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The scale-invariant parton model is used to obtain the consequences of short-distance scale invariance
for deep-inelastic neutrino processes. We first generalize the model to incorporate quantum numbers.
The moments of structure functions are power-behaved functions of Q? thus violating Bjorken scaling
in a systematic way. We find that the total neutrino cross section and the average neutrino energy loss
scale canonically. However, the mean squared momentum (Q?) divided by the neutrino energy E
falls as a power of E, thus providing a sensitive test of the breakdown of canonical scaling.
Furthermore, the ratio of neutrino to antineutrino cross sections on particular hadrons is predicted to
approach unity at extreme energies. These results are compared with those of other theories of the

breakdown of canonical scaling.

I. INTRODUCTION

In the near future deep-inelastic weak and elec-
tromagnetic experiments will test the validity of
various theories of the short-distance behavior
of strong interactions. Until now the experimental
success of the Bjorken scaling hypothesis has been
the dominant theoretical idea in constructing such
theories. However, it is becoming clear from
theoretical studies that canonical scaling may not
be consistent with renormalizable local field the-
ories.! The reason for this is that in renormal-
izable theories more and more structure is un-
covered at shorter and shorter distances.? We
will, therefore, suppose that at some higher en-
ergies and momentum transfers these new features
will manifest themselves. One hypothesis which is
particularly attractive and tractable is that the
short-distance behavior of strong interactions is
scale-invariant. Bjorken scaling is an example
of scale invariance in which the short-distance
behavior becomes characteristic of massless free-
field theory. Another possibility for scale-invari-
ant short-distance behavior is that the interactions
become characterized by dimensionless cutoff-in-
dependent parameters. The second possibility and
not the first is supported by studies of renormal-
izable field-theory models.®* The conventional
parton model which leads to Bjorken scaling is
based on free-field short-distance behavior. Re-
cently we have formulated a modified parton ap-
proach to scale-invariant field theories which are
not free at short distances.*

In this paper we discuss the implications of the
scale-invariant parton model to neutrino-nucleon
interactions, assuming that the weak interactions
are adequately described by the conventional cur-
rent-current interaction. Of course, at truly
extreme energies the structure of the weak inter-
action itself will change. Our approach only be-

|©

comes relevant if there is a region in energy in
which deviations from canonical scaling are sig-
nificant but corrections to the current-current
interaction are not yet important. The calcula-
tions made here should indicate the directions

of the breakdown of canonical scaling before en-
ergies are reached where the simple Fermi form
of weak interactions fails.

We will first discuss two theoretical issues. We
generalize the scale-invariant parton model to
incorporate discrete quantum numbers. We find
noncanonical scaling properties for the moments
of structure functions as in Ref. 4. Then we ana-
lyze the role and validity of the impulse approxi-
mation in lepton-hadron scattering. We then turn
to experimental questions and apply the model to
deep-inelastic neutrino reactions. Assuming the
conventional Fermi form of weak interactions, we
find that the total neutrino-nucleon cross section
rises linearly with the neutrino energy E as in the
Bjorken-scaling case.® The average lepton energy
loss in neutrino-nucleon collisions, (V(E)), also
rises linearly with E.® Since these results are
identical to those of the conventional parton model,
the quantities 0”(E) and (v (E)) cannot distinguish
between canonical and the more general scale-in-
variant dynamics discussed here. The unconven-

_tional results we obtain include the following: (1)

The ratio of neutrino to antineutrino cross sections
off particular hadrons, ¢”(E)/c”(E), should ap-
proach unity at extreme energies. (2) The average
invariant lepton momentum transfer squared di-
vided by the neutrino energy, (Q2/2E), falls with
energy as E?, ~1<p<0. We close with a discus-
sion of these results and some remarks on the
validity of SU(3) at short distances. In contrast
with Bjorken scaling, which applies when v and @2
exceed typical hadronic masses, the results of the
scale-invariant parton model are expected to apply
only when In@? becomes large. At best we expect
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that under National Accelerator Laboratory con-
ditions only the initial deviations from canonical
scaling in the directions discussed here will be
observable.

