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Hadron production at high energies is discussed in terms of coherent states. We suggest that the
scattering operator and the pion field density operator take on simple forms in the coherent-state
representation. In particular, we show that for a wide variety of configurations of the pion field the
density operator can be written in diagonal form in the coherent-state representation. When this is
possible, one obtains the statistical theory of pion production which we have discussed recently. We
also construct a solvable unitary model in which the total, elastic, and inclusive cross sections go to
constants at high energy, while the exclusive cross sections go to zero like a power of energy. In order
to take into account the isotopic spin of the pions, we generalize the concept of coherent states and

construct states with definite charge and isotopic spin.

I. INTRODUCTION

In most discussions of particle production one
starts by considering matrix elements of the scat-
tering operator between states containing definite
numbers of particles. This is the natural approach
when only a few particles are produced. However,
at present accelerator energies the average num-
ber of particles produced in hadron-hadron collis-
ions is already large, and it is expected to in-
crease indefinitely with energy. Under these cir-
cumstances it may be advantageous to express the
scattering operator and other operators of interest
in terms of states which are not eigenfunctions of
the number operator. A well-known example is
the use of coherent states of photons to study the
statics of the radiation field in systems such as
lasers, where the average number of photons is
large.! In this paper we shall use this approach
to study the production of pions at high energies.?

It should be emphasized that we do not envision
the pions produced in a high-energy collision as
coming off in a single coherent state. Pions pro-
duced in such a state would have no correlations
in their rapidity or transverse momenta aside
from those imposed by energy and momentum con-
servation. What we do wish to suggest is that the
scattering operator and the pion field density op-
erator take on simple forms in the coherent-state
representation. We show that this is the case for
a wide variety of final configurations for the pion
field, ranging from ones in which the pion dis-
tribution is chaotic to ones in which it is highly
coherent. Although pions produced in a single co-
herent state do not have any correlations in mo-
mentum space, there is no problem in introducing
both short- and long-range correlations in our
formalism.

In order to present our ideas in the simplest
possible framework, we start by considering the
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production of spinless, isoscalar “pions.” In
Sec. II the properties of the coherent states of
such particles are briefly reviewed. In Sec. III
the density operator for the isoscalar field is in-
troduced, and expressions for the inclusive and
semi-inclusive cross sections are given in terms
of it. The density operator is then expressed in
terms of coherent states and some simple exam-
ples are presented. The connection between the
present approach and the statistical theory re-
cently presented by two of us is discussed.?

In Sec. IV our formalism is used to construct
generalizations of the models of Auerbach et al.,*
which satisfy exact s-channel unitarity. We pre-
sent a solvable unitary model in which the total
and elastic cross sections go to constants at high
energy, while the exclusive cross sections for the
production of pions in the central region go to zero
like a power of the energy. This model contains
many of the features of the two-component models
recently discussed in the literature®, however, in
the present case the diffractive component arises
naturally; it does not have to be put in by hand.

In Sec. V we confront the problems arising from
the fact that the pion has isospin one. An ordinary
coherent state of charged pions will not have de-
finite charge or definite isospin. It is therefore
necessary to generalize the concept of coherent
states in order to construct ones with definite
charge and isospin. The techniques developed
here can be applied equally well to particles with
larger isospin than the pion or to higher-symmetry
groups.

Finally in Sec. VI we briefly discuss our results
and consider possible generalizations of our work.

II. COHERENT STATES

We begin by briefly reviéwing the properties of
the coherent states of a spinless, isoscalar par-
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ticle.® The four-momenta of these particles will
be expressed in terms of their rapidity y and their
transverse momenta, §,. When no confusion can
arise, we shall denote the three variables (,9,)
by the single symbol q. The creation and annihila-
tion operators are normalized so that their com-
mutation relation takes on the Lorentz-covariant
form

[a(y,8.),a” (3",8])]=6(y-y")6%(q, -4}) . (1)

The coherent states are, by definition, the eigen-
states of the destruction operator. Thus,

alg)|M=M(g)| M), (2)

where II(g) is an arbitrary complex function of ¢,
|II) can be written in the form

|m=exp[ -+ [ aq |1(0)17]
xexp| [aqmigia’ @10 ®

|0) is the vacuum state defined by a(g)|0)=0 and
dq=dyd?, is the invariant phase-space volume
element. It is sometimes useful to introduce the
coherent-state displacement operator

D(H)=eXD{qu[ﬂ(q)aT(q)—ﬂ*(q)a(q)]} © o (4)
Notice that

| 1)=D(11)|0) . (5)

