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The transformation from current- to constituent-quark basis states is discussed. Certain
algebraic properties of the transformed vector and axial-vector currents are abstracted
from the free-quark model and assumed to hold in nature. Supplemented by the partially
conserved axial-vector current hypothesis and assumptions about the identification of the
observed hadrons with simple constituent-quark states, the algebraic properties of the
transformed currents are used to compute the pion and photon transitions between any two
hadron states. General selection rules are stated. Many specific matrix elements for both
meson and baryon decays are tabulated, and both their magnitudes and signs are compared

with experiment.

I. INTRODUCTION

For almost a decade, the constituent-quark mod-
el'? has given us a very successful classification
scheme for most hadrons. In such a model non-
exotic baryons are treated as composed of gqgq,
while mesons are ¢g, with internal orbital angular
momentum between the spin-; quarks. As a re-
sult, particles fall in simple multiplets® of SU(6)
x0(3).

At the same time there has been a considerable
amount of work on the classification of hadron
states under the algebra of chiral SU(2)xSU(2),
or more generally, chiral SU(3)xSU(3).*"® It is
clear that hadron states, like the nucleon, share
single irreducible representations of the chiral
algebra with many other states, for the nucleon
and many higher-mass N *’s are connected by a
generator of the algebra, @, in the form of the
pion field. Conversely, the nucleon state is a
complicated mixture of many irreducible repre-
sentations. Although important progress was
made in both the purely theoretical and phenome-
nological classification of hadron states under
chiral SU(3)xSU(3) in the past,” previous work in
this direction has suffered from being done on a
case-by-case, somewhat ad hoc basis, with each
hadron (or small set of hadrons) treated separate-
ly. Little systematic connection between the clas-
sification of different hadrons was found.

Recently, by relating these two classification
schemes for hadrons, there has been what we
consider major progress, principally due to
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the work of Melosh.® He approaches the problem
by trying to relate two sets of operators: those of
an SU(6),, of currents [including the SU(3)xSU(3)
formed by the vector and axial-vector charges]
and an SU(6),, of strong interactions. However,
we may equivalently consider the relation between
their basis states: the irreducible representations
of the algebra of currents (built up out of “current
quarks”) and the irreducible representations of the
SU(6), algebra of strong interactions (built up out
of “constituent quarks”).® Therefore, postulating
a relation between the two algebras will give us
the decomposition of physical hadron states, as-
sumed to be simply identifiable with constituent
quark states, into irreducible representations of
the algebra of currents. A complete knowledge of
the relation between the two algebras would then
allow us to solve the problem of the classification
of hadrons under the algebra of currents.

We shall assume that a transformation between
constituent- and current-quark basis states exists.
Without a detailed dynamics we cannot completely
specify the transformation. However, we shall
assume certain algebraic properties of the trans-
formed axial-vector charge and first moment of
the vector-current density. These algebraic prop-
erties are abstracted from the free-quark model,
following the work of Melosh.® As a result, we
have a theory of the algebraic structure of weak
or electromagnetic transitions between hadrons.
This theory is (1) simple in its algebraic prop-
erties, (2) systematic in treating all mesons and
baryons in a unified way, and (3) definite in that it
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has a clear origin and structure, with the ampli-
tudes related by Clebsch-Gordan coefficients and
the decay widths related to the amplitudes involved
in the theory in a nonarbitrary, known way.

Such a theory can be regarded as one more step
in a program of abstracting algebraic properties
from the free-quark model, without necessitating
the reality either of free quarks themselves or of
any picture of quarks bound in a “potential” from
which they cannot escape. Abstraction from the
free-quark model assures us that the assumed
algebraic properties could be exact, and are at
least consistent with relativity, invariance prin-
ciples, etc. They are presumably the least com-
plicated properties that one might expect to hold
in the real world. The present theory greatly
unifies the treatment of weak and electromagnetic
transitions with the systematics of hadron spec-
troscopy, and produces well-defined quantitative
predictions.

While vector-current-induced transitions are
immediately testable through comparison with pho-
ton amplitudes, present weak-interaction data are
generally insufficient to provide a test of transi-

- tions involving the axial-vector current. To pro-
vide tests of this part of the theory at the present
time we must assume the partially conserved
axial-vector current hypothesis (PCAC), which
relates matrix elements of the axial-vector charge
taken between states at infinite momentum to those
of the pion field taken between the same hadron
states. With the assumption of PCAC, the theory
becomes one of the algebraic structure of pion and
photon transitions between hadrons. Expanding
upon our previous work,'! in this paper we inves-
tigate the general structure of such a theory and
show what it predicts in detail for specific pion
and photon transitions between both meson and
baryon states.

As a theory of pion transitions, the present
paper has much in common as far as general alge-
braic structure is concerned with both previous
relativistic quark-model calculations'? and certain
broken-SU(6), schemes.!® We in fact regard this
theory of current-induced transitions, supplemen-
ted by PCAC and/or vector-meson dominance, as
providing a method of constructing a phenomenol-
ogy of purely hadronic vertices and providing
justification for some aspects of these other theo-
retical schemes.

In the next section we discuss the transformation
from basis states of the SU(6),, of currents to that
of strong interactions, and what we abstract of
the algebraic properties found in the free-quark
model by Melosh.® The applications of this alge-
braic structure to pion and photon decays, when
supplemented by PCAC and assumptions on the
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identification of the observed hadrons with con-
stituent quark states, is described in Sec. III.
After stating general selection rules and compar-
ing with other theoretical schemes, we tabulate
specific matrix elements for pionic decays of
mesons, pionic decays of baryons, and photonic
decays of baryons in Secs. IV, V, and VI, respec-
tively. Where possible a preliminary comparison
with experiment of both their magnitudes and
signs is made. We conclude with a discussion of
the present theoretical and experimental situation
and possible directions for further extension of
the theory.

II. THE TRANSFORMATION FROM CURRENT
TO CONSTITUENT QUARKS

Consider the algebra formed by the 16 vector
and axial-vector charges, @%(¢) and QZ(¢), which
are simply integrals over all space of the time
components of the corresponding currents mea-
surable in weak and electromagnetic interactions:

Q“(t)=fd3xV§‘(:’<, t), (2.1a)

Q)= [axA3E,1). (2.1b)
Here « is an SU(3) index which runs from 1 to 8.
At equal times these charges commute to form the
algebra proposed by Gell-Mann,**

[Q%(2), @B()] =if*BYQY(t), (2.2a)
[Q%(2), @B(¢)]=if*BY QU¢), (2.2b)
[Q(2), @E(¢)]=if*BYQ7(¢t). (2.2¢)

This is the algebra of chiral SU(3)xSU(3), for it
can be easily shown that Eq. (2.2) is equivalent to
the statement that the right-handed charges, Q%
+@Qg, and the left-handed charges, @ - ¢, each
form an SU(3), and that they commute with each
other—hence, chiral SU(3)xSU(3). For a=1,2,3
the @*’s are the generators of isospin rotations; .
for a=1,...,8 they are the generators of SU(3).
The last of Egs. (2.2), sandwiched between nucleon
states moving at infinite momentum in the z direc-
tion, yields the Adler-Weisberger sum rule.'®
Taken between states at infinite momentum,'®
the @*’s and Q¢ ’s are “good” operators, i.e.,
they have finite (generally nonvanishing) values as
p.~~. These values are the same as those of
space integrals over the z components of the re-
spective currents. If we adjoin to the space inte-
grals of the time component of the vector currents
and the z component of the axial-vector currents
integrals over certain “good” tensor current den-
sities, the SU(3)xSU(3) algebra between states at
infinite momentum can be enlarged still further to
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form an SU(6),, algebra of 35 generators whose
elements commute like the products of SU(3) and
Dirac matrices, 1%, 3\“Bo,, 3A%Bo,, 3r%0,. We
refer to this algebra, introduced by Dashen and
Gell-Mann' in 1965, as the SU(6), of currents.
We denote these generators collectively by F?,

In what follows it will be convenient to label
states or operators by their transformation prop-
erties under this algebra of currents. For this
purpose we shall use just the SU(3)xSU(3) subalge-
bra of the whole SU(6), algebra of currents to
write

{(‘4! B)Sz! Lz} ’

where A is the SU(3) representation under Q% + @,
B the representation under @* - @Z, and S, is the
eigenvalue of @J, the singlet axial-vector charge.'®
The quantity L, is then defined in terms of the z
component of the total angular momentum J as L,
=J,~S,. The “ordinary” (Q*) SU(3) content of
such a representation is just that of the direct
product AXB.

With such labeling it is clear that, for example,

Q@ =2(Q*+Q3) - 2(Q* - @5)
transforms as {(8, 1),, 0} - {(1, 8),, 0}, while @
transforms as {(8, 1),, 0}+1{(1, 8),, 0}. Representa-

tions of SU(3)xSU(3) can be built up from (3, 1),/,,
(1,3)_,s, (1,3),/,, and (3,1)_,/,, which we define
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to be the current quark and current antiquark
states with z spin projection +3. Therefore, if a
nucleon at infinite momentum with J, =3 acted
under the algebra of currents as if it were simply
composed of two current quarks with S,=3

and one quark with S,=-3 in a symmetrical wave
function, we would have

IN) = H(6,3),/,,0}). (2.3)

However, the SU(3) content of (6, 3),/, is just that
of an octet (including the nucleon) and a decuplet
[including the A(1236)]. Since Qf is a generator

of SU(3)xSU(3), it can only connect this repre-
sentation to itself, i.e., the nucleon to the nucleon
or to the A(1236). Furthermore, such a classifica-
tion of the nucleon gives g, =%. The nucleon can-

_ not be in such a simple representation. This is

already apparent from the Adler-Weisberger sum
rule’s itself, for it shows that the nucleon is con-
nected by a generator of the algebra, the axial-
vector charge Q¢ (in the form of the pion field
through the use of PCAC), to many higher-mass
N*’s. Thus the nucleon and these N *’ s must be
in the same representation of SU(3)xSU(3). Con-
versely, the nucleon state must span many differ-
ent representations of the SU(3)xSU(3) of currents.

