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The contributions of Pomeron cuts to inclusive cross sections in the central region are
studied within the framework of the Reggeon calculus. The two-particle correlation function
contains a term independent of the rapidities of the observed particles and only weakly de-
pendent on the total rapidity Y. The integrated correlation functions f„grow as Y" ~ and
satisfy Le Bellac's inequality automatically. The multiplicity distribution contains multiple
peaks at very high energy.

I. INTRODUCTION

Since the work of Mueller, ' the contributions of
Regge poles to inclusive cross sections have been
studied extensively. If only the poles are consid-
ered, then a rather simple picture emerges in
which, for example, all correlations have short
range in rapidity. " However, Regge cuts are a
natural consequence of unitarity in a theory with
Regge poles. Abramovskii, Kanchelli, and Gribov~
(AKG) have shown recently that within the frame-
work of the Reggeon calculus" certain Regge cut
contributions to inclusive cross sections in the
central region can be calculated. After a brief
review of their work in Sec. II, this paper is de-
voted to further examination of these contributions.

In any reasonable energy range the most impor-
tant correction to the Pomeron pole should come
from the graph with one Pomeron loop and no
triple-Pomeron vertices. This is because phenom-
enological estimates of the triple-Pomeron cou-
pling indicate that it is small, .

' while graphs with
multiple Pomeron loops are expected to be sup-
pressed. In Sec. IQ the contribution of this two-
Pomeron cut graph to the pg-particle inclusive

. cross section in the central region is studied. The
contribution to the single-particle cross section
is found to vanish, in accord with the findings of
AKQ. In fact, if Pomeron interactions are ignored,
the leading correction to the single-particle cross
section comes from secondary Regge poles, in
agreement with Ferbel's analysis. ' The contribu-
tion to the two-particle cross section is best ex-
pressed in terms of the two-particle correlation
function'

is found to be a positive constant independent of
y, and y, . Its numerical value in the NAI. to
CERN-ISR energy range is approximately

p(ytylly2) 2(~gjff/~) ~

where g«, is the cross section for diffractive dis-
sociation. The actual Y dependence is more com-
plicated than this. While asymptotically t" will
behave like Y ', it is predicted to vary only slowly
with Y at presently available energies.

To the constant term in C(F, y„y,) should be
added, of course, the usual short-range term due
to secondary Regge poles. The results are then
essentially in agreement with the recent conclu-
sions of Botke, ' whose analysis is based on a
qualitative discussion of multiple-exchange effects.
Botke also points out that a constant piece in the
correlation function would be removed by the choice
of a normalization in Eq. (1.1}sma'lier than the
total cross section o. From a theoretical point
of view, it seems preferable to use g and to recog-
nize that Q(y, y„y,) should contain a constant
piece.

Sections IV and V are devoted to a study of the
multiplicity distribution. Rules are developed
which enable one to write down directly the contri-
bution to the multiplicity-generating function' from
any Reggeon graph. From the generating function
it is simple to obtain the moments of the multi-
plicity distribution, , and the exclusive cross sec-
tions g„.

In Sec. IV the generating-function method is ap-
plied to the pole graph and the two-Pomeron cut
graph without triple-Pomeron vertices. The as-
ymptotic form of the integrated correlation func-
tion f„ turns out to be

f„-[2+(-1)"]((n))"',
where P'=in(s jm') and y, and y, are the rapidities
of the observed particles. '

The corxelation function

p(yn-1}

where g diff the diffractive cross section, is as-
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FIG. 1. (a) The basic vertex P(k, k&, k&' ); (b) the
Pomeron pole graph.

sumed to be O(Y '), and (n) is O(Y). This result
is interesting because it automatically satisfies
Le Bellac's inequality, '

p,„-=((n —(n))") a ((n))" 4~' for N even. (1.4)

By contrast, in a short-range correlation model, "
p, „=O(Y"") for N even.

This is inconsistent with Le Bellac's inequality
unless o «, —0 faster than any power of F, implying
that the Pomeron has an intercept a(0) & 1.

The multipl. icity distribution is also obtained in
Sec. IV and found to agree with that in Ref. 4.
There is a peak at low z corresponding to quasi-
elastic scattering, the usual peak at (n) with es-
sentially a Poisson distribution, and a third peak
at 2(n), also with essentially a Poisson distribu-
tion. At energies in the NAL to CERN-ISR range,
these peaks merge to form a distribution that is
smooth but wider than a Poisson distribution.
Ter-Martirosyan" has shown that such a form is
consistent with the available data.

In Sec. V the simplest graphs involving triple-
Pomeron vertices are considered. While the
contributions of these graphs are expected to be
small. they are of theoretical interest because
they involve the probl. em of renormalization in the
Reggeon calculus. ' They also provide contributions
corresponding to high-mass diffractive dissocia-
tion.