II. THE SCALE-INVARIANT PARTON MODEL
AND DISCRETE QUANTUM NUMBERS

We begin by reviewing some relevant features
of the scale-invariant parton model. The idea of
this approach is that physics at every length scale
has a relevant approximate pointlike-parton de-
scription in the infinite-momentum frame. As the
wavelength of an external probe decreases, we
begin to uncover structure within the partons. This
structure can be described with a new parton model
whose elements are an order of magnitude smaller
than the original partons. Hence we are led to
introduce a sequence of scales (Ry) which gives
the sizes of smaller partons inside bigger partons,
etc. In other words, as the resolving power of
external weak and electromagnetic probes in-
creases, partons of size R, are resolved into
partons of smaller size, Ry,,. For this reason
we will refer to the partons as clusters. As in
Ref. 4, we choose the length scale Ry to be of
order A™, where A is a large number. When an
external probe of transverse momentum  inter-
acts with the hadron, transverse distances of order
Q7! are resolved. Hence, clusters of size Ry ~ Q™!
absorb the external momentum. This leads to a
connection between N and Q:

_ In(Q/%)

N= InA (1)

where £ is a fixed, small momentum scale.

We shall be interested in the longitudinal-mo-
mentum distribution functions of clusters of type
N within a hadron. Label each cluster by a dis-
crete index ¢ which denotes the quantum numbers
it carries, such as helicity, charge, isospin, etc.
Define the function F, (n, N)/n to be the average
number of clusters of type N and quantum numbers
¢ which carry longitudinal fraction n of the hadron.
The distribution function F; (8, N+1)/8 can be com-
puted from F;(n, N)/n and a function fyi, v(8/n)/
(8/7) which is the probability per unit g/7 to find
a cluster of type (N+1,¢) and longitudinal fraction
B in a cluster of type N and longitudinal fraction n:

Fi (B N+1) _ f‘fj}im(ﬁ/n) Fi(n, N) dn
B8 o (B/n) n n’

As discussed in Ref. 4, the assumption of scale
invariance means that fy{, 4(8/n) becomes inde-
pendent of N for large N. Denote the function as
f49(8/n). Introducing matrix notation and the

rapidity y =1n7n, Eq. (2) can be simplified to read

(2)

Py N+)= [ Fy-» R, May, @)

where F are column vectors and f is a square
matrix. In order to illustrate the properties of
Eq. (3) we suppose that hadrons consist of quark-
like clusters of type ®, %, &, X and a neutral gluon
¢. Furthermore, we assume that the clusters
describing the physics at each scale have these
quantum numbers. Then F has the entries

S Y AKI

Helicity dependence, X quarks, etc. can be in-
cluded straightforwardly. The most general form
of f compatible with charge conjugation and iso-
spin invariance is

abcdh

R badch

fB/m=|cdabh ) (4)
dcbah
eeceeg

where each entry is a positive function of longi-
tudinal fraction. Furthermore, the entries are
constrained by the conservation of longitudinal
momentum—the sum of the longitudinal momenta
of the type-(N+1) clusters in a cluster of type N
should be the longitudinal momentum of the Nth
cluster,

= [ s man-t (5)

for eachj.

Equation (3) can be solved by Laplace transform
as in Ref. 4. Equation (13) of that reference be-
comes

M, (N+1) =1, M (N) , (6)

where 1171,x and 77, are the ath moments defined as

o]
MOt(N)=f ewF(y’N)dy’
0 . (7
o= [ e F()ay.
The solution of Eq. (6) is*
My(N) = (it o) M , (8)

where M, (N=0) =M ,, and careted quantities in-
dicate column vectors or square matrices.
Each matrix »#, must have the form given in Eq.
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(4) with positive entries everywhere. Further-
more, from Eq. (5) it follows that

Z m:é=l) =1 (9)
7
for each j. For a>1
> mg<1 (10)
i

for each j.

The matrix entries of », are monotonically de-
creasing functions of a. This can be seen by dif-
ferentiating Eq. (7) with respect to @ and recalling
that f*/(y) = 0. Denote the eigenvalue of s, Of
maximum absolute value A(a). It follows that A(«)
is monotonically decreasing. From Eq. (9) it can
be seen that

M1)=1. (11)

The right and left eigenvectors, 7(a) and 2(0:),
associated with A(a) have the form

1
1

Ha)~| 1 s (12)
1

r(a)

1(a)~(1,1,1,1,1(a)) ,

where 7(a),(a)>0. When the matrix m, is raised
to a large power N, it is well approximated by

. [m‘i]“’“‘[A(a)]N_‘lj(a)yi(a) , (13)

where the vectors #(a) and {(a) are normalized
by

7i(a)li(a)=Na) . (14)