An attempt®® to describe approximately the nu-
cleon state in terms of a sum of irreducible rep-
resentations of SU(3)xSU(3) yields

IN)=cos6|{(6,3)1/2 0})+siné(sing|{(3, 3), /5, 0}) +cosp[cosy [{(8, 1);/,, —1}) + siny {(3,3).,/2,1P]), (2.4)

where 6, ¢, and y are parameters to be fitted
phenomenologically. It is clear that parametrizing
states in a manner resembling the complicated
nucleon wave function in Eq. (2.4) is not the way to
proceed in order to understand systematically the
pionic decays of higher resonances. The number
of phenomenological parameters would increase
so as to render the approach essentially useless.
Instead, one may assume®?2° that there exists
a unitary operator V which transforms an irreduc-
ible representation (I.R.) of the algebra of currents
into the physical state:

|hadron) =V |[L.R., currents). (2.5)

The state |[I.R., currents) is chosen as that irre-
ducible representation of the algebra of currents
which corresponds to baryons being built from

just three current quarks, and mesons from quark-
antiquark. Thus, for example, the complicated
nucleon state in Eq. (2.4) is rewritten as

IN) =V [{(6,3),/, 01 . (2.6)
All the complicated mixing of the real hadron

—

states has been subsumed in the operator V.

In the following we will be interested in evaluat-
ing the hadronic matrix elements of a current,
say Q. Using Eq. (2.5) we have

(hadron’| Q¢ |hadron)

=(L.R.’, currents |V~'QV|LR., currents).
2.7

The complications of hadronic states under the
algebra of currents have now been transferred to
the effective operator V~'Q¢V, which may be
studied as an independent object. Moreover, if
the operator V~QgV has simple transformation
properties under the algebra of currents, the way
is now open to evaluate systematically the matrix
elements of @S between any two hadronic states.

Such is indeed the case in the free-quark model,
as shown by Melosh.®

The operator V serves another useful purpose.
It is easy to see that if we define a new set of gen-
erators
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wi=VFiy-t, (2.8)

then the W' also form an SU(6),, algebra and fur-
thermore, from the definition of V in Eq. (2.5),
hadron states transform as irveducible vepresen-
tations corresponding to the naive constituent-
quark model of hadrons. We therefore call the
basis states of this new SU(6), “constituent quarks”
and identify the algebra with that of the SU(6),, of

strong interactions.?! Equation (2.5) can therefore be

be rewritten as

|hadron) = |I.R., constituents)
=V|LR., currents), (2.9)

while Eq. (2.7) becomes

(hadron’|Q |hadron)
=(LR.’, constituents |Q¢|L.R., constituents)
=(L.R.’, currents|V~'Q¢V|LR., currents).

(2.10)

In the free-quark model, the SU(6), of strong
interactions would be identical with the SU(G)W of
currents if the quarks were restricted to have mo-
mentum purely in the z direction (p, =0). It is the
transverse momentum of quarks which is the rea-
son for breaking the identity of the two symme-
tries. This is intuitive if we keep in mind that the
SU(6), of strong interactions was conceived as a
collinear symmetry.

In the present paper we will be primarily con-
cerned with applications of the algebraic properties
of the transformed axial-vector charge, V-'Q%V,
where @, is defined in Eq. (2.1b), and the trans-
formed first moment of the vector current,
V-D$V, where DY is defined as

D<:=fdsx[i("&—"y’] V(& t). (2.11)

Taken between states at infinite momentum, com-
mutators of QF lead to Adler-Weisberger sum
rules,'® while commutators of DS lead to Cabibbo-
Radicati sum rules.?? Their properties under the
algebra of currents are that

Q¢ transforms as {(8, 1), - (1, 8),, 0} (2.12a)

and

DY transforms as {(8,1),+(1, 8),, 21} . (2.12b)

In a free-quark model at p,=, either V"QQ"V
or VDV must connect only single-quark states
to single-quark states; they thus have the general
form

VGV or VDS V= [dxq* ()00, 7)1 %q(x),

(2.13)

where O is some function of the transverse de-
rivatives (3,) and the gamma matrices (y;). An
explicit form of © was determined by Melosh,®
while Eichten et al.2® argue that a large class of
such functions exist. Without having a detailed
dynamical formalism we are unable to make use
of an explicit form, even if it were given. What
is important for our purpose is that the operator
is a “single quark” operator; i.e., it depends only
on the coordinates of a single quark and it does
not create connected ¢g pairs.

It is this property that we abstract from the
free-quark model and assume to hold in nature.

In general, we assume that the opervators V-1QLV
and V-'DSV have the transformation properties of
the most geneval linear combination of single
quark operators consistent with SU(3) and Loventz
invariance.

Exactly this is verified in the explicit free-
quark-model calculations.® 2®* As SU(3) is assumed
conserved there, we have V™'Q*V=Q%. The op-
erator V™'QZ3V, with J,=0, contains two terms
which transform under SU(3)xSU(3) as
{(89 1)0 - (1’ 8)09 0}' and {(3’ §)1; - 1}— {(gy 3)-19 1} and
behave as components of 35’s of the full SU(6),, of
currents. The operator V™'D$V, with J,=1, is
slightly more complicated, with three terms?*which
transform as {(8, 1), +(1, 8),, 1}, {(3, 3),, 0}, and
{8, 3)_,, 2}, again in 35’s of the SU(B),, of cur-
rents.?® Thus, in spite of the enormous complica-~
tion of V itself, we abstract these remarkably sim-
ple algebraic properties of V-'Q2V and V™DV
from the free-quark model and postulate them to
hold in the real world. We proceed to apply this
hypothesis to transitions between hadrons.

III. THE APPLICATION OF THE ALGEBRAIC
STRUCTURE OF TRANSFORMED CURRENTS
TO PHOTON AND PION DECAYS

To carry through this application of the alge-
braic structure of transformed currents to photon
and pion decays of real hadrons, we need several
additional physical assumptions. First, to relate
matrix elements of @, between states at infinite
momentum to matrix elements of the pion field we
need the PCAC hypothesis.!® Explicitly, for «
=1,2,3 we assume

0,A(x) =T £,0%(0), 3.1

where Aj(x) is the axial-vector current and f
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~135 MeV is a constant related to the charged
pion decay rate. The decay rate for hadron’
—~hadron+ 7~ can then be computed in the narrow -

T'(hadron’ —~hadron +7 1 Pr

719

resonance approximation in terms of matrix ele-
ments of (1/V2)(Q} - iQ2) between states at infinite
momentum as

)=(47rf,,2) 27'+1  M'?

where p_ is the pion momentum and the sum ex-
tends over all the possible common helicities A of
the hadrons. The total width, I'(hadron’
—hadron+7), may be obtained from Eq. (3.2) by
adding the 7* and 7° widths, which are related by
isospin Clebsch-Gordan coefficients. Equation
(3.2) may also be obtained in a more clearly co-
variant way by considering the narrow-resonance
approximation to the hadron’ intermediate-state
contribution to the Adler-Weisberger sum rule ob-
tained by taking Eq. (2.2c) between hadron states

J

e2 p 3
! o - ’
I'(hadron’—hadron +v) - -—7—2J, " 1; ’<hadron WA

where e is the proton charge and p, the photon mo-
mentum, and the sum extends over all possible
helicities . Note that although the definition of
D% in Eq. (2.11) involves only a first moment of
the current, between states at infinite momentum
all multipole amplitudes consistent with the spin
and parity of the states enter matrix elements of
D¢. Equation (3.3) may also be obtained from con-
sideration of the narrow-resonance approximation
to the hadron’ contribution to the Cabibbo-Radicati
sum rule®® on hadron states. Again we have no
aribtrary phase-space factors.

In this paper we shall use the narrow-resonance-
approximation expressions, Eqs. (3.2) and (3.3),
for pion and photon decay widths in order to make
a comparison of the theory with experiment. For
broad resonances in the initial and/or final state,
or for decays of resonances where the physically
available phase space is small, such an approxi-
mation introduces non-negligible errors.?” How-
ever, we view the present comparison as being
sufficiently accurate as a first test of the theory,
particularly in view of the experimental errors on
values for pion or photon decay widths. When the
situation warrants it, the values of

|[¢hadron’| Q¢ |hadron) |2
and
|¢hadron’|D$ |hadron) |?

should be determined irrespective of any approxi-
mation in terms of contributions to Adler-Weis-

(M2 - Mz)z;

<hadron', by ’ ‘/% (Q; - Q%) [hadron, )\> ‘2 ,  (3.2)

r

at infinite momentum. In either case, we see that
the width for hadron’—hadron+ 7 is directly fixed
by matrix elements of @, up to the validity®® of
PCAC. As aresult, there are no arbitrary phase-
space factors in the calculation.

For photon decays we need no additional assump-
tion to relate the width to the matrix element of the
DY operator of Eq. (2.11) taken between states at
infinite momentum. We have directly that in the
narrow-resonance approximation

2

D3 +——1‘/3—_Df hadron, A - 1> R (3.3)

I
berger and Cabibbo-Radicati sum rules, respec-
tively.