Throughout this paper the Pomeron is taken to
be a simple, factorizable pole with n(0) =1. The
triple-Pomeron vertex must then vanish at t =0,
both to prevent an infinite renormalization of the
pole there' and to satisfy the one-particle kinemat-
ic sum rule. "" If this result is combined with
the two-particle sum rule and reasonable analytic

structure for Reggeon vertices, it leads to the
conclusion that the Pomeron roust decouple com-
pletely at ]=0."". This difficulty is associated
only with the requirement of asymptotic self-con-
sistency. It could be cured by modifying the Pom-
eron at g~'lnq-1, where g~ is a measure of the
triple-Pomeron vertex. The difficulty does not
manifest itself in any of the calculations in this
paper. It therefore seems reasonable to consider
the Pomeron to be effectively a simple pole at
available energies. All the discussions herein
are probably best regarded in this perspective.

II. REGGEON CALCULUS AND DISCONTINUITIES

In this section the Reggeon calculus and the cal-
culation of discontinuities of Reggeon graphs will
be reviewed briefly. The only Regge pole consid-
ered will be the Pomeron with ~(0) =1.

The basic ideas of the Reggeon calculus are
abstracted from graphs containing a Pomeron pole
n(7p) coupled with a residue p(k', k,', k,") to an
elementary particle. ' See Fig. i. This pole gives
a contribution to the elastic amplitude of

F „(s,k') =P (k')$(k )(s/m')" ~, (2.1)

where m' is the particle mass, p(k') is the usual
Regge residue,

P(k ) =P(k', m', m'),

and $(k') is the signature factor,
-& ft Ot(a2)i 2

( k

sin[ma�(k')/2]

'

(2.2}

(2.3)

It is assumed that p(k', k,', k,") decreases rapidly
as any of its arguments become large and that it
has only right-hand cuts in these arguments. With-
in this framework the graphs in Fig. 2 can be cal-
culated. "" They give a polynomial in Y =ln(s/m },
which polynomial is interpreted as a renormaliza-
tion of the pole contribution, and a Pomeron-cut
term

S n(( L/2+~L)')+W(OL/2-CL)')-I
(s k } 4 (2 )R 8(2ki ql. ) )t((2k, —q, }')

N(k q )
6' q.)P('-')

1 + o.(k, ') —a((-,'k, + q~)') —a((-,'k, —q~)')
(2.4)

Here N(k„, p~) is the non-Pomeron contribution to the fixed-pole residue in the Pomeron-particle amplitude
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A(s', k„q, ) (see Fig. 2),

1 ( g )-0'(A~/2 a~) )-a(fr~/2-q~) )
N(k„q, ) = — ds' ImA(s', k„q1) —p(k, ')g(k, q )

7T 0 m' (2 5)

o(s) = —,p'(0)
1

g(o, q1)p(o)
1 + +(0) —2~(

(2 6)

Note that

coeval(q1 )Re[) (q1 )] = . ()) ( )))(2)
- -1, , (2.7)

and g (k1, q1) is the nonforward triple-Pomeron
coupling (Fig. 4).

The total cross section can be obtained from the
elastic amplitude by using the optical theorem. In-
cluding just the pole and cut graphs of Figs. 1(b)
and 2, one finds

The second key observation of AKG is that cer-
tain Reggeon vertices, including in particular g
and g, are not changed by cutting. This is true
because these vertices are given by integrals with
the usual Feynman ie prescription. On account of
the assumed strong damping of the amplitudes, it
is always possible to close the contours of the
subenergy integrations around the right-hand cuts
and thereby effectively to put the intermediate
states on the mass shell. A unitarity cut through
the graphs also puts the same intermediate states
on the mass shell. Therefore, cutting the graph
does not change the vertex. For detailed proof
see Ref. 4.

To see how the above considerations apply in
practice, and also for future reference, it will
be useful to review briefly the calculation by AKG
of the discontinuity of Fig. 2(a). It is convenient
to rewrite the amplitude for this graph from Eq.
(2.4) as

so that the cut is negative. Furthermore, the pole
dominates the cut as s- ~ only if"

F(s, k ')= —js J ( ), jj„'(jjj,)(jj) ),
(2.10)

g(0, 0) =0, (2.8)

as shall be assumed henceforth.
To obtain inclusive cross sections it is necessary

to calculate discontinuities of Reggeon graphs.
This problem has been studied in detail by AKG,
who make two key observations. Their first ob-
servation is that if a certain discontinuity of a
graph is to be non-negligible, then that discontinu-
ity must cut through each Reggeon either complete
ly or.not at all. This can be seen most easily by
thinking of a Reggeon as a r'eneralized ladder
graph. Then a cut through only part of the ladder
would leave a large-mass cluster hanging from a
single line, and would therefore be negligible.
See Fig. 5. Of course, a cut through an entire
Reggeon takes a simple form:

There are contributions to the discontinuity from
cuts through zero, one, or two Pomerons. See
Fig. 6. The cut through zero Pomerons must pass
between the two Pomerons, and either Pomeron
can be on either side of the cut. This gives

d
iscoF =1s

( )I N» (D1D2 +~lD2)

d2
=+ 2 is

4(2 ), N»'[(ReD, )(ReD, )

+ (ImD, )(lmD, )].