Equation (8) can now be analyzed in more detail.
From Eq. (13) it follows that ’

My(N) ~[M) 1 (@) My #(a) . (15)

Using the connection between N and @2, the @
dependence of Eq. (15) can be made explicit:

M(Q?) ~(Q%/8) %[ A (@) I{(a) Mo ] H(a) , (16)
where
dy=-1nx(a)/InA? . (17

Note that for large N the ratios of moments of the

distributions of partons of different types i become"

independent of the hadron, and that the moments

of the ®, 3, ®, and N distribution functions become
equal. For the case a=1, A(1) =1, so that Eq. (16)
becomes independent of @2:

Mg-1) (%) = const

|©

or

1
f F;(n, Q®) dn=const , (18)
(0] .

for i=®, N, @, X. This means physically that @, I,
®, and N clusters of type N (for N sufficiently
large) each carry equal longitudinal fractions of
the hadron’s infinite momentum. The gluon clus-
ters of type N must carry the remaining longitu-
dinal fraction available. We finally note that the
moments of the difference of distribution functions,
such as @ - ®, are controlled by lower eigenvalues
of 7, and necessarily fall faster than the ® and @
moments themselves.

Other quantum-number constraints on f and #
follow from isospin and baryon-number consider-
ations. The total isospin of the clusters of type
N+1 in a cluster of type N should sum to the iso-
spin of the cluster of type N. For example, choos-
ing the cluster of type N to have the quantum num-
bers of a @ quark,

J Uo7 %50 + 1) - P ay =1,

J U6+ - 1740 - 1) dy=1 .

The initial structure functions F;(y, N=1) must be
normalized to the total isospin and baryon number
of the proton, say,

[ [Fely, N=1) = Fy (3, N=1)

- Fp(y, N=1)+ F;(y, N=1)]dy=1,
(19)
f[Fe(y, N=1)+Fy(y, N=1)

-F??(%N=1)-Fﬁ(y,N=1)]dy=1 .

Using the iteration formula (3), it is easy to see
that N=1 can be replaced by arbitrary N in Eq.
(19). When the distribution functions F are used
in the scale-invariant parton model to calculate
neutrino structure functions, as in Sec. IV, Eq.
(19) becomes equivalent to the Adler sum rule.
Thus, the theory developed here guarantees the
validity of current-algebra sum rules.

III. MOMENTUM -SLICED MODELS AND
THE IMPULSE APPROXIMATION

We would like to apply the distribution functions
Fy(y, N) to deep-inelastic lepton scattering prob-
lems. To do this we must show that the impluse
approximation remains uniformly valid as the ex-
ternal probe resolves smaller and smaller scales.
Throughout Ref. 4 and the preceding discussion we
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have imagined that the ratio between different
length scales is large. Then wavelengths of an ex-
ternal probe can be chosen such that the probe re-
solves the distance between clusters of type N but
sees individual clusters of type N as pointlike. In
order to use the impulse approximation in describ-
ing the interactions of the probe with clusters of
type N, it is necessary that the time over which
the probe acts be small in comparison with times
characterizing the interactions between the clus-
ters being probed. In the conventional parton mod-
el” the time over which the probe acts is of order
v!, The time scale for interactions between par-
tons of longitudinal fraction 7 behaves as 7/«?,
where « is the transverse momentum fluctuations
of the partons. Therefore, the impulse approxi-
mation is valid when

1
ek,
14 K

that is,
Q*»>«k? ., (20)

Therefore, the impulse approximation remains
good whenever @2 is large enough regardless of
the longitudinal fraction n of the parton being
probed.

In the scale-invariant parton model the trans-
verse-momentum fluctuations of clusters of type
N grow as the reciprocal of the distance between
them. Thus, the condition that Q2> x? is identical
to the requirement that the external probe be able
to resolve the spatial distribution of the partons.

It is instructive to divide the @2-v plane into
bands denoting the individual scaling regions (Fig.
1). Inthe interior of these bands, i.e., AV < @<«
A", one can apply the naive parton model. Along

a? /77
~

N=6 eod

N=5 ec

/ - eb

/ 3 ® a

v

FIG. 1. The @*-v plane divided into bands. The impulse
approximation has equal validity for all v at fixed Q2. It
also has equal validity at corresponding points such as
a, b, ¢, and d in different bands.

