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%e consider the gravitational and electromagnetic fields produced by a charged (or uncharged}
test particle moving in a Reissner-Nordstr5m geometry as perturbations on the background
Reissner-Nordstr5m geometry and its associated electric field, respectively. The gravita-
tional perturbations are expanded in tensor harmonics in the manner of Regge and %heeler,
vrhile the electromagnetic field is expanded in vector harmonics. Following a previously
proposed convention, @re find that in the Einstein-Maxwell system of equations, electric
gravitational multipoles couple only to electric (TM) electromagnetic multipoles and

similarly for magnetic multipoles. It is possible to reduce the entixe Einstein-Maxwell
system for each type of multipole to bvo second-order Schrodinger-type equations,

I. INTRODUCTION

The problem of gravitational radiation emitted
by moving bodies has had significant attention in
recent years (due in no small part to Weber's
pioneering work in gravitational radiation detec-
tors). In 1957 Regge and Wheeler' outlined a har-
monic analysis for perturbations on a Schwarz-
schild background geometry. This was developed
by Thorne and colleagues, ' Vishveshvrara, ' and
others. Also, a suitable scheme to determine the
gravitational radiation emitted by a body moving
in a Schmarzsehild field eras outlined and a simple
self-a@oint (Schr5dinger-type) differential equa-
tion was found to describe "electric" multipole
gravitational radiation. Regge and Wheeler had
previously found the self-adjoint equation for
"magnetic multipoles. " These equations have since
been studied analytically' and integrated numeri-
cally' to yield results of astrophysical interest.

Concurrently, the problem of gravitational radia-
tion in a flat-space background has received signif-
icant attention and the combined problem of elec-
tromagnetic and gravitational radiation has been
analyzed. However, much of the peculiarly gen-
eral-relativistic effects are slighted in flat-space
treatments. Thus are wish to look at the follovring

speeifie, consistent, and fundamental problem:
Consider a charged test particle moving according
to the Lorentz force lair in a Reissner-Nordstr5m
background geometry and find the gravitational
and electromagnetic fields produced by this test
particle as perturbations on the background elec-
tromagnetic field and geometry.

We decompose the gravitational and electromag-
netic field perturbations and their matter and cur-
rent sources into tensor and vector harmonics.
Just as there are electric and magnetic multipoles
for the electromagnetic field, there are corre-
sponding "electric" and "magnetic" gravitational
multipoles, and, with the proper choice of names,
only electric gravitational multipoles couple to
e?ectric electromagnetic multipoles in the Ein-
stein-Mamrell equations and likewise for magnetic
multipoles. Then, for each type of multipole, de-
noted by the superscript e or m, we derive a
"superpotential" g~» ~ for the gravitational field
and a "superpotential" f~~„) for the electromag-
netic field which satisfy equations of the form

d 2g(g, lt)
1,N ( 2 ~(gAIY) )g(a, Ill)

d~~2
+ - I, I.~

= ai~'") f~'„")+ grav. source, (&)
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g Bg(a,i')fzs + ( k y(em))f(k, sl)
~&~2 L,

g(4f, m) ~(4f,m) (4f, na) I,N
CI source. (2)

These equations have been numeric y integrated
for certain specific sources: an uncharged test
particle falling radially into a Reissner-Nordstrom
black hole —this produces significant electromag-
netic radiation; a charged test particle falling
radially in, and a charged test particle in a circu-
lar orbit. The results are presented elsewhere. '

ds'„„= e "dt'+e-"dr'+r'(d8'+ sin'8dy ) (5)

and electromagnetic field

II. PERTURSATIONS ON A REISSNER- NORDSTROM
GEOMETRY

The combined Einstein-Maxwell equations de-
scribe the gravitational and electromagnetic
fields':

Gp„=Sr(Tp„+Ep„),

((-g)'"E""),„=4s(-g)"~",
where the tilde denotes quantities associated with
the total electromagnetic and gravitational fields.
The corresponding quantities without the tilde re-
fer to the background Reissner-Nordstrdm ge-
ometry

We wish to consider first-order perturbations,
g„„=g„„+h„„and E„„=E„„+f„„.Keeping terms
to first order we obtain

5Gp „=Bs(Tp „+5Ep „),
5((-g)' 'E"") =4s(-g)' 'Z" .