D(1I) is a unitary operator, DT(H)=D(—1'I)=D"(II).
The states |II) are normalized to unity, but they
are not mutually orthogonal. In fact

<n'|n>=exp{-% [aaliv@ s+ n@P
—ZU'*(q)H(q)]} . (6)

The average number of particles in the state |II) is

is
ﬁ=<f1,qua7(q)a(q)|ﬂ>
- faq i@ )

The probability density of finding » particles with
momenta ¢q,,...,q, in this state is
[KOla(g,)- - - alg) IMD|? = | (g, )[*+ - - | TI(g,) %",
(8)

so the probability of finding » particles 6f any mo-

2
menta is
P"=("—)e-7. (9)
n!
It is sometimes cdnvenient to introduce a com-
plete set of states, f,(g), normalized so that
faars@svi@=tn- (10)
For most purposes it will not be necessary to
specify the functional form of the f,(g). The cre-
ation and annihilation operators for a particular
normal mode are defined by
a= [ dafi@ata), ()
SO
[akya;’]= Op pr (12)
Writing
N(g)=)_axfa(@), (13)
k
we see that the coherent state defined in Eq. (3)
can be written in the form
Im=exp (-l exp( S ral ) 100 = a1
k
(14)

Although the coherent states are not linearly in-
dependent, they do form a complete set. Denoting
by f OIl a functional integration over all forms of
the complex field [I1(g) and by

fdzak= fd(Reak)d(Imak)

an integration over all complex values of a,, we
see that

Jonm i - S T 22 K b

(@™ (a])™
- Z A~ |0)
o (n, D2 (ny!)
FLATR
(a)mn (a2
X<0, ("1 !)1/2 (n2 !)1 2

=1, (15)
The measure of the functional integration is de-
fined by the first line of Eq. (15). In going from

line 1 to line 2 of Eq. (15) we have made use of
the fact that

2
fd_ﬂaa e'l"‘k|2(ak)"(a:)"'=5,,.,,:71!. (16)
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Using Eq. (15), one can expand any vector or op-
erator in terms of coherent states. For example,

lf>=fon | I| £ . (17)

However, since the coherent states are not linear-
ly independent, the expansion is not unique.!

III. THE PION FIELD DENSITY OPERATOR

Most of the properties of the pions produced in
a high-energy hadron-hadron collision can be ex-
pressed simply in terms of a pion field density op-
erator. As in Sec. II we shall neglect the com-
plications of spin and isospin. Proceeding formal-
ly we write

p=T|P,P,)P,P,|TT Z"*, (18)
with

Z=tr[T|PP,)XP,P,|T"]
=(P,P,|T'T|P,P,). (19)

|P,P,) is the incident state of two hadrons with
momenta P, and P,, and T is related to the scat-
tering operator by T= 2i(1-S). Clearly Z is pro-
portional to the total cross section o.

The inclusive cross sections for the production
of a pion with momentum ¢ is given in terms of §
by

Q=

%:Z-IZ (nla(q)T|P P, )P P,|T a"(q)|n)

=tr[a"(¢)ala)p] . (20)

Again dg=dyd?®;, . Notice that we can use closure
in Eq. (20) because the total energy-momentum
conservation 6 function is included in the operator 7.
Similarly expressions for all inclusive and exclu-
sive cross sections can be written in the form
tr[Op].

If we restrict our interest to one type of parti-
cle, say pions, then we can perform the trace
over the coordinates of all other particles at the
beginning. We therefore define the pion field den-
sity operator p by

p=tr'p, (21)

where tr’ indicates a trace over the coordinates
of all particles except pions. Clearly p satisfies
the normalization condition

trp=1. (22)

From now on tr will denote a trace over pion co-
ordinates only. The inclusive cross section for the
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production of » pions is given in terms of p by

1 do

o da,dg,-trla'@) - +a"(,)alg) - ala, o]

=I(gy e g, (23)
and the semi-inclusive cross sections for the pro-
duction of exactly n pions plus any number of other
types of particles by

1
PUACPPRRRT e FPRRR ML PP M

AR (24)

Here lg,,...,q,) is a state of n pions with momen-
tagy,, ..., q,

In performing the trace in Eq. (21) one integrates
out the energy-momentum conservation 6 functions
in T, thereby introducing constraints into p. Since
the transverse momenta of the pions are limited
by the dynamics, the most important constraint is
on the rapidities. In the laboratory system y must
lie in the approximate range O<y<Y, where Y is
the rapidity of the incident projectile. There are, -
of course, more complicated constraints which
are most important for pions produced near the
edges of the rapidity plot, i.e., near 0 or Y. Since
we expect most of the pions to come off in the cen-
tral region, the only constraint that we shall ex-
plicitly build in is that their rapidities be restrict-
ed to the range 0 sy <Y,

