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Crossed-channel unitarity is imposed on a Regge eikonal model. An integral equation is thereby
found for the elastic 7(-x scattering amplitude. The simplest solution is the formation of a
fixed singularity at J= 1, which yields behavior iden. ical to the droplet model of Chou, Wu,
and Yang. Integral equations for the residue function of the fixed pole are presented. The
possibility of other solutions is discussed.

I. INTRODUCTION

The question of the asymptotic energy depen-
dence of the elastic scattering amplitudes in
strong-interaction physics is still a puzzling and
very open one. Experimentally, the total p-p
cross section seems constant up to logarithmic
factors. ' The differential cross sections seem to
be shrinking slowly with increasing energy. For t
greater than 0.25 GeV' they are quite independent
of energy. Numerous models have been proposed
to explain this asymptotic behavior, but none of
these has won over a majority of particle physi-
cists. We wish to present here another such mod-
el even though the market is already flooded.

Direct (s-) channel unitarity certainly plays a
dominant role in diffractive scattering. This con-
straint is conveniently handled in the eikonal for-
malism, where the Froissart bound is easily
satisfied. In most eikonal models no attempt is
made to appease the branch point at t=4p, '.
Crossed (t-) channel unitarity must also be satis-
fied by the elastic amplitude, but it is not clear
how important this is in determining the asymp-
totic behavio'r. Simple multiperipher al models
satisfy elastic t-channel unitarity exactly: how-
ever, they do not satisfy s-channel unitarity. In
this paper we mill try to formulate a model which
incorporates both s- and t-channel unitarity con-
straints.

The model me propose is essentially a marriage
between the t-channel Bethe-Salpeter equation and
the s-channel eikonal approximation. In many
models the Born term of the eikonal expansion is
taken to be a set of ladder or ladderlike Feynman
graphs. This is the case in the massive quantum
electrodynamics calculation of Cheng and Wu~ and
in the simpler P' calculation of Chang and Yan. '
It is not known which Feynman graphs are the cor-
rect ones for describing the Born term of the ei-
konal series. We postulate here, as in the above
models, that the Born term is some set of
crossed-channel two-particle reducible graphs.

Since pions are the lightest hadrons, me include
only two-pion reducible graphs in the Born term.
It follows from the nature of the eikonal iteration
that all the other terms of the amplitude do not con-
tribute to two-pion cuts, and thus they are two-
pion irreducible. We also assume that this Born
term is produced multiperipherally.

We will presume in what follows that the Frois-
sart bound is satisfied off the mass shell and that
elastic pion amplitudes are strongly damped off
the pion mass shell (Gribov finite-mass hypothe-
sis).

Our model then consists of the folloming proposi-
tions:

1. The full elastic amplitude asymptotically is
of the eikonal form. The Born term of this series
me assume to be some set of t-channel, two-pion
reducible Feynman diagrams.

2. Because of the nature of the eikonal iteration,
all other Feynman diagrams in our model besides
the Born term must be tmo-pion irreducible in the
t channel.

3. Therefore the Born term in our model must
be the full amplitude, which is two-pion reducible
in the crossed channel asymptotically.

4. We assume that this Born term is produced
multiperipherally. The precise meaning of this
will be made clear later in the paper.

5. We demand that the full amplitude satisfy the
Bethe-Salpeter equation. The meaning of this mill
also be made clear.

6. We assume that the full asymptotic amplitude
is strongly damped off the mass shell, so that in
the Bethe-Salpeter equation, one need not worry
about the masses of the virtual pions becoming
very large.

V. We assume that the Froissart bound is satis-
fied by the full off-shell amplitude, with two par-
ticles on shell and two with negative (mass). '

We have not been able to find a set of Feynman
graphs which satisfies these conditions, but if
they are true we ean derive a self-consistent inte-
gral equation involving only the full elastic n-m' am-
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FIG. 1. Definition of variables. Here s= {p+p')2,
t = q, up = {p + 2q), u2 —{p—2q), u3= {P —2q),
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plitude. This equation is the main point of this
paper. We have found only one nontrivial solution,
and this is a fixed pole in the angular momentum
plane at J = 1. The possibility of other solutions
will be discussed. Although we consider a field-
theory framework with only neutral pseudoscalar
mesons, we expect to find the same fixed-pole so-
lution in cases involving charge, spin, and coupled
channels.

FIG. 3. Cutkosky rules for taking the g-channel ab-
sorptive part of a t-channel iteration of crossing-
invariant objects.

1m T(s, t, p, ', u, ', p', p, ') =2~k(&so;... (2.1)

where ps, t, u„u, u„u4) = T(q, p, p') is the scatter-
ing amplitude for two off-shell pseudoscalar me-
sons (see Fig. 1) and

s =(p+p')', t=q', u, =(p+ lq)',

u, = (p --,'q)', u, =(p' ——,'q)', u, = (p'+-,'q)',

(2.2)

p, =pion mass, k=c.m. momentum of one pion.

