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Fragmentation in the eikonal picture
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The eikonal approach to the scattering and production of high-energy particles is reviewed
and extended. Several models for the high-energy behavior of the eikonal phase are dis-
cussed. W'e show how to introduce effects associated with the fragmentation of the incident
particles into the eikonal framework, and indicate how these effects can influence the energy
dependence, of cross sections. The contributions of the triple-Regge region of phase space
to the amplitude are examined. The importance of absorptive effects is clearly shown by
demonstrating that the sign of the term linear in the triple-Pomeron coupling is negative in
the total cross section.

I. INTRODUCTION

The eikonal approach to scattering at short
wavelengths has been very useful in a wide variety
of applications ranging from classical wave prop-
agation to ultrahigh-energy physics. The purpose
of this paper is to give a brief review of the phys-
ical insight that has been gained concerning
strong-interaction processes at high energies and
to underline the theoretical questions that remain.

One of the main virtues of the, eikonal method is
that the geometrical constraints of unitarity are
automatically enforced on the elastic scattering
amplitude. In fact it has been possible to construct
eikonal models for which the scattering operator
satisfies full multiparticle unitarity in the direct
channel. ' ' The approach is general enough to al-
low one to study a variety of production mecha-
nisms.

In the relativistic domain the eikonal approxima-
tion has been studied most thoroughly for elastic
scattering at high energies and small momentum
transfers. The two incident particles are pictured
as propagating through the interaction region in a
straight line without making appreciable fractional
changes in their energies or longitudinal momenta.
It has been possible to show that this picture is
correct for certain classes of Feynman diagrams.
The case in which the incident particles interact
via the exchange of elementary particles [see Fig.
1(a)] has been extensively studied. ' ' This sim-
plest of all exchange models can even be extended
to large momentum transfers. '" Tiktopoulos and
Treiman" have shown that while an eikonal-like
formula does result when vector mesons are ex-
changed, this is not the case in the exchange of
scalar mesons. In the latter case the large mo-

menta of the incident particles can be transferred
to the exchanged quanta in violation of the eikonal
picture. This does not happen for vector exchange
to leading order in s.

The much more complicated problem involving
the exchange of noninteracting towers in quantum
electrodynamics (QED} has been studied by Cheng
and Wu. " This work led to their well-known mod-
el of high-energy scattering. " The related prob-
lem of the exchange of noninteracting ladders in
P' theory [see Fig. 1(b}]has also been studied ex-
tensively. "'" This work allows one to correctly
treat the Mandelstam cuts which arise when multi-
ple exchanged ladders are intertwined along the
projectile and target lines. For the exchange of
one or two P' ladders, the leading asymptotic be-
havior of the Feynman graphs does come when the
large momenta follow the eikona1 paths. However,
for the exchange of three or more ladders, the
leading asymptotic behavior again comes from
short-circuit paths. "

The exchange of interacting ladders and of non-
planar checkerboard graphs [see Fig. 1(c)]has al-
so been studied. '4 " These calculations indicate
that interactions among the exchanged ladders or
towers can be important. In general the forces be-
tween N-exchanged bosons do not saturate, and the
binding increases faster than N. The consequences
of this will be discussed in See. II.

The simple eikonal picture in which the two inci-
dent particles retain their identity throughout the
scattering process is made plausible by the lead-
ing-particle effect, but it is obviously highly over-
simplified. Recently Skard and Fulco" have ex-
tended the eikonal model to include effects associ-
ated with the fragmentation of the incident parti-
cles. Their work demonstrates a very interesting
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new physical point —namely, that the presence of
fragmentation channels in black-disk scattering
can make the disk overblack and thereby induce
transparency in the system. This unexpected ef-
fect will be discussed in Sec. III, within a general
framework. When the eikonal phase is dominated
by Regge-pole exchange, fragmentation effects
play a crucial role in determining the triple-Regge
contribution to cross sections. This subject is al-
so briefly discussed in Sec. III.