(a~)-
disc $(k') m' (2.9)

(2.11)

The cut through one Pomeron can pass through
either Pomeron, while the other Pomeron can be on
either side of the cut. This gives

I—k~+ q

l

2 k q

FIG. 3. The Pomeron-particle amplitude. FIG. 4. The triple-Pomeron vertex.
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Pg

k~L p J.

——(b) FIG. 7. The vertex y(Pj, kj).

FIG. 5. A ladder graph model. At high energy the cut
(a) is non-negligible, while the cut (b) is negligible.

d'q~
disc,F =is

4(2 ),

x N»'I (2 ImD, )(iD,) +(2 ImD, )(iD,)~

+(2ImD, )(iD,) +(2lmD, )(iD,)*] discF(s; p, ~ p„),dv

dp, ~ dp„2is
where

(2.15)

Finally, the discontinuity which gives the inclusive
cross section, ' "discF(s; p, ~ p„), is obtained by
doing the integrals over the k, ~ and the (,. The
limits of the g, integrals will in general introduce
dependence on the y, and Y; any resulting polyno-
mials in these variables are to be interpreted as
pole renormalization terms. The inclusive cross
section is obtained from

(2.12) d= "'P
(2v)'2po

' (2.16)

Finally, there is only one way to cut through both
Pomerons. This gives

disc&F =is
4 2,N»' 2ImD, 2ImD,

d=+4is
4 2 2Nip ImDy Imam 2 13

The sum of these three pieces gives

discF = disc+'+disc, F +disc,p
=2i ImF, (2.14)

FIG. 6. Graphs for cuts through zero, one, and two
Pomerons. A cross denotes a cut Pomeron.

as required.
Having found a method for calculating the dis-

continuities of Reggeon graphs, AKG combined it
with Mueller's generalized optical theorem' "to
calculate inclusive cross sections in the central
region. Their method is as follows. First, a
Reggeon graph for the forward elastic amplitude
is written as an integral over the transverse mo-
menta k~~ of the Reggeons and the rapidities (, of
any Reggeon vertices. Next, the graph is cut, and
for each observed particle with rapidity y, and
transverse momentum p«a vertex y(p, ~1 k») is
inserted on a cut Reggeon j whose rapidity span
includes y, . See Fig. 7. This is done in all pos-
sibl ways. Because of the restriction to the cen-
tral region, the vertex y(p, , , kj~) does not depend
on y, . At k, ~=o it is just the usual Mueller vertex.

Et is also possible that one or more of the ob-
served particles comes from a Pomeron-inter-
action vertex. This involves new, unknown ver-
tices, but because of the kinematic sum rules these
vertices will be of the same order as the triple-Pom-
eron vertex. " If the triple-Pomeron vertex van-
ishes at t =0, then these new vertices will do like-
wise, implying that the corresponding contributions
are of higher order in Y '. Furthermore, if more
than one particle comes from a vertex, then the
contribution can be large only when the particles
are close together in rapidity.

AKG applied their method to the calculation of a
number of contributions to inclusive cross sec-
tions. We shall apply the same method in the re-
mainder of this paper. Our calculation differs
from theirs mainly in our choice of graphs and in
our inclusion of the momentum dependences of the
various vertices.

III. UNENHANCED GRAPHS AND INCLUSIVE
CROSS SECTIONS

In this section the method developed by AKG
and reviewed above will be applied to the unen-
hanced graphs, "those with no Pomeron inter-
actions. Particular attention will be given to the
effects of the momentum dependence of the ver-
tices. The unenhanced graphs are expected to be
important because phenomenological estimates of
the triple-Pomeron coupling, while sensitive to
the fitting procedure used, indicate that it is
small. ' In particular, its contribution to Eq. (2.6)
is much less than that of the vertex N. Therefore,
it is reasonable to make an expansion not only in
powers of (lns) ', but also in powers of the triple-
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Pomeron coupling, or, by extension, in the number
of Pomeron-interaction vertices.

In what follows the Pomeron trajectory is taken
to be

a(k, ') =1+a'}t,',
while the elastic residue function is

(3.2)

FIG. 9. The leading cut graphs for the e-particle
inclusive cross section. The produced particles in (b)
are to be arranged in a11 2" possible vrays.

