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Some general theorems in Brans-Dicke and Hoyle-Narlikar cosmologies
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Raychaudhuri-type equations are written for cosmological models filled with a perfect fluid and obeying

the Brans-Dicke and Hoyle-Narlikar field equations. In addition, the following three theorems are proved:

(1) The only possible spatially-homogeneous stationary models of the universe of perfect fluid obeying the

Brans-Dicke theory are the radiation-filled and the perfectly empty universe. (2) If the creation is absent in

the C-field theory of Hoyle and Narlikar, the existence of the slightest pressure will prevent an expansion

or a contraction. (3) A spatially homogeneous rotating universe filled with incoherent dust and having a
shear-free expansion is ruled out by C-field cosmology (of Hoyle and Narlikar) without creation.

I. INTRODUCTION

We know that the dominant force controlling the
large-scale behavior of our universe is gravita-
tion. Einstein was the first to give a theory of
gravitation in a generally covariant form. Various
other theories have since been proposed. The
theories which have received some amount of
attention are those proposed by Brans and Dicke'
and the steady-state theory proposed first by
Bondi and Gold. ' Hoyle and Narlikar later intro-
duced a metric and field equations in the latter
theory. "' They allowed for the continuous cre-
ation of matter by bringing in a scalar field.

Raychaudhuri' discovered an important equation
for arbitrary cosmological models with inco-
herent matter. This equation is very useful for
making general predictions about the evolution of
cosmological models obeying Einstein's law of
gravitation. The equations were generalized to
the case of matter exerting pressure by Ehlers. '

Raychaudhuri's equation was generalized to
apply to the steady-state theory of Hoyle and

Narlikar' by Raychaudhuri and Banerji. ' The
author' pointed out that the geodesic postulate
implies a vanishing of rotation, if matter is crea-
ted to ensure a steady state. Nariai, "however,
considered Pryce's equations (as reported by

Hoyle and Narlikar') in the more general case
when a scalar field exists, but matter is not
necessarily created. Hoyle and Narlikar" later
showed that the divergence-free C field (i.e. , no

creation) can prevent the collapse of a massive
star. Faulkes" later studied the world lines of
dust in the general C-field cosmology including
rotation.

We propose to write Raychaudhuri-type equa-
tions for the gravitation theories of Brans and

Dicke and of Hoyle and Narlikar in the general
case of a universe filled with a perfect fluid. We

shall also prove some general theorems for the

two cosmologies. In Sec. II we shall discuss the
Brans-Dicke theory, and in Sec. III the Hoyle-
Narlikar theory.

II. THE BRANS-DICKE COSMOLOGY

where 4 „-=4 „-=aC/Sx2, 4 being the strength of
a scalar field. R is the scalar curvature and L
is the Lagrangian density of matter.

The field equations are
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where semicolons represent covariant deriva-
tives. T=—T„", the contracted form of the energy-
momentum tensor T„„, and 0 is a positive number
which is related to the ratio of the tensor coupling
to the scalar coupling. In the limit Q-~, 4 '-G,
the gravitation constant and the theory reduces to
the conventional Einstein theory.

We now take the energy-momentum tensor of a
perfect fluid, viz. ,

(p+ ~)24224v p&2» (4)

The field equations in the Brans-Dicke theory'
are obtained from the variational principle

4R+ 4 L -Q(4124 "/I) (-8)'/2d X =0,16m
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19=- p
p+p

(6)

where u" =u".„u" and in the following, the dot will
indicate the covariant derivative along the world
line. hu" and 8 are the projection tensor and the
scalar of expansion, respectively, defined as
follows:

hu" =guv -u"u",

with the restriction p) 0 and p &0. Since Tu".„=0
here as in Einstein's theory, we must have (see,
e.g. , Ref. 13}

p „ku"
u

p+p
and

dt dt
—in(-g) / = —lnld, , d

(8a)

Putting the constant of integration zero we may
write

Theorem I: The only possible spatially homo-
geneous stationary models of the universe of
perfect fluid obeying Brans-Dicke theory are the
radiation-filled and the perfectly empty universe.

This result does not hold for Einstein's theory,
where Godel's solution" is an example of a spa-
tially homogeneous stationary cosmological model
filled with perfect fluid having the equation of
state P = p (if the cosmological constant A =0).