If one had a fundamental theory of strong inter-
action dynamics, one could of course calculate p.
In the absence of such a theory it seems useful to
attempt to find a simple phenomenological para-
meterization of p in the hopes of learning some-
thing about the underlying dynamics. One knows
from the study of quantum optics that because of
the overcompleteness of the coherent states, a
wide class of density operators can be written in
diagonal form in the coherent-state representa-
tion.™"” Since calculations are particularly simple
for such density operators, let us start by con-
sidering them.

We write p in the form

=S (q,, -

p=Z'1J'§H|l'I) e FLIXm |, (25)
with
z=f6r1 e FLml, (26)

F[II] is an arbitrarily functional of II. Because of
the energy-momentum conservation constraint,

the functional integration is to run only over those
functions of MI(y, §,) which vanish for y outside the
range O<y<Y. Recalling that a(y, §,)|=1(y, §,)|D),
we see that the inclusive and semi-inclusive cross
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sections take on the particularly simple forms

gy - ra)=2= o [N(g) P+ -+ | T1(g)?
xe FLOl (27)

and

S(qu.--,q,.)=Z“f6HIH(qI)Iz---IIl(q,.)l’

xe"[“]exp[- f dqln(q)lz}

(28)

Mueller’s generating function® $§2(2) is given by
— (2=1)"
o915 EZ1 fag, - da s . )

=z-1 IGH e--F[II]e-(l-s).rdc‘n(q);2 . (29)

Equations (27) and (29) were the starting points
for the statistical theory of particle production re-
cently proposed by two of us.?

A particularly simple form for the density ma-
trix is obtained by taking e~*{™ to be a functional
6 function. Then the density matrix is given by

p= [T XM, . (30)
Clearly,

I(gy ... ,q2)=To(g,)[? ++ [Mo(g,)|?, (31)

Say, ---,q,,)=|ﬂo(q1)|2--'1H0(q,,)lze';, (32)
and

Q(2)=els-V7 (33)
with

Y
n= f dyfdqulno(y, a)?. (34)

1]

If My(y,4q,) is independent of y for O<y<Y, or a
slowly varying function of y in this region, then

n grows like Y and the S(g,,...,q,) fall like a
power of s. The inclusive cross sections are pre-
cisely what one would obtain in a multi-Regge
model in which there was a single Regge trajectory
with intercept one. This model is of course tre-
mendously oVersimpliﬁed as there are no corre-
lations in either the rapidity or the transverse
momentum.

" In I we considered a simple form for F[II] based
upon an analogy with the generalized Ginsburg-
Landau theory of superconductivity. We wrote

). on

For simplicity the dependence on the transverse
momenta has been suppressed. Although Eq. (35)
could be obtained by retaining the first few terms
in the power-series expansion of a general F[II],
it should be emphasized that it is applicable even
when the fluctuations of the pion field are not
small. The main justification for this form of
F[I] is that by suitably adjusting the phenomenolog-
ical parameters a, b. and ¢, it can describe a
wide range of possible final configurations of the
pion field.

To see just how wide a class of phenomena can
be described by the Ginzburg-Landau functional
let us consider two extreme examples. First take
a,c>0 and b=0. In this case it is convenient to ex-
pand [I(y) in terms of a complete set of normal-
mode functions. Since we do not wish to restrict
the values II(y) can take on at the boundaries,? the
appropriate choice is

Fo¥)=Y -1/3 ’

Fnl- [ Ydy[a|n<y>|=+b|n(y>|4+c

(36)
fr(=(3 Y)“’chS["—?-] , B=1,2,... .