II. ABSORPTION-NO FRAGMENTATION
OR DIFFRACTION

The conventional eikonal form for the invariant
elastic scattering amplitude M is

M(s, f) =4((is bdb Z, (b v' -f )(I s'""-'),
0

where the complex phase y(b, s) is the sum over all
connected graphs involving the exchange of an ar-
bitrary number of mesons as shown in Fig. 2." By
connected graphs we mean that the circles in Fig.-

2 represent connected t-channel scattering ampli-
tudes. Disconnected graphs arise from the expan-
sion of the exponential. It is probably best to re-
gard E(I. (1) as a simple ansatz which automatical-
ly takes into account the constraints of unitarity.
This equation can be "derived" from Feynman
graphs of the type shown in Fig. 2 (see Ref. . 18),
provided one considers only the contributions in
which the incident particles retain their large mo-

{a}

{c}

FIG. 1. {a) ~ical elementary particle exchange
graph in the eikonal approximation. {b) Sample non-
interacting ladder graph. {c) Nonplanar checkerboard
graph.

FIG. 2. Connected exchanges which contribute to
eikonal phase.

menta throughout the scattering process. " How-
ever, as was pointed out in the Introduction, these
contributions do not always give the leading as-
ymptotic behavior of the individual Feynman
graphs.

In general the circles in Fig. 2 can correspond
to n- rn meson scattering amplitudes; however, in
all of the work that we are aware of only diagonal
(n- n) contributions to y have been taken into ac-
count. While it should be possible to discuss the
eigenchannels in the t channel, we shall limit our-
selves to diagonal terms only. It is then conven-
ient to write

(b }—g '
d (b ) ( (a- ) +o(&)1 — IJ (2)

Here n is the number of mesons being exchanged,
p, is their mass, and n is their spin. We have ex-
plicitly displayed Qe factor of e "" since for n-
meson exchange the nearest t-channel singularity
is at t =(np, )'.2O As a result, we expect d„(b, s) to
go to a constant for large b and fixed s. We also
expect that for large s, a(n) can be chosen so that
d„(b, s) varies with s, at most, like a power of lns.
This is the case for the diagrams considered in
Refs. 12-16.

Cheng and Wu have suggested that for large val-
ues of b, terms in E(I. (2), which correspond to
the exchange of three or more mesons, can be ne-
glected because of their more rapid fall off. Let
us therefore start by considering the first two
terms in E(I. (2). In general d, is real, Red, &0,
and a(2) &0. As a result, for large values of s and
b the ladder or tower graphs dominate the single
particle exchange terms for vector exchange.
They also dominate for scalar exchange provided
a(2) &1. If one retains only the contributions to y
arising from the tower graphs, then for vector ex-
change e'" '"' goes to zero at large s for b & [a(2)j
2p, ] lns=—Bolus and goes to 1 for b &R, lns. In the
present normalization the total and elastic cross
sections at high energies are given by

4~ b~Re 1 e x&. )
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and

g, ~

—-2v bdb ~1 —e'" '"
~

0

So for vector exchange"

err = 2o„= 2v(R, lns)'.

(4)

(5)

FIG. 3. Many-body forces.

A similar result holds for scalar exchange when
a(2) &2." The only change is that R, =[a(2) —2) j
2g. Equation (5) of course corresponds to scatter-
ing from a black disk of radius 8, lns.

Whether the contributions to y arising from the
exchange of three or more mesons can actually be
neglected for large b depends upon the behavior of
a(n) as a function of n. In the checkerboard graph
model [see Fig. 1(c)) a(n) grows like —,'n(n —1),'"
so these terms obviously cannot be neglected.
This behavior for a(n) is not hard to understand.
The particles represented by dashed lines in Fig.
1(c) give rise to attractive forces among the ex-
changed mesons. Since the number of "two-body
potentials" increases like —,'n(n —1), it is hardly
surprising that the binding among the mesons does
also. In this case the series for iX is marginally
convergent. For most values of the input parame-
ters the total and elastic cross sections fall like a
power of energy as s goes to infinity.

These checkerboard graph models were simpli-
fied versions of multiperipheral-type theories in
which the approximations were tailored-to be ac-
curate in the multi-Regge region of phase space.
The results show that these contributions are then
strongly suppressed by a type of self-damping im-
posed by unitarity. This suppression of large rela. -
tive energies between secondaries is required by
the experimental data.

Models which include many-body forces among
the exchanged mesons (see Fig. 3) have also been
studied. ' The results are qualitatively similar to
those obtained in the checkerboard model, except
that there is a limited range of input parameters
for which the multichain forces saturate, i.e., for
which a(n) grows less rapidly than n. In the latter
case the multimeson exchange contributed to y can
of course be neglected.