Second, we need to identify the observed (non- ,
exotic) hadrons with constituent quark states.® In
other words, we assume that there is a portion of
the physical Hilbert space which is well approxi-
mated by the single-particle states of the constit-
uent quark model. For baryons, composed of qqq,
we have the familiar SU(6) representations
56 L=0%, 70 L=1", 56 L=2", etc., where L is
the internal quark angular momentum. For me-
sons we have correspondingly the ¢g states
356 L=0", 1 L=0", 35 L=1", etc.

_Third, we assume that states with different val-
ues of the quark spin as well as L, and S, are re-
lated as in the constituent-quark model, i.e., by
the SU(G)W of strong interactions. This will allow
us to relate different helicity states of a given
hadron to each other.

Our calculation then proceeds as follows. The
matrix elements (between states at infinite mo-
mentum) of QF or DS which we wish to determine
are those which enter the expressions for widths
in Egs. (3.2) and (3.3). In either case, we trans-
form to an SU(6),-of-currents basis as in Eq.
(2.10), so that V-'QSV or V~'DV are taken be-
tween irreducible representations of the algebra
of currents. Now recall that we assume that re-
sults for the algebraic structure of V-'Q¢V and
V-ID$V which are found in the free-quark model
are also to be found in nature. More specifically,
we assume that these transformation properties
are, respectively, the following:
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V-'Q2Vtransforms as {(8, 1), - (1, 8),, 0} and {(3, 3),,- 1}~ {(3,3)_,, 1}, (3.4)

and

VD%V transforms as {(8, 1), + (1, 8),, 1} and {(3, 3),, 0} and {(3, 3)_,, 2}. (3.5)

All these operators transform like components of
35’s under the SU(6),, of currents. We then know
the algebraic properties (under the algebra of cur-
rents) of all terms of a transformed matrix ele-
ment. Therefore we may use the Wigner-Eckart
theorem and tables of Clebsch-Gordan coefficients

to carry out the calculation from this point onward.

Note that SU(6),, invariance of the transition op-
erator under either the algebra of currents or that
of strong interactions is not assumed—only the
transformation properties of the various terms
are needed in the calculation. We make no addi-
tional assumption in this paper that the
{(8, 1), - (1, 8),, 0} term in V-'Q2V is related to
Q¢, as in Ref. 28.

More explicitly, for a given matrix element of
Q< we write the initial and final hadron states with
J, =X in terms of states with definite quark L, and

-

S,. This involves coupling internal L and S to
form total J for each hadron. After transforming
to an SU(6),-of-currents basis, the matrix ele-
ment of the?® (8, 1), - (1, 8), or the (3, 3),~(3,3)_,
term in V-1Q{'V can then be written by the Wigner-
Eckart theorem applied to representations of the
SU(6), of currents as a reduced matrix element
times the product of quark angular momentum,
Su(6),, SU(3), and W-spin Clebsch-Gordan coef-
ficients.?°~3 For example, suppose we were cal-
culating the matrix element of the (8,1),- (1, 8),
piece of V~'Q¢'V between initial and final states
with common helicity A, total angular momenta

J and J’, internal quark angular momenta L and
L’, quark spins S and S’, SU(6) representations R
and R’, and SU(3) representations A and A’, respec-
tively. Then we have that

(R',A",L’,S’,J’, A, currents|{(8,1),-(1,8),,0}|R,A,L,S,dJ,, currents)

= 2 (L'LS'SI|J'ANLL, SS, [/) (R'[35]R)
Sz Sz quark angular momentum
Clebsch-Gordan coefficient

(Qoww,|w'w)
W-spin Clebsch-~
Gordan coefficient

(A7 8]A4)
SU(6)w Clebsch-  SU(3) Clebsch-
‘Gordan coefficient Gordan coefficient

X(R',L’,L}|I(8,1),—(1,8) IR, L, L,) . (3.6)

reduced matrix element

The W-spin Clebsch-Gordan coefficient follows
since the (8, 1), - (1, 8), operator has W =1 and
W£=0. For any state, W,=S,. For baryons, W
=S, while for mesons we have the conventional
correspondence?!

lw=1,w,=1)=]S=1, §,=1),
|w=1, w,=0)=-|S=0, §,=0),
lw=1, w,==1)==]S=1, S,=-1),
|w=0, w,=0)==[S=1, 5,=0).

(3.7

The signs which result from using Eq. (3.7) to con-
vert from quark spin to W spin are understood to
be included in Eq. (3.6) in the SU(6),, Clebsch-
Gordan coefficient.

The reduction of the (3, 3), - (3, 3)_, piece of
V1@V proceeds just as above, except that from
Eq. (3.7) it transforms under W spin as
{w=1, w,=1}+{w=1,w,=~1}. As a result, the
sum in Eq. (3.6) is replaced by two sums involving
the W-spin Clebsch-Gordan coefficients
(11ww, |w'w}) and (1-1WW, |W’W/). For photon

r

decays we need only recall that (8,1),+(1,8),is a
W=0, W,=0 object, while (3,3), and (3, 3)_, trans-
form as {W=1, w,=1} and -{W=1, w,=~1}.
Since the net J, initially and finally must be the
same for either hadron’-hadron+7 or hadron’
~hadron +y decays, and since the net value of
W,=S, must also be the same by the W-spin
Clebsch-Gordan coefficient in Eq. (3.6) and its
analogs, it follows that L,=J,~ S, must also be
additively conserved between the initial and final
states (including the pion or photon operator).
The general algebraic structure of the results
is now apparent.®®3* All the QS matrix elements
taken between hadron states in two given SU(6)
multiplets with given L, and L] are related to at

" most one nonzero independent SU(6), reduced ma-

trix element, corresponding to the

{(8, 1)o+ (19 8)0, 0}9 {(31 3_)19 -1}’ or -{(gy 3)-19 1}
piece of V1QS'V. Similarly, there is at most one
independent SU(6), reduced matrix element for
photon decays between states in two given SU(6)
multiplets with given values of L, and L/. If L is
zero, as is the case in essentially all cases of
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physical interest at the present, then of course
L,=0and the L/ dependence of the SU(6), reduced
matrix element becomes trivial [ in particular, the
{(3,3),, - 1} and -{(3, 3)_,, 1} pieces of V'QZV,
with L/=-1 and +1, ‘respectively, have the same
reduced matrix element]. In such a case (L =0)
there-are at most two independent reduced matrix
elements of @7 and three independent reduced ma-
trix elements of D taken between two given SU(6)
multiplets.

Instead of describing pion decays in terms of
the matrix elements taken between states with
given helicity A, one could describe them in terms
of the orbital angular momentum [ between the
final hadron and pion. To carry through an iden-
tification of the [ waves present, note that all the
A dependence of the decay amplitudes is given ex-
plicitly by the SU(6),, reduced matrix element and
the product of three Clebsch-Gordan coefficients
in Eq. (3.6) and its analog for the (3, 3), - (3,3)_,
term. From this we can deduce the [ amplitudes
involved in the decay. In particular, the W -spin
Clebsch-Gordan coefficient implies that in vector
form

W=W+1, (3.8)

which is the same as

§'=8+1 (3.9)
for baryons. Angular momentum conservation
for the total decay and for the internal (quark)
angular momentum and spin of each hadron are re-
spectively

Fr=3+1, (3.10)

Jjr=m'+§, (3.11)
and

J=T+8. (3.12)

Simple substitution of Eqs. (3.9), (3.11), and (3.12)
into (3.10), together with the laws of addition of
angular momentum, gives the result

|L-L'|-1<I<L+L"+1,

It L'#L, then |L—L'|-1=||L—-L’|-1|. Since in

the case L= L’ parity forces I>1=||L-L'|-1],
we can write in either case®®

||L-L'|-1|<si<|L+L"+1]| (3.13)

for pion decays of baryons. The same result in
fact holds for mesons.®

In the particular case L=0 we have
|L'=1]<1<|L'+1]| (3.14)

and parity then forces the nontrivial result that the
decays proceed only in the two partial waves

I=L’-1and L'+1, (3.15)

where in principle other values could be present.
Thus, in the particular case L=0 there are the
same number of [ values and reduced matrix ele-
ments. In general this is not true.

Direct manipulation of Eqgs. (3.6) may be used to
show that if L’=L, and the reduced matrix ele-
ment in Eq. (3.6) is assumed®” independent of L,
=L!, then the decays through (8, 1), - (1, 8), pro-
ceed entirely in p wave (I=1), although all waves
from /=1 to [=2L +1 are expected from Eq.

(3.13). No such simplification holds for the
(3,3), - (3,3)_, piece of V-'QZV in general.

Similar results may be derived for photon decays
if we simply replace 1 by the photon’s angular mo-
mentum j,, which is formed from the combination
of its spin and orbital angular momentum. Thus
we have in general that®®

[lL-L'|-1|<j,<|L+L"+1| (3.16)

for photon decays between multiplets with internal
quark angular momentum L and L’, respectively.

The general algebraic structure of the theory
presented here has much in common with relativ-
istic quark-model calculations, such as those of
Ref. 12. In fact, the results of Ref. 12 may be
cast into a form which permits the complete iden-
tification of certain parameters there with the re-
duced matrix elements discussed here. However,
the assumption of a “potential” in the quark-model
calculations yields definite predictions of the re-
duced matrix elements themselves as they depend
on masses and other parameters of the model,
which is something we do not obtain using purely
the algebraic structure discussed in Sec. II. Also
very similar in algebraic structure, at least for
decays to L=0 hadrons, are some broken-SU(G)W
schemes.!® The relation of such schemes, in par-
ticular [-broken SU(6),,, to the present theory is
discussed in detail in Ref. 33. The results of un-
broken SU(G)W for pion transitions correspond to
retaining only the {(8, 1)~ (1, 8),, 0} term in
VS V.