From Eq. (13) and the orthogonality of the f,(y) we
see that

FI=3 (a2 a+ c(nk/Y 7). (37)
k=0

Then from Eqs. (14) and (15) we find

p= ﬁp., (38)

k=0

with

Pk=(7’u)—l fd_;ﬂg Iakxakle—h.lz/;. ‘ (39)
and

fi,=[a+c(nk/Y)?]™*. (40)

In the occupation-number basis we have

Ph=(1+ﬁk)—lz|m»><m»|[’_1k/(l+_ﬁa)]"'* ’ (41)
Ty
where
myy=(my 1Y 3@ )™ |0) . (42)

Thus, each normal mode of the pion field is de-
scribed by a Gaussian density operator which cor-
responds to random excitation characteristic of
noncoherent sources.’
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The opposite extreme, a highly coherent pion
field, can be obtained by taking a <0, 5>0, and
c¢>1. From Egs. (26), (29), and (35) one sees that
the generating function is given by

Q2)=Z(a+1-2)/Z(a) . (43)

The functional integral needed to calculate Z(a)
will be strongly peaked near the mean-field value
II, defined by

sFg]

6” * VY (44)
0
which gives
|T,|2=-a/2b. (45)

One then finds?®
Q(2)=~[1+(1-2)/a]** exp {Y[(2=1)(=a/2b)
+(z=1)2/4b]}.  (46)

Clearly by making |a| and b large, one can come
arbitrarily close to the Poisson distribution asso-
ciated with a pure coherent state [ Eq. (33)].

A detailed study of the models arising from the
Ginzburg-Landau form for F[II] is given in I. The
problem of performing the functional integrations
reduces to the problem of solving the Schrodinger
equation for the anharmonic oscillator. The point
we wish to emphasize here is that by making ap-
propriate choices for the parameters a, b, and c,
this simple form for F[II] can describe pion field
configurations ranging from chaotic to highly co-
herent. The present experimental data favor the
range a<0 and ¢>1. (See Ref. 3.) The |all/8y]|?
term in F[II] gives rise to nontrivial short-range
correlations in rapidity. The Ginzburg-Landau
form for F[II] can also be used to generate three-
dimensional models in which the dependence on §,
is retained. In this case, terms which contain
gradients, with respect to the transverse momen-
tum or transverse impact parameter, will give
rise to short-range correlations in §, .

Although a wide class of density operators can be
written in diagonal form in the coherent-state rep-
resentation, this is not always convenient or even
possible. An example of a simple density operator
that is most conveniently written in nondiagonal
form is given in Sec. IV.

IV. A UNITARY MODEL

In the models that we have discussed so far the
incident hadrons can be pictured as exciting the
pion field via a single interaction. In fact for the
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diagonal density operators discussed in Sec. III,
the inclusive cross sections have the same struc-
ture as a function of rapidity as one finds in the
multi-Regge model.® Recently a rather different
class of models [ AABS models*] was presented
for which the scattering operator satisfies exact
s-channel unitarity. In these models the incident
hadrons are pictured as propagating through the
interaction region, without making significant
fractional changes in their rapidities. However, in
order to satisfy s-channel unitarity they must be
allowed to interact an arbitrary number of times
with pions being emitted and absorbed at each in-
teraction. In the original version of these models
each interaction corresponded to the exchange of
a multiperipheral-like chain. In this section we
shall use the coherent-state representation to dis-
cuss generalization of the AABS models.

In the AABS models the scattering operator is
diagonal in the rapidity difference Y, and the rela-
tive impact parameter, _ﬁ, of the two incident had-
rons. We write it in the form

S(¥, B)=expli (¥, B)] . @)

The Hermitian operator (Y, B) determines the
amplitude for emitting or absorbing a given num-
ber of pions with each interaction. In general it is
a functional of the pion creation and annihilation
operators. If x( Y,B) has a finite Hilbert-Schmidt
norm® then it can always be written in the form®

x(Y,B)= f 811 D(M)[ (I1; Y, B)+x*(-1I; ¥, B)],
(48)

where D(IT) is the coherent-state displacement op-
erator defined in Eq. (4). The Hermiticity of the
operator x(Y, B) follows from the fact that D(IT)
=D(-II).

The weight function y(II; Y, B) can be parameter-
ized using techniques similar to those discussed
in Sec. III. In particular it is not difficult to in-
troduce short-range correlations in rapidity and
transverse momentum among the pions produced
in a particular interaction. However, in order to
simplify our presentation we shall neglect such
correlations and take x(II; Y, B) to be proportional
to a functional  function. We write

x(7, B)= 3 A(B)[D(I1,)+ D(-I1,)] . (49)

The only requirements that we shall make on the
function I1,(y,q,) are that it be nonzero only in the
interval O<y<Y and that inside this interval it be
slowly varying enough so that

Y
[ v feraingsaop=ry, (50)
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where A goes to a constant at high energies. In
principle A could also depend on Y. With our
choice, the Born approximation to the elastic scat-
‘tering amplitude is

2erd23<0|x(Y, B)|0)=2e¥Y(2-22 | 42BA(B),
(51)

which corresponds to a fixed pole in the angular
momentum plane at /=1-x., Our choice seems to
be the most natural since we are neglecting the
correlation in the transverse momenta necessary
to generate a moving pole.? One could generalize
the model by allowing the incident hadrons to be
diffractively excited.!! The only change would be
that A would become a matrix.