The fixed-pole residue & can be parameterized as

N(0, q ) = aloe " " (3.3)

Then if Pomeron interactions are ignored, Eq.
{2.6) for the total cross section takes a simple
form e

1
o(s) = —

a P'—m' P' 16m 2X, +2a'»(s/m*) ' (3.4)

%0 «, ) =P'(q ') (3 5)

is reasonably good. "" Then 2N, +2a' ln(s/m ) is
just the elastic slope parameter, which for pro-
ton-proton scattering is measured to be"

5(s) =[8.3+0.6 In(s/m')] GeV-'. (3.6)

To obtain the correct magnitude for the cut at
presently available energies, it is therefore im-
portant to retain the constant N, .

The leading contribution to the g-particle inclu-
sive cross section is just the Pomeron pole graph
considered by Mueller. ' See Fig. 8. It gives an
invariant cross section

dp .. dp
= —aP'(0) Qy(P„, 0),

l n pop ~
~l =1

(3 7)

where y(p~, )t ) is defined in the previous section
and in Fig. V. In what follows it will be convenient
to integrate over the transverse momenta. There-
fore, let

Phenomenological estimates indicate that the eiko-
nal approximation

p, =((p, '+m')"' coshy„p„, (p, '+m')"* sinhy, ) .
(3.10)

The one-loop graphs without Pomeron interac-
tions are shown in Fig. 9. AKG have shown that
the graphs of Fig. 10 with v exchanged Pomerons
give no contribution to the n-particle inclusive
cross section for s& v. Thus Figs. 8 and 9 are the
only graphs without Pomeron interactions which
contribute for ~ ~ 2. Furthermore, it is evident
that graphs involving the exchange of more than
two Pomerons are of higher order in (lns) '.

From the discussion in Sec. II it is trivial to
write down der/dy, .~ -dy„ for Fig. 9. To obtain
particles in the central region it is necessary to
cut at least one Pomeron. If only one Pomeron
is cut, then all of the vertices y(q~') must be in-
serted on that Pomeron. From Eq. (2.12) and
(2.15) it follows that this cutting gives

d(7 1 d q~ ~(0 )
dye dy F 9& ) m (2w)

Se(gyes-2
x [y(q, ') l" —

s

(3.11)

Note that this expression is negative, correspond-
ing to absorption of production from a- single chain.
If both Pomerons are cut, then the vertices y(q, ')
can be divided between the two Pomerons; there
are 2" ways to do this. From Eqs. (2.13) and
(2.15) it follows that this cutting gives

do' d ql

d p~y(&, )=4
(2 )Qy(p, &,). (3.8)

where, as usual,

(3.9) Note that this is positive, corresponding to pro-
duction from two chains. Adding the two contribu-
tions gives

FIG. 8. The pole graph for the e-particle inclusive
cross section. FIG. 10. A nonleading cut graph.
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de i 1 „d'q 2 a(q ~~1-2

=2 2(2"- } (2„)a&'(o e,)ty(q, *)1" —s (3.13)

y(p k )= constxe' s3 ~'"d. 'e' '3-"'3- (3.14)

which vanishes for pg
= 1 in accordance with the

general result of AKG mentioned above.
The k~ dependence of y(p„k~) is not directly

observable. To estimate this dependence, a simple
multi-Regge model is studied in the Appendix. It
is found that

It must be recognized that the value of y, is sub-
ject to a large theoretical uncertainty.

Using the above form for y(k~') enables one to
calculate the cut contribution from Eq. (3.13}.
Adding to it the pole contribution gives

dg

dg '''dp„
where p, is given by Eq. (3.2). Evidently from
Eq. (3.7) with n =1 (see Ref. 19)

(2"—2)N, 'y, "
2 Po yo +

1
2N, +y, +2a. 'Y

—=(p~') = 0.16 GeV'.
a

From Eqs. (3.8) and (3.14),

y(k, ') =y,e~3'-,

(3.15)

(3.16)

(3.18)

The cut term depends only on Y =in(s/m'), not on
~ ~ ~ y $~0

It is customary to define the two-particle corre-
lation function'

y. =e+2(P3 —n'}.
The observed values of (p~') and of the proton-
proton elastic slope parameter yield

(3 dy, dy„) (3 dy, y dy, )
(3.19)

y, =10 Gev-'. (3.1'?) From the previous result and Eq. (3.4) for o,

16wPo 2N&+2&'Y 4&PO 2N&+2y~+2n'Y

16gpo 2N, +2y, +2(y'Y 2N, +2(y'Y (3.20)

I

Naturally, one must add to Eq. (3.20} the usual
short-range correlation due to secondary Regge
poles.

Evidently C(Y, y„y,) is independent of y, and y, .
Its magnitude and even its sign are dependent on
the choice of y, . If the above estimate of y, is
accepted, and if 2N, +2m'Y is set equal to the elas-
tic slope parameter, Eq. (3.6), then C(Y,y„y,)
turns out to be positive and to increase slowly
with Y at available energies. Asymptotically it
is positive and behaves as Y '. In the NAL to
CERN-ISR energy range its numerical value is
given approximately by

C(Yy Sly 32) 2 16 p
3 2?)? d 2 3 y.

tive predict&on of Botke. '
The integrated correlation function is'

do' d(Tf(Y) = Jdy, dy, C,(Y,y„y, ) —,
o dye dy~

(3.22)

Since the correlation function varies slowly with

Y, f, (Y) behaves essentially as Y' at available
energies. " Asymptotically f,(Y) will grow as Y.
Further study of the multiplicity distribution will
be deferred to later sections.