IV. THE PIONIC TRANSITIONS OF MESONS

With the basic features and assumptions of the
theory described in the previous sections, we are
in a position to apply it. We begin with the pionic
decays of mesons. Only nonstrange meson decays
will be discussed in detail, as all the correspond-
ing strange-meson decay rates are related to
those we calculate by SU(3). .At the present time
they add little to the experimental tests of the the-
ory.

In the case of pion transitions among the lowest-
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TABLE I. Decays of nonstrange 35 L’ =1 mesons by pion emission to 35 L=0 mesons. The
w, o, and f are assumed to be ideal mixtures of SU(3) singlets and octets so as to be com-
posed on nonstrange quarks. Zweig’s rule (Ref. 2) is used to relate decay amplitudes involv-
ing the 35 and 1 parts of the A=0, w, o, and f. The 7 and H are assumed to be pure octet.
The reduced matrix elements are defined in the text (see Ref. 41).

Decay a b c d
Ay(I=1,dFC=2*) —~71p* A=1 -3V3 V6 -3v3D oD
B(I=1,dP¢=1") =7’ A=0 -$v6 0 —g’zx@(swmf L a2h)

+
A=1 0 -+v3 -3V6 (S—D) %
= PC_q++y =t - 176 L _
AT =1,d7C=1*"*)—=7r"p* A=0 0 tV6 HV3 (S D)$ 428+ D)
A=1 £V3 V6 #V3 (25 +D)
A2<I=11 JPC=2*+)—“7’-7]0, A=0 -1 \r§ -l%\/'g —ilf\ng Z{ﬁDz
8(I=1,dP€=0**)—~7"n, 2A=0 HVE V3 #V6S 7 8
fU=1,JPC=2*") =77 7%, A=0 3 -3v2 iD & D
oI=0,JPC=0**)~ 7 7*, A=0 -ivE -1 -tvzs &S
= PC= t =t - 1\/’2—
H(I=0,JP6=1")—~717p*, A=0 % 0 #V2 (S+2D) & (5% + 207
A=1 0 t #VZ(S—D)

3Coefficient of (L’=1[(8,1)¢—(1,8)ollL=0).
beoefficient of (L’=1I(3,3);—(3,3)4IL=0).

lying mesons, those in a 35 of SU(6) with quark
angular momentum L =0, the situation is particu-
larly simple. For L’=0~ L=0 transitions only
the {(8, 1)~ (1, 8),, 0} term in V'QZV can con-
tribute and is purely /=1 in character. This single
independent reduced matrix element then forces
a relation between the @, matrix elements for the
two nonstrange transitions p - 7 and w~p. Extract-
ing these matrix elements from*® I'(p — 77) and from
I'(w = my) plus vector dominance, respectively, we
find good agreement between theory and experi-
ment.*°

The pionic transitions from 35 L’=1t0 35 L=0
are more complicated. From Sec. III there are in
general two independent reduced matrix ele-
ments,* which we write as

<L'=1”(81 1)0"(1,8)0”L=0>
and
(L,=1“(3,§)1_(§a 3)-1“L=O> .

The coefficients of these two reduced matrix ele-
ments, calculated according to Eq. (3.6), for each
possible nonstrange decay are presented in Table
I, together with the possible hadron states which
correspond to the constituent-quark-model states.
In Table I we list the amplitudes for the specific
decay: hadron’ (L’=1)-w7"+hadron(L=0). We have
assumed that the n and H are purely octet in char-
acter, but have taken the w, o, and f to be ideally
mixed combinations of singlets and octets, which
results in their being composed of only nonstrange

¢J-amplitude representation,
@

quarks. For decays involving the A=0, w, o, and
f mesons, Zweig’s rule® has been invoked to re-
late the decay amplitudes which originate from

the SU(6), 1 and 35 parts of their constituent quark
states.*? This gives a factor of v3 in the decay
amplitudes over what is calculated under the as-
sumptions that the w, o, and f are purely octet in
character [and purely in a 35 of SU(6),].

For experimental reasons it is also useful to
represent these helicity amplitudes in terms of
amplitudes which correspond to definite angular
momentum properties between the final hadron
and pion. Recalling from the last section [Eq.
(3.15)] that only /=0 and 2 are allowed here, there
turns out to be a linear relation between the two
reduced matrix elements and the two amplitudes
with definite [ properties, which we call S and D.*®
We choose the normalization such that

(L"=1]|(8,1)y= (1, 8), ]| L=0)=3(S+2D),
(L'=1](3,3),-3,3)_, 1 L=0)=+3V2(S-D),
and therefore

S=D=(L’=1]|(8, 1)y~ (1,8),| L=0)

“.1)

if

(L'=1]|(3,3),~ 3,3)_, | L=0)
were to vanish. The representation of the helicity
amplitudes in terms of S and D is also given in

Table I. Finally, for completeness, we list for
each decay the quantity
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TABLE II. Comparison of predictions for 35L’=1
— 35 L=0 pionic decays from Table I with experiment.
The predictions in the table correspond to S=-2D, i.e.,
the vanishing of (L'=1I8,1)¢—(1,8),IL=0). Values of
T'(experimental) taken from Ref. 39.

I’ (predicted) T (experimental)

Decay (MeV) (MeV)
A,(1310) = mp 77 (input) 77420
B(1235) ~mw, A=0 0 (input) ' dominantly A =1
B(1235) —~ 1w, A=1 76 ) 100 20 total width
A(1070) = 7p, A=0 52

?

A,(1070) = 7p, A =1 26
Ay(1310) =7 17 16+4
6(975) —mm 37 ~ 60 total width
f(1260) =71 118 125+25
a(760?) — 7 234 broad ?

2 1

g =——Z |¢hadron’, x| Q' |hadron, A ) |?, (4.2)
2J'+157%

where the charge state of |hadron’) is fixed, but
that of |hadron) is summed over along with the
index a corresponding to the pion charge. Equa-
tion (3.2) shows that g2 is the total pion decay
width except for a factor p (M2~ M2 [4nf,2M’'?)
which depends only on masses and the PCAC con-
stant. As parity conservation establishes that the
helicity +A matrix elements have the same mag-
nitude, we need only calculate the X >0 matrix
elements, as in Table I, to carry out the sum over
A in Eq. (4.2).

A comparison of the results of Table I with the
present experimental situation is contained in Ta-
ble II. For this comparison we have used®®
(A4, =mp) =TT MeV and** I, .o(B ~7w) =0 as input.
This latter condition is in agreement with experi-
ments which see a dominantly transverse decay,
and corresponds to setting*®

<L’= 1”(8, 1)0— (1’ 8)0"L=0>=0'
All amplitudes are then multiples of
(L'=1]/(3,3),~ (3,3)_, 1 L=0).

The following are predictions of particular inter-
est.

(1) (B~ rnw) agrees within errors with 7w being
the dominant (and so far, the only observed) mode
out of a total B width® of 100+20 MeV.

(2) T(f—=n7) is in excellent agreement with ex-
periment. Use of a d-wave phase-space factor
(and relating the coupling constant to that of A,
~7p as in Table I) instead of the PCAC-dictated
factor changes the prediction by more than a fac-
tor of 2, destroying the agreement.

(3) I'(A, = mn) is in excellent agreement with ex-
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periment.

(4) We predict a relatively narrow A, —mp with
a dominantly longitudinal character. This is ob-
viously not the nonresonance observed?® in 7*p
—~(37)*p, and there is no established state with
which to compare our prediction.

(5) I'(6 = mn) agrees with the roughly known® to-
tal width.

(6) We have somewhat arbitrarily assigned the
o a mass of 760 MeV. While it is gratifying that
the resulting I'(0c - 77) is broad, the uncertainties
in identifying the nonstrange quark state with an
observed JF¢=0** hadron are very large.

Overall, we find that experiment and theory
compare very favorably for L’=1- L=0 pionic de-
cays of mesons. Encouraged by this, we consider

’=1-L=1 transitions. A list of the possible
transition amplitudes appears in Table III. We
note that, including the dependence on L] and L,,

TABLE III. Transitions of nonstrange 35 L’=1 me-
sons to other 35 L=1 mesons by pion emission. The no-
tation for labeling the states is as in Table I, with the o,
D, and f assumed to be ideal mixtures of SU(3) singlets
and octets so as to be composed of nonstrange quarks.

. Zweig’s rule (Ref. 2) is used to relate decay amplitudes

involving the SU(6)y 35 and 1 parts of theA=0 f,D, and
o, and the A=1. f and D. The reduced matrix elements
are defined in the text (see Ref. 47).

Decay a b c
B—7"6*, A=0 3 0 2
B—1 Al ,A=1 0 -5V /3
Ay—1 B, A=0 -3VZ 0 3

A=1 0 -3VE -3
D—1"6%, A=0 0 -%V2 i
D—7 A} ,A=1 V3 0 e
D—7 A3 ,A=0 0 -3 -2
A=1 -5v3 0 0
Ai—~1"0, A=0 0 +v2 -1
f—~1A} , A=0 0 -3 -2
A=1 -5V3 0 0
f=mA} , A=1 V3 0 -3v6
A=2 V3 0 0
H—71"B* A=1 0 0 0

2Coefficient of

Lr=1, L;=0l(8,1)g—(1,8)¢llL=1, L,=0).
bCoefficient of

@L=1,L/=10(8,1)9-(1,8),lIL=1, L=1).
¢Coefficient of

(=1,L;=113,3);- 3,34/ L=1, L=0).
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TABLE IV, Decays of nonstrange 35L’ =2 mesons by pion emission to 35 L =0 mesons.
The w, w3, Dy, and w’ are.assumed to be ideal mixtures of SU(3) singlets and octets so as to
be composed of nonstrange quarks. Zweig’s rule is used to relate decay amplitudes involving
the 35 and 1 parts of these states. The reduced matrix elements are defined in the text (see

Ref. 49).