For any two functions II, and II,, one easily sees
that

D(I1,)D(I1,)= D(IL,+ [1)e(*/ 2 M-1{n,]  (52)

As a result,
[D(m,), D(-11,)]=0 (53)
and
D(11,)" D(=11,) "= D((n=m)IL,) . (54)

The scattering operator therefore has the simple
series expansion

S(¥, -ﬁ):z”: (ZA/Z)"+

Y, S Do (59)

Since the two incident hadrons are assumed not

J

to be pions, in order to construct the elastic scat-
tering amplitude we need the matrix element of S
in the state with no pions:

ols (v, Blo-3 LA,

-(1/2Xn-m)2ry

~Jo(A). (56)

In the last step in Eq. (56) we have retained only
the terms of leading power in s~eY. The total
cross section is given by

o= fdzBIm{Zi[1—<0|S(Y, B)|0)]}

zzfdzB[l—Jo(A(ﬁ))], (57)

and the elastic cross section by
- [azB1=0ls (v, B0}

~J arBl1-s (B (58).

Clearly the total and elastic cross section go to
constants at high energy for any value of the param-
eters A and A.

In our present normalization the density operator
is given by

oY, 'ﬁ)=% [l—e"‘("i)]IO) (Ol[ 1_e-lX(Y,E)]. (59)

Notice that in this class of models the density op-
erator is always separable in the impact-param-
eter representation. The inclusive cross section
for the production of I pions is given by

1 . .
I(gy, - - -,q,)=;fdzB<0lle""“"B’a*(q1)~ --a’(q))alq,): + - alg,) X ")|0)

-2 [Tingaore fars Yy SR I ()=t

n!m!
"l. m

Retaining the terms of leading power in s gives

gy ... a)=]] | 0ola0) 260 /ar, (61)
i=1
where
c=5p7 [arBI2(A(B)). (62)
=1

Thus, the inclusive cross sections approach ener-

"nm'
(60)

gy-independent limits at high energies. Although
we have omitted the short-range correlations
among the pions associated with a single y, the
correlation functions do not vanish. For example,

Ca(g1,92)= [I(T(?S";TZ':% 1]

=[oC(2)/C(1)%~1], (63)

which is independent of the ¢g,. This long-range
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correlation arises from interference effects
among pions associated with different x’s. This
type of long-range correlation has been discussed
previously using the more familiar S-matrix
Regge-pole language.'?

]

1 -
S(gs -+ @)= fdzBqu v gyl (1-eX (T 0)]?

Since the only particles in this model besides
the pions are the two incident hadrons which are
neither created nor destroyed the semi-inclusive
cross sections are identical to the exclusive cross
sections. We have

=% H o(q‘)lz ZfdzB (ZAn{i)’T (n—rn)‘e-(1/2)(11—41«)2)\1'2 . (64)

i=1

Notice that all the exclusive cross sections except
the elastic go to zero at high energy like a power
of the energy.

The generating function takes on an interesting
form in this model. From Egs. (29), (50), and
(61) we see that

Q(2)= 1+2%'TIX(AY)"2C(n)/o. (65)

Using the identity
1=J%(A)+2)_d AA), (66)
=1

we see that (z) can be written in the form

Q(Z)" el 2 ie(t-l))\k de 2pJ 2(A(B))

O p=1

(67)

This generating function has a form recently sug-
gested by several authors®; namely, it contains a
diffractive component oe‘/a plus a sum of multi-
peripheral-like components. However, it should
be emphasized that in this model the diffractive
component in £(2) has not been put in by hand. It
arises naturally from interference effects among
pions produced in different independent interactions
between the incident hadrons. (Multiperipheralists
may wish to think of these pions as being produced
on different multiperipheral chains.) Thus the con-
stant elastic cross section really does arise from
the shadow cast by the inelastic channels. Notice
that if A is small, all of the pions are produced in
a single interaction. However, the important
terms in the elastic amplitude are those propor-
tionalto x?. Thisis natural since it is only through
terms quadratic or greater in x that the inelastic
channels can affect the elastic amplitude.

