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%e generalize the assumptions of the parton model to include the possibility of scale-invariant

short~tance behavior. A physical picture is used to motivate our formal equations. Bjorken scaling is

violated in a systematic way. %e compute the asymptotic properties of v$V, and show that its

moments are poorer-behaved functions of Q'. Arguments are presented for a nonzero value of oz/o~ in

the deep-inelastic limit. The asymptotic behavior of electromagnetic form factors is found to be (Q'} ',
where the constant a is related to properties of vS', .

I. INTRODUCTION II. MODEL

The parton model' was originally intended as an
intuitive guide to computations in quantum field
theory. The crucial assumption of the parton
model is that for small times and lengths the
partons may be treated as freely moving constit-
uents. Technically this is achieved if the parton-
parton interactions axe as soft as those in a super-
renormalizable field theory. However, from the
beginning it was realized that there are no such
field theories in four dimensions, so it was nec-
essary to invent transverse-momentum eutoffs
to implement the parton-model field theoretically. '
Since renormalizable field theories have dimen-
sionless coupling constants, there is no time and

length scale beyond which interactions can be
ignored.

The purpose of the present article is to extend
the intuitive parton model beyond the domain of
super-renormalizable theories. In particular,
we propose a parton picture to describe scale-
invariant interactions. ' Our approach is inspired
by the Wilson-Kadanoff theoxy of scaling phenom-
ena and Polyakov's similarity hypothesis for
strong interactions. 4

This article is organized as follows. In See. II
we introduce the scale-invariant parton model.
Bjorken scaling is violated in a systematic way.
The moments of v%; are calculated and are shown
to be power-behaved in Q2. The ratio c2/or should
be finite in the deep-inelastic region. In Sec. III
the electromagnetic form factor is studied by use
of generalized Drell- Yan relations. The predicted
asymptotic behavior has the form (Q2) ' where the
constant a is related to the moments of vR', . Sec-
tion IV contains discussion and concluding re-
marks.

We emphasize that the consistency between
scale-invariant quantum field theory and our
intuitive methods is at present a conjecture.

Following Wilson' we assume that matter or-
ganizes itself into clusters. For example, mole-
cules are made of atoms which are made of nuclei
which are made of nucleons, etc. Each cluster
is characterized by a certain size and time scale.
The relation between these size scales appears
to be accidental. However, as smaller and small-
er scales are resolved in high-energy physics
regularities may emerge. One interesting pos-
sibility suggested by renoxmalization-group stud-
ies of field theory' is that the eonneetions between
adjacent size scales become universal.

We begin by considering time and length scales
of ordinary hadrons, 10 "cm. Denote ordinary
hadrons as N =0 clusters. We assume these clus-
ters may be described as composites of X=1
clusters. ' The description of these clusters will
be carried out in an infinite-momentum frame
(I.M.F.) in terms of multicluster wave functions
depending on transverse positions and longitudinal
fraetions.

is the amplitude to find clusters of type K =1 with
.longitudinal. fractions q, and transverse positions
X,. in a cluster of type N =0.' In general, the wave
function of a cluster of type N is a function of the
fractions and positions of its constituent clusters
of type %+1. In other woxds, our picture is that
clusters are made of smaller clusters which are
made of smaller clusters, etc. (See Fig. 1.} The
picture suggested by Wilson and Polyakov (and
Kadanoff in the context of critical phenomena)'
is that the ratio of size scales R„+,/R„=A ' be-
comes independent of N (universal} for large ¹

The intuitive ideas are easiest to visualize when
the transition between length scales is relatively
sharp and the ratio of neighboring length scales
A very far from unity. However, we believe that
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transverse coordinate, and g is the dimensionless
longitudinal fraction variable. ' Evidently the
operation connecting H„ to H„„will be invariant
if the important length scales of the theory disap-
pear at short distances. It is convenient to define
dimensionless coordinates

FIG. l. Scale-invariant cluster distribution.