Decay a b c d
g=1, JPC=3"")—171*, A=0 {5 +4V30  —%VBF +-F?
gI=1,JP=3"")=~1"w, A=1 -£V30 +{VE - V3OF =F?

F (=1, JPC=2--)_;1r'wo, A=0 0 ivs Lvze-r) } - (3P? +2F?)
= %6 + LV6@P +2F))

p'(I=1, JPC=1"")—~ 771", A=0 %30 V5 Slomp 9—1019Z

P (I=1, JPC=1"") =770 A=1 —4v30 %5 -4V30P Pt

AgI=1, JPC=27")=17p", A=0 -1V3 0 —5V3 (2P +3F) o
_ o _1vs _ip-F) } 5 2P +3FY)

wy(I=0, JPC=3"")—~7"p*, A=1 %V30  -LivB 7% V3O0F =F?

Dy(I =0, JPC=2"")—~17p*, A=0 0 -iv3  —4vZ(P-F) } 4 (3P?+2F?)
= -4v6 -1 -4V6(@3P +2F) “

W' (I=0, JFC=1"")—=717p*, rA=1 &30 275 +V30P +P?

a Coefficient of (L’ =2] (8, 1)—(1, 8)ollL =0).
b Coefficient of (L’ =2]| (3,3); - (3, 3)_4IIL =0).

there are three possible independent reduced ma-
trix elements,*”*® two from the (8, 1), - (1, 8),
term and one from the (3, 3), - (3, 3)_, term in
V“Q;"V, respectively. Of all these transitions
only D~ is both kinematically allowed and pres-
ently observed.?® Both future partial-width mea-
surements and the extraction of coupling constants
from exchanges in two-body scattering amplitudes
may permit experimental checks of these relations
in the future.

Of more relevance to present experiments are
the pionic decays 35 L'=2-35 L=0. The decay
matrix elements are listed in Table IV, both in
terms of the reduced matrix elements*®

<L’=2”(8y 1)0— (lv 8)0“L=0>
and
(L'=2(/(8,3),-(3,3)_,1L=0)

and in terms of amplitudes P and F corresponding
to values of /=1 and 3. Their relation is

(L/=2”(8, l)o"‘ (1y 8)0 ”L:O>=%(2P+3F) ’

(L'=2][(3,3),- (3,3),[[L=0)=&VE(P- F). 4.3)

Again, the quantity g2 is given in the last column
of Table IV for the various possible decays.
There is a paucity of detailed information with
which to check these predictions, but some pre-
liminary indications are available. For example,
we predict I'(g—nm)/I'(g—nw)=~1.5, while one

¢l -amplitude representation,
d,2
g°.

analysis®® gives 1.4+0.7. Similarly, experiment®®
for I'(g—~nm) and Table IV give I'(w, =mp) ~120
MeV, while it is known that mp is the dominant de-
cay mode of the w(1675) with a total width of 141
+17 MeV.

A problem of current interest is the classifica-
tion and decay modes of a second I=1, JP¢=1""
vector meson, the p’(1600). It may be either a
member of a “radially excited” 35 L=0, part of a
35 L=2 (see Table IV), or some mixture of the
two. The most surprising experimental observa-
tion concerning its decay modes is the lack of a
strong p’—nm amplitude (p’—~prw is dominant).>
As no other p-wave decay of the type 35 L'=2
-35 L =0 has been observed, we cannot predict
I'(p’ - nm) from Table IV on the assumption it lies
in the 35 L =2 multiplet. However, whether the
p’ and its w’ partner are ina 35 L’=2 or ina
35 L’=0 “radial excitation,” the smallness of
T(p’—mn) and the theory forces I'(w’—mp) and
I'(p’ - 7w) to be small also.% Observation of any
two of these decay modes could provide an inter-
esting test of the theory and of the classification
of the corresponding states.

While we have calculated other meson decays,
e.g. 35 L'=2~35 L=1, nothing particularly sim-
ple or presently testable emerges from the
straightforward calculations. The over-all situa-
tion, however, is quite encouraging. There is not
only general success for 35 L’=1-35 L=0 de-
cays, but consistency with*®
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TABLE V. Decays of nonstrange 70 L’ =1 baryons into 56 L =0 baryons by pion emission.
States in the 70 L’ =1 are labeled by J” and [SU(3) multiplet]?S*!, where S is the quark spin,
The reduced matrix elements are defined in the text (see Ref. 54).

Decay a b c d
— =1 B Y L L p?
D15 l TNT, A=q 20V 20Y5 55 V5D 560 0
§78) f At A=t —AvTD VIO -G—;mD} ape
_ A A . 180
}\—-% —'3—0\/-]3 36\/’]3 —3—0VI5D
T84 (= amat, a=d4 +-L V10 NsT) +-L vT0(55 — 4D
38t f 7 50 90 180 ) =7 2552 +16D?)
r=1 VIO 410 5 VIO(5S + 4D)
Sy 1—-1r'N" A=% _.{1% -1 -Ls L g2
, 9 18 216
1~ra14 - =1 i i 1 1 2
7 [8] j—"ﬂ' A+, )\—7 ﬁ‘/.z_ —S_Gﬂ -S?W/’Z_D TOTD
Dy | =N, A= iz -4V2 ivzp +D*
<1812 (= 1= =1 -1 _— -4
378 J—~nat, A=1 7 15 15 & +D) 1 (s?4D?)
54
r=3 0 -4 -4 6-D)
- =1 1 1 g2
Su |=TN A o T &s
i- - =1 1
17812 {—77A*, A=4 V2 -5V2 +%V2D 7D
) — =1 -1 1 L 2
Dy | —~7N*, A=3 V2 %2 V2D D
3 [10]2$—-1r'A+, A=-%- --'g’- —% —%(5 +D)
L (52 +D?%)
rA=3 0 -1 -1s-p) 216
. _ 1 { 1 _¢2
Ses | =T N*, A=t * ™ 3¢S w75
1702 f —nmat, a=4 V2 -§V2 $V2D 00’

2 Coefficient of (L’ =1|(8,1),— (1, 8),l|L =0).

b Coefficient of (L’ =1](3,3);—(3,3)_4IL =0).

(L’= 1”(89 1)0_ (118)0”L=O>=0!

so that only one reduced matrix element describes
adequately all such decays. For 35 L’=2

—~35 L =0 there is consistency with the meager
available data, all on =3 decays, but no check on
the =1 decays, which would allow us to fix the
ratio of the two reduced matrix elements.

V. PIONIC TRANSITIONS OF BARYONS

In our discussion we will concentrate on the
transitions between the 70 L =1 and 56 L=2 to the
ground state 56 L=0, although we will also men-
tion briefly the transitions inside the lowest mul-
tiplet. As in the meson case, we discuss mainly

the nonstrange baryon decays. Our choice of mul-
—

7 @= i@ a=2) = @D (204

(2) (A%nr=%

This prediction also agrees with experiment.5?
For 70 L’=1-56 L=0 transitions there are two

independent amplitudes. Table V gives the results

for a neutral resonance in the 70 L’=1 decaying

¢l-amplitude representation.
d,2
g°.

tiplets discussed is motivated by the fact that they
are the only ones for which a fairly complete ex-
perimental comparison can be made. In particu-
lar, we will examine three points: (1) Decay widths
into 7N and 74, (2) phases of amplitudes in 7N

- N*—74, and (3) F/D values.

For transitions of the type 56 L’=0-~56 L=0,
only the {(8, 1),- (1, 8),, 0} term in V-1QZV con-
tributes. The two predictions made by the theory
are the following:

(1) F/D= % for the baryon decays.

This is tested directly by the axial-vector contri-
bution to the weak leptonic decays of the baryon
octet, without need for PCAC. This prediction
agrees with experiment.®

%(Qé—iQ%)[p,A=%>.

into 7~A* and 77p in terms of reduced matrix ele-
ments of the (8,1),~- (1, 8), and (3, 3), - (3, 3)_,

terms in V-!'Q{'V. Since experimental phase-shift-
analysis results are usually presented in terms of



726 GILMAN, KUGLER, AND MESHKOV

|©

TABLE VI. Decays of nonstrange 56 L’ = 2 baryons into 56 L = 0 baryons by pion emission. States in
the 56 L’ = 2 are labeled by J* and [SU(3) multiplet]?S*!, where S is the quark spin. The reduced matrix

elements are defined in the text (see Ref. 54).