To summarize, we have constructed a simple
unitary model in which the total, elastic, and in-
clusive cross sections approach constants at high
energy, while the exclusive cross sections fall
like a power of the energy. These results should
be contrasted with those obtained in the solvable

model of AABS,* which is very similar in spirit
to the present model. In the AABS model x was
chosen to have the general features of the multi-
peripheral model. In the present notation x,,s¢
can be written

X angs = € 1N DY £ (B glaaligtard (@rmitaa(n |
(68)

Here « is the position of the input pole exchanged
along the multiperipheral chain and A is defined

in Eq. (50). The principal difference between

X aags and the x defined in Eq. (49) is the plus sign
before 1¥(g)alg), which makes x ,,,c an unbounded
operator. Notice that when x,,;s is applied to the
pion vacuum it gives rise to a coherent state pro-
portional to |II,). The contributions to the elastic
scattering amplitude proportional to x ,,gs and

X aaps’ have the energy dependence e¢®* and

e(20-1+ MY pregpectively,? which is of course what
one would expect from the multiperipheral model
in the weak coupling limit. In the present model,
the corresponding terms have the energy depen-
dence ¢{*~*2)Y and ¢¥. So, as was mentioned be-
fore, the total and elastic cross sections go to con-
stants at high energy independent of the value of
A, which is the effective pion coupling constant.
On the other hand, the input pole, which controls
the energy dependence of the exclusive cross sec-
tions [see Eq. (64)], is located at I=1-3X. This
is an example of the dependence of cross sections
on coupling constants recently conjectured by
Harari.!?

In the solvable AABS model the total cross sec-
tion always goes to zero at high energies for a<1
because any dynamical pole that approaches I=1
is washed out by rapid oscillations of the S matrix.
These oscillations are associated with large eigen-
values of x ,,ps, Which is an unbounded operator.
In the present model y is a bounded operator and
no such oscillations occur.

The model that we have been discussing can be
made to look even more like the AABS model by
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replacing A( B) by the quantity A (B)ela-1+2/2)Y
Then expanding the elastic amplitude in powers of
X, one finds that the first terms have energy de-
pendence ¢°¥ and the Nth term -e¥[1* Ma-1+1/2)]
for N=2. For'a<l-3\ the total cross section goes
to zero at high energies, for a>1-3A it goes like
Y? and the Froissart bound is saturated, and for
a=1-3) we regain the model we have discussed
in detail. This generalized model provides an ex-
ample of the saturation of multichain forces dis-
cussed in the second and third papers of Ref. 4.

V. ISOTOPIC SPIN

In order to present our ideas in the simplest
possible setting, we have ignored internal quantum
numbers in the preceding sections. We now turn
to the problem of finding a set of states suitable
for describing physical pions.

The creation and annihilation operators for the
pions are vectors in isotopic-spin space and will
be written in the form

A(g)=(a\(q), ax(q), as(q)) . (69)

The creation operators for the physical pions are
-1 .
al(@)=7zlal(@)+ial (@],

aX@)=rlal@)-ial @), (10)
al(@)=a](q).

The subscripts on the creation operators on the
left-hand side of Eq. (70) stand for the charges of
the pions.

The eigenfunctions of the annihilation operators
can be written in the form

) | =Ti(g)| D, (71)
where

| = e-(uz)j’rxalﬁ(c)l2 efdc fita)ea T(a) o), (72)
and

Ti(q)=(11,(q), ,(q), T 4(q)) (73)

is an isospin vector whose components I,(g) are,
in general, complex. The states lﬁ) are not likely
to be a useful set of basis states for describing
pion production since they are not eigenstates of
the total charge or the total isotopic spin.

Let us begin by constructing a set of states of
definite charge and isospin in which all pions have
the momentum-space wave function II(g). We write
the vector IT in the form

(g)=T(g)7, (74)

|©

where
fi=(sinf cos¢, sinésing, cosb) (75)

gives the direction of il in isotopic-spin space.
The required state with total isotopic spin I and
z component of isotopic spin I, is

I0,1,1)= [ a2, i, (e-alal® JaakeT i)

(76)

Y,.,z(ﬁ)= Y,_,'(G, @) is the familiar spherical harmon-
ic of angular momentum I and 2 component I,. No-
tice that |[[,1,1,) is not an eigenstate of the de-
struction operator a(g). That |II,I,I,) is indeed

a state of isotopic spin I and z component I, can

be seen by recalling that under a rotation R in iso-
spin space,

oRaloR'*=Z:R,.,a}“, (1M
SO
ORI, I, I,)=fdQﬁY,”.‘,‘(ﬁ)

x e~(1/2)[dal (]2, [a i .RZ*‘0>
= fdn,, Y%, (Rn')
X e-(1/2)fd¢|ﬁ] zequ ﬁ'eg*l())
=)Dl (R, LI, (78)
¥

where 7#’=R~'% and D’(R) is the Wigner D matrix.

