=H
u ~ ~ ~ ~ ~ ~

(24)
ak ~1

kl ~klk '''k kl g2 2 wklk '''k3 s m 3 8 (25)

The generator for the variations at time t is con-
sequently given by

G = —' d x(y . . . 5H»' ' '~s-x'"s2 ul' ' 'us

Hpy' ' 'p ysos5oy )ul' ' 'us

Hokq k g [S

= 9 Hkk&'''ks-x (26)

(27)

where

8

d3X SC Qq&Hq -Hq6$q
q=l

~k," k
—= ~k " k oo "o= ~«k k (q+2)a 1 q 1 q

with

k& ks (q) Hk& ks oo 0 H ilk& ks (q + 2)

s —2Hkkkl" k 2- fe
S L kl~ollk2ss k8-2 l~olkl"'ks-2 S

(28';

The subscript S indicates that the symmetric part
of the bracketed tensor is to be taken. Using
these, the equal-time commutators can be ob-
tained. Thus, after a tedious calculation, one
finds

H" &' ' '» -=(1/s)QH"' ' '"&-'"~+&' ' "s'
j=l [y, ..., (x), y, . .. , (x')]=0, (28)

~k

u=l

(30)

(31)

where

(-) s!(2s —2p —1)!!
kl ks "s s

[ ~ 2PP!(s -P)!(2s —1)f! kgkk tgt2 kkP lkkP j2P y12PP=0

k2P+112P+1 ksls
( ( )

(32)

where A '» =5» —Ska, /m', and [s/2] is the
largest integer in s/2. The subscripts on the
right-hand side of (32) mean that the bracketed ex-
pression is to be symmetrized with respect to
each set of indices. Equations (30) and (31) to-
gether with Eq. (22) lead to the covariant commu-
tator

2[y„...„,(x), y„.. .„(x')]

where

d(x —x' m') =2 e' ' * "' s(p)5(p'+m')
(2w)s 7

and e &„~ &„& (s) is the projection operator intro-
duced by Fronsdal' and subsequently used by
Chang, ' and is obtained by replacing A '„ in (33)
by e „s=ass —sos./s'.

One can readily verify the positive-definiteness
of the energy. The energy density up to diver-
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gence terms is

—~
pppp &&" ' Ps

—&H H"~
l. . Po(

H0 j,
' ' ' Ps-1 o Ps &

constraint. Unfortunately, the equations become
extremely complicated, and a general proof has
consequently not yet been obtained. "

Because of this we restrict consideration here
to a discussion of the Galilean limit, where things
become considerably more manageable. To this
end we introduce the following conventions: The
factors of c are written explicitly, e.g., m- mc,
x - et. We separate the rest energy by writing

lf»"'» x»-os y )&l"'&s

which can be easily reduced to

(m' —v')P»"'»+(t ... Q»'"» jV~"'t s

+ divergence terms .

d'x(g' "' (m'-V')A ' A '
2g a, ~& as &s

+yky' 'kIA-I .. .A-1 ply'' lq)
y~l q

where

. E 8
D = —s —+ pic+ gA0

C ~ 0

where E =i 8/Bt corresponds to the "nonrelativistic"
energy. Also, "trace" in the following refers to
the three-dimensional trace unless otherwise spec-
ified. We also define f ~.8.',. to be the component
of Q

~ with P-P indices equal to zero, the remain-
ing ones being i„.. . , i 6,

~(s,s l)
~ ~ ~ j ~

~ j e ~ eg ~
Tr

Now
and define C& ...&» to be the component of

(s) 8 ~g'
H, '..., » which satisfies

s~g

~ ~ ~ j ~ o ~ j ~ ~ e j] Co ~ ~ f e ~ ~ j ~ ~ e jQC
p P s p p

C) ~ 4 j) Gt ~ s

G jf ~ ~ I jQ o Go ~ ~ j jg

(34a)

(34b)