scale-invariant field theory solutions will actually
smoothly extrapolate between the length scales
used here, and will not invalidate our rougher
approach. Henormalization group investigations
suggest that the dynamics of clusters of type N
can be described by a Hamiltonian H„which does
not explicitly refer to the coordinates of smaller
clusters (%+1, say). We assume that the Hamil-
tonian H„binds clusters of type N+ j of trans-
verse size R„„into clusters of type Rand size
R„. Similarly we assume that the transverse
distance between clusters of type X+1 within a
cluster of type N is of order R„. Using the same
Hamiltonian we may also obtain the interaction
between clusters of type N in the same way that
interatomic forces may be derived from the Cou-
lomb forces between electrons and nuclei. Thus,
we derive an operation which gives H~, in terms
of H~. Renormalizable field theories have the prop-
erty that the operation H„-H„, becomes inde-
pendent of N for N sufficiently large. %'e intro-
duce the scale transformation'

where 7 is the infinite-momentum time, X is the

and a dimensionless Hamiltonian h„( Y„') which
describes the motion of the clusters of type N on
the rescaled time axis v/R„'. The operation
Hg H~ ~

reads

a„,(l) =T jh„(l )}. (3

The Hamiltonians h„(&) should be local field-
theoretic Hamiltonians in the infinite-momentum
frame, the N+ j type clusters playing the role of
bare quanta. The only exception to this is that
for lengths smaller than R„„the Hamiltonians
should be cut off. This does not mean that our
theory is a cutoff theory. What it does mean is
that to correctly study distances smaller than
R„„we must proceed to the next scale and use
H„„. By construction H„„ is almost equivalent
to H„ for lengths larger than R„„(but awkward)
but is also a correct description for lengths be-
tween R„„and R„„.

The assumption of asymptotic scale invariance
is that the sequence (h„}approaches a finite fixed
point for large ¹'So, for very large N, h can
be replaced by a universal Hamiltonian h. There-
fore, gN(F, q) becomes independent of N in the
same limit. This means that the structure of
clusters becomes universal in terms of rescaled
positions and times. Henormalizability alone does
not require the existence of a fixed point in Eq. (3).
It is possible that the recursion formula generates
Hamiltonians which wander to infinity, tend to
limit cycles, etc. The special significance of the
approach to a fixed point is that the solution to
the scale-invariant equation (3) is also scale-
invariant.

Consider an experiment which probes the struc-
ture of the hadron of size R,. Let the wavelength
X of the probe be less than R, but greater than
the first cluster size R, . VFe are then justified
in applying the usual ideas of the parton model
replacing the partons by clusters of type 1. It is
not legitimate to use clusters of type 2, 3, etc.
here, because the probe cannot resolve the dis-
tance between these smaller clusters. Now, let
the wavelength X of the probe decrease so that
smaller sizes in the hadron can be resolved.
Clusters of type 1 are now irrelevant, because
they no longer appear pointlike to the external
probe. If ~ is much less than R„but much larger
than R2, the parton description then becomes
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II

J

FIG. 2. Computation of gN+& in terms of gN. The
thick (thin) lines represent clusters of type N (type N
+ 1). The bubbles stand for wave functions.

legitimate using clusters of type 2. Thus our
guiding principle will be the parton model with
the additional rule that the relevant distribution
function is that of clusters one size smaller than
the wavelength of the external probe. This implies
a relation between the type N of clusters resolved
and the vravelength X of the probe,

~ =const x RN = EA ",
where g is a constant. Since ~=Q ',

Typically scale-invariant field theories produce
matrix elements which vary as a power of the
length scale of the clusters being probed. As an

example, consider the absorption amplitude of an
external scalar current by a cluster of type ¹

Suppose the momentum transfers Q are smaller
than RN '. The matrix element is approximately
a constant g„since the clusters of type N can be
treated as pointlike. gN itself can be calculated
in terms of gN„. %'e assume that the current
couples additively to the constituents (clusters of
type %+I) of the Nth cluster, so that schematically
(Fig. 2),

where 0 is the operator coupling the probe to the
clusters. ' In a scale-invariant limit, where $„(I'}
becomes independent of N, we find that cN„be-
comes independent of N and this relation can be
iterated producing

N
gN =«O-

Recalling that R„varies as A ", we obtain a
power-law dependence of gN on RN,

(ft }-(Inn)/InA
+N

Thus the strength of the coupling to an external
current varies as a power of the cluster size RN.
A special case in which the coupling remains con-
stant with decreasing scale is given by a conserved
charge which enters a current algebra. In this
case the clusters at the Nth level must form a
representation of the current algebra. The scale-
invariance assumption forces the algebraic prop-

erties of the clusters to become independent of
¹ Thus the couplings of clusters to external
charges is normalized by the group structure and

must be independent of ¹ For convenience we

suppose that the clusters have charge +1. Our
formulas can easily be extended to more rea-
sonable cases such as quark quantum numbers.