From Eqs. (7}and (8}we have in this coordinate
system

e=u .u.u ( g)1/2 t 3 (8b)

We may introduce L by the equation

l
g p

l '

then

p l3—
p+p

Substituting from (4) into (3) we have

(8)

(6a)

For incoherent dust, P =0 and we have from (6a,)

pt '-f (x'). (6b)

But if we have a spatially homogeneous universe
with both p and p constant on the homogeneous
varieties, then

t = S (x')W(x')

Sm

(3 + 20)c'

We may write Eq. (9) in the form

(9)

[C (-Z)"'1, = 3,2„,4 (3P-p)(-g)'". (Qa)

[g '@(-Z)'"], = (3,~,. (3P -p)(-g)"' (9b)

We now assume that our universe is spatially
homogeneous. We then choose the time lines
along the world lines of matter (co-moving coordi-
nates) and define the homogeneous varieties at the
t- constant spaces. In view of this choice of the
coordinate system and spatial homogeneity, g«
is at most a function of t alone and can be re-
duced to unity by a suitable transformation of t.
Therefore the line element is given by

ds'=dt'+2g«dtdx' tf, ~+ddxx

In this paper Greek indices stand for the numbers
I to 4, and Latin indices for 1 to 3.

On account of spatial homogeneity we shall have
4, =0, C, =C as in this coordinate system, d/dt
=d/ds, and p, = p; =0. Then (9a) reduces to the
form

This result was obtained by the author" for a
perfect fluid and for an incoherent dust by Schuck-
ing. " The former paper will be referred to as I
in the following.

If, however, the rotation vanishes, i.e. , the
homogeneous varieties are orthogonal to the t
lines, then we can always reduce the g« to zero.
Then Eqs. (9b) and (11) give

f (pp —p)S dt . ' (12)

In the case of the spatially homogeneous dust-
filled nonrotating universe we have

Sw

(3+20)c' (13)

on account of (6b) and (11). t, is the constant of
integration. This has been derived by Brans and
Dicke' for Friedmann models.

So far we have used only the divergence rela-
tions following from Bianchi identities. Now we
shall write Raychaudhuri-type equations using the
field equations. From Eqs. (2) and (4) we have

Sm 1+0
u c'4 " " 3+20

The left-hand side will obviously be zero for a
stationary universe. But the right-hand side can
be zero only if p= 3p, which holds for diffuse
radiation or p = p=0. Hence we have the theorem:

0
+p uuuv +3 ~ guv

0 4 „.V+ 2 @'u@'v + (14)
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From the notation of Ehlers, we have

R„„u"u" =8+ ', 8-' u-" „+. 2(o' —(u'),

and

(15}

For incoherent matter (20) reduces tol, , 8m 2+0 Q ~, 4
3 —2(a&' -o') —

4 3 ~ p+ —,4'+ —.

h uR&„u" =h „(&uu ov +, 8.u)

—((d ~ +o ~)u (16)

2 1 pv(d = g(dp v (d

Instead of the rotation tensor, we introduce the
rotation vector defined by

n 1 agpv
(a) —= gq ug(up „

where 8 and h„s are given by Eq. (7). c„„and
~p„are shear and rotation tensors, respectively,
given by

O'p v u~ p. v~ 8 puv) &~p v

(upv = u)p;v) u[puv

2 1 pv0' = g 0'pvO'

(20a)
~ ~

Unlike Einstein's theory, the sign of I/I depends
on the sign and magnitude of the derivatives of
4. So we cannot conclude as in Einstein's theory
that I/I is always negative when ~ = 0. So a non-
rotating cosmological model may, in general,
have a minimum volume.

However, if we assume spatial homogeneity,
then for a nonrotating dust-filled cosmological
model we obtain from (13) in the coordinate sys-
tem introduced earlier

~ ~ ~ S

SENT

S (3+ 20}c'

Hence from (20a) we obtain in this caseS, 8w(3+0) 0, 34 S
S c4(3+20) 4 4 S'

1 ngpv
ugup „,

then (o'= —(un~a.
As shown in I (see Ref. 13) we can write

-u".„u -0 su —2(o'u

+ 1 (&p 8 v u2~puvu8) 'pv8a

From (14), (15}, and (8}we can write

p p 2 8v 2+0 3(1+0)
l '" c'4 3+20 3+20

Q ~, 4 Cu"
+—e'+ ——

4 4 4

(18)

(19)

(20}

The term (0/4')4' is positive and hence the sign
of S/S will be determined by the magnitude of
this term.

