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polynomial boundedness, other solutions can lead
to total cross sections growing no faster than
[In(lns)J2.

Froissart-bound saturation can occur as in Refs.
2 and 3 if (a) the Froissart bound is not satisfied
off the mass shell, (b) the scattering amplitude is
not strongly damped off the mass shell, or (c) the
assumption of polynomial boundedness in Ref. 6 is
wrong. We feel though, in the light of our equa-
tion, that it is difficult to argue against constant

total cross sections on the grounds that this would
be an accident of nature.
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Previous work on m-7 scattering is generalized to include the p-p case. A fixed-pole
solution is found for the p-p scattering amplitude. After approximating the residue of this
pole, we compare with high-energy data from the CERN ISR. The one-parameter model

explains several aspects of these data.

I. INTRODUCTION

In a previous paper’ we presented a model for
7m-7 scattering at infinite energy. The basic as-
sumption of this model is that the exact scattering
amplitude is given by the eikonal iteration of some
set of Feynman graphs which are two-pion re-
ducible in the crossed channel. The eikonal ap-
proximation is a natural one for high-energy scat-
tering since it is based on the intuitively appealing
idea that two highly relativistic particles at some
impact parameter b simply traverse classical
trajectories through the region of interaction and
are phase-shifted by an amount proportional to a
potential. In a relativistic field theory this poten-

tial is assumed to be some set of Feynman graphs.
One would expect the longest-range forces to be
the most important ones which contribute to this
potential, since these long-range forces deter-
mine the extent of the scattering region in b space,
which in turn roughly determines the cross sec-
tion. These ideas have been partially borne out in
perturbation theory?; however, the final situation
is not clear since in some models there is no
unique classical path for the scattering particles,®
and in others the inclusion of vertex corrections
destroys the simple eikonal result.* Despite these
complications it seems reasonable to assume that
there do-exist field theories which, when solved
completely at asymptotic energies, have the ei-
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konal form we consider here.

It is an experimental fact that charge exchange
of any kind is unimportant for elastic scattering
at infinite energies. The longest-range force with
vacuum quantum numbers in the strong interac-
tions is two-pion exchange. In perturbation theory,
the potential for two-pion exchange is the sum of
all two-pion reducible Feynman graphs. Thus we
are led naturally to the assumption that the Born
term of the eikonal series is just this set of
Feynman graphs.

Bec¢ause only the zero-charge exchange force is
nonvanishing at infinite energies, we are justified
in ignoring the isospin of the exchanged pions in
the following. Also spin is conserved by scattering
particles at high energies and we need only con-
sider spin-nonflip amplitudes.

We combine these ideas with the crossed-chan-
nel Bethe-Salpeter equation to obtain coupled self-
consistent integral equations for the elastic am-
plitudes. Using previous results, we expect that
these equations satisfy a bound stronger than the
Froissart bound, and we find that they have a so-
lution which behaves like a fixed pole at J=1.

A form suitable for analytic continuation in mo-
mentum transfer is presented for a certain class
of eikonal amplitudes. We then make a reasonable

J

' W d4PH
Tab (Q,P,P') =I¢b (Q; P,P')—El

@ny lar(@P, P')T 5 (Q,-P"", P') A(P"'-3Q)A(P" +3Q),

approximation for the residue of the fixed-pole
Born term, and compare this to the CERN data.

1. THE BETHE-SALPETER EQUATION
FOR COUPLED CHANNELS

We define the normalization of spin-nonflip am-
plitudes by

ImT,, (s,t,m,%'m2 m2 m?) =2|K|Vs g, , (2.1)

where T, (S, 1, Ugy U, Uy, ty,) = T (@, P, P') is the
scattering amplitude for two stable particles a and
b, in general off-shell, and
s=(P+P"? =3
Uy = (P+%Q)2; Ugp = (P‘%Qy,
Uy, = (P,"%Q)zy Upy = (P' +le)2 y

-
K =c.m. momentum of one particle.