The behavior of a(n) in relativistic field theories
remains an open question. Three cases can be

identified:
(1) a(n) grows less rapidly than n .In this case

only the one- and two-meson exchange contribu-
tions are important at large b. As a result, for
vector exchange there is always appreciable scat-
tering out to b of order R, lns, and Eq. (5) holds.

(2) a(n) grows more rapidly than n Here all
terms in the series for y must be retained and a
detailed calculation is necessary to determine the
high-energy behavior of the total cross section.
This case is further complicated by the fact that
couplings between the various meson channels are
likely to be important.

(3) a(n) grows like n In. this case the high-ener-
gy behavior depends critically on the behavior of
the d„. For example, if d„=d" /n!, then one again
obtains black-disk scattering for vector exchange,
while if d„=d" one finds that for vector exchange

iy(b, s) =-ide " (1 —ids'e ~
) '. (6)

III. FRAGMENTATION AND DIFFRACTION

Although the simple eikonal picture discussed in
Sec. II is quite appealing, it certainly cannot be the
whole story. If the incident particles never lost a
significant fraction of their momenta, then all of
the produced particles would have to be produced
in the pionization region. Experimentally, one
knows that the incident particles often fragment in-
to two or more secondaries which share the large
incident momentum. Such effects are present in
some of the Feynman-diagram models we have

Here we have written a(n) =(n —1)a, since by defi-
nition a(1) =0. The first two terms in the series
expansion of Eq. (6) agree with the results of
Cheng and Wu, but this form for y leads to a total
cross section which falls like apower of the energy.

The high-energy behavior of yi(b, s) depends criti-
cally on the mechanism for producing particles in
the central region. Particle production can be
studied in the eikonal framework by treating!t(b, s)
as an operator. ' ' In general it is a functional of
the creation and annihilation operators of the pro-
duced particles. In Refs. 3-5, where the form of
y(b, s) is taken from the multiperipheral model,
y(b, s) turns out to be an unbounded operator for
most values of the input parameters. It is then
hardly surprising that one must take into account
all powers of y(b, s) when computing the scattering
amplitude. However, it is also possible to con-
struct reasonable models for which )t(b, s) is a
bounded operator. "' In these models it is possible
to adjust the input parameters so that the tower-
dominance hypothesis holds. It is also possible to
arrange for any desired energy dependence for the
total cross section.
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mentioned. For example, the diagrams which cor-
respond to the exchange of one or two Q' ladders
only give rise to the simple eikonal picture if one
treats the ladders in the leading-log approximation.
These diagrams also contain terms in which inter-
mediate particles share the large incident momen-
ta. Such terms, which break the eikonal picture,
contribute to nonleading powers of lns. A similar
result undoubtedly holds for the exchange of QED
towers.

Fragmentation effects can be included in the gen-
eral eikonal picture provided the invariant mass of
the fragments of each particle is small compared
to the total center-of-mass energy. "" It is con-
venient to divide both the intermediate and final
states into two classes: those in which there are
no large-rapidity gaps and those in which there is
at least one large gap. For simplicity we consider
explicitly only those final states in which there is
at least one large gap. " Then the scattering am-
plitude can be written in matrix form"

M, (s, t) =4~is bdb J,(b~t )(1 —e'" "
)o, ,

0

+ ~ ~ ~

FIG. 4. Typical fragmentation graphs.

N

G,s, s = 2"bp gyj, 11
0 )=n

o,', =2m I bdb I(1 —e "),, I'
4 p

= »o'I gii I' (12)

o"=2w bdb I(1 —e ")go I'
Jp

pact parameter of order b, (perhaps bo-Rolns) and
that all of the eigenvalues decrease rapidly to zero
for b )bo. Then, assuming that G(b, s) is a slowly
varying function of b, one sees that

1
o r' = —ImM&i(s, 0)

where the subscripts label the various states with

at least one large-rapidity gap. They consist of
the incident state and all states to which it can be
diffractively excited. Typical diagrams are shown

in Fig. 4. The phase X, which is represented bled a
wavy line in Fig. 4, is itself a sum of diagrams in
which none of the intermediate states have large
rapidity gaps. We assume that these nondiffractive
intermediate states produce absorption in all the
eigenchannels and therefore write

ty», (b, s) =-Ao, (b, s), (6)

M»(s, t) =4sis bdb Jo(bv -t)
0

x g G, o(b, s)(1- e 'o ' ')
x G '», (b & s) . (10)

One cannot go much further without making spe-
cific dynamical assumptions. However, it is
amusing to consider specific classes of possible
behavior. Suppose that there are N discrete eigen-
values of A which are very large out to be an im-

where A is taken to be a positive definite Hermit-
ian matrix which can be diagonalized by the unitary
matrix G(b, s).'