We define I(s, t, u„u, u„u, ) = I(q, p, p') to be the
full amplitude that is two-pion irreducible in the
t channel. This means that 1(q, p, p') is the sum
of all Feynman graphs, which give no contribution
to the discontinuity of that cut along the real t axis
which begins at the normal threshold branch point

II. THE BETHE-SALPETER EQUATION

The normalization of our amplitude is defined by
the relation

at t=4tl. '. Likewise we define T,(s, t, u„u„u„u,)
= T, (q, P, P ') to be the full amplitude that is two-
particle reducible in that channel (i.e., it is the
sum of all graphs which do contribute to this cut).
Both T, and I are crossing symmetric in the s-u
sense.

T is related to I by the Bethe-Salpeter equation,
which has been derived in an axiomatic frame-
work:

T(q, p, p') =I(q, p, p')
II

(2n)'

»(p"-!q)t(p"+lq), (2.3)

where b,(p) is the full renormalized pion propa-
gator. This equation is illustrated graphically in
Fig. 2. We will use Eg. (2.3), which is a state-
ment of two-particle t-channel unitarity in the s-
channel physical region. We are interested in the
kinematic region

p —q/2 p'+ q/2

p+ q/2 p'- q/2 p+ q/2 p'-q/2

t&0, gati«s, s»1.
T, T„and I are related simply by

T(q, p, p')=f(q, p, p')+ T,(q, p, p') .

(2.4)

(2.5)

p + q/2

FIG. 2. The Bethe-Salpeter equation.

Let us now use the Gutkosky rules to take the
absorptive part in s of Eq. (2.3). We assume that
the external particles and the vacuum are stable
and therefore neither of the exchanged pions in the
integral of (2.3) can ever be put on shell. All par-
ticle lines which are put on shell in this process
must be inside either I or T. This clearly causes
the integrand to become a product of the absorptive
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parts of I and T in the subenergies. Both I and T
are invariant under crossing, therefore each has
a left-hand cut in s which contributes to the ab-
sorptive part of the integral.

If we let dashed lines through a graph represent
only the right-hand discontinuity in the subenergy
which is cut by the dashed line, then we can include
the contribution from the left-hand cut by simply
reversing the momenta of the two virtual pions.
This is illustrated in Fig. 3. The two surviving
terms are identical since the exchanged pions are
integrated over all momenta and the two amplitudes
are invariant under crossing. This scheme simply
yields a factor of 2 times an integral over only
the right-hand absorptive parts. This factor of 2

nicely cancels the factor of —,
' outside the integral

in (2.3}, yielding (see Fig. 4)

p —q/2 p'+ q/2 p- q/2 p'+ q/2

p+ q/2 p'-q/2 p+q/2 p' —q/2

p- q/2

p+ q/2 p —q/2

FIG. 4. g-channel absorptive part of Fig. 2, the ABFST
equation.

d4 11

Absq(qpp') Assi(qp, p') + I=( ), Absl(q p, p")Ass )(q, p", p') A(p" —,'q-)A(p" s-,'q) —. (2.6)

Here Abs T= 2 Im T on shell in the s-channel phys-
ical region and the integration is only over positive
subenergies (p+p")' and (p'-p")'.

Equation (2.6) is the famous ABFST (Amati-
Bertocchi-Fubini-Stanghellini-Tonin) equation'
studied by them in the ladder approximation.
Since we used a stability condition in deriving
(2.6), we must restrict its use to values of the ex-
ternal masses below the first inelastic threshold
[all external (masses)' less than 4ii' for scalar
mesons and 9ii' for pseudoscalar mesons]. When
the full irreducible kernel I is used, (2.6) is an
exact equation, independent of the details of the
interaction (I will of course be determined by this
interaction).

For convenience we define the following operation
for the various four-point functions that we will be
working with:

d4 "
ax,b=

Jt 2, a(q, p, p")&(q, -p",p')

Abs T=AbsI+AbsIx, Abs T . (2.10)

These equations are solved by iteration yielding

(2.11)

Abs T=g (AbsI)",
n=1

(2.12)

T, = 2ig (--,' i)"(I)",
nM

(2.13)

Abs T~= Q (Abel)" .
n =2

(2.14}

It is our aim to avoid plugging in a particular
model for I, although we will end up with a state-
ment about I. Our assumptions enable us to elim-
inate I from the problem. To see how this comes
about, let us introduce the following generating
functions which prove to be very useful:

x a(p "+-,'q)a(p" ——,'q), (2 7)

aX, an '=a" 'X, a=an .
(2.8)

We will also use this notation for raising regular
numbers to powers since no confusion is likely to
arise. Then (2.3) and (2.6) become

T=I- 2 i IX, T, (2.9)

where a and 0 are understood to have only right-
hand support in the variables (p +p ")' and (p ' -p ")',
respectively, when they represent absorptive
parts, and also

ax, a=a',

(2.16)