InQ

FIG. 2. Variation of various quantities will average to
power laws in @ 2 when averaged over several scales.

the length of each band the impulse approximation
remains uniformly good. This follows from the 75
independence of Eq. (20). Since each band is a re-
scaled replica of any other, the impulse approxi-
mation is equally valid at corresponding points in
different bands. This does not mean that the im-
pulse approximation is perfect in each band. In-
stead, the average percentage error in each band
is independent of the particular band chosen.
Therefore, the errors incurred from our use of
the impulse approximation should be independent
of @% and 7.

Since the impulse approximation should give the
correct behavior for scattering amplitudes up to
errors of normalization, the power laws of the
distribution function F; (y, Q%) must be identical
(apart from kinematic factors) to the power laws
of the measurable scattering amplitudes. At the
same time, however, the constants of proportion-
ality between the measurable quantities and the
distribution functions cannot be determined easily.
This situation is analogous to that in statistical-
mechanics studies of systems near a critical point.
Here power laws of thermodynamic functions such
as spin-spin correlation functions can be deter-
mined very accurately, but the strength of those
functions cannot usually be obtained so simply.

When Q2 varies between scaling regions, the
scale-invariant parton model typically predicts
power behavior for functions of interest (such as
the moments of the structure functions). These
power laws average the actual @2 dependence over
many scales as depicted in Fig. 2. In scale-in-
variant field theories we do not necessarily expect
discrete transitions between different scaling
regions. We do feel, however, that the average
features (indices of power laws, for example) can
be obtained correctly by the “momentum-slice”
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techniques referred to here.?

Renormalizable field theories which are not
scale-invariant are probably more difficult to
analyze. In this case the dimensionless coupling
constants describing the interactions between clus-
ters will vary from level to level and perhaps be-
come infinite. The time scales governing the in-
teractions between clusters of type N will then
decrease at a faster rate than the distances be-
tween clusters of type N. This leads to an in-
creasing violation of Eq. (20) as @2 increases.

IV. DEEP-INELASTIC SCATTERING

We will now discuss a class of applications to
deep-inelastic lepton-hadron reactions. In par-
ticular, we are interested in quantities, such as
cross sections and energy losses, which are very
accessible experimentally. Define averages of
quantities such as

o(B) QY 1% = [ (@71 353 d@av

(21)

as a function of the incident neutrino energy E.
For example, setting a =c =0 defines the total neu-
trino cross section. The case a=1, ¢=0 is related
to the mean invariant momentum squared trans-
ferred to the leptons, and the casea=1, c=-1is
related to the mean energy loss suffered by the
leptons, etc. As discussed above, we assume that
naive parton ideas can be used when the wavelength
of the incident current is larger than the probed
clusters but much smaller than the distances be-
tween them, i.e., A < Q< A¥*!, The naive parton
expressions for neutrino and antineutrino differ-
ential cross sections read?®

"dg::iu = Gzc?,sze"[Fm(n) +<1 —g—;)g Fv(n)] ,
_ (22)
bdgo:du= Gzct:rszec [FF(YI) +<1 _ZQ_Ez)z Fm(n):, .

In the naive parton model the Q2/2F terms in Eq.
(22) contribute significantly to the total cross sec-
tions. However, as shown in the Appendix, the
average (Q2/2E) falls as a power of E in the scale-
invariant parton model. Therefore, partons and
antipartons contribute with equal weights to the
neutrino and antineutrino total cross sections, and
Eq. (22) becomes

do¥ ~ G3cos?6, [Fq(n, N) + Fg(n, N)
dQZ%dn m L g n ’

~ (23)
do”_  G’cos’0, [F?(U,N)‘F:n(n, N)]
dQ%dn T n n ’
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where F;(n, N) is the distribution function for clus-
ters of type i and size Ry ~A“" ~Q™. In the Appen-
dix we evaluate Eq. (21) by approximating the Q2
integral by a summation over the distinct scaling
regions N=1,2,..., In(2nE)/InA? followed by the
appropriate integral over 5. This calculation is
carried out using the iteration formula (3) which
allows us to relate adjoining scaling regions N

and N+1. The following results emerge:

o(E)(Q?)*n°) ~E® , (24)
where the power index b satisfies
b=Gla+c+1)-c. (25)