Before discussing deep-inelastic electropro-
duction we shall comment about the general nature
of the amplitudes $„(I;q). Since h„(I') is similar
to a field-theoretic Hamiltonian in the I.M.F., the

$ are also similar to those in a (cutoff} field
theory. The state of a cluster of type N will be a
finite normalizable superposition of states with
different number of type %+1 clusters. In general
the superposition will begin with one cluster of
type %+1 with a probability Z less than unity.
The constant Z is the finite wave-function renor-
malization constant of the cutoff theory. The re-
maining multicluster terms should have wave
functions similar to those in naive parton models
with transverse cutoff.

Vfe will now discuss the deep-inelastic electro-
production structure function vS', . According to
the na~ve pointlike parton model

measures the longitudinal-momentum distribution
of the charged partons in the target"

E, (Q'/2v) =q
dN

Iq=Q /2V

where dN/dq is the number of charged partons
having longitudinal fraction q.

Vfe mill now apply this argument in the case of
the scale-invariant parton model. At each value
of Q' the structure function E,(q, N) measures the
longitudinal-momentum distribution of the clus-
ters of type N-lnQ'. So, to pass from one scale
to the next we need to know how the clusters of
type %+1 are distributed in the clusters of type
¹ To do this we introduce a function f„„„(P,q}/
(P/q) which gives the probability per unit P/q to
find a cluster of type %+1 and longitudinal frac-
tion P in a cluster of type N and longitudinal frac-
tion q. Longitudinal boost invariance requires
that f„„~depends only on the ratio P/q. Then
the distribution of clusters of type X+1 having
longitudinal fraction P satisfies the equation

It is consistent with Eq. (8}to define the functions
En(q, N) and f„„„(o.') to vanish when their argu-
ments q and & do not lie in the region from zero
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to unity. Then Eq. (8) can be written,

F (P, N+1) = f, (P/q)F (q, N)
"0 7l

The assumption of asymptotic scale invariance
requires that f„„„(P/q}becomes independent of
N for N large I.n this limit the function f„„„(P//I)
can be replaced by a single function f(p/)I). It is
convenient to rewrite Eq. (8) in terms of the rapid-
ity variable,

y =tnt

so that

)i()'.&+))=J f ()~') ()')&)& '.)

This equation can be solved by Laplace transform:
Define the nth moment of F (q2, N+1},

M„(N) = rl" F2(q, N)

In terms of rapidity the moment M~(N) becomes

M„(N)=f e"' )y(, N)dy.

Substituting into Eq. (10) we have a relation be-
tween moments of the type N+1 and N,

In other words, the moments of vW, are power-
behaved in Q' with e-dependent powers. Scaling
laws of this type (for integer a) have been obtained
from field-theory studies by Polyakov, Mack, and
others

In qualitative terms the Q' dependence of these
moments means that as Q' increases and smaller
clusters are resolved, the structure function vW,

should shift into the low-g region as depicted in
Figs. 3(a) and 3(b). This follows because as Q'
increases the contribution of a given cluster
(type N) will be replaced by several clusters
(type N+1) each of smaller longitudinal momen-
tum. As vW, changes with Q' however, the area
under the curve should remain constant. This
follows from longitudinal-momentum conserva-
tion —the sum of the longitudinal momenta of the
N+1 clusters in a cluster of type N should be the
longitudinal momentum of the Nth cluster,

f(n)de=I

Therefore, m« „=1so from Eq. (13) it is clear
that M(»(N) is independent of N and

M~(N+1) =m„M„(N),

where m„ is the ath moment of the kernel f,
(13) vW(

m„= e ' p dp. (14)

Equation (13) is a scale-invariant relation satis-
fied by the moments of the structure function vW, .
It faust be supplemented with boundary conditions
at the small-N level which describes the large
scale character of hadronic structure. These
boundary conditions break the scale invariance
because they refer to a particular length scale.
Choosing boundary conditions"

M„(N= 0) =M~,

where M are the moments of vW, in the first
scaling region (1&Q'&A'), Eq. (13) can be solved,

(a)

M (N)=(m„)"M„. (15)

Using the relation between the momentum transfer
Q2 and the scale N given in Eq. (4), Eq. (15) im-
plies

(Q2) (ypg ) ( (n(Q / K )l/ » A

'q"vW, "" =

(b)

where

d~ = -[In(m~)]/IrA2.