Abs T(X) = g X"(AbsI )",
n=1

(2.17)

Abs T, (A. ) = g A. "(AbsI)" .
n =2

(2.18)

Varying A, as we see it, corresponds to varying
the strength of the basic t-channel force. It plays
the same role here as the coupling constant in the
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1 ——1 AbsT, (S)= 1——1)AbsT)S)
8X az

=Abs T(X)x,Abs T(X) 1 (2.20)

—,'T(X) =-,'T(~ =1)
FIG. 5. The bilinear equation associated with Fig. 4.

ladder approximation to the Bethe-Salpeter equa-
tion. It might seem pointless at present to intro-
duce these unphysical functions; however, they
enable us to do some rather complex manipulations
quite easily. The actual physical amplitudes are
gotten by taking X = 1 at the end of the calculation.

The functions (2.15)-(2.18}enable us to derive
and work with the following relations, ' which can
be checked by substitution (see Fig. 5}:

Abs T(X) =Abs T(X = 1)

+(- tT(A =1)}""], (2.21)

+ g (X —1}"[(Abs T(A = 1))"
n=1

+(Abs T(A. =1)}""'].(2.22)

+ t g (Z —1)"[(--,' t T(X = 1)}"
n=1

—,
'

z T(x}x,T(Z), (2.19)

These relations are also exact, independent of the
details of the interaction. For completeness, we
write the integrals (2.19) and (2.20) out in full:

(
4 ll

p ——1 T, q, p, p';A. = ——,'i, Tq, p, p";~ Tq, —p",p';A. 6 P + —,'q 4 p" ——,'q, (2.23)

(
d' "

~ ——1 Absr, q, p,p';X =,Abs q, p, p";& Abs q, -p",P';X a p +-,'q 2 p" ——,'q (2.24)

Equation (2.24) has been derived and studied by
ABFST in the multiperipheral approximation,
where A. is simply the coupling constant squared,
and in the forward direction t=q' =0. We see that
this equation is not at all limited to the multipe-
ripheral case, but can be established in general.
Of course A. no longer corresponds to a fundamental
coupling constant in the general case. ABFST find,
in their model, that far-off-mass-shell behavior
in (2.24} is unimportant. With strong damping of
the external masses, the asymptotic behavior of
(2.24) can be gotten quite simply. We will show
how this comes about, but first we state precisely
what we mean by proposition 4 of the Introduction.

We have proposed that T, be produced multipe-
ripherally. By this we mean exactly the following
to leading order in s:

Abs T, (s, t, u„u„u„uA; X) = P, (t, u„u„u, u„A )s~~ ' ")

+nonleading terms,
(2.25}

8

ax
—[Abs T,(s, t, u„u„u„uA; A. )]

(p (t, u„u, u„uA;x)s~ '" ]

and also

+nonleading terms, (2.26)

(2.27}

except at possibly a discrete number of points.
With these assumptions, we find to leading order
in s

A. ——1 Abs T,(q, P, P';A)(
a

az X =l

= lns '
p, (t) &s" (2.28)

X=l

Equation (2.24) thus becomes, to leading order in
Sy

Abs T,(q, p, p ') = '
A Abs T(q, p, p ")Abs T(q, -p ",p ') tI)(p" —2 q}t),(p "+ 2 q) .so. th. 1 d

N. „, lns (2s}' (2.29)
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We emphasize that the full amplitude Abs T is not
necessarily produced multiperipherally; in fact
this is not true in the cases we shall consider.
This is because we do not rule out the possib&lity
that the irreducible part AbsI contributes asymp-
totically to the amplitude. This is the case in
Refs. 2 and 3, where both AbsT, and AbsI violate
the Froissart bound separately, but cancel to lead-
ing order in s to yield a sum which satisfies the
Froissart bound and js positive in the forward di-
rection.

Since T, is produced multiperipherally, it just
corresponds to simple Regge pole exchange. We
assume that T, has positive signature under cross-
ing as is always assumed for diffractive scatter-
ing. Then T, is given by

i m~ (t)/2
T,(s, t) —

2
.

( ( )~2~
Abs T,(s, t)

eitta(2)/2 s~(t g) -2

2 sin(pro. (t)/2) sa

T(s, b)=,e'~' T(s, —q'), (3.1)

T, (s, b) =
( ),

e'(' T, (s, -q') .

Our assumption is then

(3.2)

tion to our equations, we have no idea how good an
assumption this is. We do not have a set of Feyn-
man graphs to represent T„and so we cannot take
the approach of simply adding up Feynman graphs
to see whether eikonalization occurs. It will turn
out that the solution we find to our equations for
T, is known to eikonalize, and this will reinforce
our assumption.