Using Eqs. (14), (19), and (20) we obtain, in
general,

2I ngg aa ag 2 2 n

+ ri ((d& su& —2(s)&~u s)

=h —44s+~ . (21)a8 0 4
4 4

A similar equation was obtained in I (see Ref. 13)
for Einstein's theory. We can also use Ehlers'
equation (16) and write instead the following equiv-
alent equation:

This is analogous to Raychaudhuri's equation for
a Friedmann universe in general relativity written
in the notation used by Ehlers. '" u" in the above
equation is given by Eq. (5) and is zero for P =0.

h „(&~"„-&~".„.
+-', 8 ~) (&.„+o-„)u~

=h —44 ~—. (22)
@,2 8

III. THE HOYLE-NARLIKAR COSMOLOGY

The field equations may be derived from the variational principle given by pryce:

F4=0,
where

ckR(-g)"'d'x —gm ds+ ,'f C C (-g)'I*d'x ——gm C ds,iog ds (23}

where f is a coupling constant and C —= C, C being the strength of a, scalar field. The field equations are

Rpv —2g&vR = —8m [T&„f(C&C„—zg&„C~C )-] . (24)
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C satisfies the equation

a &.a
~ fx ~ j ~c j (25)

7 ';8=f C C;8 = C"(p& );e .
Let us introduce A, by the equation:

pX -=(pus}.8 = p+ p8 .
From (4) and (26) we get

of p (Clx c) Pp P
P+P P+P P+P

Using the relation u 8 =0 we have

pA.(C —1)=p8.

If PA. wO we may write

o PgC=—+1.
peal.

Substituting from (29) in (28) we obtain

gag
s = (p&CS+ Pp)P+p

(26)

(27)

(28)

(30)

In the local problem considered by Hoyle and
Narlikar the creation may be taken to be zero,
i.e. , pA. = 0 and we get from (29) the interesting
result that Pe=0. Hence we have the theorem:

Theorem II: If the creation is absent in the
C-field theory, the existence of the slightest
pressure will prevent an expansion or a contrac-
tion.

This is an amazing result, as it is generally
believed that gravitational collapse has occurred
in certain stars like white dwarfs and pulsars.
In Einstein's theory, the conservation of baryon
number does not necessarily implv that (pu ),s= 0,
which condition is analogous to the conservation
of mass in Newtonian theory. However, if the
baryons do not interact with each other then the
above condition holds [cf. Eq. (6)] . , But when
there is interaction, a part of the total mass-
energy is present in the form of the energy of

where j -=pu is the mass current. Hoyle and
Narlikar have always considered incoherent mat-
ter, but have indicated that T„„can be taken for
a perfect fluid in the form of Eq. (4)." They
later applied the above equation to the local phe-
nomenon of the gravitational collapse of a star"
and supposed that C . =(pu ).„=0in this case
because the cosmological phenomenon of creation
of matter has practically no influence on local
behavior. They constructed a solution to demon-
strate that the C field can arrest the gravitational
collapse. However they neglected the pressure
in their treatment, which is unrealistic.

Taking the divergence of (24) we obtain

pressure and other forms of binding energy. We
cannot in this case write p =m N where m, is the
proper mass, and N the number density of bary-
ons" as was done by Hoyle and Narlikar. "

Faulkes has divided the case of pressureless
dust into four classes. We shall discuss these
cases for a perfect fluid with nonvanishing pres-
sure.

A (i) &=0 and C„=s . In this case 8=0. How-
ever the world lines are not geodesics unless the
pressure gradient is tangential to the world lines.
So, in general, ~wO.

A (ii} A. w0 but C =u . In this case 8=0 [from
(29)]. The world lines are not geodesics as be-
fore, and in general ~40.

B (i) C au, A. = 0. Again 8 = 0, the world lines
are not geodesics and in general TWO.

B (ii) C Pu„, X40. In general 840, the world
lines are not geodesics, and e0. However if
8=0 then u (C" -u ) =0. Hence A"=—C -u is a
spacelike vector.