FIG. 3. (a) The function v8'2 assuming f(g= 0) & 0.
The different curves represent successive orders of
magnitude for Q2. (b) Same as (a) except f(g= 0) = 0.
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vW, dg = const.
0

(18)

We will now study the Q' dependence of vW,
assuming various properties of the kernel f
Suppose, for example, that f (y) has a nonzero
value c as y - -~. The (rth moment of f will then
behave as

m„- c/(2 (19)

as n tends toward zero. Experimentally vW, tends
to a constant" as y- — so that M„also behaves
as (2 '. Equation (15) then implies that

M(N) (
—

) M (20)

Inverting Eq. (12) gives the structure function as
y tends to -~,

F, (y, N) -lyl" 'c"/I'(N+ I).
In terms of Q' and ]] =Q2/2v, we have

(21)

C[C in(Q2/2 V)] (ln (Q2/ (2) ]/ In A2- (

'@ ' I'([in(Q'/$')]/in A' + 1)

(22}

for Q2/2() sufficiently small [Fig. 3(a)].
Another interesting possibility suggested by

low-order graphs in scalar field theories is that
f(I]) vanishes as a power of ]] near I] =0,

term Z5(y} to f (y). The remaining multiparticle
contributions to f (y) are likely to contribute a
term which tends to zero near y =0 as a power of
y. (This is characteristic of low-order graphs ).
We also assume E,(y, N=O) vanishes as a power
near y =0,

f(y) =«(y)+dy"',

F,(y, N=0) -y /.
(28}

Experiment indicates y is near three. "
The Laplace transforms of F,(y, N=O), and f(y)

behave as

M„(N=O}-a ' '

m~=Z+d~-' '
(29)

M „(N)- o( ]' ' Z

Or as a function of Q',

(Q2) (r- l-(Zlln(Q /( )]/INA

(30)

(31)

The constants Z a.nd y will be related to form
factors in a later discussion.

By inverting Eq. (12}and using Eq. (31}we find

for (2-~. Substituting into Eq. (15}we determine
M„(N) as a-~,

f(n) n' (]]=0-)

Then the moments of f (]]) near (r =0 are

(23)

1
m QlCX ~ p

(24}

and the moments of the structure function become

M„(N)- ( ) (25)

where we have taken M„-& ' again. For & small
enough Eq. (25) reduces to

M (N)-(—) (26)

so

y' (]] Q2) (p)-(' In(Q / N )]/(nA2

or

F (~ q2) (Q2/g2)-In2/ InA (2'I)

at l] =0 [Fig. 3(b}].
It is also interesting to understand the conse-

quences of particular assumptions about f (y) for
y near zero (leading-parton effect ). Assume that
each N-type cluster has a probability Z to have
only one "bare" type N+1 cluster carrying all its
longitudinal momentum. This will contribute a

General constraints on the power indices d„of
the moments of vW, follow from the positivity of
the kernel & (recall that f is a probability dis-
tribution}. This implies that the moments of
f, m„, cannot vanish faster than an exponential

0 & d„&p, n ((2 large) . (32)

Another measurable quantity of interest is the
ratio of the cross-sections for absorbing longitu-
dinal and transverse virtual photons, o2/(]r. In

where p, is some positive constant. Using Eq. (16)
gives

d~& p. &

for large a. A lower bound on d can also be ob-
tained. Namely, d~ must be larger than some
positive constant. This follows from observing
that if d„-0 for large a, then m - 1 for large
(2. But then f (]]) must have a &-function singular-
ity at g =1 with normalization unity. Equation
(17) and positivity would then require f (I]) = 5(I] —1).
We discard this option. " Therefore, the con-
straints on d„become
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the usual parton model based on spin--,' chaxged
constitutents this ratio tends to zero in the deep-
inelastic region. If the average transverse-mo-
mentum fluctuations of the partons is ~, then'4

In the scale-invariant parton model one expects
that oz/or tends to a nonzero constant. This
follows from the fact that the transverse momen-
tum of the probed clusters should increase pro-
portionally to the inverse of their sizes R~ '. But8„'grows as Q, so that the ratio «'/Q' remains
roughly constant as Q' grows.