In all of the preceding discussion, the transverse
momenta p«have been integrated over. The sim-
ple multi-Regge model for y(p„k~), Eq. (3.14),
does not couple p, and k„so the p«distributions
factorize:

1 o diff

2 g
(3.21) = f? (332 ' . (3.33)

Pn i=1 d$g' ' dg„
where the connection between the fixed-pole resi-
due and the diffractive cross section has been
used. Thus this calculation is roughly consistent
with, although less simple than, the semiquantita-

A more general form for y(p~, k, ) could couple

p~ and k~, thereby introducing long-range trans-
verse-momentum correlations. While such corre-
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lations would be very interesting, they are ob-
viously model-dependent.

IV. MULTIPLICITY DISTRIBUTIONS
AND RELATED TOPICS

The previous section discussed the contx'ibutions
of the graphs in Fig. 9 to inclusive differential
cross sections. Th1s sect1on investigates the mul-
tiplicity distribution of the produced particles for
the same graphs. We show that the moments of
the multiplicity distribution will reflect the long-
range correlations intxoduced by the Pomeron
cuts. Furthermore, these correlations are suf-
ficient to satisfy an inequality of Le Bellac. '0 With
only short-range correlations this inequality re-
quires the total cross section to decrease fa.ster
tha. n any power of in@.

In ox'der to hRndle the comblnatorlal RQRlysis in-
volved in a discussion of multiplicity distributions,
it is simplest to use the generating-function tech-
nique discussed by Mueller, ' whose notation, we
fo11ow. Our formulas can be easily generalized to
the generating functional of Shei and Yan" and
Brown, "but this will not be done, in the interest
of simplicity.

In terms of the exclusive cross section g„ to
pxoduce g particles and the total cross section 0,
the generating function is defined as'

Substitution of this in Eq. (4.4) gives

m*og(&) =P 'e"'" ' +
j.6gy,

(aa r+srj)/y~
0 X

2 mayor(X -j.'} .4glor(& -x) + j

(4.6}

Equation (3.18) is expected to give correctly
only the leading behavior of P„ in T. There will
be additional contributions both from other Pom-
eron cut graphs and from secondary Regge poles.
Thus we should believe only those conclusions
derived from Eq. {4.6) which are not affected by
such contributions.

The integrated correlation functions f„are cal-
culated from Eqs. (4.3) and (4.6). We work to
le@ding order in 7 and observe that since we are
studying p{X) for X near unity, the x integral is
dominated by g= j.. We find for g~ 2

)I)(x) = g -((V.
n=o

(4.1)
ffyff

[2+( ])»]~O(in-())
32m@'P,

(4 f)

»om (})(x) we can find the moments of the multi-
plicity dlstx"lbutlon:

F ={n(8-1)~ ~ ~ (8-++1))
do

Pj. ' Pg
dpi'' ' ' Apg d

Vftlen g =23 we expect RddltloQRl contxlbutions-of
O(l') from short-range effects, so we can only

say that the relation f, =O(Y) is unchanged in the
limit 7 ~ by the cuts being studied in this sec-
tion. [888, llowevel', the discussion following
Eq. (3.22}.j For 8 =1 the pole term dominates:

fl =(8) =VP'+o(1)- (4.8)

The integrated correlation functions are

(4 3)

The quantities p(X}, E„, and f„all carry an im-
plicit energy dependence.

To calculate y(X) we use the relation

( ) g {x—1)"E„
nt

(4.4)

which follows from Eq. (4.2). Using Eq. (3.18) we
calculate the contribution to I „from the graphs
of Figs. 8 and 9:

%'8 remind the reader that in a short-range corre-
lation picture one expects all the f„ to grow at most
llneRx'ly with P» ' Thusy the I| behRvlor iD

Eq. (4.7) reflects the long-range correlations pro-
duced by the Pomeron cuts.

It is tempting to calculate the dex'ivatives of
(I)(x) at X =0 in order to obtain an explicit expres-
sion for o„. This is a potentially dangerous pro-
cedure, as nonleading terms in the g„wiQ modify
the details of the result. In particular, we have
not made a definite prediction on f», which is
closely x'81Rted to the width of the multlpllclty
thstl lbution. Aftex' cRlculRtlng the multiplicity
dlstx'lbut1on lD the DRlve manner we will comment
on which featux'es are most believable.