Decay a b c d
Fis| =N, A=$ -$V3 & -1v3F F?
%+[8]2}-'7r‘A+, S B AL -%2 - f‘<3P+2F)} & Pt ezEY
A=$ 0 -3 -4(P-F) 375
Py)—1N*, A=} V2 $V6 ivp 4P
%‘+[3]2}""_A+’ A=g s -%V3 225 (P+9F)} o= (P2 +9F?)
r=% 0 £v3 % (P-F)
Foj| =nN*, A= =T ~5= V2T 2=V = F?
Tnotf—rat, a=f -V Ve ‘m*’_F} .
s L S e
Frﬁl" TNY, A=} -5 V42 T VIE -5 V42F T
ot f—rar, A=t 35 V2T V7 HE ‘/—-1(2“3‘161'1)} T (147P? +128F?)
r=% %V11 Va2 &= VT4(7P +8F)
Py |~ N*, A=% -%VZ -%V6 -4 V2P = P2
%*[10]4}»1r'A+, A=3 % -4v3 -2 (4P - 9F)
-1—(16P2+9F2)
=2 - -4V3 -2 (4P +F) } 135
Psl}—vr'N*, A=1 V2 %6 £ V2P L-p?
Fopf -t A=y -4 -1v3 —y S

2 Coefficient of (L’ =2|| (8,1)y— (1, 8)y[IL =0).
b Coefficient of (L’ =2|(3,3); - 3.,3)_{lIL =0).

amplitudes of definite /, we also use these. The
relation between the two sets of reduced matrix
elements is given by®*

(70 L'=1]/(8,1),~ (1, 8),[|56 L =0)=3(S+2D),
(5.1)

(70 L"=1]|(8,3),-(3,3)_, (/56 L=0)=3(S-D).
(5.2)

Equations (5.1) and (5.2) define the normalization
of the reduced matrix elements S and D. These
matrix elements are not to be confused with those
appearing in Sec. IV in meson decays. Note that
in principle a g wave could also be present here,
but we predict its absence by Eq. (3.14). For con-
venience we have also listed in each case the
number g2 defined previously as

(2J'+ 1); |(hadron’, x | Q¢ |hadron, A)|?,
which is related by only momentum- and mass-
dependent factors to the partial width for hadron’
—~hadron+7 [see Eq. (3.2)]. We have expressed
g% in terms of S and D in table V.

Table VI gives the above quantities for the
56 L’=2-56 L=0 transitions. In this case,™

¢l-amplitude representation.

ng.

(56 L'=2|(8,1),-(1,8),[/56 L=0)=%(2P+3F),
(5.3)

(56 L'=2(/(3,3),~ (3,3)_,]56 L=0)=+V3 (P~ F)
(5.4)

The h-wave amplitude which could also appear is
predicted to vanish by Eq. (3.14).

Before comparing the experimental partial
widths with theory, we must note that mixing is
possible within the 70 L=1 multiplet.** In this
multiplet there are two D, resonances, with S=3
and S=3, mixtures of which may form the physi-
cally observed states. Similarly the two observed
S,; resonances may be mixtures of S=3 and S=3
states in the 70. To eliminate the complications
posed by the mixing, in this paper we will com-
pare with experiment only the sum of squares of
reduced matrix elements (g?) for two resonances
which may be mixtures of the quark-model S=3
and £ states. This quantity is independent of the
mixing angle. By using this we do, however, pay
the price of losing some information, and a later,
more complete fit will have to deal with mixing.%

The manner of comparison of the theory with ex-
periment is made unambiguous by the use of



|©

TRANSFORMATION BETWEEN CURRENT AND CONSTITUENT... 27

TABLE VII. Decays of 70 L’=1 and 56 L’ =2 baryons into 56 L =0 baryons by pion emis-
sion. All rates are fixed by the D;; and S,y decays to nN for the 70 L’ =1 decays, and by the
Fy; and Py, decays to 7N for the 56 L’ =2 decays.® For two states which may be mixed, a
combination of widths which is independent of mixing is used and listed under I'(predicted).

) I'(predicted) I'(experimental)357
Decay (MeV) (MeV)
Dy;5(1520) — (T.N), B .
Dy3(1700) — (1), I(1520) +0.50 I'(1700) =79 MeV (input) 7920
D13(1520) —-(m A)d -
Dy5(1700) — (7 A), I'(1520) +0.2431(1700) =30 MeV 10+6
511(1535) = (7 Ay P
S41(1715) — (1 Nd I'(1535) +0.264T(1715) =35 MeV not seen
Dy5(1670) = (TN), 21 MeV 56 + 14
Dy;5(1670) — (1 A), 82 MeV 8421
S31(1640) — (7 &), 81 52 20
Dy3(1690) — (T N),, 19 329
D33(1690) — (T Ay 55 not seen
$11(1535) — (TN) _ )
S4,(1715) -*(WN)S I'(1535) +0.505I'(1715) =116 (input) 116+ 55
Dy3(1520) — (1 A)
I'(1520) +0.2431(1700) =46 19+£10
Di3(1700) — (m &) (1520) T(700) °
S31(1640) —= (TN) 18 489
Dy5(1690) — (1 A) 61 17260
Fy5(1688) — (TN), 84 (input) 8425
Fy;(1950) = (TN); 74 92 +20
F37(1950) — (7 A)f 65 37+18
F35(1880) ——(WN)f 14 36+18
Fy5(1880) — (1 A), 77 16+16
Pyy( ) = (&) ?
F5(1688) — (nN, 12 not seen
P3(1860) — (7 A)f 57 not seen
s 75+25
Py;(1860) = (TN), 75 (input) o .
Py, (1860) — (1 A, 8 ”
Py ) —~ (TfN)p .,
Paa( ) —=(m A),, )
Fy5(1880) = (1 A, a4 ’7“;152‘;6"
P,3(1860) — (T N) 118
13 $ not seen
P;3(1860) — (r A)p 5 2247
Fy5(1688) = (1 4), 15

PCAC,?¢ which connects the partial width for
hadron’ —hadron+ 7 to (hadron’| Q% |hadron), as

in Eq. (3.2). Usual comparisons of symmetry pre-
dictions with experiment introduce ad hoc barrier
factors taken from nonrelativistic potential theory.
Typically these factors are proportional to p*'*!,
Particularly if phase space for a given decay is
rather small, the difference between the use of
PCAC and a barrier-factor prescription can be
significant. As a fairly extreme example, consid-
er the A(1950) decays into 7N and mA. Since the
A(1950) has J#=1* we are treating f-wave de-
cays. If we were to use our results for g2 (Table
VI) as the coefficient of a barrier factor (p’) or in
the PCAC expression for the width we would find
that

[LeU90-m)] ;[ I(al1550) - ]
T(A(1950) = 7)) 241 [ T(A(1950) = 7A) Jpcac”
(6.5)

Similar differences can appear in evaluating the
relative contribution of two partial waves in the
same decay. While at present uncertainties in the
data are in many cases even larger than the dif-
ferences discussed above, in principle we are
forced to use the PCAC expressions, and future
experiments should permit a discrimination be-
tween the different results for widths.5¢

Table VII compares the experimental partial
widths®5"-%8 of the 70 L=1 and 56 L =2 baryons
with theory. We have chosen to fit the S, P, D,
and F parameters to certain decays rather than
doing an over-all least-squares fit. We observe
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that the agreement of experiment with theory is
only qualitative, and that large experimental er-
rors in the matrix elements are involved. One of
the strongest disagreements is in the decays of
the D,,(1670), which cannot be mixed within the
70 L =1 multiplet. The disagreement is in fact
Earper than is apparent in Table VII, since the
errors quoted on the 7N and 7A widths are cor-
related by the reasonably well-known inelasticity.
While the theory predicts that less than 20% of the
width is due to the 7N decay, experiment indicates
a 40% branching ratio.*

We must emphasize at this point that a large
ambiguity exists in evaluating the partial widths
of resonances even when phase-shift-analysis re-
sults are known. In the case of strongly inelastic
resonances, different ways of extracting resonance
Eouplings may be used, such as extrapolations to
the pole, K-matrix fits, Breit-Wigner fits, etc.
These give widely varying estimates of partial
widths. For example, the width of the D,,(1520)
decay to 7A changes from 24 to 53 MeV, depending
on whether one used coupling estimates from the
Argand diagram or a T-matrix pole fit.5®

In addition to predicting relative magnitudes,
the theory also predicts relative signs of ampli-
tudes for inelastic scattering. For the reaction
TN - N* - 7A we can compare our predictions to
recent isobar-model phase-shift analyses.?"~%°
Table VIII lists the theoretically predicted phases
coming from the (8, 1),~ (1, 8), and (3,3),-(3,3)_,
pieces of V-'QLV and the experimental results." %8
‘The theoretical predictions are of two kinds.
First are those involving amplitudes with the same
(2) partial wave in both the incoming and outgoing
channels and which are therefore proportional to
squares of matrix elements. These have well-de-
fined signs regardless of the relative magnitudes
of the reduced matrix elements of the (8, 1),

~1,8),and (3,3), - (3,3)_, terms. The second kind of

of sign prediction depends on this relative mag-
nitude,®® and may help us in deducing which term is
is dominant for pion decays from one SU(6) mul-
tiplet to another.®!

At present the experimental situation disagrees
with the theory even for predictions of the first
kind, as seen in Table VIII. We note, however,
that the only disagreement is between the D,;(1520)
couplings and all other couplings. This sign can-
not be changed by mixing the two D,, states. If the
sign of this resonance could be reversed, one
would have complete agreement between theory
and experiment. We note that the analysis on
which we base our comparison suffers from the
lack of data between 1540 MeV and 1650 MeV,i.e.,
between the 013(1520) and the other resonances in
the 70 L=1 and 56 L=2. The relative phases of

9

TABLE VIII, Signs of resonant amplitudes in 7N —N*
— 1A for N*’s in the 70 L =1 and 56 L =2, The Sy;(1550)
and D3(1520) are taken as dominantly the quark spin
S =} states, while the S4;(1715) and D3(1700) are as-
sumed to be dominantly S =§ within the 70 L =1, The
arbitrary over-all phase is chosen so that the DD 5(1670)
amplitude is negative.

a . b c d
70 L =1 DS13(1520) - + -
DD 3(1520) + + -
SD4(1550) + - ?
SD3;(1640) + - -
DS33(1690) - + +
DD 33(1690) + + ?
DD 5(1670) - - -
DS 3(1700) - + +
DD 3(1700) - - ?
SD“(I 715) + - ?
56 L =2 FP(1688) + - +
FF (5(1688) - - ?
PP 3(1860) + + ?
PF 1,(1860) - + ?
FF 3,(1950) + + +
FP,;(1880) + - ?
FF45(1880) + + +
PPgs( ) - - ?
PF g, ( ) - + ?
PP3,(1860) - - ?