III. ELECTROMAGNETIC FORM FACTOR

Ne now discuss the Q' behavior of hadronic
form factors. This discussion will be presented in
three parts. First, the simple Drell-Yan rela-
tion" fox the naive parton model will be xeviewed,
then deviations coming from the structure of the
first cluster will be estimated and finally a formu-
la for the truly asymptotic behavior (InQ'» 2) of
the form factor will be obtained.

The basis of the Drell-Yan relation within the
context of the naic'e conventional parton model is
the assumed boundedness of the transverse-mo-
mentum fluctuations of the partons. A hadron in
the infinite-momentum frame is viewed as a sys-
tem of partons in phase space with transverse
momenta contained within an interval of size K

as in Fig. 4(a). If a virtual photon of transverse

momentum Q» a is absorbed by a parton of longi-
tudinal fraction q, then in general the resulting
parton distribution has negligible probability to
compose a stable hadron, since it cannot be con-
fined to a strip of width z [Fig. 4(b)j. However,
if the struck parton carries almost all the longi-
tudinal fraction of the hadron as in Fig. 5(a), then
the resulting distribution can form an outgoing
hadron. The requirement that the resulting par-
tons axe confined to a strip of width x as shown
in Fig. 5(b), implies that the longitudinal fraction
of .the struck parton satisfies

q & 1 —x/Q.

The form factor G, (Q') at large Q' is proportional
to the probability to find a parton in this range.
Therefore,

Assuming that E,(q, N=O) vanishes as a power of
(1 —rl) near @=1, we obtain

(34)

which is the Drell-Yan relation. "
Now increase the momentum Q until it lies in

the second scaling region (A&Q &A'). The photon
is now absorbed by a cluster of type K=2 which
is within a particular cluster of type A=i. In

Before
Before

(a) (a)

After

(b)

FIG. 4. (a) Typical parton distributions in a hadron.
(b) Parton distribution after absorption of a deep-in-
elastic photon.

FIG. 5. {a) Parton distribution in a hadron during a
"leading-parton fluctuation. " (b) Distribution after the
leading parton absorbs a deep-inelastic photon.
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see this suppose that the underlying field theory
is cut off at some enormous

FIG. 6. Form-factor caiculation described iD text.

order that the hadron not be broken we require
that the struck cluster of type N =2 absorb the
photon's momentum without breaking up its parent
cluster of type 1, and that the cluster of type 1
project back into the hadron wave function. (See
Fig. 6.) Thus, in addition to the first Drell-Yan
factor controlling the absorption of the cluster
of type 1 into the hadron's wave function, there is
a second factor describing the composite structure
of the cluster of type 1. This second factor is
obtained by applying the Drell-Yan argument to
the cluster of type 1

f..,(n) dn =- g(q'/«),
~ 1-AK /q

where Az is the momentum fluctuation of type
two clusters. Thus, the form factor in the second
scaling region is roughly given by

G, (q') = G, (q') g(Q'/«). (36)

Using Eq. (28) in Eq. (35) gives g(q'/AI{) =g so
that Eq. (38) gives..(() )=(—') ' '".
From Eq. (4),

1V =[in(q/$)]/1nA, 1

so the form factor behaves like

G(qn) (q)-I'-{g I' n ({)/ &)I/&A

(q )- /- 1 + {In & ) / In A

(38)

(39)

This calculation relates the properties of f and

E,(N=O) to the asymptotic dependence of the form
factor.

The parameter g can be related to the anoma-
lous dimension of a charge-carrying field. To

An iteration of this argument gives G„(Q') in the
Nth scaling region,

G (Q')=~ (q')g(q'/A )g(q'/A") "g(q'/A". )

(3'7)

(q /~){lnx)/InA (40)

This relation shows how the wave-function re-
normalization constant of the charged. field varies
with the cutoff momentum. Equivalently, it de-
fines the anomalous dimension of the field to be
(ln Z)/2 lnA .

Finally we observe that the form factor of non-
conserved currents will contain an additional Q'-
dependent factor. This factor describes the varia-
tion of the coupling of the current to clusters of
different sizes. Recall from Eq. (5) that this ad-
ditional factor is of the form e ~""". Since N
-in@', the additional factor is seen to be power-
behaved and w'ould introduce an additional power
of Q' into the form factor of the nonconserved
current.