(2.2)

We define I, (s,¢,8,,, 8y, Uy, ;) =1,,(Q,P, P’) to be
the sum of all Feynman diagrams which are two-
pion irreducible in the ¢ channel with particles

a and b as external legs. The Bethe-Salpeter
equation is

(2.3)

where A(P) is the full renormalized pion propagator. Taking the s-channel absorptive part, with all ex-
ternal masses below the first inelastic threshold, we find

. 4D
AbsT,(Q,P,P’')=AbsI,(Q,P,P’) + f %)TAbsl,,,(Q,P,P")Absl,,, (Q,-P",P’)

X §((P+P'")) 6((P'-P"")*) A(P""-3Q)A(P"" +3Q). (2.4)
Let us define the following symbolic notation:
d4pll
AbsAX, Abs B= f WAbsA (Q,P,P'")Abs B(Q,—-P"", P")6((P+P")?)6((P'-P""P)A(P" +3Q)A(P"'-1Q),
(2.5)

AbsA X;AbsA =(AbsA), (2.6)
AbsAX,(AbsA)""'=(AbsA)" "%, (AbsA)=(AbsA)".

2.7
Then (2.4) becomes

Abs T, =Absl,, +Absl,, X;Abs T, . (2.8)

We now introduce the following functions:

Abs Tg, (A)=XADSI,+H " X" AbS I,y

n=1

X (AbST )" 1%, AbsI , ,

(2.9)
Abs T,,, W) =Abs Ty, (\) =1y, , (2.10)

which satisfy the coupled equations
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AbS T () = AAbs T, +AAbsI,, X, Abs T, (A).
(2.11)

These functions are useful because of the follow-
ing relations:
J
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d d
(xa ~1)Abs T,, (V) = (xa —1>Abs T,

=Abs T, (A)X; Abs T 1, (1),
(2.12)

Abs T, (\) = Abs T,y + A=1)[ Abs T, +Abs T,y X, Abs T\, ]

+3 (A=1)"[AbS T4y X; (ADS T yq)" ™2 X, AbS Ty, + AbS Ty Xy (AbS T 4g)" ' Xy Abs Tpp],  (2.13)

n=2

which can be checked by substitution. The two-
pion, f-channel, reducible amplitude is given by
Tom A=1)=T,,, .

To make use of these equations we assume that
the amplitudes Abs T, are strongly damped off
the mass shell, and in particular that they satisfy
the Froissart bound off the mass shell when the
external masses are below the first inelastic
threshold. We have shown® that these assumptions
lead to a high-energy bound for T,,,. This result
generalizes to the present case. With the same
assumption about polynomial boundedness as in
Ref. 5 we find

| Toup(s,t)|< s¥€, s~ (2.14)

with € an arbitrarily small positive number. Rea-
sonableness then demands

| Ty (s, t)|< c(t)s(ins)™. (2.15)

Using the exact Froissart bound in (2.12) and
(2.13) suggests [recall that only a weak form of
the Froissart bound was needed to establish (2.14)
(see Ref. 5)]

| Ty (s, t)|< c(t) s(ins)®. (2.16)

Stronger assumptions are needed to establish this
than are needed for (2.14). We therefore take it
as a reasonable possibility.

III. THE EIKONAL ASSUMPTION

The eikonal form for the high-energy amplitudes
we take to be

T (s,b)=2is [l—exp(%s— Tm(s,b)>] , (3.1)
where

Top(s,8)= [ ‘(’;;’)2 ¢35 7, (s,-37) (3.2)
and

Tom(s,b)= | ?2—;")—2 e T, (s, -32) . (3.3)

T
The large-b behavior of T,,, is forced by analytic
properties of Feynman graphs to be

e 2
Ty0(5,8) <als) S

@nb)ye b-, u=pion mass.

(3.4)

Combining (3.1), (3.4), and the bound (2.15) leads,
without any additional assumptions, to a bound on
the total cross section. The argument for the

m-7 case was presented in Ref. 1. The same
argument applies when the external particles are
not pions and we have

O < Cq [In(1ns)]2. (3.5)

If we use the probable result (2.16), we find that
the coefficient ¢, is determined to be ¢,
=25(m/u1?), and we have

0 <25 # {In(ins)]2. (3.6)

These bounds are certainly not rigorous results.
They depend on strong assumptions. These are in
short the following:

(a) The eikonal form is correct for the exact
scattering amplitude.

(b) Only two-pion reducible graphs are important
in the eikonal Born term.

(c) The Froissart bound is satisfied off shell by
the full scattering amplitudes, and these ampli-
tudes are also strongly damped off the mass shell.

(d) The functions T,,(\) are moderately well-
behaved functions of A.