[ G '(b, s)A(b, s)G(b, s)]„=A„
=b„a,(b, s).

The scattering amplitude is then given by

where

gg&& g Gjl(bo& s)G&&& (bo& s) '
l=n

(14)

Notice that as long as there is more than one dif-
fractive channel the total cross sections do not all
have to approach the same limit as they would in
the simple black-disk-eikonal models discussed
in Sec. II. Furthermore, since gff (1, we see that
o„/o r (-,' instead of being exactly —,

' as in the simple
black-disk models. However, if we define the dif-
fractive cross section by

0. j 0 f + ~ O. fk
dif el

k&j

then we obtain the important result"
f & f

~dlf 2+ r. (16)

The energy dependence of the various cross sec-
tions depends in detail on the behavior of b, and the

g&i(s).
There are two special cases of interest. First,

if all of the eigenvalues of A are large out to b bp,
then g» =b». So, o'r= 2o,, = 2»o and o' /o r goes
to zero at high energies. These are just the re-
sults of the one channel model. Going to the oppo-
site extreme consider the case in which only one
eigenvalue of A is large out to b =b, . This is
equivalent to taking A to be separable, so we write

A„(b, s) = G,(s)a(b, s)G, (s). —
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This is a crude version of the model discussed in
Ref. 17. Writing+, G, '(s) =I(s), we see that the
scattering amplitude takes the form

x (1
-j($)0 (b, s)

) (18)

ln general, the functions G, and I(s) depend on the
impact parameter b. On the basis of our previous
comments we expect a(b, s) to grow like a power of
s for fixed b. I(s) will also increase with s since
new diffractive channels are continually being
opened, but we would not expect it to grow nearly
as rapidly as a(b, s). In that case the value of b,
is only slightly affected, actually only logarith-
mically, by the pxesence of the diffractive chan-
nels; however, the factor of I(s) ' under the inte-
gral in Eg. (18) means that these channels tend to
make the disk more transparent. In the work of
Skard and Fulco, "fragmentation effects are treat-
ed in a manner similar to the diffx action model. '4

They find that I(s) grows like (lns)", where q is
constrained to vary between 0 and 2 by self-con-
sistency requirements. Therefore, in this model
the disk is no longer black and the total cross sec-
tion behaves like (lns)' ". The value of Ti depends.
on the details of the fragmentation mechanism. It
can even be a slowly varying function of s.

Finally, let us consider the effects of fragmenta-
tion and absorption in a multiperipheral-like mod-
el. The simplest diagrams that contribute to the
eikonal phase are shown in Fig. 5(a). Cutting these
diagrams, one can, of course, divide the interme-
diate states into those with no large-rapidity gaps
and those with one or more such gaps. Examples
are shown in Fig. 5(b) and 5(c), respectively. The
wavy lines represent ladders whose high-energy
behavior is assumed to be dominated by a Regge
pole, with intercept close to or equal to j.. Fox' the
graphs in Fig. 5(b), these Regge poles give rise to
absorptive corrections to the basic multiperipheral
production amplitude. Notice that the one-gap con-
tributions are necessarily closely related to the
zero-gap ones because the same graphs contribute
to both.

The graphs in Fig 5(b) whi. ch have absorptive
corrections (wavy lines) interfere destructively
with the graph obtained by cutting the simple lad-
der. The graph in which the Reggeon is attached
to the incoming lines and the one in which it is at-
tached to the outgoing lines both contribute to the
two-Reggeon cut. Each of these gxaphs is equal in
magnitude but opposite in sign to the AFS graph"
[the first one in Fig. 5(c)] which has one large-ra-
pidity gap. This is the origin of the well-known re-
sult that in the eikonal model the two-Reggeon cut

(o)
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FIG. 5. (a) Interacting ladder-type contributions
to the eikonal phase. (b) Lowest-order absorptive
corrections to the zero-gap contribution. (c) Lomest-
order fragmentation graphs.

makes a negative contribution to the total cross
section. The same sign reversal holds for the tri-
ple-Regge term which also makes a negative con-
tribution to the total cross section. The physical
interpretation of the sign revexsal is simple and
clear. If fragmentation is caused by a predomi-
nantly absorptive exchange, such as the Pomeron,
its lowest-order contribution to the total cross
section is negative, whereas if it is caused by a
real exchange, the resulting contribution is posi-
tive. " This is related to the familiar theorem in
multichannel potential scattering that a Hermitian
transition potential produces attraction below
threshold and, to its forgotten corollary, that an
anti-Hermitian one leads to repulsion.

