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By extending the Miller-Good modified %KB approximation to include the higher-order terms, as
derived by Lu and Measure, we are able to calculate the transmission coefficients for energies
above the potential barrier. %e show that the higher-order terms are essential to the approxima-
tion, especially for energies near the barxier top.

I. INTRODUCTION

For potentials other than the square potential
barrier, the ordinary WEB approximation fails
to give the correct transmission coefficient for
energies near the top of the barrier. This limita-
tion of the ordinary WEB method was pointed out

by Ford et cl. '
Miller and Gooda approached the problem by

formulating a model potential qualitativ. ely sim-
ilar to the actual potential and whose Schrodinger
equation could be solved exactly. Using the exact
solutions as the bases of the approximation, they
were able to approximate the wave function of the
actual potential. In order to demonstrate this
method, they chose the Eckart potential and used
their approximation of the actual potential wave
function to calculate the transmission coefficients.
Miller and Good give a detailed analysis, and the
reader is referred to their paper. However,
owing to a divergence in the higher-order terms,
they could only use the approximation to zeroth
order in 8', so their results are limited in accu-
racy. The method developed by Lu and Measures
removes the apparent divergence and allows for
the inclusion of higher-order terms in the approx-

imation. But since the divergence is removed,
the formula obtained is only valid for energies
above the top of the potential barrier. This will
be discussed in Sec. II.

The Eckart potential is selected to demonstrate
the method since we have the exact transmission
coefficients4 for comparison. The calculated
transmission coefficients, for energies near the
potential barrier, agree only qualitatively with
the exact results if we use the zeroth-order ap-
proximation but are accurate to at least four sig-
nificant figures if we use the first-order approx-
imation. This demonstrates the need to include
the higher-order terms in the approximation.

II. METHOD OF APPROXIMATION

In general, we wish to solve the Schrodinger
equation

d' P,'(x)~+ ', g(x) 0

for a given potential V(x), where

P,'(x) = t,(x)= 2 m[W- V(x)] .
The classical turning points correspond to the
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condition P,(x,)=0, where x, is the ith turning
point.

We now construct a model potential U(s) qualita-
tively similar to V(x) and whose Schrodinger equa-
tion can be solved exactly. Thus we have

actual potential and the model potential must have
the same number of turning points.

The solution to the Schrodinger equation of the
actual potential is given by

g(x)=[s'(x)] ' 'P(s(x)) . (5)

d" rids

where

(3) Substituting Eqs. (3) and (5) into Eq. (1), we obtain
to zeroth order in S' (see Ref. 2)

P,'(s)=t,(s)=E-U(s) .
The turning points of the model potential corre-
spond to the condition P,(s, )=0, where s, is the
ith turning point of the model problem. Both the

(4) S2
' X2,

:P(s)ds , J=~P(x)dr,
Sl

Xl

and to first order in S' (see Ref. 3)

ls Sa s2 t 2 t't '2 S~ 2 t t2 2 S- 2p g +
2 1 — 1

2d 24 t 1/2t/2 t 1/2t/ ~ l~ 24 t 1/2t/2 t 1/2tI
sl sl 2 2 2 2 X

1
X 1 1 1 1

1

(7)

where x„x2 and s„s, are the respective turning
points. In obtaining Eq. (7}, we have introduced
a divergence when t '=0, so Eq. (7) is valid only
along the path t 'c0. We can always, in principle,
achieve this condition when the integration limits
are complex, but then Eq. (7) is limited to ener-
gies above the potential barrier.

The transmission coefficient is then given by

and
A .B

'1) = (Is 2= g
C C '

where

A = 13.122-2 W,

B=[44.8 W+(13.122}']'~'

C = 2(IV-1.922),

(lob)

T JtransJ, (8)
and

P,'(x)= t,(x)=2[W- V(x) J.

where

e
2m' c&L dx

The model potential is given by U(s)= -s' such
that P,'(s)= t,(s)=E+s' and the Schrodinger equa-
tion for the model potential is

[s'(x)]' ' P(s(x)),

[s'(x)] ' 'y(s(x)}.

We have omitted the normalization constants for
the wave functions, since Eq. (8) only involves
the ratio of the wave functions. (12a)

and

The exact solution $(s)=D„(z), where s= (+iE-1)
and z=2' 's e" ', is given in Whittaker and
Watson 'The a.symptotic representation for D„(z)
can be found in the Appendix of Ref. 2. The turn-
ing points of the model potential corresponds to
the condition P,(s,)=0 and are given by

s =+iE1

III. APPLICATION TO THE ECKART POTENTIAL s = -~E'/'.
2 (12b)

The Eckart potential demonstrated in Ref. 2 is
given as

Following the procedure outlined in Sec. II, we
obtain to zeroth order in 82

V(x)= 1.922 e"(1+e') '+ l l.2 e*(1+e') (9) P, $ dg= P2eda
1 Sl

.B
g =e 1= —+t-c c (10a)

The turning points are obtained from the condition

P,(x;)=0 so that
s2

(&+o')'~' do
$1

1= -2 &EX,
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and using Eq. (8) we obtain to zeroth order

T=(l+e s'} '.
Thus E is a parameter that satisfies Eq. (6). How-
ever, to first order in S2, E is a parameter that
now satisfies