Having established limits on the growth of cross
sections in our model, we now exhibit a solution
to our equations. To do this we make the follow-
ing assumption which we call the multiperipheral
assumption:

ADS T, (S, 5 A) = Bygp(s, £5 A)satltiN
+ nonleading terms. (3.7)

Equation (2.12) then becomes
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. -1 - .
AbS Ty (5,5 0) = 1o [d_agx&ﬁ] Par(M?) = 55 Disc B (M) (3.15)

XADbS Tyu(A)X; Abs Ty, (A) .
(3.8)

The phase of T,, is determined by the even-sig-
nature constraint at A=1,

e} e (£)/2

Tom(s, £)= 2sinlnao0)/2 Abs T,,(s,t).

(3.9)

Let us remark here that the assumptions we
have made so far are only for ¢<0. Several of our
assumptions become suspect in the region #>(2u ).
In particular, there is no reason for the long-
range forces to dominate the Born term in this
region. This is clear from the results of Sec. IV.
Thus we restrict our model only to physical values
of t.

Equations (3.1), (3.8), and (3.9) yield an integral
equation for T, (s,¢). They have solutions

To(s,t,uy, st 5 Uy Uny) =By (E Uy gy thsgy Uy, Upp)S
(3.10)

and

T.a(s, bt 0y Ung, U5, Uzp) =1 Bogp( 1y gy g, Uy Uzp)S
(3.11)

The verification that these are in fact solutions is
the same as the 7-7 case of Ref. 1.

Since T,,, is the sum of two-pion reducible
Feynman graphs it is reasonable to assume that it
satisfies a fixed-s dispersion relation. Taking
the Fourier transform of this, ignoring subtrac-
tions and bound-state poles, we find

. dM?[Disc T, (S, M?)]
'y

XK,(Mb).

Comparing (3.11) with (3.12) we can expect to have

1
Toa(s, b) = w5 ),

(3.12)

1 © 2] 3 2
Boap (B) = Iﬂz_if(z,,)z dM?[Disc B, (M?)] K o(MD).

(3.13)

Boap(b) must be real and positive to satisfy unitarity
in our model. Putting these into (3.1) we find

T (s,b)
=2is [l—exp (-f(;)z szp,b(Mz)KO(Mb)>] ,

(3.14)

We have not been able to solve our integral
equations for the residue functions because of off-
shell problems. In order to test (3.14) we propose
the following approximate form:

To(s, b)~2is{1-exp[-c, K,(2ubd)]}, (3.16)

which should approximate (3.14) well for large
values of b. For p-p scattering we have then

Tpp(s,t) =41risf db bdJ,(qb)
[

x{1-exp[-c,,K,(2ub)]},
(3.17)

o,o,=4nf dbb{l-exp[-c,,K,(2ud)]}, (3.18)
0

cc,=211f dbb{l-expl-c,, K (210)]}, (3.19)
)

Oin=27T f “db b{l-exp[-2c,,K,(2ub)]}, (3.20)

do

;= | T |7/ (1675%). (3.21)

This one-parameter description is compared to
the new CERN data® in Sec. V. Certain properties
of Eq. (3.17) at large g may be extracted analyt-
ically; we discuss these in Sec. IV.

IV. ANALYTIC CONTINUATION IN ¢

We consider here the integral

1=fo dbbJ(gb)

x[l—exp(—[”

e asz(MZ)Ko(Mb)ﬂ :

t=-¢* (4.1)

for arbitrary p(M?) and Req>0. The representa-
tion (4.1) diverges when |Img|>2u. Therefore
we note that

Jo(qb) =5 [HY(gb) + H2(qb)]. (4.2)

When (4.2) is placed into (4.1) we are left with two
integrals. The integral with H} can be rotated to
the positive imaginary b axis and the one with H2
to the negative imaginary b axis. The contribu-
tions from the infinite quarter circles vanish. We
find
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1 foo «©
I= 3 f dab bHé(qb)[l—exp(-f , dM?®p(M?)K ,(Mb

o (2p)
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)

+ % fo"” db bH(qb) [l—exp( - f(z :)szzp(Mz)Ko(Mb)ﬂ . (4.3)

We have assumed that no singularities have been
encountered in deforming the contour in arriving
at (4.3). If such singularities are encountered,
they can be included as pole or cut terms. Equa-
tion (4.3) can be written

1 [t

I== | dbbHY(gb)
2 (4]

X [exp (—f: szp(Mz)Ko(e_”Mbb

(2p)2

_exp(- (2:)2dM2p(M2)K0(Mb)>] .
(4.4)

In this form, the integral is convergent for all
Req>0. Equation (4.4) is the limit of the Sommer -
feld-Watson transform when the direct-channel
energy gets very large. The details of this will
appear elsewhere.