(9)

(10)

((-g)'"f"") =4s(-g)'"( J" +j") (12)

where h„=h„' ". The quantities on the right-hand
side of Eqs. (11) and (12) are

gg(A) + gE (f)

There are two parameters of smallness of the
perturbation: the mass m, of the test particle and
its charge q. However, we can express the charge
as q = zm„where c is the charge to mass ratio
of the test particle. Given a charge to mass-ratio
which need not be small, the perturbation, never-
theless, will be small if mo is sufficiently small
(so that q = m, s is also small). To first order,
g""=g""—h"" where h"" =g""g" h~s and (-g)'~'
=(-g)'~'(1+-,'g""h„„). Then, the Einstein-Maxwell
equations become

h„„.„' -(h„.„+h„.p)+2RPp „hp~+h „.„.„
—(RP,h„p+ RP „h„p)+Rh„„

+gp, (hg' - h" .g' "—R sh s)

16s(Tp-„+5Ep „),

where

2 ppg~P r 'r

(gP+P
p
j' —g j' +P'k)

m

T„„is the matter energy-momentum tensor and
4" is the electromagnetic current. For a point
charge of mass m, and charge q,

4 dz" dz"TP"=m. d'&(z-z(s)) cps ~
cats As-

where z"(s) is the world line of the particle as a
function of arc length, and

J"=q 5(4) x-z s ds,uz~

ds

(A) ~ pe os kX
p v 4 [g g (Epp cy kgp ling Epk ox)hct 8

(f) ~ 'p~
&E'p'k =4 [g"(E..fp—p+E.pf p.)

ap ea—kgpug g &esf pal ~

4 (-sg)'"j"=[(-g)'"(g"'g gP"P' g"+'g" g"P)E sh . p

—l(-g)"g""g"'E shl .
We expand h„„and f„„in tensor harmonics. The

geometrical perturbations k„„are given in Table
I. The freedom to make infinitesimal coordinate
transformations aQows us to set h, =- 0 in the mag-
netic multipoles and k,' = h,' =- 6 =- 0 in the elec-
tric multipoles (Regge-Wheeler gauge). The elec-
tromagnetic field harmonics are given in Table II.
Let fp „be derived from the potential ap, i.e.,

x -g' d x=1.
Then, for magnetic multipoles,
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TABLE I. Tensor harmonic expansion of geometric perturbations h~. 'The asterisks denote elements obtained by
symmetry. Yzu are normalized spherical harmonics.

magnetic multipoles:

0

0

1 BYt.u
o sin8

-hg~ sin8 &P

BYgu
ho sing

BY~u
h& sin8

~ 2 sing
-hz ~ sin8 Wzu

-h& ~ sin8Xzu

electric multi soles:

e"&oYzu

e "H)Yt,u

BY~u
aP~

() BY

B8

( ~
BY&u

ho'

(,) BYz,u
h)

r KY~u+ G &r ~GXLu

B~Y~u
r sin 8 KY~u+G

where

B BX =2———cot8 Y

B B 1 B
W&u= B8&

—cot8B8 sin 8 B~~ Yt.u

TABLE II. Tensor harmonic expansion of electromagnetic perturbations f~. The asterisk
denotes components obtainable by (anti)symmetry. Y&u are normalized spherical harmonics.
The tilde ff~) denotes the angle-independent parts off~.

magnetic multipoles:

0
1 BYLu

o~ sin8 B$

fi2sin8 B

BY~u-
-f„sin8

BY~u-f&z sing

f23 sin8 Ygu

electric multipoles:

0 foiYt, u
BY~u

fox
BYgu

fo~

BYIu
fu

BY~u
fu
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TABLE IH. Coefficients of the harmonic expansion of
matter and current sources.

- (sr„)
1.(I,+ 1) sine

=-g„( ") sinHL(l. ~ 1).