Equation (25) and the properties of G are discussed
in detail in the Appendix. In particular, G(a+1)-a
is a decreasing function of its argument, so the
higher moments of {((@2)*/E*) fall more and more
rapidly with E. Of special interest are the total
neutrino and antineutrino cross sections. We find
that G(1) =1, so

0’s7 (E) ~const X E +lower-order terms . (26)

This simple result can be understood intuitively
as the compensation between two effects. As N
increases the mean longitudinal fraction of a clus-
ter decreases, lowering its contribution to the
cross section. However, as N increases the num-
ber of clusters resolved increases, and the two
effects precisely cancel. In the naive parton mod-
el o% (E) are also proportional to E, as can be
guessed by dimensional analysis.® Therefore, the
presence of a linear rise of 0"’ with E should not
necessarily be interpreted as evidence for canon-
ical scaling. However, if the antipartons in pro-
tons and neutrons carry negligible longitudinal
momentum, then the naive parton model predicts
0"T/o"T ~ § if the target T consists of equal num-
bers of protons and neutrons.® In the scale-in-
variant model one also expects a large asymmetry
of this type when N is small. However, as N grows
(i.e., enormous values of Q%) and smaller clusters
are resolved, scale invariance implies that the
moments of the distribution functions of clusters
of different types ¢ become equal [Eq. (16)]. Since
¢” and 0’ receive their dominant contributions
from @? values which increase with E, it is clear
why 0”/0” tends to unity as InQ? becomes very
large (Fig. 3).

It is also interesting to consider the total electro-
production cross section, which can be obtained
from the a = -2, ¢=0 case of Eq. (24).1° Accord-
ing to the discussion in the Appendix there are
two possible behaviors for 0%, (E). If the iteration
function £ is nonvanishing at n =0, then G(~1) is
positive. This implies that 0%, (E) grows as E®,
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oV,

| Higher Order Weak
I ‘ processes important

CERN NAL E

FIG. 3. Energy dependence of neutrino and antineutrino
cross sections averaged over proton and neutron targets.
The dashed lines extrapolate the lowest-order weak
process.

0<b<1. However, if £(0)=0, then G(-1) may be
either positive or zero depending on the details
of the moments of f. If G(-1) is zero, the total
cross section may tend to a constant or some
power of InE as in the naive parton model.”

Two kinematic quantities which are easily mea-
sured in neutrino deep-inelastic reactions are the
average energy loss of the leptons (/{E)) and the
average invariant momentum transfer squared
(Q*E)). Choosing a=1 and c=-1 in Eq. (24) and
referring to the Appendix, we have

(UE)) ~E. (27)

This agrees with the analysis of the naive parton
model and hence is not a sensitive probe into the
validity of Bjorken scaling. A more sensitive
quantity is ( @2/2E) which is constant in the naive
parton model. Choosing a=1 and ¢=0 in Eq. (24),
however, gives '

(Q%/2E)~E*™, 0<p<1. (28)

For presently accessible values of @2 and E, it is
known that (@2/2E)~3 for neutrino processes.!!

If and when canonical scaling begins to break down
in the way envisioned in the scale-invariant parton
model, this quantity should begin to decrease. The
fact that ( Q2/2E) falls as a power of E also jus-
tifies our neglect of the Q2/2E-dependent terms

in Eq. (22).

An interesting question in the scale-invariant
parton model is whether symmetry breaking dis-
appears at short distances.!'? This is the case in
many models of SU(3)-symmetry breaking. For
such theories the iteration matrix (suitably gen-
eralized to include A quarks) will be symmetric
with respect to @, N, and A quarks. Thus, the

eigenvector corresponding to the maximum eigen-
value of the moment matrices of f will have equal
entries for @, N, and A. This means that after
many iterations, the ratio of the distribution func-
tions of @, N, and A quarks must tend to unity for
all hadrons. "Moreover, the matrix elements of
the currents (Cabibbo angle) will not change from
scale to scale. This is, of course, due to the fact
that matrix elements of conserved currents are
not renormalized.

The strangeness-changing neutrino-nucleon
cross section is given by Eq. (23) with the replace-
ments G cos6.—~ G sing; and N quark— A quark.
Since the ratio of the distribution functions of N
and A quarks tend to unity after many iterations,
the only difference between strangeness-conserv-
ing and strangeness-changing cross sections
comes from the Cabibbo angle. Thus, when InE
becomes large,

0’ (AS=1)

Z\av=1) 2
o (25-0) tan®6, . (29)

If, on the other hand, SU(3)-breaking effects do
not disappear at short distances, the ratio

¢’ (AS=1)/0"(AS=0) may vary as a power of E.
This would be due to a change of coupling strength of
the strangeness-changing current as smaller and
smaller distances are probed. This phenomenon
was discussed in Ref. 4.