We note that for g real

0i
H:,<e*"/2q|b|>=-7’K0<q|b|>, (4.5)

so that when ¢ gets large the integrand of (4.4) is
damped exponentially by a factor e™*®'. This
means that we can replace the expression in
square brackets by its small b limit as was noted
by Lévy and Sucher.” This yields
1 [
I~ 3 dbbH}(gb)

0

X [exp(f(z:)z dM%p(M3)In(e™ "Mb)>

_exp( f(z:)szzp(Mz)ln(Mb)ﬂ :

(4.6)
where we have assumed that the integrals
g= dM3n(M)p(M?) (4.7)
(21)2
and
A= dM?p(M?) (4.8)
(2p)2

-exist. Doing the integration (4.6) we find

—

2 [ deJo(qb)[ 1-exp ( - f(z;szzp(MZ)Ko(Mb)ﬂ

2
~ 8ef sin(%ﬂA)# ZA[F(Z ;A )] , gqlarge.

(4.9)

For the approximation (3.17) we have

2 f d?bJ,(qb){1-exp[-cK,(2pb)]}

. 2
~ 8(2p)"sin(§1rc):1-21—+c— 2°¢ [I‘( 2 ;C> } .

(4.10)

We remark that when (4.1) is valid (i.e., |[Imgq]|
< 2u) one expects the lighter-mass exchanges
in the eikonal function, the long-range forces, to
be the most important. This is because of the
asymptotic behavior

m\1/2 e-Hb
rom~(5)"” g

which damps the large-mass exchanges for b real.
When only (4.4) is valid (|[Img|>2u, Reg>0), b is
imaginary in the argument of K,(Mb), and there

is no reason for the lighter-mass exchanges to
dominate the eikonal function. It is for this reason
that we do not expect to be able to continue our
model to £>(2u)? as it stands since one of our
main assumptions is the domination of long-range
forces.

V. COMPARISON WITH EXPERIMENTAL RESULTS

We wish to review here some of the results on
p-p scattering obtained at CERN®:

(a) In the region |¢|>0.3 GeV?, do/dt does not
change very much over the range of CERN ener-
gies (Vs=31to 53 GeV). In particular, the posi-
tion of the minimum at ¢~ 1.4 GeV? moves, if at
all, by less than 0.1 GeV? over this range.

(b) For smaller momentum transfers, |[¢[<0.3
GeV?, the diffractive pattern is changing quite
noticeably with s. The general trend is for up-
ward arching in the small-£ region.

(c) Total cross sections are observed to rise
at CERN consistent with a Ins or (Ins)? growth fit
by 0, ~{38.4 +0.5[In(s/s,)]%} mb, s,=137 GeV?.
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(d) The ratio of the elastic to the total cross
sections is g /":m ~ 0.17, and is roughly constant
over the CERN range.

Result (a) supports a fixed-pole model. Any
model which saturates the Froissart bound must
have the first diffractive zero move to £=0 as
1/Ins?. In most models for growing cross sections
being considered at present one must have
0. /0y, =0.5 asymptotically, in poor agreement
with the present value. Thus most proponents of
growing cross sections must ultimately argue that
CERN energies are not yet in the asymptotic re-
gion.

Because of results (b) and (c), we also
believe that the asymptotic limit has not been
reached, since in our model we have the bound
0wt < c[In(Ins)]? and also the fixed-pole solution
leading to constant cross sections. We take the
antithetical point of view from proponents of ris-
ing cross sections and we believe that these effects
will eventually turn out to be-transient.

We have tried to fit the CERN data using
(3.17)-(3.21). Since the position of the minimum at
|#]=1.4 GeV? is very stable with increasing s, we
chose c,,, our one parameter, to produce a zero
in T, (s, t) at this point. We find the value c,,
=2.64. The results for do/dt are shown in Fig. 1.
Note that the over-all normalization is determined
by ¢; we do not have an over-all normalization
constant as in the droplet model of Chou, Wu, and
Yang.®

The model curve fits the data points quite well
in the region 0.2 GeV2<|¢|. It also shows the
deviation from exponential behavior as observed
in this region. For smaller ¢ the model curve
arcs upward and deviates from the experimental
points. This is consistent with the trend of the
CERN data; however, as the experimental slope
is increasing in this region, it is completely be-
lievable that it will approach the curve shown.