The eikonal form is well defined, independent of
the nature of the Born term or eikonal function as
it is sometimes called. It takes its simplest form
in impact-parameter space, as, for example, in
Ref. 3. Let us define the following Fourier trans-
forms:

x (Abs Tx, Abs T) .1
lns

(2.30) T(s, b) = 2is 1 —exp —T, (s, b) (3.3)

In Sec. III we will take (2.30) as the Born term in
an eikonal expansion for T.

III. THE EIKONAL EXPANSION

In this section we will assume that the full am-
plitude T is generated by the eikonal iteration of T,
given by (2.30). We are striving for a self-con-
sistent model, and therefore until we have a solu-

In momentum space this becomes

T(s, —q') =2isg, ; —T,(s, - q, ')
(-1) " d'q, . i

Pl ~ ~ 2 21T 2s

x(2.22*(n-g 2, .
i =1

(3.4)

Putting the result (2.30) into this equation yields

(-I) "' " d'q i e""' ~& '/' &n(-q ' X)
nt . . . (2s)' 2s 2sin(sn(-S, ')/2) ( s««, )

n

x [Ans)(-$, ')x, Anss(-tt, ')) (2 )'2' 2 — gt(,)
.

Written out in full this is

(-1) d'q, i e'"a' ~& '/' sa(-q ' Z)T(s, -q') =2is
(2 )' 2s 2sin( (-2, ')/2)( s«, ,)

ff

x 4 Abs q, ,p, p" AbsT q~, -p",p' 4 p" —&q~ & p "+&q,)

(3.5)

x(2.)n(s- gs,),
where q~=(0, q~, 0).

This equation involves only the full amplitude up
to functions of t. Therefore it can be used to study
the energy dependence of the elastic scattering
amplitude. Both I and T, have dropped out of the
picture. We thus have the simple and pleasing re-
sult that the elastic amplitude satisfies a self-con-

sistent integral equation involving no other ampli-
tudes. Unfortunately, as the reader can see, this
equation is highly nonlinear and quite complicated.
We are interested in the energy dependence of
T(s, t) in this paper. This is the first problem

which must be tackled and also this is where the
greatest interest is at present.
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Equation (3.6}, as we see it, has quite a lot in
common with the model of Frautschi and Margolis. '
In this model the Born term of the eikonal expan-
sion is taken to be a Regge pole with slope n'(t = 0)
=0.95 GeV '. The output acts effectively as a
Regge pole with n(t = 0) = 1, but with a smaller
slope. We think of this as one step towards the
solution of (3.6). Our equation tells us that we
should take the output of this calculation, iterate
it once in the t channel, divide by lns, multiply by
assorted functions of t, and re-eikonalize in the
s channel to get a new output. We should go
through these steps infinitely many times, and if
this procedure converges, then we will have a
solution to (3.6). Moreover, our solution can be
expected to satisfy both the t-channel Bethe-Sal-
peter equation and s-channel unitarity. In Sec. IV
we consider the ABFST integral Abs Tx, AbsT.
We will then exhibit a solution to (3.6).

IV. THE ABFST INTEGRAL

In this section we generalize their results to the
nonforward direction. For completeness we will
quote some of their results. First, we make the
following change of variables:

Pl

W= 4 AbsTq, p, p" Abs q, -p",p'

x t ((p" —-'q)') t((p" + l q)')

dsods'du, 'du'Abs T(so, t, u, ', u, , —u,', -u,')

x Abs T(s', t, —u,' —u,', g', g')

x a(-u,')h(-u, ')k(s, s„s', t, u,', uI), (4.1)

where k is given by

d'p "6(s —(p +p ")')~(s' —(p ' -p ")')1

x 5(u,'+ (p" ——,'q)')6(u, '+(p" +-,'q)')

We wish to study the integral on the right-hand
side of (2.24). This problem has been essentially
solved by ABFST in the forward direction q' = 0.

1 1 e(Z)
8(2w)' s vJ

and J is given by

(4.2)

1-2t
—,'(u,' —u,')

—,'(u,' —u,'}

ic,'+ u,'+ —,'t

—,'(-2p'+ u,'+ u,'+ t}+s,
s —u. + g(++u +t)~

p(-2p. + u~ + ug) + so

-2P, +2t

s-2p, +2t

s' —u,
' + —,'(Q + up}

s —2p,

2P. —2t

(4.3}

for the external particles on shell.
The phase space in the integral (4.1) coming from

the integration over the subenergies s, and s'
grows logarithmically with s if the masses -u,' and
-u,' are held close to the mass shell by damping of
the various factors in the integrand. This logarith-
mic growth comes from the rapidity available to
the virtual pions in the integral. The region of
phase space where the inequalities s,/s &c, s'/s
&e, and ss„as' & (all masses) are satisfied also
has phase space which grows as lns for any posi-
tive c. The region where they are not satisfied
makes up the edge of the rapidity phase space when
the masses are held close to the mass shell. The
phase space here is constant as s increases.
Therefore, for large s, virtually all of the phase
space comes from the region where the inequalities
are satisfied.