Finally, it is important to emphasize that the
violations of canonical scaling contained in the
scale-invariant parton model are characteristically
different from those which would occur if the weak
and/or electromagnetic interactions were mediated
by a heavy fundamental intermediate vector meson.
The effect of such vector mesons of mass M, will
be.to multiply the canonical structure functions
F,(n) by decreasing functions of @2.'> Thus, for
example, the area under the structure functions
as well as all other moments would fall to zero
uniformly with Q2. In addition, the total neutrino-
nucleon cross section would deviate from the lin-
ear function of E, becoming a linear function of InE
for E>>M,.° These results are clearly in sharp
contrast with those obtained in the model discussed
here.

V. CONCLUSIONS

We conclude with a summary of our experimen-
tally interesting results.

(1) The total neutrino and antineutrino cross
sections should rise linearly with E. As E grows,
the ratio of neutrino to antineutrino cross sections
should approach unity. This is part of the more
general phenomenon that ratios of the moments of
the distribution functions of @, %, @, and A clus-
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ters approach unity as @2 increases.

(2) The mean energy loss (U E)) of the leptons
in neutrino and antineutrino scattering grows lin-
early with E. The mean invariant momentum
transfer squared (Q2(E)) of the leptons grows as
E*, 0<p<1. This second prediction provides a
relatively easy test for the breakdown of canon-
ical scaling which predicts (Q3(E)) ~E.

(3) A test of SU(3) symmetry at short distances
can be made if it becomes possible to identify the
strangeness-changing cross section 0” (AS=1) and
the strangeness-conserving cross section
0’ (AS=0). If SU(3) is valid at short distances, then
0’ (AS=1)/0"(AS=0)~ tan®4,.

(4) We finally stress that these results apply
when @2 and v become so large that their loga-
rithms can also be considered large, but not so
large that modifications of the current-current
form of weak interactions become important. This
may in fact be a narrow energy region, but per-
haps it is large enough so that deviations from
canonical scaling can be observed.
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APPENDIX

It is the purpose of this appendix to determine
the energy dependence of the quantities

SENQY 1) = [ 7537 (@)1 d@%dv, (A1)

where do/dQ2dv is the neutrino-hadron differential
cross section. The naive-parton-model expression
for the spin-averaged differential cross section
reads

da G2 28 2\2
nm=—%q[Fm(n)+<l—§—E> F«"(n)J .
(A2)

In the scale-invariant parton model the distribu-
tion functions F; should refer to clusters of type
N=1In(Q2/£%)/InA%. We shall see that the Q2/2E
terms in this formula become negligible compared
to the other terms when E - «, Therefore, Eq.
(A2) can be simplified to

do

~ G20l (o (, M+ Ftn, W] . (A3)

Similarly, for antineutrino scattering,

ds G3cos?f.
n dQ%dn m

[Fe(n, N)+Fg(n, N)] . (A4)

AND SUSSKIND 9

In addition there are corrections to these formulas
due to the fact that the mean transverse momentum
fluctuations of clusters grow with N. These effects
influence the helicity structure of Eqs. (A3) and
(A4), but do not change the power laws which will
be obtained below.!* Substituting Eq. (A3) into

Eq. (A1) gives

o(E)X(Q)* 7"

G005 [(Q2) 1t [Py (n, M)+ Filr, 3] dQ* 2L
(a5)

Define
2 2 .
o(8) (@ 1%, =22 [ (@2)1r Fy (n, @ L.

