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A version of Brans-Dicke theory of massive scalar and massless tensor fields is given.
A connection to a spontaneously broken scale invariance is shown.

Recently O'Hanlon, ' Acharya and Hogan' have
shown that a generally covariant theory of gravita-
tion can accommodate a massive scalar field in
addition to the massless tensor field. ' This seems
to shed a new light on the scalar-tensor theory of
gravitation' by showing a close connection with
another intriguing hypothesis in the theory of
quantized fields: the spontaneous breaking of
scale invarianee. '

We may first consider the simplest model in
which the Brans-Dicke-type scalar field' plays,
at the same time, the role of the field of a dila-
ton —a Nambu-Goldstone boson of scale invari-
ance. ' We find that this model is satisfactory in
the sense that the weak-field approximation to
the scalar field in the manner of Brans and Dicke
corresponds to introducing a "shifted field" in the
manner of Goldstone. ' The vacuum expectation
value of the scalar field gives the gravitational
constant, on one hand, and finite masses of matter
particles, on the other hand. Perhaps the only
drawback of this economical model is that, as
will be shown later, one can hardly conceive any
experiments which test the theory.

In order to have testable predictions we then
consider the second simplest model in which in
addition to the Brans-Dicke field another scalar
field is introduced. We find that the two fields get
mixed with each other and result in a massless
field and a massive field. ' It turns out that the
former field is decoupled from the static matter,

while the latter manifests itself in the non-Newton-
ian part of the static gravitational potential, as
suggested previously in a different approach. ' The
present model provides us with a better under-
standing of why the force range of this unusual
part is expected to be most likely a macroscopic
distance roughly of the order of (Gmx') "'-10'cm,
where G is the Newtonian gravitational constant
while m„is the nucleon mass (c =a =1 throughout).
We maintain general covariance. The tests of
general relativity remain unaffected.

We assume the Lagrangian density

P "—-'4 C "+f, +Q)

Here the scalar field p has been chosen to have a
"normal" dimension, i.e., the dimension of mass.
Obviously the dimensionless constant f' plays the
role'of the Brans-Dicke constant w. Another sca-
lar field g has been introduced. In addition to
these we consider for simplicity only the scalar
and isosealar "nucleon" field 4.'0 Including other
particles interacting with each other does not af-
fect the results. The interaction Lagrangian con-
sists of two parts:

(1b)

So far we have no dimensional constants, so that
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complete scale invariance holds and all the parti-
cles are still massless.

One derives the equations

Gv. f'rtr 'T
p

0-'(g„.& —&2'V. )4'

f rirR +0 Q + 8 L'/8 Q
= 0,

rir+8L'/8$ =0,

C +8L'/8e =0,

(2a)

(2b)

(2c)

(2d)

o y = y '(-y p-") ,'zy-'-o(y-'+c'), (3)

where Z =(1+6f ') '.
We now introduce the shifted fields p, and p2 by

p =v, +cr, and p= v, +a„where v, and v, are the
vacuum expectation values. Equations (2c) and

(3) are then put into the form

cr] =5) +y]~cr)+J] ~

We find 6, =-xz8„82=v, 'F(x), where

F(X) = Ci + 2C2X+ 3C2X + 4C4X

(4)

with x=—v, /v, . We require 6, =0. In addition to
the normal solution v, =0, one may have a self-
consistent solution with v, 11 0, F(x) =0. We as-
sume that this is indeed-the case. Note that only
the ratio x is determined in terms of c„,while v1

is left arbitrary. Other symbols in (4) are

where L,' =1., +L,, and the Belinfante tensor 7'„„
includes the contribution from the matter as well
as from p and g; v„is a covariant derivative
and 0 =V "V„.Contracting (2a) yields R=f-rtr 'T
—3y 2p y2 which is to be substituted into (2b).
Further transforming the trace T by using the ex-
plicit form of T and (2c), (2d), we cast (2b) into
the form

we have g =0. Equations (4), (6c), and (6d} show

that g, are then decoupled from the static matter.
Note that the last term of (6c) vanishes if the mo-
mentum transfer from the nucleon is neglected.
There are no other terms which contain the nu-
cleon field explicitly. Although there are other
neglected terms which are higher order in g„
inclusion of their virtual couplings to the nucleon
should be illegal in the spirit of the present La-
grangian model. This is the reason why the model
without g is scarcely tested by present experi-
ments. Brans and Dicke's original result in which
the massless scalar field gives observable effects
would follow if the nucleon mass were assumed to
be a consequence of an explicit breakdown of scale
invariance.

