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Why do we believe Newtonian gravitation at laboratory dimensions? s
Daniel R. Long
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(Received 27 August 1973)

Recent proposals suggest types of inverse-square-law failures which can fit known
astronomical data but which exhibit readily observable effects at laboratory dimensions. It
is pointed out that there is no plausible way to infer from astronomical data that Newtonian
gravitation applies in the laboratory. The experimental data are examined and it is found
that past G measurements in the laboratoxy set only very loose limits on a possible variation
in C arxl that present technology wouM allow considerable improvement.

INTRODUCTION sented in the form

The investigation of Newtonian gravitation, in
particular the inverse-square law, has received
little attention over the years. ' The reason for
this is not difficult to find. Presuming that an in-
verse-square-law failure must take the form

then the observational data on the advance of the
perihelion of Mercury gives' a very small value
for 6. This value is so small that it is hopeless
to look for an inverse-square-law failure in the
laboratory. This result hinges upon the assump-
tion that any failure in the inverse-square law
must take the form given in Eq. (1).

A MORE GENERAL APPROACH

Recently, inverse-square-law failures of a more
complicated nature have been suggested. Before
giving these result~ we present a more general ap-
proach to discussing the problem. The Newtonian
gravitational force law is written

GMm
R

for F the attractive force between the masses M
and m, R their separation, and G the gravitational
constant. In the event that there is an R depen-
dence beyond that in the R ' factor we can conve-
niently represent it as a dependence of G on R.
Hence we take, for the sake of argument,

G(R}Mm
R

It should be pointed out that this procedure is more
than merely convenient, since any effort to mea-
sure G at a given R will in fact give us G(R) if
there is an inverse-square-law failure.

This author has proposed a theory of gravitation
related to the weak interaction' which yields an in-
verse-square-law failure4 which can be repre-

G(R) = G,[1+n lnR+ P(lnR)*]', (4)

where G, is a normalization constant, and 0. and P
are constants. More recently, Fujii' and
O'Hanlon' have proposed a failure of the general
form

G(R) = G,[1+a(1+PR)e-'"),
where again G„a, and P are constants. Fujii de-
rives his result using a field-theoretic approach,
and O' Hanlon finds the same form using a metric
theory.

Both of these functions have the property that for
appropx'iate values for the constants they can fit
astronomical data, including the perihelion of
Mercury, while exhibiting a measurable failure at
laboratory dimensions. It would be interesting to
discuss the limits that experimental data put on
these constants, but it is a major goal of this
paper to point out that such considerations are
largely meaningless. It is clear that Eqs. (4) and
(5) are but special examples of an infinite class of
rather simple' functions, G(R), which are essen-
tially flat at distances of about 10" cm but develop
appreciable curvature at distances of about 10 cm.
The skeptic may verify this for himself by drawing
curves on semilog paper which axe essentially flat
at 10"cm but develop a slope at about 10 cm. It
is clear that such functions need have no simple
analytic form.

Further, it does not appear that there are any
fixmly established theoretical considerations which
place limits on the type of functional form which
G(R} might take. As is well known, it has been
impossible to relate gravitation to the other inter-
actions, and hence gravitation has remained some-
what isolated theoretically and most other knowl-
edge in physics cannot be brought to bear to make
inferences about gravitation. The most prevelant
theoretical approach to gravitation is, of course,
the metric-theory approach of general relativity.
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TABLE I. Measured values of 6 for various mass separations R.

Fig. 1
symbol

Author and
date

G (R)
(10 8 dyncm2/g2)

R
(cm)

References and
remarks

Br

RK-M

H

HC

Boys,
1894
Braun,
1896
Poynting,
1891
Richarz and
Krigar-
Menzel,
1898
Heyl,
1930
Heyl and
Chrzanowski,
1942
Rose et al .,
1969

6.6576+ 0.002

6.655+ 0.002

6.6984+ 0.029

6.685 + 0.011

6.670+ 0.005

6 673+ 0 003

6.674+ 0 004

6.3

8.6

32

80

13

13

12

Refs. 9, 10. Author's stated
error.
Refs. 9, 11. Author' s stated
error.
Refs. 9, 12. Error calcul-
ated from original paper.
Refs. 9, 13. Author's stated
error.

Ref. 14. Error is average
deviation from the mean.
Ref. 15. Error is average
deviation from the mean.

Ref. 16. Error is one
standard deviation.

However, as O'Hanlon's work amply demonstrates,
even metric theories can produce an inverse-
square-law failure if they are slightly modified. It
is, therefore, an open question as to the kinds of
G(R) which might emerge from further modifica-
tions of the metric theories.

Since our present knowledge does not seem to
restrict G(R) in any way (except for satisfying as-
tronomical data), it appears that there is no plau-
sible way to extrapolate data on the inverse-
square law from the orbit of Mercury to the labo-
ratory. Indeed, extrapolations of this kind (over
12 orders of magnitude) are generally rejected out
of hand in other areas of physics. '

Evidently, to assess the validity of the inverse-
square law at distances of a few centimeters we
must examine laboratory data of measurements of
t" itself. We shall see that these data are not es-
pecially reassuring, and in particular that present-
day technology does allow a considerable improve-
ment.

LABORATORY DATA ON G(R)

Laboratory measurements of G have not been
numerous, and many of the values come from
older data. In selecting the older data I have de-
ferred to the judgment of a contemporary of that
period, Poynting, ' in assessing the merits of each
work. Poynting flatly rejects all geological mea-
surements on the basis that the mass distributions
are too poorly known. In Table I, ' "I present all
the older data which stated errors of less than
0.5% and which were not criticized by Poynting as
"provisional" or containing systematic errors.
I further rejected one datum where iron-attracting
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FIG. 1. Semilog plot of G at the differenf, R.

masses were used, because of paramagnetic ef-
fects." It should be noted that Poynting regarded
the work by Boys and that by Braun as the most
authoritative data of that period (1910).

Also included in Table I are all of the more re-
cent data for which the mass separations could be
found. " For all data, the mass separations, R,
have been determined to 5$."

The G(R) data in Table I have been plotted vs lnR
in Fig. 1. If G(R) were constant, we should expect
the data to lie on a flat, straight line. Clearly
they do not, and there even appears to be an ap-
preciable trend in the data. The fact that the
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Poynting datum lies along a line determined by the
two other data clumps suggests that line A might
be a plausible fit to the data; however, the error
bars preclude taking line A. very seriously. Line
A does, however, suggest that more investigation
of G(R) in the laboratory is desirable.

It may be felt that we should confine our attention
to only the most recent data. Line B and line C
are constructed to pass through the error limits
of these data, and hence represent the limits on

any variation in G(R) as determined by modern
data. These limits are obviously not very strin-
gent.

A convenient, dimensionless way in which to
parametrize a possible R dependency of G is by
way of the logarithmic derivative. Using lines A,
B, and C, we might conclude that

dtlnG(R)] 3 4 lo
d(inR) 20. X10

+~10 cm

gives about as good a summary of our knowledge
of G(R) at distances of a few centimeters as any.

The rather broad limits that present data place
on G(R) are especially interesting because pres-

ent-day technology allows a substantial improve-
ment in these limits. In particular we believe
that our laboratory will be able to determine

d[ln G(R)]
d(lnR)

to within +0.5x10 ' in the near future.

CONCLUSION

We have argued that the extrapolation of astro-
nomical data to the laboratory system provides no

plausible information on G(R) at distances of a few

centimeters, and. that laboratory data on G(R) are
far more meager than they need be. Hence we

conclude that further laboratory research on G(R)
is significant and necessary.
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