(A6)

According to the scale-invariant parton model, the
functions F; (n, N) depend only on 77 when Q2 lies
between scales A2Y and A2¥*V), Therefore, Eq.
(A6) becomes

a(E) (@) n),

N,
~ Gzcoszf)g fzmax Az(au)lv(l _A—z(au))
T

N=1

d
><F«(n,N)n°;”, (A7)

where N, =In(2nE)/InA%. Define k =1nE/InA%,
We shall determine the behavior of Eq. (A7) as a
function of E, the incident neutrino energy. In
terms of the rapidity variable y=1n7n, Eq. (A7)
becomes

o(E)(Q)* n

2
o Gzc‘;sz%fe” Ki/hm AEFON(L _ 7 ~2(a+0))

N=1
X Fi(n,Ndy. (A8)
Define an additional function
K+ y/In A2
Fi(y, k+y/IA%) = Y~ AXEDN(L - pED)
N=1 '
th(y,N)- (Ag)
Recall the recursion formula (3),
Fo,Nen= [ Fo=-E, May.  (a10)

Multiplying by A2(¢*D®¥+1) (1 _ A7) and summing
over N, we can obtain a recursion relation for
f e Fady,
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fe” §(y, k +y/InA% +1) dy = A2(*D ff(y -y € F(y', k+9/InA%) dydy’ = A2V (1 = AR

(A11)

where K is a constant matrix. Differentiating Eq. (A11) with respect to «,

oK

°] Py 0 4
— | e F(y, & +y/1nA2+1)dy=A2(“”)ff(y-y’) e”a F(y’, k +y/InA%) dydy’ .

(A12)

Shifting the « differentiation to the variable y on the right-hand side and integrating by parts, we obtain

] o 9 4 o
a—Kfe” § (v, k +y/InA? +1) dy = A2(*+1) lnAzfa—y,f(y—y’) e” F(y’, k +y/InA%) dydy’

- CAz(a*‘l), lnAsz(y—y') ey g:(yl’ K+y/1nA2) dydy’ .

Represent the function f by a sum of step functions,
FO)= [ ewe oy vw)du,

where

c@h%‘m

and the moments of f can be expressed as

ar?za=fe"("°‘) ¢ (u)du .

Equation (A13) becomes

<] . o » 2
Y fe"y §(y, k +y/InA% +1) dy = A2(**D) InA2 fc(u) e"o(y -y +u) e” F(y’, k +y/InA?) dydy’du

which can be written

= [o(B) (@)1 1),

K+1

- cInA? [o(E)(Q@2)* 1):] |xsr

(A13)

(A14)

(A15)

_clnAzfe°”[§(y,K+y/'1nA2+1)+A2("*U(1-A'Z“”“)R] dy , (A16)
2 2

—Gc—(;s%(Az(““)—l)(lnAz)K, . (A17)

In all but one of the cases to be studied each term
in this equation will grow with E except the last.
Ignoring the last term, solutions to Eq. (A17) have
the form

S(E)(Q) 1) |, = e D)xy, (A18)
Substituting into Eq. (A17) gives
(b +c) v; = AZ(@70+D) fe(""”)" ci; (W v;du .
(A19)

Equation (A15) allows Eq. (A19) to be written in
terms of f:
vy = 2O R, (A20)

The leading-power behaviors of the quantities of

= A2(e+1) lnAzfe(l—c)u C“(u)[G(E) <(Q2)a Tlc)j] I /A2 du

interest are controlled by the largest eigenvalues
of rii,. Therefore, Eq. (A20) becomes

A2 N (p i), (A21)
It is convenient to define numbers

B=b+c, A=a+c+1 (A22)
so that the logarithm of Eq. (A21) becomes

2(B-A)InA=1n\(B) . (A23)

Note that InA(B) is a monotonically decreasing
function of B which passes through zero at B=1.
If £ (n) vanishes at 7=0, then A(0) is finite. If
7(0) #0 then A(0) is divergent. These two cases
are plotted along with graphs of 2(B -A)InA in
Figs. 4(a) and 4(b). From this we read off the
solutions
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-1

ln)\(a)

‘InX (B)

FIG. 4. (a) The functions InA(B) and 2(B —A)1InA for the case f (= 0) = 0. (b) Same as () except f(n= 0)= 0.

o(E) ~E (@=0, c=0),

(v)~E (a+1, c=-1), (A24)

(@Y ~E*, 0<p<1l (a=1, c=0).

When A is less than zero, the analysis of Eq. (A23)
is more complicated. The curve 2(B —A)InA may

intersect the curve InA(B) at positive or negative
values of B. If £(0)#0, then the intersection must
occur for positive values of B. If f(n) vanishes

at n=0, then negative values of B are apparently
possible. However, in this case the constant term
in Eq. (A17) becomes important and leads to con-
stant energy dependence. These results are dis-
cussed in detail in the text.
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