In order to understand the properties of these
states let us consider the state with isospin zero
in some detail. The states defined in Eq. (75) are
not normalized to unity. In particular

{m, 0,0]m, 0, o>=e-°fdszﬁdnﬁ,e°ﬁ'”'
=(4m)?%jo(~ic)e~°=N, (79)
where
c= qulﬂ(q)Iz, (80)
and j, is the spherical Bessel function of order
zero. The probability amplitude for finding » pions

with momenta ¢,, ..., q, and isospin indices
iy, +..,1, in the state |1, 0, 0) is

(Olay () -+ a; (g, I, 0, )N -1/
=N-V2e-(U2)eqr(g ). ’H(qn)fdnﬁﬁil seefly .

(81)
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This amplitude clearly vanishes unless the pions
are in a state of total isotopic spin zero. The
probability of finding n, w,’s, n_ n_’s, and n, n,’s
is
P(n+ ’”-y no)

N—le-ccn++n_+n0

><|fdﬂﬁe“"'f'"—)“’(sine)"*«*"—(cose)"o .

(82)

P obviously vanishes unless n,=n_=}n,, and n, is
even. Under these circumstances

(2m)2N"Icetmoe=®
ny! 27

x| iterd (83)

T(zn.+ 3n5+ 2)

P(%ncy %nm n0)=

Finally, the average number of particles is given
by

7=N-1, 0,01 [ dq af(q)ay(a)In, 0,0
i

=N'1e'°0fd$'zqd9mn L
=icj,(=ic)/j,(=ic)=c coth(c)-1 (84)
and
A, =N_=Ty=%7. (85)

The states |II,1,I,) do not form a complete set.

The difficulty is that in general the real and imag- -

inary parts of the vector 1T need not point in the
same direction in isotopic-spin space. Consider

a particular normal-mode function f,(¢). The most
general iT that can be constructed from it can be
written in the form

ﬁ,(q)=fh(q)[Reak fig+ilmay ], (86)

where #ip and 7, are two independent unit vectors
and o, is any complex number. A complete set of
states for the kth normal mode is

Ifk;IaIz;IR’II>=§ :(IR,m;I,,I,—mll,I,;IR,I,)
m
xfdﬂﬁgdﬂﬂ[
X YIR.m(ﬁn)*\Yr g -m(fg)*
I’z

x e-fdwlﬁ’Jz efda_ﬁk-';”(» :

(87

(gymy I, 1,=m|I, 1,51, 1) is the standard Clebsch-
Gordan coefficient. One can check, using the
techniques of Eq. (15), that the states obtained by
taking direct products over all normal modes are
complete. Since the problem of coupling the iso-
spins of the various normal modes to form a de-
finite total isotopic sbin is formidable, this ap-
proach is likely to be useful only if the dynamics
is such that only a few modes enter or that the
isospin in each mode is zero.

In the states that we have just described, the
isotopic spin is a global property. Pions which
are well separated in rapidity and transverse mo-
mentum are correlated to the extent that their in-
dividual isotopic spins are coupled to form a def-
inite total isotopic spin. In some models, such
as the multi-Regge model, one assumes that there
are significant correlations only among particles
with small relative rapidities. It is not difficult
to construct states of definite isotopic spin with
this property. Let us consider an example. We
write the vector 11 in the form

Ti(y)=M(A) . (88)

The dependence on the transverse momentum has
been suppressed for simplicity. As usual we re-
strict y to the range O<y<Y,

Consider the state

15 1, 103;11”1-}')

- Jonlews [ -o(42 )] {10

(89)

[5Q indicates a functional integration over all
possible forms for the unit vector #(y). (Iy, I,,) is
the isospin transferred to the pion field at rapidity
0 and (Iy,Iy,) is the isospin transferred from the
pion field at rapidity Y. These quantities deter-
mine the boundary conditions on #(y). In order to
understand the content of this state let us consider
the probability amplitude for finding two pions with
rapidities y, and y, and isospin indices ¢ and j:

Au(yp yz)=N~1/2<0|a{(y1)aj(3’z) IH; 1,, Io;;lyylyz>
NIy [ 89 (3)7,(5)
ff d;l 2
xexp - | "y(ay“ﬂ’

=N"Y21(y ) (y,)J 4, (90)

with
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N=<H;107102;1Y!1YzIH;IOyIOl;IYv IY:>' (91)

It is convenient to break up the region O<y<Y into
N equal intervals of length Ay so that AyN=7Y.
Then

N
;= lim (c/Aym¥ f 11 ae, a1)4,(1)
=0

Ay—0

X Y’*Ov’m(ﬁ(o)) Y’*YJYz

((N)

xexp |-cy [i1+ D=#(D]*/as]

(92)

where

A=a(lay), 1=0,1,2,...,N

and
;l(l 1)= ﬁ(yx) )

Al )=7(,) .