We denote by f„„the angle-independent parts of

f&„. The field equations f„,z+fz„„+f„z„-O
(or equivalently, the fact that f„„is derived from
a potential} tell us that

magnetic multipoles:

] BFI~ =-16xTg2,

Apg = -16m'T02,

1
A22

~ XI~ = -16m T22,sine 2

BFIg
sine B$

electric multipoles:

(14)

For electric multipoles we have ao=-j~YL„, a,
=-f»YL„, a =a, =0. Thus

sfm sf»
Br Bg

if we now substitute in Eqs. (11) and (12) the
Heissner-Nordstr5m values for* E„„and g„„, we
obtain the perturbation equations. %'e write the
equations for the Fourier transforms of the field
functions (S/Sf- i&u) F-or m. agnetic multipoles
(note that only magnetic electromagnetic multi-
poles couple to magnetic gravitational multipoles)
we obtain

p dko 2$co~2e vi + g~e~v o e v
Jg

dr r
2vl

+ e" v" + v" + h, +2k.r 'h,

=2e r h, —4er 'e "f02+A», (16)

Vd &0 ~ Vd&X-e ~ -&dedr- dr r

+e v + p + + g ko+2A,r Ao

=2e'r 'h, -4er 'e"f»+Aon, (17)

A()OFI, JJI
= 167(' T00 & AOP LN -16rTo), A ) )Fz,g = -16rTg),

BFQQ BFg~
A02 =-16m TN, A)2 =-16m Tp,

Be
' Be

XIg = —16m'T

A22F~„+A2, —,
'

m ~„=-16~T22,

v YJg= J(),

BFIg
ao =J2.

A~, A», and y are coefficients in the harmonic
expansion of the matter and current sources (see
Table III).

We also have the relations

dfss
dr

L,(L, + 1)

I.(I.+1)

Thus the electromagnetic field is determined by
one function which we call f'L"„~ and choose to be

2icye 'h +2ev +2e'v'jg, =A
. Vdh, (18)

(m)fL& I(I +1) f23'

e 2d=pal, +1)e" Ash, +r'— —4vt. (I.+ I)e"y,

where X = ,'(L —1)(I.+2) and pr—imes denote differ-
entiation with respect to r. The quantities A~,

Now, solve Eq. (18) for h, and substitute it into
Eq. (16). We obtain a second-order equation for
h, in terms of the sources and fLj. Equation (17}
is satisfied identically if the energy-momentum
tensor of matter plus the electromagnetic field has
zero divergence. In the case of a point mass-
charge this is equivalent to the requirement that
the motion of the particle satisfy the Lorentz
force law
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m0Du" = qI'"„u",
where D is the covariant derivative and u" =dzs/
ds. Define the function R~J(r) = (1/r)e" h, and use
the variable r* where dry/dr = e ", then

dsR~~„~, „L(L+1) 6m 4e'
+ (d -8 y — 3 + 4 Rg~

Thus the problem is reduced to the solution of two
coupled second-order Schr(]dinger-type equations.
The matter source terms for a point test particle
are given in Table IV. Given a solution Rzs, fz„',
the metric and field functions are

A1L,+ y8 Rl g
-v (m)

4ime v ( ) e & „d ee"f „- A„+,re"——.A-„),r dy r2

(20)

while Eq. (19) becomes

d'fI,j, „L(L+1) 4e'
00+ & e ~ + 4 c~

e(L —l)(I,+2) „( )

Z4yr3 LN

+ . , e2vA» —4me "y .
iQpy2

(21)

d () e"
h0tAt=- —.

d (rRz)t)+ 2. A»,
s(d dy Z(d

f01

f00= t&ft.s ~

(m)

&fz(d'
12

fss =L(L+ 1)f~~'.

The electric multipole equations are slightly
more complicated. They are as follows:

2v dE 2dK2, 6 dK 1 v' „2 2Z 28e'" 2 + —— '+ v'+ ——-2 —.+—(H, +H, ) +e" —.H, ——.K =, e"H, ++ e"f„+A~, (22)

2 dH0, 2 dK 2 -v 1 2A. „ 28 „ 48-2e '"0)'K+ e "H +— — v'+ ——+—e "H — L(L+1)e "—H + e"K= —e "H — e "f—+A
y dy y dy y2 0 y2 y4 0 y2 01 ll l

(23)

-+'8 "K-e" +8" v'+ ——+i~ v'+ —K, —~'8 "H2+2i~ '+8" +e" —,'v'+—

+e' ~sv +— '+, L(L+1)(H, —H,)+e" v"+ v" + (H, —K) =4ef»+A»,1da, 1 v gs I 2

dy 2y

(24)