IV. DISCUSSION

We conclude with some comments concerning our
assumptions and we present a list of our main
results. Our first assumption was the existence
of discrete scales. When a virtual photon's mass
VQ is between A" and A"" we have assumed
that conventional parton ideas can be applied.
Strictly speaking, this requires two things: first,
the photon's wavelength X must be small enough
to resolve the distance between clusters of type
f)/ (incoherent scattering); and second, the photon's
wavelength must be large enough so that clusters
of type N appear as points. Real field theories
may not contain such abrupt transitions between
scales. A better description of scale invariance
would require a differential form of the recursive
equations. We expect that these refinements will
smoothly connect the discrete recursive equations
used here. For example, the differential form of
Eq. (8) should read

J f(ni). (, n) „"

Our second main assumption is the existence of
a fixed point in the transformation Eq. (3). This

Q..ton = (A"

where N»1. Imagine describing the entire theory
with the field-theoretic Hamiltonian h-„„. Now,
consider the probability that a cluster of type l
contains just one cluster of type N +1. In our
model this is the probability that a cluster of type
1 be a cluster of type 2, times the probability that
a cluster of type 2 be a cluster of type 3, etc.
The resulting wave-function renorrnalization con-
stant, Z y ls
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fixed point led to the scale invariance of the theory.
Wilson" has emphasized that fixed points are
just one of the possible behaviors to be expected.
Another possibility is the existence of a limit
cycle solution to Eq. (3}. This case would be
similar to the scale-invariant solution discussed
here when averaged over cycles. Other possibil-
ities include irregular wandering of the param-
eters of the Hamiltonian or a systematic approach
to infinity of some parameters. Even if the scale-
invariant solution is correct, we do not know at
what level (what value of N) the repetitiveness
begins. For example, if quarks exist, then the
repetition cannot begin at the hadron level be-
cause of quantum numbers. It is possible that it
begins at the quark level (N= 1, say) with mini-
quarks inside quarks, etc. It is also possible that
it does not begin until many orders of magnitude
have elapsed.

Another assumption we have used is that the
electric charge of clusters is independent of N.
Another possibility is that the charge decreases"
asymptotically with increasing N. This behavior
would necessarily violate current algebra at short
distances, since the electric charge would then
be fixed by the nonlinear algebra. There is, of
course, no guarantee that current algebra is true
for distances smaller than 10 '4 cm.

The scale-invariant parton model may also be
applied to the structure of final-state hadron dis-
tributions produced in deep-inelastic processes.
In general, however, this requires dynamical
assumptions beyond those discussed here. One
application in this direction is due to Polyakov. "
However, one qualitative feature of electropro-
duced final states may be independent of the de-
tailed mechanisms and should be pointed out. For a
given q' of the virtual photon, clusters of type
N= [In(Q/()]/Ink are struck and carry off the
momentum of the photon. Clusters of type N are
bound within clusters of type N -1 and therefore
have transverse-momentum fluctuations charac-
teristic of the size of the clusters of type N-1,
i.e., R„, '. But R„, ' grows linearly with Q,
so before and after the absorption of the photon,

the struck cluster has momentum transverse to
the photon direction of order Q. Thus, we expect
that as q' increases (for fixed q'/2q P) the trans-
verse momentum (relative to the photon direction)
of current fragments (carrying a fixed fraction of
the photon's lab energy) should increase. This
effect should accompany a breakdown of the
Bjorken scaling law and therefore should not

necessarily apply at the present values of
Q' (1&Q'&10 GeV').

We conclude with a short summary of the main
results of our analysis:

1. Scaling laws for the moments of vW„

t vpvW2(Q', v)drl=L(n)(Q') ~n,
0

where d, =0, L(n)-n ~ ', and d„- (lnZ)/lnA' as
n-.

2. Nonzero ratio oe/ar in the deep-inelastic
region.

3. Behavior of the asymptotic electromagnetic
form factor of a hadron,

G(Q')-(Q) ',
where a =y+I —(InZ)/lnA. Associated with the
structure of the form factor is the behavior of
vW, near q =1,

vW -(1 -q)"(Q)'""'"
4. Increase of average transverse momentum

(relative to photon direction) of current fragments
as Q' increases (at fixed q'/2p q}.

Note added in proof. Combining the discussion
following Eq. (40) with Eq. (31)shows that lim„„d„
equals the anomalous dimension of the charged
field. This relation has also been obtained by
G. Parisi, Nuovo Cimento Lett. 4, 777 (1972}.
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