2 Amplitude in n¥ — 1A, The first letter refers to the
mN partial wave, the second to the mA partial wave (see
Refs, 57, 58).

b Theoretical sign from (8, 1)~ (1, 8), term in V"ng‘ \ %4
(see Ref. 59).

¢ Theoretical sign from (3,3); - (3, 3).; term in
V-1Q%V (see Ref. 59),

d Experiment (Refs. 57 and 58).

amplitudes above and below the gap are deter-
mined by continuity and K-matrix fits. It is not
inconceivable that a different solution across the
gap may still be found which will reverse the sign
of the D,,(1520) relative to other resonances. If the
present solution persists then our results, along with
other quark-model and broken-SU(6), results,®
are in very serious conflict with experiment.

If a new solution, with reversed sign of the
D,,(1520), were to exist it would have a (3, 3),
- (3, 3)_,-dominated transition for the 70 L =1,
and an (8, 1), - (1, 8),~-dominated transition for the
56 L=2. This would agree with the solution to be
discussed in the next section resulting from an
analysis of signs in pion photoproduction. Such
a solution would be consistent with the approach
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taken in this paper, since we may have different
terms dominate different transitions.® The pres-
ence of just the (3, 3), - (3, 3)_, reduced matrix
element could fit the data on decay widths of
baryons in the 70 L=1, just as it did for mesons
in the 35 L=1 (see Sec. IV). In that case we
would have S2=4D?. Holding the d-wave widths as
they are in Table VII, this would bring the S;, and
D,, predictions into agreement with experiment
while worsening the S, and D,, agreement.%® In
the case of 56 L =2 baryon decays, the presence
of only the (8, 1),~ (1, 8), reduced matrix element
results in P=F, which is consistent with the re-
sults presented in Table VII as it stands.®®

Finally, we mention F/D ratios. Unlike meson
decays, where F/D follows from charge conjuga-
tion, the baryon F/D values are predictions of the
theory. Given the nonstrange baryon decay ampli-
tudes and F/D ratios, all strange baryon decays
are predicted up to questions of mixing and SU(3)
breaking. Both the (8, 1),- (1, 8), and the (3, 3),

- (3,3)_, terms have identical F/D ratios, since
both belong to the W=1 part of a 35 representa-
tlon The predicted values for F/D are 3, &, and
-3 for the 56 W=z, 10 w=4, and 70 W =14 states,
respectwely The 56 L=2 predlctlon agrees w1th
the experimental value ¢ while the 70 L=1 situa-
tionis complicated by the mixing discussed above.55:6¢

In all our discussions we have neglected possible
mixing between different SU(6) multiplets.®® While
such mixing may modify some of our predictions
which disagree with experiment, it does so only
at the expense of considerably complicating the
simple quark-model picture.

VI. PHOTON TRANSITIONS

In Secs. II and III we have discussed the kine-
matic and algebraic properties of the first mo-
ment of the vector current with J,=z1,

D% = de [(“’yqvg(i,t), (6.1)

taken between states at infinite momentum. In
particular, as shown by Eq. (3.5), all helicity am-
plitudes for real photon transitions are propor-
tional to matrix elements of D3+(1/V3)D? between
states at infinite momentum. Such matrix ele-
ments of DS are equal to those of the three terms
in V-'DSV found in Eq. (3.2) taken between those
irreducible representations of the SU(6), of cur-
rents which correspond to forming baryons out of
qqq and mesons out of ¢g. In this section we dis-
cuss some of the results obtainable in this way for
56 L'=0-~56 L=0and 70 L’=1-56 L =0 baryon
trans1tlons, presentmg many of the general fea-
tures of photon transitions in the process. We
leave a complete discussion of both baryon and

TABLE IX. Photon transition amplitudes for 56 L’ =0
—56 L =0, Matrix elements of D3 +(1//3)D? are con-
sidered ¢/, =+1 photons), and A denotes J, of the de~
caying N or A. See text.

Coefficient of

Decay (L’ =0l (3,3)lIL =0)
N*—yN*, a=1 ~%5
NO—yNO, A=4 +475.

- =1 —2
A*—yN*, A=3 410
A=4 —~4 V30

meson photon decays to another paper .38 ¢

In Table IX we present the results for matrix
elements of the rotated dipole operator for
56 L'=0~56 L=0 transitions.®” Only the term in
V=D$V [see Eq. (3.2)] which transforms as
{(3, 3),, 0} can make a nonzero contribution, for
L,=0 in both the initial and final states. All ma-
trix elements are therefore proportional to the
single reduced matrix element

(56 L'=0[(3,3),]56 L=0).

For transitions between two octet members of the
56, this term is characterized by an F/D value of .

In physically interpreting the matrix element in
Table IX, there is a slight subtlety. A direct
evaluation of the matrix element of DS between
one-nucleon states shows that the result is pro-
portional to the anomalous magnetic moment (in
fact (N,A=4|D,|N,x==3)==vV2 u, at infinite mo-
mentum). However, as shown by Melosh,® a care-
ful calculation of V~'DS V between one-nucleon
states at infinite momentum gives a result which
has the transformation properties of Eq. (3.2)
minus a term which is exactly equal to the Dirac
moment. Therefore, adding the Dirac moment to
the anomalous moments to form the total moment,
we see that the terms in Eq. (3.2) are tobe inter -
preted as being proportional to the total moment
when taken between the same initial and final states.

With this in mind, we see immediately that Ta-
ble IX gives

kopln) _ E
I»LT(P)
the old SU(6) result, which is rather close to ex-
periment.*® Furthermore, the ratio of v3 be-

tween the 1 =2 and  amplitudes for A —~yN cor-
responds to a pure magnetic dipole transition with

B _zy3, (6.3)

(6.2)

if we use the relation
*
(A,K'—‘% ID+|N, 7\="‘%> ='t/L'2
and the relation between
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<N9A=%,D+'Nyk=—%>

and the magnetic moment of the nucleon given
above. A phenomenological analysis® of the data
for pion photoproduction gives a value for p*/
up(p) which is 1.28+0.03 times the right-hand
side of Eq. (6.3). However, this is the result of
finding the residue at the A pole in yN-~7N. In
our approach one should evaluate u* by taking the
A contribution to the Cabibbo-Radicati sum rule
(see Sec. ITI). This results in a value® of u*/
po(p) which is 0.9+0.1 times the right-hand side
of Eq. (6.3), i.e., in quite satisfactory agreement
with the theory. Equations (6.2) and (6.3) are
standard SU(6) results, as is to be expected since
the (3, 3), term in V"'D% V has the same transfor-
mation properties as the magnetic moment opera-
tor” used in SU(6).

The decays from 70 L’=1 to 56 L=0 (we con-
sider only the nucleon in the 56 here)® are some-
what more complicated. We first of all note that
although the {(3, 3)_,, 2} term in V"D,V cannot con-
tribute because |AL,|<1 for L’=1~L =0 decays,
both the {(8, 1),+ (1, 8),, 1} and {(3, 3),, 0} terms do
contribute. Hence, everything depends on two
reduced matrix elements, whose coefficients for
the various decays are presented in Table X. Sec-
ond, the {(8,1),+(1, 8),, 1} term is purely electric
dipole in character if analyzed in terms of multi-
poles, as can be proven directly.*® The {(3, 3),, 0}
term is not simple in this way. Third, we note
that the Moorhouse quark model selection rule™
forbidding yp = N*, where the N* has quark spin
S=3, is correctly reflected in Table X.

In fact, there is a one-to-one correspondence
between Tables IX and X and the results of quark-
model calculations™: The (8, 1),+(1, 8), term in
V=DV corresponds to the photon interacting with
the convection current, while the (3, 3), term cor-
responds to the interaction with the quark magnetic
moments. Of course, explicit quark-model calcu-
lations with, say, harmonic potentials give the re-
duced matrix elements as well, something we do
not obtain at all with the theory under discussion.