Now (4) can be diagonalized to give

( —X,)rrI =JI, (8)

where rr, =a,r err' and (a 'yc2), r =8,rx, . The eigen-
values can be calculated to be

~2 =y» -«y»=- u'.

We also find by ignoring 04 that

Z,'=0, Z,'=(a»)-'v, -'gp.

(9)

(10)

The first part of Eqs. (10) shows that the massless
field o', is decoupled from the static matter. Con-
sider a static mass point with the mass M com-
posed of nucleons. " The solution of (8} thus gives

o,' =0, o2' = -gv, '(M/12»)(e ""/4rrr) .
With the aid of the relation n» =-«o», we obtain

rr, = t v, ZM(e ""/4rrr),

o2 = -(xz) 'rr, .
yll «y21 &

y21 vi (3cl+ c2x+ csx

Y12 «y22 &

y22 = 2vi (c2 + 3c2x+ 6c~x ),
J1= —xZJ2 —2Zv1 CI 4

J2 g2 v24' gv2 p y

p=mN 4

(6a)

(6b)

(6c}

(6d)

we obtain

&Xv, = 2f v, 'T„„- (12}

We write g =q„„+fv, 'h„„andapply the weak-
field approximation to (2a). Also introducing

1
X vv hpv 2 '0 jvh 2f 'grrvrri &

and imposing

where

Here m~ is the spontaneously generated nucleon
mass, 1' and

K =(g2v2) I (givl) +(g. 2v'2) j ~

In (6c) and (6d) we have dropped terms higher
order in o,

In the "simplest" model in which there is no g

where we have again dropped terms higher order
in g', . The static potential V which describes a
force acting on a nucleon is obtained most easily
by writing the nucleon part of the Hamiltonian in
the form

2 2 2 2
IIN = mN 4 +mN V4

We find that V consists of two parts; V V1+ V2,

where
1 1

Vi = 2f vi horr-
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is the usual "geometric part, " while V, arises
when one replaces p' and g' in (lc) by 2v,o, and

2v,o„respectively. Combining (11) and the simi-
lar static solution of (12), we finally obtain

V(r) =-G„(M/r)(1+ac ""),
g1[(3 ~ lfQ) 1 +2 Qf 8]

(13)

where G„=f'/8sv, ' is the gravitational constant
which controls the long-range force. The potential
(13) is essentially the same as that suggested pre-
viously, ' and also derived by O'Hanlon, ' and
Acharya and Hogan. ' " The short-distance limit
of (13) is given by V(r)- -Go(M/r), where Go/G„
=1+a.

The long-range force comes only from the geo-
metric part. As was shown in Refs. 1 and 2, the
tests of generaL relativity remain unaffected as
long as y» p, '. On the other hand, the finite-
range force comes from both of the geometric
and the nongeometric parts. It then follows that
a particle falls off a geodesic as far as the (usually
small) effect of the finite-range force is con-
cerned. Nevertheless the equivalence principle
sti11 holds since V, comes from the very term,
Eq. (1c), which creates the inertial mass.

Finally we try to evaluate p, . We notice that
no scalar meson has ever been established among
observed particles. We conclude that the coupling
constants g, and g, must be much smaller than
that of the weak interaction. As a tentative choice

we assume that the interactions of the scalar
fields, if any, are as weak as the gravitational
interaction. Let g represent g, and g, which are
assumed to share the same order of magnitude.
The above assumption amounts to

g (Gm 2)1/1 10-19 (14)

as expected. Consequences of the possible inter-
mediate-range gravity with such a force range
have been discussed in detail' "to show that the
available measurements are not accurate enough
to give a final judgement. Improving the experi-
ments is urged to test the theory and search for
a possible link between particle physics and grav-
itation.

I thank Professor S. Kamefuchi and Dr. M.
Omote for valuable discussions.

Also suppose vy and v, are of the same order of
magnitude as each other and are represented by v.
From (7) and (14) one finds v-g 'm„-10"m„.
We further assume c„-g'.This is obviously
based on the plausibility argument that each P or
g field carries a constant g. The solution x of
F(x) =0 [see (5)] will then be of the order unity.
From (6a), (6b), and (9) it now follows that p'
- v'g', as long as f is also of the order unity.
Again using (7) we obtain p, -gm„or

p '-g 'm„'-10"ppg '-10' cm,
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