TABLE IV. Harmonic coefficients for matter and current sources for a point particle: mag-
netic multipoles. T (s), R (s), 8 (s), 4 (s) is the trajectory in Schwarzschild-type coordinates vs.
arc length (proper distance) s. The mass of the test particle is mo and its charge is q. The
quantity y =dT/ds.

matter:

A)2 160'm0V[L (L+1)] 'e "(dR /dt)6(r —R (t)) [(1/s'in6) (6Ygs/se)d6/dt
—sine(aZ,*„/ae)de/e],

A&&=16 [Lsm(L0+1)(L —1)(L+2)] ~()(r —R(t))
x {(1/sin6)Xz4s(6, @)[(d6/d't ) —sin 6@(dt/) d] —2 sin6 Wt s(6, 4&) (d6/dt) (de/dt)} .

current:

y ~e[L (L +1)] ~6(r —R (t)){(1/sin6)(BYE&/Be)(d6/dt) —sin6(SY&s/66)(dC /dt)}
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dE 2i~ . , 2 „2v' 2 2g 2e-2i&—+ H +i+ v'- —K- e" +—H ——H = H +Adr y 2 r y y2 1 r2 1 y& 1 01 (25)

„dH, „, e-e" '-i&uK i~H——e"v'H =-—e"f +A2 1 2 12 02 (26)

dHp dÃ 1 I 1 1 &
1 4e-i~e 'H — +—— —v'+ — H — —v'- —H =-—e ',~ +A1 d dr & r 2 2 r 0 y2 a 02 12

H2 —Hp =A23

d - 1 e
p —(r'f „)—p L(L+ 1)e "f~ =—,—(H, —H, —2K) + 4me v,

(28)

(29)

1 i've
i&ufo-, -pL(L+1)e"f»= + (H, —Ho-2K)+4we"u, (3o)

-u- d v-ie)e -"fo, (e—"f—, ) =4vw .02 dy 12 (31)

We also have the homogeneous Maxwell equation

CtÃ
+i~f»-f»=0 . (32)

Again, A, A», 422, A„, A, A», A23 v Q

are coefficients in the harmonic expansion of the
matter and current sources (see Table III).

This set of equations may be reduced to two
coupled second-order equations just as in the case
of magnetic multipoles. We outline the method.
Substitute (28) into Eqs. (25), (26), and (27), elim-
inating the function H, . This gives us three first-
order equations for H„H„and K. If we substi-
tute dH, /dr, dK/dr, and dH, /dr as given by these
equations into Eq. (23) we obtain an algebraic re-
lation involving Hp H1 K and the electromag-
netic fo„ f~, f». We solve this equation for H,
in terms of the other quantities and substitute this
result into Eqs. (25) and (26). The remaining
Einstein equations are satisfied identically (as-
suming zero divergence of the total energy-mo-
mentum tensor} by a solution of the resulting pair
of equations which we may write as

the matter and current sources. It is possible to
reduce this pair of equations to a single second-
order equation. For the moment, let us turn to
the Maxwell equations (29)-(32). Equation (30)
gives f» in terms of e f», while (31) gives f~ in
terms of e"f». Equation (29) is satisfied identi-
cally if the current satisfies the divergence con-
dition. If we substitute these values of f„and f~
into Eq. (32) we obtain a second-order equation
for e"f» (denote e"f» by f~~'~):

d2 (e)
„;"+[~2- e"r 'L(L+1-}]f~&~&

=2, e"(A„- 2K~„) +4w e'"u- „(e"su)

(35)

Our task now is to reduce (33) and (34) to a single
second-order equation for a "superpotential" R~'„
and to express K~„ in Eq. (35) in terms of It i~'~

and the matter sources.

—= ~.(r}K+~-'P. (r)H, + S, ,

ar
'

d
'=y (r)K+ + '5 (r)H, +S, .dr

(33)

(34)

A. Transformation of electric equations to a
single second-order equation

The idea is to find a transformation from the
functions H, and K to a new pair of functions X'and

L, where K and L satisfy the following equations:
The coefficients n, P, y, 6, are functions of r and
w, where dK—=f.+sdi (36)

a (r) =n (r)+(o'o.,(r),
P (r}=P,(r}+(u'P,(r},
y (r) =y,(r)+ ~'y, ( ), r
5.(r) =5,(r)+~'5, (r) .