With this cautionary note in mind we calculate
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m'o„= —, —[m'oy(X)]
n! dZ

I k=Q

p
a(~OY)", ),r-, No' '&~„!a.r.2~,&&„2( «ro»", 2),r 4(~~OY)", .„r,S

n~ 16my, Q x n! nl
(4.9)

The first term in this expression is a Poisson
distribution centered at y, Y coming from the pure
pole diagrams. The three terms under the integral
correspond to the three possible cuttings of the cut
graph, Fig. 6. The first of these terms comes
from cutting both Pomerons. This cutting gives
a superposition of Poisson distributions weighted
with the factor g '~'"""i' &~ '. As Y becomes
large, this factor peaks strongly at z =1; conse-
quently, we obtain essentially a Possson distribu-
tion peaked at 2yQY. Similarly the second term is
essentially a Poisson distribution centered at
yQY The negative sign in front of this term indi-
cates that it acts to reduce the number of particles
in the Poisson distribution coming from the pure
pole diagram. Finally we come to the interesting

Q term. Since our model is only val id for pro-
duced particles in the central region of rapidity
space, a term 5„Q shou1. d be interpreted as meaning
that no particles are present in the central region.
In other words, this term represents diffractive
dissociation of the initial particles into low-mass
hadronic systems. Inclusion of short-range cor-
relation effects wi11 spread this contribution over
small values of n. Thus we find the diffractive
cross section

N0
32w om'(Y+ N, /a') (4.10)

This result is of course consistent with using the
diffractive cross section to calculate N." Because
of the neglect in this section of' Pomeron inter-
actions, we do not find diffractive excitation into
massive states. Such processes wjll be discussed
in the next section.

In a natural fashion this model has given rise
both to diffractive events and to large multiplicity
ones with (s) = y,Y. In addition, the model predicts
a peak ip the multiplicity distribution at n =2yQY,
The total amount of cross section in this second
peak is found from Eq. (4.9) to be precisely 2o ~;„.
This peak is a definite prediction of the model,
although at nonasymptotic energies the peaks at
n =

yQ Y and n = 2 y Q Y will merge to form a widened
distribution. " In the next section we show explicit-
ly how more complicated graphs in the Reggeon
calculus partially fill in the gaps between these
peaks.

u =((s-(~))") (4.11)

Any p.„can be expressed as an Nth-order poly-
nomial in the f„. Le Bellac showed that if all the
f„gr wolinearly in Y, then p, „grows at most as
Y". If (n) grows a,s Y, we than have for small s

-0(Y-~)
'

o (n —(n))'" (4.12)

Summing over the diffractive cross section with,
small n, we obtain

diff —0(Y N)-
0

(4.13)

Since N is arbitrary, o ~&, /o goes to zero faster
than any power of Y.

Suppose now that the f„be vheaas in Eq. (4.7).
An argument similar to that of Le Bellac then
shows that

The three-peak structure found here for the
multiplicity distribution will become the multiple-
peak structure of AKG when multiple Porneron
exchange is included. We do not expect short-
range correlations to change substantially the po-
sitions of the various peaks or the cross section
included under each one. However, we do expect
corrections to the detailed shapes of the individual
peaks. In general, they will not be Poisson distri-
butions, just as the usual short-range correlation
picture does not require a Poisson distribution. '

Note that in dominating the z integral of Eq.
(4.9) by z near unity, we have implicitly assumed
that n is near one of the peaks. Indeed, if n is
not sufficiently near any of the peaks, and if
yoy, /o is sufficiently large, the x integral will
not be dominated by &=1. However, for these n
we expect nonleading contributions to p„and high-
mass diffractive dissociation to be important.
High-mass diffraction will be discussed in the
next section.

Le Bellac" has argued that the absence of long-
range correlations requires all &r„/o to decrease
faster than any power of Y at fixed n. A simple
application of unitarity then shows that o also de-
creases faster than any power of Y, thus ruling out
a Pomeron intercept of unity. We now show that
the Pomeron cuts introduce long-range correla-
tions sufficient to remove this difficulty. Following
Le Bellac, ' consider the quantities
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tkN f„+0(Y" ')

X,'y, "1'"-'(2+(-1)"),
323ia Po

(4.14)

Putting this into the above argument, we only find

No
odiff 32mom Y

(4.15)

as expected in a Regge-pole model. Using Eq.
(4.10) we obtain

+diff ~diff ' (4.16)

This is a check on the internal consistency of the
model. The factor of 3 occurs because the second
peak in the multiplicity distribution at p =2yoY
contributes to p» twice as much as the diffractive
piece.

that any extra polynomials in Y occurring in the
expression for the total cross section were can-
celed by appropriate counterterms. Such a pro-
cedure could also be used here to calculate the F„.
In using the generating function, however, one
loses track of the individual F„and it is no longer
clear which terms correspond to renormalizations.
Because of the simplification provided by the gen-
erating function, we prefer to use it and therefore
to work with unrenormalized quantities. The two
procedures are equivalent, and one may at the
end rewrite all quantities in terms of renormal-
ized vertices.