If we take these inequalities 'as true throughout
the entire integration, the mistake we will make
will be down by a factor lns from the leading part
of the integral, as long as the integrand is not on

the average lns bigger in the region where the in-
equalities are not satisfied. This does not happen
if Abs T grows as a power of s greater than -1
(modulo logs). ABFST have considered this case
carefully and their results can be gotten by taking
our inequalities to be true inside the entire region
of integration. So long as Abs T is polynomially
bounded in s and grows faster than 1/s, this pro-
cedure will give the correct leading behavior (un-
less the integration over the masses gives zero
for the leading term).

We are interested in amplitudes which satisfy the
finite-mass hypothesis and which are polynomially
bounded in s. We ignore the possibility that the
mass integration gives zero, and so we are free to
take our inequalities as true inside the entire inte-
gral for 8'. Therefore, we need only keep the lead-
ing term of Abs T in the integrand. We can choose
~ to be a small number and therefore neglect terms
of order e compared to i. We emphasize that as
far as the leading behavior of the integral (4.1) is
concerned this is not an approximation.
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Taking the inequalities

s»s'»all masses, s»so»all masses

to be true inside the integral (4.1), we find

(4.4)

W= 6(2,»
— dsods' du'du~ Abs T(so, t, y, 2, u2, —u', —u~) Abs F(s', t, —u,', —u2, u2, t), 2)

8 2g)~ s

where

8(lf(s,s'/s,
~
t)))

t)«( +)t)«( ug) ~( / ~
~)yy2

(4.5)

Q Q
I

&(»'/s (t]) = "' "' + (t( (4.6)

Putting this expression into (3.6) we find

i I}((-q 2)/2

J «, (2 )' )* 2««'««(r (-«)«')/2) a««, }
1 1 1

lns 8~2@) s p4&2

&&Abets„-q,. ', p, ', tt', —u,', —u,')

x Abs T(s', —q&', —u,', —u,', t), ', J)).')

8(lf(s,s'/s, q,. '))
(&(s.s'/s, q '))"'

(4 7)

Let us try to find a Regge-pole solution to (4.7).
This will at least give us a feeling for the kine-
matics of the equation, and in fact will lead to the

only solution we have found. The possibility of
solutions with cuts as well as poles competing for
the leading behavior of the amplitude is incredibly

complicated. It is our guess that no such solutions
exist with constant cross sections, but if they do
they are guaranteed to be orders of magnitude
more complex than the one we shall find. .

We study the integral for the case AbsT(s, t)
=P,(t)s ~'". This yields

S 00

W=, ,~ —
~ ds, ds' du,'du,' p, (t, y, ') p') —u,', —u,')s, ~&~'~ p, (t, —u,', —u,', u, ') u')s'"~t'~

8(FI(sos'/s, ~t~})

(P(s,s'/s,

gati))'i'

(4.6)

Making the change of variables s, -p =s,s'/s, we find

1
6(2w)' s „,„2

dP ' ad 2 u (t) n (t) p ( ))).» 2 uP)) u ) pt(t V u)) «t) ua)
&4@ s'/s & 0 S

, 8(ff(P, ltl))x a(-u, )a(-u2)N(
) [}

(4 9)

Because of the finite-mass hypothesis, the inte-
grand of (4.9}is strongly damped in p. s' can be
taken to be much greater than p without affecting

the leading behavior. Thus the upper limit on p
can be set to infinity. The lower limit on p is of
order s'/s, which can be taken arbitrarily small.
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Therefore we can take the lower limit on the p in-
tegration to be zero. This yields

1 (0) ds„slt'&, dp J,(p, t), (4.10)
8 27l') J4p2 s ~p

with

To leading order in s, (4.10}is
T4 00

w= (Ins)s~l!'&
( )4 dp J,(p, t) . (4.12)

Let us now put this result into (4. 'I) and see if we
can find any solutions.

X pl(t& —Ql& —Qp& p, z !T, )

, e(ff(p Itl))
1 P (ff( j

)))l/2

(4.11}

V. THE FIXED-POLE SOLUTION

It follows from (2.30}and (4.12) that

nl(t) = n(t), (5.1)

so that T, and T have the same energy dependence.
Using this result in our eikonal expansion (4.'!) we
find

idiot(-q )/2
p(-q') ' ' '

2 sin(vo, (-q )/2)

(-1), d'q, e" ' qs T ' &u(-q ', X) ' - p, 1
~ (-a~ )-

n! „,, (2n)' ' 2sin(TTn(-q, ')/2) sA l, 8(2v)4, p

x(2x)'tP(iT- gP} .

dp~, (p, -ql')

(5.2}

If n(0) &1, then only the first term of the eikonal series of (5.2) matters, and the asymptotic energy de-
pendence of the amplitude is determined by a simple multiperipheral equation. In this case the total cross
section must go to zero. We are not interested in this case here since it has been studied extensively al-
ready and since multiple scattering plays no role.