Our model curve deviates from the experi-
mental do/dt for large q. This deviation is what
one would expect from our approximation. We
have approximated the integral ﬁ;‘)z dM3p(M?)
XKo(Mb) by cppK,(2145). One expects that
Cpp< Jiopyz AM3p(M?). Comparing (4.9) with (4.10)
we see that our model curve drops too slowly for large
q sincec,, will be smaller than f,2 dM?p(M?),
which determines the large-g behavior.

We find for the ratio of 0, to o,
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(5.1)

This is to be compared with the experimental

result of 0.17.

This model’s predictions for asymptotic cross

sections are

O, =114 mb,
oq =23.7T mb,
0, =90.3 mb.

(5.2)
(5.3)
(5.4)

Equation (5.2) is much higher than the present

experimental value of

0w ~ 43 mb, Vs=53 GeV,

(5.5)

and so is consistent with rising cross sections in
the range of energies presently available. We are
disappointed that the numbers are so high. We
hope that a more accurate approximation for the
eikonal function will give lower numbers for

(5.2)-(5.4).
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The effective coupling constants are calculated for the processes vp —vp and K+ —7*vv by
taking account of the deep-inelastic contribution. The formal light-cone analysis is applied to
get the momentum dependence of the structure functions. It is shown that the lowest-order
perturbation is small and that the deep-inelastic contribution for the coupling constant is
arranged in the form of sum rules which are derived from U(6) x U(6) quark algebra for the
process vp —vp. Sum rules are also obtained for the decay process K*—n*v¥ by using
SU(3) symmetry where the K* and #* meson mass difference is neglected. By comparing
with the experimental upper bound for the neutral current the following results are obtained:
The weak boson mass should be less than 11 GeV/¢? and the local theory of the weak inter-

action is valid up to 50 GeV.

I. INTRODUCTION

Recently a renormalizable theory of the weak
interaction was proposed.’ In this connection the
problem of the neutral current has been investi-
gated by various authors.?'? The absence of the
neutral current puts restrictions on the model of
the weak interaction; if we assume a charged vec-
tor boson as a medium of the weak interaction, we
may get the validity of the local theory of the weak
interaction from the experimental upper bounds
for the neutral current.* As knowledge about the
structure of the weak interaction is still scarce,
the conditions obtained from the neutral current
may be quite significant.

In this article we assume that the weak interac-
tion is mediated by a vector boson; the weak boson
is supposed to be a local field and couples to the
current locally. Hence the neutral current is pro-
duced as an effect of fourth or higher order in the
coupling constant. Instead of computing the S ma-
trix we calculate the effective coupling constant
for the neutral current by taking into account the
deep-inelastic contribution as well as the lowest-
order perturbation, which is shown to be small.
By comparing the coupling constant with the ex-
perimental upper bound, one might expect to get
the validity of the weak interaction because the
expression is cutoff-dependent.

To evaluate the deep-inelastic contribution we
apply the formal light-cone analysis to the struc-
ture functions to get the scaling laws. As the re-
sult, the effective coupling constants for the pro-
cess vp—~vp are shown to be simply expressed in
terms of the sum rules which are derived by
assuming U(6)X U(6) quark algebra. For the K*
- 1"V decay process the sum rules are also ob-
tained by assuming SU(3) symmetry where the Kn
mass difference is neglected. Owing to this ex-
pression we are able to get not only the upper
bound for the cutoff but also the restriction for the
weak-boson mass.

This paper is organized as follows: In Sec. II
we give a perturbation calculation. In Sec. III we
calculate the deep-inelastic contribution to the
effective coupling constants, and show that they
are expressed in the form of sum rules. In Sec.
IV we derive the upper bound for the weak-boson
mass and the cutoff. Section V is devoted to dis-
cussion.

II. THE PERTURBATION CALCULATION

We investigate the semileptonic process vp
vp and K= 1*vV with recourse to the perturbation
theory" under the assumption that the weak inter-
action is mediated by a charged vector boson. For
these processes we calculate the effective coupling
constants by taking a low-energy limit in the S