We use Po to denote the unrenormalized Pomer-
on-particle-particle coupling at zero momentum
transfer. We parametrize N(k, 2) and y(k, ') as in
Eqs. (3.3) and (3.16). For the triple-Pomeron
coupling we take

V. POMERON INTERACTIONS g(o, k, ) = -gok, 'e'Jk&, (5.1)

In previous sections we restricted ourselves to
graphs in the Reggeon calculus not involving inter-
actions among Pomerons. In this section we ex-
tend our discussion to all graphs with at most a
single Pomeron loop. Thus we consider all of the
graphs in Figs. 1(b) and 2. As before, our pro-
cedure is to study the contributions of various
cuttings of these diagrams to the absorptive part
of the forward elastic amplitude. For each cutting
we isolate pg particles from the final state to de-
termine a contribution to the n-particle inclusive
reaction.

Pomeron interactions immediately present the
problem of renormalization in the Reggeon calcu-
lus. ' In this section we consider all vertices as
the unrenormalized quantities. In Sec. II we
worked with renormalized vertices and assumed

satisfying Eil. (2.8). The Pomeron intercept will
be renormalized, so we set

a(t) =1+id~a't,

where & is to be determined. In considering one-
loop diagrams we drop all terms of higher order
in N, and g, than N, ', +~„and g,'. The shift in
a(0) from unity occurs only in order g,'; thus, in
the one-loop approximation only the pole diagram
is affected by this shift. In particular we keep the
condition that the triple-Pomeron coupling vanishes
at k '=0.

To illustrate the renormalization procedure and
conventions, we give the expression for the total
cross section arising from the diagrams of Figs.
1(b} and 2:

~2+ 'p 2eg)Y 0 J. e222'kJ Y+ 2NJl) or roPQ d] J.
( k 2)e266 kJ (+ Nil) +gkkJ

4 (23))2 4, (2w)'

2~ 2 r-K dkgo Po
d~ d~

J.
( k 2)2e222'k& tr l1 22)622-22&2-

4 ' ' (233)'

The integrations are elementary and give

(5.2)

(r'Y 1 1
322( 'Y+N) 16 rr' N, +g 2 'Y+N, +6, 128rrrr" g,' g, rr'Y+g, )

(5 3)

We wish to remove the term proportional to Y in
Eq. (5.3} so that the asymptotic cross section will
be constant in the one-loop approximation. This
requires setting

R'o

128'(y'g~2
'

Hence, we obtain

(5.4)



POMERON CUTS AND INCLUSIVE REACTIONS 693

a 2 NogoPo i go t)0

lawn'&N, +g) 128 "g,)

(5.5)

Defining the renormalized vertex pQ by

lim m'o = p0',
Y~

(5.6)

we find, to the order in which we are working,

Nogo ~ go'Po
827TQ' (Ny+gy) 256WQ gg

(5.7)

(x —1)"

pent

n=Q'
dp, dp„. (5.8)

To obtain information on inclusive cross sec-
tions, we now cut the diagrams of Figs. 1(b) and
2. We again calculate the generating function from.

og(&)=, oF„(x —1)"

„0 n!

og(X) = g og(X) (5.10)

where the sum over G denotes a sum over the con-
tributions of the various graphs. We label the
graphs by the respective figure numbers. The
previous section calculated the contributions of
Figs. 8 and 9. From Fig. 11 we obtain

The differential inclusive cross section from a
particular cut diagram is given by an integral
similar to those in Eq. (5.1) but with factors of
y( p~, k~) inserted for each particle removed from
a cut Pomeron. See Figs. 11 and 12. The sum
over n in Eq. (5.8) can be replaced with a multiple
sum over the number of particles isolated from
each cut Pomeron. Each cut Pomeron then contri-
butes to g(X) a factor

exp[((X —1)yoe"~ »], (5 &)

where $ is the rapidity gap spanned by the cut
Pomeron, and k~' is its transverse momentum.
Keeping only one-loop contributions, we write

m'oy(X) (

Fig. 11

2N~O ~
" dk~ 2

dg
2

', (-k, ')e&'" '"&"~"i{exp[(Y—$)(a —1)y,])
0 2w'

x {2exp[2 $(X —1)yoe i &x] —4 exp[((X —1)yoe" & "&] + 1j. (5.11)

Changing integration variables, we rewrite this as

moog(~)
I

= ' 0"ao du (-Yln&)&Fig. 11

x {2exp[ Y(X —1)y, (1 —u +2ux)]

—4 exp[ Y(X —1)yo(1 —u+ux)] +exp[Y(X —1)yo(1 —u)]). (5.12)

Similarly, the contribution from the graph of Fig. 12 is

1

m o&)(» I F, „=16.
2 g0 HO

tTJQ Q

1-u 'd
dv —(-Y in@)~@&~

Q X

x {2exp[Y(X —1)yo(u + v+ 2x(1 —u —v))]

—4 exp[Y(X —1)yo(u + v+x(1 —u —v))] +exp[Y(X —1)yo(u+ v)]j.