(34c)

from which the positive-definiteness of P imme-
diately follows. jul ' ~ ~ j kf (34d)

IV. ELECTROMAGNETIC INTERACTIONS

Minimal electromagnetic coupling is most easily
introduced into the equations for a spin-s particle
by doubling the field components (we are using
Hermitian fields), introducing the charge matrix

in the two dimensional charge space, and making
the replacement

~p ~ Dp f)p $8$Ap

in Eqs. (20) and (21). As noted earlier, the aux-
iliary variables no longer vanish, so consistency
requires a proof that only 2(2s+1) components
satisfy equations of motion, with all others being
determined in terms of these through equations of

where ~», is the Levi-Civita tensor in three di-
mensions.

. In the Appendix we prove that

p&g-2,

Thus all auxiliary fields are at least O(1/c') com-
pared to g and X. Also, in view of the fact that
@(') is traceless in four dimensions, one has

o'o, ... =O(c )

and so forth. Consequently one can write

&'i ~ .(.=«, ~ "(,+O(c ')

4'o(," g, , =c X(, ~ ~ (, , +O(c ).
From Eq. (21, 0) one has
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m c'Qpz ...z DzHz ...z 0, +XDpH»(s) (.)
—(s)

s-1

«y»P 0+»1'''»P l«P yl ~ V-1 P+1 fS-1v=1
P( l/

1+A.

p 1

g-1~ (Dct (s) (s)+ ~~( Hoz ",&, "
&

n+" Dz Hoz "« "z )P-1 jr+1 S -1 z P 1 ji-1 jf +1' '' g-1p=1

(35)

As the left-hand side is O(c), one looks for terms
of the same order on the right-hand side. From
Eq. (20, 0) one has

H
z Oi zmct/I

z zz + O(c ) H';, ', ..., . . .,=-(1+a)imp, ...,
H' ..., , ='-(1+a(s -1))

x (Dzf)z ...z +zm)(z

+O(c '),

—aD, P„, .„,.+. O(c }.
Substituting these in Eq. (35) and separating the
traceless part, one obtains

=i™((1 + X) + a [A. (s + 1)—(s —1)]) D, g„,...,
((e —1)—x —a [x(s + 1)—(s —1)]) X, ..., , + O(c '),

or, to order c ',

mX;, ."z, ,=z "z 4i;," z, ,
Also, one has without approximation

s-1
0, ,. ;, „= D.,.P;, ,, ,.; Q&„„&,P. .,.g .,

&

—„... . ,I-(J—&).
p=l

Equation (21, 0), for the case when none of the indices is zero, reads

(36)

(37)

m fIt)»» = D~+» ...», » ~
-D +» .

» 0+~D» II» "~
S

which, upon separation of the traceless part, yields

m c gz ...z =(D, G, ..., ,. g) +(D, (H' -G)z .. . z . . .—DOHz'. . .; z 0+&.D;, Hz' z]... (38)

From Eqs. (20, 0), (21, 0), (36), and (37) one has,
to 0(c '},

p(s) p
»2 ~ ~ ~ »S j

{ (s) 2
»1''' j& 1,»SD~ S

=
0 &» "

»~ ~

+im(D, y„.. ., )

(D, (H ' —G);,...;

=-im(s —1)(D,. y,,..., j
These, upon substituting in Eq. (38), yield

(D,G,. . . , , -ims '(2s —l)D, , y, ..., )
+2m(E+eqA, )g, ..., =0. (39}

Equations (36), (37), and (39) constitute the de-
sired set. The (2s+1) components tjt, ..., satisfy

I s
equations of motion, and transform like a pure
spin-s object under spatial rotations. The re-
maining fields 6 and )( are dependent components
determined by the constraints (36) and (37), and
transform like spin-s and spin-(s —1) objects, re-
spectively. In fact we have obtained the minimal
(6s + 1)-component Galilean theory of Hagen and
Hurley. '