I'2 S2 t t 2 PQ 2 t f gl P
2 P ye+ — 1

t /2t I t /2t t 1 ~ 24 t 1/2t g2 g 1/2tP
S1 S1 2 2 2 x1 X1 1 1 1 1

where

(7')

P,'=t,=E+o', P,'=t, =2[i)y y(~)]

and x„x2 and s1 p2 are the respective turning points. We see that the 8' terms on the left-hand side of
Eq. (7} cannot contribute because of parity. Therefore these two terms reduce to zero as

24,s2t2 (E+o')' 'o' 24. . .s2IZ (E+o }' 'o' 24. . . (E+o')' 'o'

d(-o) g ' . 's do
1/2

24 1/2 g+ o 24 E+ g

Thus we can substitute P,(s)= t,' '(s) = (E+s') 2~' into the left-hand side of Eq. (7) and obtain

JS2 g2 S2 tlt2 glrr
2 2

2 b+
24 t '/ t' t '/ t' dO= -2 ZEn.

S1

Setting y= e' and substituting

P = t 2&2= 2' ' [W-1.922y(1+y) '-11.2y(I+y)-']2tz

into the right-hand side of Eq. (7), Eq. (7) becomes

,'Es=2' ' ——(-Z)' 'dy — ( Z)' 'dy-+-,' (-Z) ' 'dy
&2 1 , &2 1 , , ~2 1

y „1+y „1+y1 1

+2(13.122) (-Z) 'i'dy+2(293. 938) J,9 238 13 122), -Zl '
d3}

1 1

(13)

where

Z= a+ by+ Cy2,

g= S',

5= 2 W-13.122,

c=W-1.922 .

TABLE I. Transmission coefficients T for various
energies W. (a) Modified WKB approximation to zeroth
order in S~; (b) modified WKB approximation to first
order in K~; (c) exact results. As mentioned in the
text, the transmission coefficients are for W& Wz,
where Wc=3.8 is the maximum of the potential barrier.

T=(1+e s") '. (14)

In obtaining Eq. (13), we multiplied both sides of
Eq. (7) by i and brought i inside the square root of
the integrand on the right-hand side. Since the
maximum of the potential barrier is at W=3.8,
-(s & 0 and -c & 0, so that Eq. .(13) can be integrated
immediately and we obtain E.

The transmission coefficient, using Eq. (8), be-
comes

4.00
4.25
4950
4.75
5.00
5.25
5.50
5.75
'6.00

(a)

0.699126
0.894 610
0.967 049
0.989 763
0.996 735
0.998 923
0.999633
0.999871
0.999953

0.732 924
0.909285
0.971 951
0.991317
0.997 233
0.999088
0.999689
0.999891
0.999 960

(c)

0.732 933
0.909302
0.971 958
0.991319
0.997234
0.999 088
0.999 689
0.999 891
0.999 960
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Note that the transmission-coeff icient formula is
the same for zeroth- and first-order approxima-
tions. However, the parameter E in Eq. (14) sat-
isfies the first-order approximation given by Eq.
(7) rather than the zeroth-order approximation
given by Eg. (6).

The calculated transmissions coefficients to
zeroth and first orders for the Eckart potential
are shown in Table I along with the exact results.

We see a remarkable improvement in the results
by including the first-order terms 8'.
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An explicit form is obtained for the Lagrangian of an arbitrary-spin boson field. This is
achieved by introducing auxiliary field variables which are required to vanish in the free-
field limit. For s «4 the results are found to be in agreement with those obtained by Chang.
Canonical commutation rules are derived and the equations of motion are brought to first-
order form, thereby facilitating the introduction of minimal electromagnetic coupling. It is
found that, upon taking the Galilean limit, the (6s +1)-component Galilean-invariant theory
of Hagen and Hurley results. The g factor is found to be 1/s, thereby confirming a long-
standing conjecture.

I. INTRODUCTION

The long-standing problem of how to construct a
theory of higher-spin fields was first undertaken
by Dirac' as a generalization of his celebrated
spin--,' equation. In that paper he wrote that "the
underlying theory is of considerable mathematical
interest. " And so it has turned out to be. After
more than three decades of intensive investigations
the problem is still only partially solved, and has
turned out to be among the most intriguing and
challenging in theoretical physics. It touches upon
some of the most basic ingredients of present-day
physical theory —causality and the positive-defi-
niteness of the Hilbert-space metric.

Various approaches have been tried —equations
describing many masses and spins, non-Lagran-
gian theories, and theories with indefinite metric. '
In this paper' we consider the "simplest" formula-
tion, namely a Lagrangian formalism for fields of
unique mass and spin. At present Lagrangian field

theory is the only formalism which provides a
unified framework for the study of all aspects of
the operator formalism of a given theory ('e.g.,
equations of motion, canonical commutators,
Green's functions, and the energy-momentum ten-
sor).

All relativistic field theories are based on in-
variance under the full Poincars group (including
reflections). ' Thus an "elementary" free field is
taken to transform according to an irreducible
representation of this group. ' The two group in-
variants

=-J J&+2 J&~J2 Plj pX v

define the two basic quantum numbers, mass and
spin, respectively, of the field through

(i) P'=-m'