Let us therefore look for a solution to (5.2) with n(0) =1. We have found only one solution of this form
and this is

n(-q') =1 (5.3)

for all q'. It is difficult to imagine other solutions with o(0) =1. If a(t) has a nonzero slope, then higher
terms in (5.2) have cuts in the angular momentum plane. Thus any solution with a finite-slope Regge pole
must include cuts also. If one tries to include cuts and study this possibility, our equation becomes an ex-
tremely complicated mess. We cannot rigorously rule this case out, but if one believes at all in simplicity
in nature and in the validity of our equation, then the possibility of nonzero slope Pomerons with intercept
1 can be laid to rest. When (5.3) is put into (5.2), the s dependence of the equation completely drops out
and we are left with a geometrical bootstrap equation for the residue function P, (t):

T(s, t) =lf(t)s . (5.5)

This is the same form that T would have if a vec-
tor particle were exchanged in the t channel and
the eikonal approximation made for multiple scat-
tering. Logical paradoxes arise if one tries to at-
tribute this behavior to the exchange of a real par-
ticle in the t channel. It is well known that the
Bethe-Salpeter equation is capable of producing
Regge poles. These poles produce real bound

We see that our equation has the remarkably sim-
ple solution

states at values of t for which n(t) is a right-sig-
nature integer. In our model the Bethe-Salpeter
equation is forced to produce a fixed pole at J= 1
which never rises through a right-signature point
to produce a bound state. Through the optical the-
orem [Eq. (2.1)]we see that (5.5) predicts a con-
stant total cross section at asymptotic energies.
It also predicts a nonshrinking form for acr/St.

It is well known in field theory that multiple vec-
tor-particle exchange leads to a simple-eikonal
form for the scattering amplitude. Because of this
result we have good reason to believe that the ex-
change of a fixed pole will also eikonalize. This
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reinforces the self-consistency of our model.
We can understand the Frautschi-Margolis result

qualitatively in the following way. They found the
output of their eikonal procedure to have a smaller
effective slope than their input, both with an inter-
cept 1. If they were next to iterate in the t channel
and divide by lns, as our equation suggests, and
then eikonalize this new object they would get an
output with a still smaller effective slope. Doing
these steps infinitely many times, they would con-
verge to a fixed singularity at J=1, which is our
solution (5.5).

The solution of our equation supports the droplet
model of Chou, Wu, and Yang. ' In this model, two
hadrons scattering at high energies probe each
other with a massive vector particle. The Born
term of the eikonal expansion is just the convolu-
tion of their hadronic densities in impact-param-
eter space. It becomes a product of form factors
in momentum space. Paradoxes arise here also
if one tries to attribute this behavior to the ex-
change of a vector particle which can be produced
in the laboratory. We see that enforcing t-channel
and s-channel unitarity simultaneously leads in a
natural and plausible way to this picture. Chou,
Wu, and Yang go on to assume that the hadronic
form factors are the same as the electromagnetic
form factors, and this last assumption fits differ-
ential cross-section data quite well although it is
hard to see how this comes about. We have no
reason to believe that these form factors are the
same in our model, but we will keep this possibil-

ity in mind.
We have argued for our equation in the region

t&0. It might be possible to continue it analytical-
ly up to the elastic threshold at t=4p. '. Beyond
this point the situation is not clear since additional
constraints not contained in the eikonal approxima-
tion may become important. It is well known that
problems arise with an amplitude that goes like
sf(t) above t-channel elastic threshold. The only
known way to resolve the situation is to have a
shielding cut with very special properties appear
in this region. ' We have not been successful in
continuing our model to this region, so we must
assume for the present that such a cut does appear.

Gribov and Pomeranchuk" have proved, under
certain conditions, that Regge poles must factor-
ize. Their proof breaks down in the presence of
the above-mentioned shielding cut. In general, the
residue of fixed poles need not factorize.

We do have some reason to believe that the Born
term (T, ) does factorize. This is because it is as-
sumed to be produced multiperipherally and such
production tends to yield this property. The geo-
metric picture of Chou, Wu, and Yang also de-
mands that the Born term factorize, and we feel
that our integral equation is closely related to
their picture. If the Born term does factorize,
the complexity of the multiple scattering terms in
our model makes it unlikely that the full amplitude
does also. Factorization of the full amplitude
would violate some Pomeron decoupling theorems. "

Writing (5.4) out in full we find

n!, , (2s)' ' sx

goo

8&20 w p ~p

(5.6)

Our interpretation of the fixed-pole solution of
our equation is the following. t-channel and s-chan-
nel unitarity play equal roles in determining the
asymptotic form of the scattering amplitude. The
t-channel Bethe-Salpeter equation and the s-chan-
nel eikonal expansion balance each other at asymp-
totic energies, yielding a fixed pole in the J plane
at J=1. Looked at in this way, it is not an acci-
dent if total cross sections are constant asymp-
totically; it is just a simple way for nature to
satisfy her own rules.