The factor (c/Aym)" defines the measure of the
functional integration. The spherical harmonics
Yy,.1,, and ¥, .1,,, appear in Eq. (92) because we
have insisted that a definite isospin be transferred
at the boundaries y=0, Y. More generally one
could replace them by arbitrary functions of #(0)
and #(N). The forms of these functions would then
determine the probability of a given isospin being
transferred at the boundary.

The general integral which must be performed
to evaluate J; is

(93)

J= (c/Ayn') fdﬂ,e"’[““ +1)-#(1)12/ Ay (1)
= (4c/Ay)Z:e'2"/ B3 ji(=2ic/ay)i" ¥, ; (1 +1))
LI,

x [ao, vy, a@yo@m. (99

Using the asymptotic behavior of the spherical
Bessel functions we find that to first order in Ay,

I~y [1-1(I+1)ay/4c] Yy, p, (i1 +1))

1,1,
x fthYt"‘.rz(ﬁ(l))lp'(ﬁ(l )
=[1-12ay/4c] ¥ (A1 +1))

~ g1 8%/ (73(1+ 1)), (95)

where T is the isotopic-spin operator. Using this

2
result in Eq. (92) one finds for 0<y,<y,<Y
J”=§ e~v1olor 1) /4cg;0"0‘:1'1£
iz
x g~ (vp=yI(1+ 1)/4cgl mo
SV ely''Ye
Xe—()’—yz)ly(ly+l)/4c’ (96)
where
gl = _[dﬂ Yy, (WA Yo g0 (R) (97
In particular for I,=1,=0,
Jyy= 8, (4n/3) eIl /2. (98)

Notice that for I,=1,=0 the state |II; 0, 0; 0, 0) has
total isotopic spin zero.

The probability amplitude for finding N pions
can be obtained in an analogous manner. The iso-
spin structure is the same as in the multi-Regge
model when there is only one Regge trajectory of
each isospin. Secondary trajectories for each iso-
spin will arise naturally when we introduce func-
tional integrations over the [1(y) as discussed in
Sec. III.

VI. DISCUSSION

In this work we have constructed a general
framework for describing high-energy pion pro-
duction. We have seen that all of the pion cross
sections can be obtained from a pion field density
operator. For a wide range of configurations of
the pion field, this operator can be simply ex-
pressed in the coherent-state representation.

We have considered a variety of correlations
among the pions. In Sec. III we showed how to in-
troduce short-range correlations in the rapidity
and transverse momentum. In Sec. IV we pre-
sented a simple model that satisfied exact s-channel
unitarity, and so how the constraints of unitarity
led to long-range correlations. Finally in Sec. V
we studied the correlations associated with iso-
spin conservation. We believe that all of these
correlations can and should be taken into account
in a realistic theory of pion production.

In Sec. III we pointed out that the density operator
could often be written in diagonal form in the co-
herent-state representation, and that when it
could, the various pion cross section took on a
particularly simple form. If one then uses the
Ginsburg-Landau parameterization for F[II] or a
more general form that leads only to short-range
correlations, then the pion field can be thought of
as being excited by a single interaction of the in-
cident hadrons. As we saw in Sec. IV, multiple
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independent interactions lead to long-range corre-
lations., When only short-range correlations are
present, it can be shown from Eq. (29) that Q(z)
falls like a power of the energy for z near zero.
Crudely speaking this follows from the fact that
fdq|i(q)|? is typically of order Y. As a result,
the elastic and total cross sections in such a mod-
el will always go to zero at high energies. In Sec.
IV we considered a model in which the elastic and
total cross sections do go to constants. In this
model if one retains only the terms that contribute
to leading power in s, then the density operator
can be written in diagonal form. The present prob-

lem is avoided because the weight functional e¢~F]
has a singularity at II= 0 which has the form of a
functional 4 function. In more general unitary
models in which the incident hadrons can be dif-
fractively excited to states which subsequently
decay into pions,!! we would expect this functional
6 function and its derivatives to be present in
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