The close connection between the Mandelstam
cut and the triple-Regge contribution is illustrated
in Fig. 6. If no rungs are allowed in the bottom
ladder, this diagram is exactly the two-Reggeon
cut. In both cases the sign obtained in the eikonal
model is in agreement with that obtained in
Gribov's Reggeon calculus. " The existence of
certain canceling graphs for the triple-Regge
terms has been discussed in perturbation theory
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FIG. 6. An illustration showing the close connection
between the triple-Regge and the Mandelstam graphs.

in the excellent paper by Halliday and sachrajda. "
The diffractive production of large-mass frag-

mentation states has been extensively studied be-
cause of their connection to the triple-Pomeron
vertex function. "'" Qne usually assumes that the
dominant production mechanism is via the ex-
change of a simple factorizable Pomeranchuk pole
as in the second graph of Fig. 5(c}. In the eikonal
picture this assumption is highly questionable. If
M is the mass of the fragmentation state, then the
Pomeranchuk (radius)' of the process is of order
a 'ln{s/M'). Since the region of interest for the
decoupling theorems is M'= qs, where q is fixed,
only small values of the impact parameter are im-
portant. It is this region of large M' in the inte-
gration which gives rise to a contribution to the
total cross section, which increases with energy.
However, it is just for these values of the impact
parameter that shadowing and absorption effects
should be most important. These absorption inter-
actions all have (ranges)', which can be as large
as n'lns. They will be important and will tend to
suppress the contribution of this region of phase
space 30 In fact we have seen that some of the
simple diagrams of Fig. 5(b} actually reverse its
sign. When higher-order terms in the eikonal ex-
pansion are retained, the total cross section does
not become negative but falls as a function of s.
Whether additional absorption effects such as those
depicted in Fig. 7 actually eliminate the inconsis-
tency of a nonvanishing triple-Pomeranchuk cou-
pling is not clear. However, it certainly seems
important to take the effects of unitarity into ac-
count, particularly at the small impact parameters
that are important in the large-mass triple-Regge
region.

A preliminary calculation of the single diffractive
excitation (or 1' graph) has been performed. Be-

cause of the shadowing effect, the net first-order
contribution of the triple-Pomeron vertex to the
total cross section is negative. However, the con-
tribution to the inclusive cross section is in com-
plete agreement with that obtained in the Mueller
approach. " The result is that I(b, s)a(b, s) [refer
to Eg. (18)] grows like ln lns for 5'/Ins fixed and
this produces a total cross section which falls as
(Inlns) '. If the triple Pomeron decouples, then
the total cross section approaches a constant. In
either case, however, the result is consistent.
Higher-order diffractive contributions will change
this result and the rate of fall of the total cross
section, but it certainly demonstrates that it is
important to treat the effects of shadowing and ab-
sorption in the triple-Regge region.

IV. CONCLUSION

The eikonal approach to high-energy scattering
and particle production has many attractive fea-
tures; in particular the constraints of s-channel
unitarity are built in from the start. Furthermore,
one ordinarily obtains a simple physical picture in
the impact parameter representation, no matter
how complicated the /-plane structure- of the scat-
tering amplitude is. The approach is general
enough to incorporate any energy dependence of
the total cross section (consistent with the Frois-
sart bound) and to allow one to study a variety of
production mechanisms. The generality of the ap-
proach is also a disadvantage since all of the spe-
cific predictions are quite model-dependent and
can be changed by altering the form of the eikonal
phase. A second drawback is that the constraints
of t-channel unitarity are not automatically incor-
porated, and in general it appears to be difficult
to include them.

Although a great deal of work has gone into this
subject, a large number of open questions remain.
Probably the most important is the behavior of the
eikonal phase y(b, s) for large values of 5 and s. If
the tower-dominance assumption of Cheng and Wu

+ + 0 ~ ~

FIG. 7. Absorptive corrections to the fragmentation
graphs. FIG. 8. Three-photon tower graph.