VI. OTHER SOLUTIONS

We have not found any solutions to (4.7) which
have growing total cross sections. The reason
for this is that if Abs T satisfies the Froissart-
bound off-shell and is strongly damped in the ex-
ternal masses, then T„ if it is produced multi-
peripherally in the way we have assumed here,
can grow no faster than s'. ' This is insufficient
to yield growing total cross sections if T, is taken
as the Born term of the eikonal expansion.
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~
T,(s, t) ~& P(t)s(lns)'&" (6.1)

for some p(t) and X(t), with X(t) finite for all t. If
T, does not get arbitrarily large as t - -~ with

~t~/s «1, then we can find a constant m such that

i T,(s, t) i& P(t)s(lns) (6.2)

Let us give up the assumption that T, is produced
multiperipherally. We showed in Ref. 6, with an

assumption of polynomial boundedness, that in
this case T,(s, t) &s' ', with e an arbitrary posi-
tive number. It follows from this that T, satisfies
the bound

saturation, which occurs when c„,= (s/g')(Ins)'.
These arguments also show why we think that

the Born term should be two-pion reducible. If
Feynman graphs which are two-pion irreducible
are included, then these corrections must die at
least as fast as e '"~ for large 6, compared with
e '"' for T,. This suggests that bmax and there-
fore Q,o, should be determined by T, alone.

VII. EQUATIONS FOR THE RESIDUE FUNCTIONS

We have tried studying Eq. (5.6) for P, (q'}, with

the following assumptions:

for all t. Let us take T, as strong as possible:
( )

sn(t, x)
independent of t,

T,(s, t) =A(t)s(lns)

Taking the Fourier transform of this we find

(6.3)

(2) a(u) = 1

T,(s, b) =A(b)s(lns) (6 4)

X(b) =Xs-'"' . (6.6}

gs, b) goes to zero for large b. In particular

T(s, b) =0,
when

~Z(b)~(ins) «1. (6.8)

T(s, b) is damped quickly for b larger than bm~

given by

min(lns)
fARX (6.9)

We also have the optical theorem

o„,= — d'bIm T(s, b) .1 (6.10)

We now insert (6.4) into our expression for I(s, b)

[Eq. (3.3)]:
T(s, b) =2is(I —exp[-,'tA(b)(lns) ]) . (6.5)

T,(s, t) has a cut from t=4p. ' to ~. It follows from
this that A(b), for large b, goes at best as

Since n(t, X }~z, is independent of t, it is tempting
to speculate that the derivative is also. This
would be the case in the leading-log approximation
n(t, A. ) = 2K —1, but it could be true in many other
cases. If n(t, A) =a(t)f(A. )-1, for example, then a
must be independent of t. Using the free-pion
propagator is of course a standard approximation.

As a next approximation, we assumed that the
mass dependence of AbsT introduces no new t de-
pendence in Abs Tx, Abs T, i.e.,

Abs Tx, Abs T~ p, '(q')sins .

We have not been able to solve the equation in this
case, and at this time we believe it has no solution.
We now feel that the mass dependence is important
and cannot be ignored in this way. Although (5.6)
has the rather appealing interpretation of being a
geometrical bootstrap for the hadronic density of
the pions, especially when written in impact-pa-
rameter space, we do not understand off-shell ef-
fects well enough to solve it at present.

Therefore, let us go back to the much simpler
multiperipheral equation

The largest that ImT(s, b) can be is 4s. Putting
this into (6.10) and integrating out to b~~ we have

min lns (6.11)

Therefore, if the Froissart bound is satisfied
off shell, the scattering amplitude is given by the
eikonal of a two-particle reducible term, off-shell
behavior is strongly damped, and the assumption
of polynomial boundedness of Ref. 6 is correct,
then total cross sections must satisfy"

——1 AbsT, (Z)(, ,
N, .

= Abs T x, Abs T

= (Absf+ Abs T2)x, (Aber+ Abs y~),

( I.2)

where

Abs T,(s, t; X) = p, (t, X)s ""
+ (nonleading terms),

o... & c[in(ins)]' . (6.12) n(t, 1)=1, (7.3)

This is considerably short of Froissart-bound
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so.(t, ~) =c ~

N,

It follows that we can choose A.2 so that

(7 4)
tation:

PR(t, uR, u„uR~ u4) =F(t, ~, uR)E(t, u„u, ) . (7.14)

Putting this statement into (7.13}we have

o,(t, X,) (1, (7 5)

and this should be satisfied for A2 in some finite
region. It follows from (7.3) and (7.5) that

Abs TR(s, t) —~Abs TR(s, t; P;R) =Abs TR(s, t)
1

(V.6)
to leading order in s. We also have

Abs TR(A. ) = g A.
"(Absl )" .

pt =2

Putting this into ('1.6) yields

(V.V)

oo
1

Abs T,(s, t) = g(Abet)" ——,p (XR)"(Abst)"
tf =3 ~2' n=3

(V.8)

to leading order in s. Since the left-hand side of
(7.8) does not depend on X„ the right-hand side
cannot either to leading order in s and so

Abs T,(s, t) = g (Abel )"+ (nonleading terms } .
lj =3 (7.9)

Comparing this with (7.7) we see that (Abel)R can-
not have the same s dependence as Abs T„but
must be smaller:

(Abet) «Abs TR .