For 56 L’'=2-56 L =0 decays all three terms in
Eq. (335 can contribute and the situation in general
becomes more complicated than the quark-model
calculations referred to above. We defer a de-
tailed discussion of this and the comparison of
decay widths to another publication.®®

Just as for pionic decays, the relative signs of
the amplitudes for photon transitions are an im-
portant test of the theory. The signs of amplitudes
in yN—7N have already been compared with cer-
tain quark-model calculations™ and found to be in
agreement. The correspondence in general alge-
braic structure of these models with the present

TABLE X. Decays of nonstrange 70 L’ =1 baryons
into neutrons and protons in the 56 L =0 by photon
emission. States in the 70 L’ =1 are labeled by J and
[SU(3) multiplet]?S*!, where S is the quark spin. A de-
notes the helicity (J,) of the state in the 70. The photon
has J,=+1, corresponding to the operators D3 +(1/V3)D8.

a b c
Dy }”‘YIW. A=4 0 0
3 (814 A=3 0 0
— =1 L
W, A=4 0 %5
A=3 0 V10
D13 l —")‘N+, A:—;- 0 0
= 4 =
48l § A=4 0 0
-\, A=1 0 -5V5
_3 1
A=2 0 %15
Sy } ~W', a=d 0 0
1=raq1d | _ _1
75 [8] 'YNO, )\—'% 0 il
Dy | =W, a=h -4 vz
= 1
8 § r=d —4VE 0
—_ =1 L -1
W, a=3 +5V2 52
- L
A=4 +45V6 0
St } —WN*,  A=g - -}
17112 ( — =1 L L
3 82 ) -, A= +5 +d
Dy, l—.yN*, A=1 —-5VZ -5V2
37 2 - -
471101% A=4 V6 0
- =1 ~L -1
W, A=3 /2 52
=3 1
A= -4V6 0
S31 }-wzv*, r=3 -3 &
11012 | — =1 L L
2 (10] W, A=q § i
2Decay.

bCoefficient of (L’ =1||(8,1),+(1,8),]|L =0) (see text).
CCoefficient of (L' =1 (3,3),||L =0) (see text).

_theory leads us to immediately conclude that the

signs are consistent with this theory. In fact,
since yN— N*—7N involves the product of the YN
and 7N couplings, information on both kinds of
transitions is obtainable. A detailed analysis™
shows that all the observed signs of amplitudes
for yN~7N involving intermediate N*’s in the

70 L =1 multiplet are consistent with the theory if
the signs of the S and D amplitudes of Sec. V are
opposite, i.e., if the amplitudes have the signs
given by the (3, 3), - (3, 3)_, term in V~!QV. This
lends further support to the existence of a solution
to the 7N~ A phase shifts with this property, such
such as that discussed in Sec. V. The signs of
amplitudes for 56 L=2 intermediate states in
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yN-7N is consistent with the present theory, but
as only f-wave mN resonances have established
YN couplings, we are unable™ to conclude anything
yet on the relative signs of P and F, as defined in
Sec. V.

In general, photon amplitudes provide a particu-
larly clean test of the theory with no use of PCAC
being necessary. As such, the good agreement
found is expecially significant. The agreement of
signs in yN—n N therefore lends strong support to
the theory in general, and to the nN (and 7A) de-
cays of the 70 L =1 baryons being dominated by
the (3, 3), - (3,3)_, term of V™'Q%V in particular.

VII. SUMMARY AND DISCUSSION

In the first few sections of this paper we have
indicated how the introduction of a transformation
V from current- to constituent-quark basis states
helps unify the discussion of finding the decom-
position of hadron states at infinite momentum into
irreducible representations of the algebra of cur-

rents. While no one has yet been able to complete-

ly specify this transformation because of the lack
of a detailed dynamics of hadrons, it is possible
to guess at certain algebraic properties of the
transformed currents.

In particular, following the work of Melosh,® we
have abstracted from the free-quark model the
algebraic properties [under the SU(6), of currents]
of the transformed axial-vector charge, V™'QZV,
and the transformed first moment of the vector
current, V"'D}V. These transformed operators,
taken between known irreducible representations
of the algebra of currents, are equal to the un-
transformed operators, QF and D%, taken between
hadron states built out of constituent quarks. With
the use of PCAC, matrix elements of @ are re-
lated to those of the pion field. Matrix elements
of D¢ are proportional to real photon transition
.amplitudes. As a result we have an elegant and
beautiful theory of the algebraic structure of pion
or photon transitions between hadrons based on the
one assumption of abstraction of certain algebraic
properties of the free-quark model. We stress
that at this stage it is worthy of being called a the-
ory, and not a phenomenology, in that the alge-
braic properties assumed have a clear origin and
could be exact, and in that our basic assumption
is consistent with relativity and invariance prin-
ciples. In the resulting theory, as applied to
actual physical transitions, amplitudes are related
in a straightforward way by Clebsch-Gordan coef-
. ficients, and decay widths are in turn related to
these amplitudes in a nonarbitrary, known way.

When the theory is applied to the pionic decays
of mesons, the results of a comparison with ex-

periment are very encouraging. Both for 35 L’=0
-~ 35 L=0 transitions, where only the (8, 1),
-(1,8), term in V"'Q%V contributes, and for

35 L’'=1-35 L=0 transitions, where both the

(8, 1),-(1,8), and (3,3), - (3, 3)_, terms in V'QJV
can contribute, there is good agreement with ex-
periment. In the case of 35 L’=1~35 L=0, more-
over, the experimental results suggest the domi-
nance of

<L,= 1 “(3’ §)1 - (§; 3)-1”L=0>
over
(L'=1](8,1),- (1, 8),]| L =0);

in fact there is consistency with the vanishing of
the latter reduced matrix element. For 35 L'=2
—~35 L=0 decays, present data are rather sparse,
but what data do exist are also quite consistent
with the theory. Further experiments on 35 L’'=2
decays (especially p waves) would be of consider-
able interest in this regard.

The situation for pionic decay widths of baryons
is not quite so encouraging; there are failures by
factors of 2 to 3 in our comparison of theory and
experiment. However, given our assumption of
simple identification of physical states with those
of the constituent-quark model [no mixing of dif-
ferent SU(6) multiplets], the theoretical use of the
narrow-resonance approximation in computing de-
cay widths, and the experimental difficulties in
assigning widths to broad, inelastic resonances,
the present situation with regard to baryon pionic
decay widths is reasonable.

Of more crucial importance is the situation with
regard to the relative signs of resonant amplitudes"
in tN~7A. The present experimental analysis®” %8
of TN -unmN produces relative signs which disagree
with those predicted for baryons in the 70 L=1.

If this situation persists, then we will have to face
at least one of the following alternatives: (1)

There is large mixing of different SU(6) multiplets,
thereby invalidating our identification of the ob-
served hadrons with simple quark model states.
(2) The use of the full SU)6),x0(3) to relate dif-
ferent quark spin states is invalid, and only a
weaker set of relations holds, such as those fol-
lowing from chiral SU(3)xSU(3). (3) The algebraic
properties abstracted for V™'QSV from the free2
quark model do not hold in the real world. None

of these possibilities is particularly appealing,

nor does any of them explain the success with me-
son decays or the agreement of theory and experi-
ment for the signs found™ in yN-aN.

On the other hand, suppose that another solution
to the 7TN— 7 A phase shifts is found which gives
relative signs in agreement with the theory. Pre-
sumably this must come from reversal of the
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D,,(1520) signs relative to those of other 0L=1
resonances above the “gap” in the data. The re-
sulting situation would then indicate dominance of
the

(L’= 1”(3’ 3—)1— (3_’ 3)-—1”L=0>

reduced matrix element, in agreement with the
photoproduction results.”™ With more than 20 signs
of resonant amplitudes in yN- 7N and TN-7A in
agreement with the theory, there would then be
strong support for the theory as a valid description
of both photon and pion transitions, as well as for
the identification of the observed hadron states
with those of the constituent-quark model.

We would then possess a viable theory of weak-
and electromagnetic-current-induced transitions
between hadrons at g2=0. With the identification
of the observed hadrons to good approximation
with constituent-quark states and the use of PCAC,
a powerful approximate theory of all pion and pho-
ton decays results. This approximate theory can
then be extended to include vector-meson transi-
tions if we make an additional assumption, that of
vector-meson dominance. Demanding consistency
between the two ways of treating A, -7p, for ex-
ample, then leads to connections between the re-
duced matrix elements involved in 7 transitions
and those in p transitions. However, inasmuch as
the longitudinal and transverse electromagnetic
currents have independent reduced matrix ele-
ments in this theory, the A =0 and x =+ 1 helicities
of the vector meson are not necessarily tied to-
gether for us in the way that they are in a model
which starts with the strong interactions being
symmetrical under SU(6),, (and then breaks the
symmetry in some way) and for which the A =0
pion and A =0, 1 p are related.” Therefore, al-
though we can duplicate such models by making
additional assumptions relating various reduced
matrix elements, we are not forced to do so.

This brings us to one of the important extensions
of the present theory. Namely, one might con-
struct a phenomenology of purely hadronic vertices
by ‘“tieing on” the phenomenology at points of over-
lap with the present theory of current transitions
plus the assumptions of PCAC and/or vector-me-
son dominance.” One could provide justification

for some of the broken-SU(6), schemes that have
been devised, and in the process see clearly the
level of approximation and the additional assump-
tions necessary to obtain their results. In this
way it might be possible to construct a full phe-
nomenology of purely hadronic vertices, including,
but not restricted to, those involving pseudoscalar
or vector mesons. .

Other directions for extension of the theory in-
clude an investigation of the predictions for
strangeness-changing pseudoscalar-meson decays
and the use of kaon PCAC. At the same time, the
phenomenological analysis should be extended to
cover the pionic decays of strange particles.

Of more fundamental interest is an investigation
of mass formulas within this theory. Such an in-
vestigation has already proved very interesting
and profitable in the framework of the previous
work on finding the representations of current al-
gebra exhibited by hadrons at infinite momen-
tum.”" ™ A preliminary look at this problem in the
present framework indicates that it may be rather
complicated.™

Finally, of major interest is the extension of the
theory to values of g2 #0. For single currents,
this permits the interrelating of resonance weak
and electromagnetic excitation form factors. For
products of currents, the bilocal operators are
candidates for investigation,®® their matrix ele-
ments being measurable in deep-inelastic scatter-
ing. Clearly, a large class of problems of great
interest involving the structure of hadrons as
probed by weak and electromagnetic currents is
investigatable from this new point of view.
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