The quantities S, and S, contain fo„ f~, f» plus

=-[~'- V(r-)]t+ S, . (37)

The new variable r" is given in terms of r by dr/dr
=1/n(r). If we can find such a transformation, the
problem is solved since, letting RL', & =K», we
have
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d &g(e)

dr"
"+[{cP-V ')(r)]R«) =S«, (3S)

g(r) =1,

k(r) =-ire ", (44)
where S« = S, + dS, /dr". Thus we wish to find func-
tions of r only, f(r), g(r), h(r), and k(r) such that
if

K(r) =f(r)K(r) + g (r)L(r),

{d 'H, (r) = h(r)K(r) + k(r)X(r),
n(r) =e" .

1 —e "r '(mr- e')-(3mr-4e')
1.r+ 3mr - 2e'

(45)

(45)

dr" 1
dr n(r) '

then K and L satisfy (36) and (37). Fortunately,
the problem has a unique solution. Let us use a
matrix notation for compactness. If we make the
definitions

Thus our new variable r" is just the variable r*
that we used previously for the magnetic multi-
poles. The effective potential for gravitational
perturbations is

„L(L+1) 6m Se'
Vi' r)=e" p

—
p +r r r

4 (3mr —4e'}(mr- e')+e"r'(3mr —5e')
r' A.r'+ 3mr —2e'

then Eqs. (34) and (35) can be written
2 e"(3mr- 4e )'
r' (){r'+3mr 2e')—' (47)

Let

=A/+ S .
dr (39) We then have

Kr.e=f(r)Rtit+ ~, —Sx i
{,) dR('„'

then

P=F

Thus

~=F—+—(t =AP+S =AF{]]+S
ddt dg dF-
dr dr dr

so that

~=-n(r)F '~ —-AF ~y+n(r)F-'S .d~h i /dF
dr {dr

Thus, to satisfy our requirements, we want

(40)

TA&LE ~. Harmonic coefficients for matter and cur-
rent source for a point particle: electric multipoles.
The Fourier transforms of these quantities must be used
in Eqs. (16)-(50).

matter:

App = 16m mpye "r-6(r -R (t))Yt*e(D(t)),

Ap& =16rmph(dR/dt)r 6(r —R (t))Yte(Q(t)),

A{{=-16empVe P" idR/dt)tr P6{r—R (t)) Yt&{D(t)) ~

AN = 16rmpV[L (L-+1)] ev6(r —R (t)) (d/dt)Yzz{Q(t)),

Ai2 =-167rm()y[L (L +1)j e "

x(dR/dt )I)(r —R(t)) (d/dt)Yze(Q(t)),

dFi 0
(41)

L(L+ 1)/2r —e"{3mr —4ee)
r(Xr'+ 3mr —2e') (42)

Condition (41) gives us four equations involving f,
g, h, k, n, V in terms of e, P, y, 5. If we equate
separately the coefficients of cu and u' we obtain
eight equations plus the condition kf -gh jo for
six functions f, g, h, k, n, V. The system is
overdetermined, but the functions a, P, y, 5 are
such that the system is consistent and has a unique
solution:

Apt =—Srr mpV6(r —R(t))

x ((de/dt) p+ sin'e (de/dt)'} Yg„(Q(t)),
Apt=-16rmpVr [L (L +1)(L —1)(L +2)] 6(r —R(t)}

x (2R,„{Q(t))(de/dt)(de/dt)

+[(de/dt) —sin e(de/dt)p] Wg„{Q(t))}.

current:

v = qe"r P6{r —R (t)) Yz*z{ (tQ)-),

u =qe "(dR/dt)r P6(r —R(t))Yze(Q(t)),

pe=q[L (L +1)] 6(r —R (t))(d/dt)Ytz{D(t)) .
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where

t), =e"(A.r'+Smr-2e') 'f 'tr+8(~'"')

$', "'"'=-(1/i(u)e "r'(Ar'+ 3mr —2e') ' (-,'A„+r 'A ) .