The elimination of the dependent components
from Eq. (39) results in
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ieE+—+eqA 8 ~pe )5 5 5 5, ~ ~ ~ 5j~''' 4, 2~~c jf ~ Aj~jtt j jf 2 2 P y ~ g Pgy tf~g
=1

(6('A S)2Plc 5 1 s ~ 1 s 1 's (4o)

which, not surprisingly, yields the value 1/s for
the g factor, as first conjectured by Belinfante"
and subsequently obtained by Hagen and Hurley. '

APPENDIX

We show that

the highest-order terms (in powers of c) involving
a certain field component are the ones with the
maximum number of factors of Dp acting on that
component. Separating these in Eqs. (A2) with P
nonzero indices, one obtains, after some simpli-
fication,

(t)(2, 8) p(C-&(p(r, 8+&) C-2(p(r. 8+2) )

and consequently

(A1)
(s+P)(s —P -1) &(a 2 ())+O T

2(2s —1)

(s —p)(s + p + 1) (, 2

2(2s -1)

(A3, 0)

( D' +-'mc)Q ' +s(D(DQ '
))s +i —q (FP '))

~(DDQ' ' ), (A2 0}

(DDQ ' ) =(D' —a,m'c')(t) ' "+b2(D(DQ ' '
))S.T.

s(s —2}.e ( (, , ))
2s - 1 c s.T.

+ mcc2 (Dp(' ") (A2, 2)

mc(Dtp(a-a+&)) -(D2 a m2c2)y(a-a)
a

+ b, (D(D(t)(' ')))

+mcc, (D&(' ' '))2

q=3, 4, ..., s —1 (A2, q)

mc(D(t) ' )=(D —a '
m) Pc"( (A2, s)

where the same notation has been used as was
employed for Eqs. (13) (with the replacement
s-D), and

It is convenient to work with second-order equa-
tions. Substituting for H(2) from (20) into (21)
(with minimal coupling), one gets

(s —P 2)(s+-P 1) (,-, ()) 0 T

(A3, 2)

~(2 ~,()),. (p+P+3}(p —0+2) (, ())
2(2p +3)

(p - P)(p+ 0+1) (, , ()),O Ts-P 2p
' 7

P = s —3, s —4, . . . , P (A3, s —p)

where the indices have been omitted for conve-
nience. O.T. stands for "other terms" which in-
volve objects of order c 'P " ", c 'P " 8,
C i(t)(r, S») and ~(r, 8-2)

y 'Y

The following statement is easily verified: The
elimination of Q

2" s from (A3, s-p) and

(2„()) . (p —p+1)(p+ p+2) (2 ()) 0
2(2p +3)

(A4, s -p)
results in (A4, s -p+1), i.e., the equation obtained
from (A4, s -P) by the replacement P-P —1. Since
the elimination of Q('s) from Eqs. (A3, 0) and

(A3, 2) is readily seen to yield (A4, 3}, it follows
from induction that the elimination of Q

N

(P =s, s —2, s —3, . . . , P+1) from Eqs. (A3) results

y(8, 8) P T

p(C -2
y (r, B +2 ) C

-2 ~ (r, 8 )

-&w(r .8% &) ~(r, 8-2)%

+„„being the electromagnetic field tensor.
In view of the fact that

E eD = imc+ —+-—qA0 c c

which with the help of Eqs. (A4} leads to

4
(2. 8) p(c ly(r, 8%1) -2~(r, 8+2) ~(r, () 2))

'V / ~

(A5, p}
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Equation (A5, 0) [which is the equation obtained
from (A5, P) by the substitution P =0] implies (Al)
for P =0, which with the help of (A5, 1) yields (A1)
for P =1. Further, if (Al) is satisfied for P =Pc

and P =P, + 1, it follows from (A5, P, +2) that (Al)
is satisfied for P =I3, +2 also. It therefore follows
that (A1) is true for all P.
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