It follows from (7.9) that

(V. 10)

Abs T, = Abst x, Abs T, + (nonleading terms).
('1.11)

This is the linear multiperipheral equation for T,.
We see that the inhomogeneous term can be ig-
nored. Using these results in (V.l) we find

c lnsAbs T, =Abs T2x, Abs T,

+ (nonleading terms) . (7.12)

Writing this out in full we have

1 1
sp, (t) =

( }4 sins

p

pOO

dP P 'I de dQ2
0

x p (t, tL, p, , —u~, —uR)

x p, (t, —u,', —u,', p', u, ')

, &(I'f(p, ltl))(-,)&(- .) ~(
(7.13)

P, (t}, being the residue function for the Born
term, should factorize for a geometrical interpre-

1
8(2w)'

dp
dpp du,'du, 'p, (t, —u,', —u,', —u,', —u,')

0

VIII. CONCLUSION

We have seen that if one takes seriously the pos-
tulate that the full elastic scattering amplitude is
asymptotically the eikonal iteration of a t-channel
two-particle redo, cible set of Feynman graphs,
then the t-channel Bethe-Salpeter equation puts
constraints on the form of the solution. Assuming
that the Born term is produced multiperipherally
enables one to get a closed integral equation for
the full elastic scattering amplitude (by using the
bilinear form of the Bethe-Salpeter equation). This
equation suggests the formation of a fixed pole in
the angular momentum plane at J= 1, leading to be-
havior identical to the Chou, Wu, and Yang dif-
fractive model.

If the Born term is not produced multiperipheral-
ly, but our other propositions are correct, and if
this Born term falls off exponentially in impact
parameter as one would expect in a theory with no
massless particles, then, with an assumption of

8&(p, Itl))
1) ( R} (p( I

I))1/R

(7.15)
This equation must be satisfied for all t and is
therefore a strong sum rule for the Born term's
residue function. Making a change of variables,
with t= -q', we find the more appealing form

1
2(2w)

1
(0"+p+ u') l.(4-4'}'+p+ v']

x PR(-9 -&T -P —(9-0 } -P
-~"-p, —(4-4'}'-p) (7 16}

Written in this form it is clear that p is the com-
mon transverse mass of the two virtual pions in
the bilinear Bethe-Salpeter equation.

We have not been able to solve these equations
for the residue function. We feel that an additional
input is necessary to determine it completely. The
main obstacle is a lack of knowledge of the off-
shell behavior of this function. We see no way to
avoid going off-shell in a model of this type and
we apologize for these difficulties.
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polynomial boundedness, other solutions can lead
to total cross sections growing no faster than
[in(lns)]'.

Froissart-bound saturation can occur as in Refs.
2 and 3 if (a) the Froissart bound is not satisfied
off the mass shell, (b) the scattering amplitude is
not strongly damped off the mass sheH, or (c) the
assumption of polynomial boundedness in Ref. 6 is
wrong. We feel though, in the light of our equa-
tion, that it is difficult to argue against constant

total cross sections on the grounds that this would
be an accident of nature.
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Previous work on 7r-n scattering is generalized to include the p-p case. A fjxed-pole
solution is found for the p-p scattering amplitude. After approximating the residue of this
pole, we compare with high-energy data from the CERN ISR. The one-parameter model
explains several aspects of these data.

I. INTRODUCTION

In a previous paper' we presented a model. for
m-w scattering at infinite energy. The basic as-
sumption of this model is that the exact scattering
amplitude is given by the eikonal iteration of some
set of Feynman graphs which are two-pion re-
ducible in the crossed channel. The eikonal ap-
proximation is a natural one for high-energy scat-
tering since it is based on the intuitively appealing
idea that two highly relativistic particles at sodom

impact yarameter 5 simply traverse classical
trajectories through the region of interaction and
are phase-shifted by an amount proportional to a
potential. In a relativistic field theory this poten-

tial is assumed to be some set of Feynman graphs.
One would expect the longest-range forces to be
the most important ones which contribute to this
potential, since these long-range forces deter-
mine the extent of the scattering region in 5 space,
which in turn roughly determines the cross sec-
tion. These ideas have been partially borne out in
perturbation theory2; however, the final situation
is not clear since in some models there is no
unique classical path for the scattering particles, '
and in others the inclusion of vertex corrections
destroys the simple eikonal result. Despite these
complications it seems reasonable to assume that
there do exist field theories which, when solved
completely at asymptotic energies, have the ei-