We may substitute this value for K~„ in Eq. (35) to obtain the second-order electromagnetic equation.
Thus we obtain the following system:

+((u' —V~('}R&'e~ =-e'"(Ar'+Smr —2e') '[e "r '(Ar+ m} +(2Ar+3m)(Ar'+3mr- 2e') 3] (Se/i(u)f~'„'

+ $(amt ter) (4S)

r' r'(Ar'+ 3mr —2e') '" ' f '" dr* 2r'

ice
V V+, 82+4)Te" e"u- „(e"w)r' dr* (4S)

where the matter source term S~„""'is

$';„'""'= ——. , [e'r'(Ar'+ Smr 2e')—'(-,'A„-+ r-'A„)]+e'r 'A„-d

-e'"r'(Ar'+3mr —2e') '[(1/2j(u)[r ' —(2Ar+3m)(Ar'+3mr —2e') ']A„
+(1/i(ur)[2/r —(2Ar+Sm)(Ar'+Smr —2e ) '-e "r '(A 1+)]A~]

8 V Bgg (50)

where

B«= ,'e "r'(Ar'+ —3mr—2e') '[A»+ (2/r}A~+ (Se/i(ur')4t(w + (4e/itur')43(u] .
The other metric functions are

(e)
Ht«=(uh(r)R ~'tr —i(ure " "—S,dr+

Ar' e" + mr(r- Sm)+ 2me' —(u'r' (A+ 1)(mr- e') —(u'r'
r(Ar'+ 3mr —2e') e" i(ur(Ar + 3mr —2e') &u, ~

d (e)
r(rr' ~ 3 r —2e') ' *" —f'„') —e +(e" 'r'/4„r)e( 2' 3m —2e ) 'A„.

Ad 2r

The electromagnetic field functions are

fta=e flu-V (e)

1 df~('„' 4w
f(), = ——. ——. e"w,

ice dr* ice

f» =- (1/Aur )L(L+ 1)f~('3I+ (e/r )K~„
—(e/2r'}A„—(4s/i(u) e"u .

The matter source coefficients for a point mass-
charge are given in Table V.

III. CONCLUSION

For each type of multipole, electric and mag-
netic, it is possible to reduce the original Ein-
stein-Maxwell system of fourteen functions and

fourteen equations to a pair of second-order Schro-
dinger-type equations for two functions —one which
determines the gravitational field and one which
determines the electromagnetic field. We have
found the effective potentials for each case. Nu-
merical integrations of the equations for certain
cases of interest —charged and uncharged test
particles in various orbits are being carried out.

Note added in Proof: Vincent Moncrief points
out that the magnetic multipole equations may be
decoupled by a simple linear transformation.
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This paper will deal with the high-energy tip of the synchrotron spectrum. Specifically,
we consider exact relativistic wave functions of an electron in a transverse magnetic field
as the basis for the calculation of the transition rate to the ground state.

I. INTRODUCTION Ps = component of electron's linear
momentum along H, (1.2g)

Several articles' ' and at least one text' have
been written dealing with the quantum-mechanical
description of an electron undergoing synchrotron
radiation. The general picture' is that an electron
moving in a transverse magnetic field occupies
a definite set of energy levels with energy eigen-
values

E„=mc' [1+2n(H/H, ) +y,'] '~',

and m, c, e, and h have their usual significance.
Spontaneous radiative transitions are allowed

between these energy levels. These rates have
been computed in first' and second' order by time-
dependent perturbation theory. The matrix ele-
ments which enter in the calculation of the transi-
tion rates between initial state n and final state
n' are essentially Laguerre functions, I„„.(x),
where the argument

1n =np+ 8+g, (1.2a) x =A sin28

n~ =principal quantum number (0, 1,2, . . . ), contains the fo1lowing parameters:

S = spin quantum number (m),

H = magnetic field strength,

~ C
Ho = =4.414x10"gauss,eS

(1.2b)

(1.2c)

(1.21)

(1.2e) (1.4a)

8=polar angle in the system of spherical
coordinates where H is parallel to the
z axis and the electrons initially move
in the x-y plane (the component of the
emitted photon momentum along H is
proportional to cosa),

y, =P,/mc, (1.2f) A = (H,/2H)(y„- y„,)', (1.4b)