It should, however, be noted that rotation is not
necessarily absent if u is equal to the gradient of
a scalar and hence u~ .8& =0, because the expres-
sion for &u in Eq. (17) contains ci . In the case
B (ii) considered by Faulkes (P = 0), the absence
of rotation does not mean u& .&&

= 0, and hence the
absence of rotation in this case is not ruled out.

We may now write Raychaudhuri-type equations
as before. Using Eqs. (24), (15), and (4) we have

~ ~

3
&

-s",„+2(c'—&u'}= —4w(p+3p)+6vf C'. (31)

s

C in the above equation is given by (29), and up by
(30). We know that in Hoyle-Narlikar theory non-
rotating incoherent matter can remain in equi-
librium.

Similarly using Eqs. (24), (19), and (31) we
obtain

~p -0' .8 -O' Qg —2Q' Q
aa ea aa ~ a

—q"" ((up H4v 2(upuvNs-] =8vfCh~sCq.

(32)

We can also write instead, using Eqs. (24), (16),
and (4)

& g(co ~,„-cs".q+g8~) —((u"8+o s)gP=6wfCh ~CB.

We now introduce spatial homogeneity and a
coordinate system as before. We shall consider
the case called B (i) by Faulkes with P = 0 and X =0.
In this case we deduce Eqs. (6b) and (11)as before
Further we have C .8=0. Hence we can write the
following equation analogous to (Qb):
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[g"C(-g}' 'j .=0.

For a nonrotating universe we thus. obtain

CS' = const.

(34}

(35)

$,~y,„.,),, /4W'(y" y fgpyg}.

This is analogous to Eq. (36) of L
Now from Eq. (34) we obtain

We shall now try to extend Schucking's theorem
in Einstein's cosmology: that a spatially homo-
geneous rotating and expanding universe filled
with incoherent dust must necessarily have shear.
This was extended in I (see Ref. 13) to the case
of a perfect fluid with the equation of state P = up,
where a is a constant other than —,

' and lying with-
in the range 0 to +1. In the Hoyle-Narlikar cos-
mology we cannot have an expanding universe if
A. = 0 and P w 0. Hence we take the case P = 0, cr = 0,
and A, =O. By using the conditions o„„=0and Eq.
(11)we can write all the components g„„asprod-
ucts of time-dependent and space- dependent func-
tions as in I (Ref. 13):

g&~
——S '(x') Pw (x )+ P«(x )rjI'~&(x ),

1'+ 2 +C 3+$2 ~ $2 +0 (39)

$ $' 2E 4~B
$ $2 $2 $3 $4 ' (4o)

Integration yields

$2 E 8mB E 2A
S S 3$ S6 S (41)

where E is a constant. Substituting this result
into (38) we obtain

where n = g" g«g„and m=(g" g~, W');/W'. From
(3'1) and (38) we obtain

g&4 = 64i g
where

(36a) 4wB 3F 4A
S3 S8 S4

On substituting from (42) in (39) we obtain

(42)

ti.4"'= 6i', g"= SV'-4...
g = 1+S f $&4$a4.

From Eq. (31) we obtain

S 2A 41TB '2

S S4 Ss

(36b)

(36c)

(37)

~ 6mB 4A 2mBn 4 An 6En
$' $' s' $' s'

4wBm 4A m 3'
5 SB $8

(43)

(38)

where

where &o'=A/S', A being a positive constant.
is a scalar in a spatially-homogeneous cosmology
and therefore, can depend on t alone. Further
pS'=B, and B is a second positive constant. This
reduces to Eq. (35) of I if C = 0 and P = 0. In this
coordinate system the dot denotes a derivative
with respect to t.

From the fourth equation of (32) (+=4) we can
similarly write

S S2
2 E

$ $2 $2
———=4' C'+

By squaring this equation and substituting from
(41) we find, on equating the coefficients of like
powers of.S on both sides, thatB =0, i.e. , p=0.
Hence we have the theorem:

Theorem III: A spatially-homogeneous rotating
universe filled with incoherent dust and having a
shear-free expansion is ruled out by C-field cos-
mology (of Hoyle-Narlikar) without creation.

So the presence of the C field does not modify
Schiicking's theorem. If, however, &u= 0 Eq. (32)
reduces to an identity for o = 0. So, for shear-
free expansion, we must have either u = 0 or 8 = 0,
i.e. , (@8=0.
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