R. BLANKENBECLER, J. R. FULCO, AND R. L. SUGAR

is correct, then in quantum electrodynamics y(b, s)
is large out to impact parameters of order lns. A
similar result would hold if the asymptotic behav-
ior of X(b, s) were dominated by a Regge pole with
intercept greater than one. Calculations of the
checkerboard graphs cast doubt on the tower-dom-
inance hypothesis; however, these calculations
have not been done in the framework of QED. It
would be particularly interesting to know the as-
ymptotic behavior of the QED graphs correspond-
ing to the exchange of three interacting photons.
An example of such graphs is shown in Fig. 8. If
the checkerboard graph calculations are an accu-
rate guide then these graphs should give a contri-
bution to X(b, s), which is important out to larger
impact parameters than the tower-graph contribu-
tion.

We have seen in Sec. III that once fragmentation
effects are taken into account, the eikonal phase
y(b, s) is in general an operator. In this case the
energy dependence of the total cross section de-
pends crucially on the details of the fragmentation
mechanism. For example, the fact that some of
the eigenvalues of y(b, s) are large out to an impac't
parameter of order lns does not necessarily mean
that the Froissart bound is saturated. The diffrac-

tive channels tend to make the disk transparent and
therefore decrease the size of the total cross sec-
tion, which could then have any asymptotic behav-
ior consistent with s-channel unitarity.

The effect of absorption on the triple-Regge re-
gion of phase space was shown to be physically
necessary and mathematically important. The usu-
al derivation of the decoupling theorems is partic-
ularly sensitive to these effects. Both the sign and
magnitude of the terms linear in the triple-Pom-
eron coupling constant can be strongly modified.
The sign-reversal phenomenon was shown to be
closely related to the same effect occurring in the
AFS-Mandelstam discussion of the two-Pomeron
cut. In fact, the triple-Regge region and the two-
Pomeron cut were shown to arise from the same
type of diagrams and one is the limit of the other.

In summary, we have seen that the eikonal ap-
proach offers many advantages in that it builds in
the constraints of unitarity and affords a simple
picture of scattering and production processes in
impact-parameter space. However, as in all rel-
ativistic theories, high-order effects are impor-
tant, especially at high energies, and the expected
asymptotic behavior in the energy is not yet known
rigorously for any realistic model.
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Results are presented of a calculation of the rate for the decay L —v& y, where L = Eo,
M is a neutral heavy lepton occurring in certain gauge theories of weak and electromagnetic
interactions. This rate is compared with that for the semileptonic decay mode L,O-E ~+,
and it is found that, although the former is of order n3, whereas the latter is of order n2,
the L —v, y rate can actually exceed the L -E ~+ rate in models which also have a charged
heavy lepton L+.

Non-Abelian gauge theories of weak and elee-
tromagnetie interactions employing the Higgs-
Kibble mechanism of spontaneous symmetry
breaking have evoked considerable interest since
they provide a natural unification of these two
classes of interactions and make possible a re-
normalizable theory of weak interactions. ' Heavy
leptons play an important role in such theories,
being required in models which either do not have
the neutral massive gauge boson Z, or have it but
do not couple it to a vy~ —,

' (l-y, )v neutral current. '
Several models feature a neutral heavy lepton
L'=E', M'; these include the Georgi-Glashow (GG)
model, ' the second Prentki-Zumino (PZ) model, '
and the 2-2, 3-2, and 2-3 models of Bjorken and
Llewellyn Smith (B-LS).'

In this paper we calculate the rate for the decay
L'-v, y in these five models. For definiteness
we consider the heavy muon lepton M', our re-
sults apply equally well to the Eo. This decay is
of interest, first, because, being completely
leptonic, it is exactly calculable and independent

of assumptions about how hadrons are included
in the various models. Second, experimentally,
in view of the difficulty of observing the final
particles in the I.o-v, y decay, one would like to
determine how large the rate is, especially in
comparison with the more easily observed charged
modes. Since the GG model embodies the essen-
tial characteristics of a theory with heavy leptons,
we concentrate on it and give only final results
for the other models considered.

A brief review of the particle content of these
theories may be helpful. The GG model is based
on the group O(3) and has as gauge particles the
charged intermediate vector bosons %" and the
photon y, but not the neutral gauge boson Z. The
scalar fields form a self-conjugate triplet rep-
resentation of O(3),

After the spontaneous symmetry breakdown and