(5.18)

From the generating function we can immediately
calculate the f„. Keeping only the leading order
in Y, we obtain for n ~ 3

,y." Y" '(2+(-1)")
82vn'P, ' (b)

)( 2+ ogot0 i go Ho

o&'(u —1) 2o ' (u —1)(u —2)

+0(Y" *). (5.14)

FIG. 11. The singly enhanced cut graphs for the n-
particle inclusive cross section. All possible cuttings
and arrangments of the produced particles should be
included.
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FIG. 12. The doubly enhanced cut graph for the n-
particle inclusive cross section. All possible cuttings
and arrangements of the produced particles should be
included.

The cases kg=1 and pg =2 are anomalous. For ~=1
we find

f, =(n)

2
go yo

128&&"g7TQ g1

3go y, Y 1n(n' Y/g, )
64@a"

2 5 2 2+~

gp o+ NitXoPo go Po +O(1) (5 l8)

Short-range effects will modify the O(Y) term.
However, we again remind the reader of the dis-
cussion in Sec. II: The cut contribution should
behave essentially as Y' in the NAL to CERN-ISR
energy range. Note that in the limit Y-~ the
long-range correlation becomes apparent in f„
although only as a lnY effect.

Keeping in mind the cautionary remarks of the
last section, we find the multiplicity distribution
by differentiation. Again labeling by the respective
graphs, we write

l Y+O&N
32va"Po 84xn" (5.15)

&n
c c

(5.17)

The graphs of Figs. 8 and 9 were discussed in the
last section. Designating a Poisson distribution by

The term linear in Y contains a piece which should
be interpreted as a renormalization of the vertex
y. For z =2 we obtain

P„(Z) = —,e ',=z" -2

we find

(5.18)

and

P dx
( Yln ) ( o'»+N, +&a)/v,m n i Fig. 11

1 0 0

x [2P„(yo Y(1 —u + 2ux)) —4P„(yo Y(1 —u +ux)) +P„(yo Y(1 —u))], (5.19)

2 2 1
go Pom vn ~ F~. '~ 16 3 du

~yl 0
dv

d"—"(-Y lnx)'xi'"-r''-"-"'"d~x
x

x[2P„(yoY(u+v+2x(1-u —v))) —4P„(yoY(u+v+x(1 —u- v)))+P„(yoY(u+v))].

(5.20)

These expressions are superpositions of Poisson distributions centered between n =0 and n =2yoY.
We now study in more detail the terms in Eq. (5.19). As in the last section, we dominate the x integrals

by x near unity. Then Eq. (5.19) becomes

o ( NogoPo'
m ~n~ Fig. 1) 32 r2Y

du
]o [2P„(yo Y(1 +u)) —4P„(yoY) +P( yo Y(1 —u))] .

[u+(N, +g, /2a'Y ' (5.21)

The first of the Poisson distributions under this
integral peaks at n = yo Y(1+u) and thus tends to fill
the gap between z = y, Y and z =2ypY in the non-
interacting Pomeron prediction. The second term
reduces the size of the peak at n = yp Y The third
term fills in the gap between n =0 and z = yp Y This
third term corresponds to the physical process
where one incident particle is diffractively dis-
sociated into a low-mass state while the other is
excited into a massive system through the triple-
Pomeron coupling, as in Fig. 13. Clearly the
cutting which does not cut the loop Pomerons in
Fig. 2(d) corresponds to the process of both initial

particles being diffractively dissociated into mas-
sive states via the triple-Pomeron process. We
note that the last term of Eq. (5.21) yields

FIG. 13. High-mass diffractive dissociation via the
triple-pomeron vertex.
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lin. m o„(r)=32 „,+& —,NpgpPp 1
32m@' yoY

(5.22)

where rs is fixed but large enough that low-multi-
plicity diffraction is negligible.
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APPENDIX

Since the k, dependence of the central vertex
y( p„k, ) is not directly measurable, it must be
estimated from a model. The simplest reasonable
model is a straightforward generalization to non-
zero P~ of the one considered by Silverman and
Tan. ' It is motivated by the multi-Regge idea ~ ':
The exchange of an internal Reggeon with a tra-
jectory a„(t) builds up the Pomeron with a trajec-
tory a(t). The vertex y(p~, k~) is therefore to be
extracted from the graph for the non-forward six-
point function shown in Fig. 14. The appropriate
discontinuity' "of the amplitude is

d(B~F(B&P)=),(f ,.2 .()IIl))(„,() )i t)(~i/ill , )'")'
x (s /sg)p(R(t( )+ nR( t( )F (t+ t+)F (t t )(s /s z) nR(tz )+ nR((p)'

&&[P(t)g„,(t, t;, t, )( '/sm)"("1, (Al)

where

s =(p, +p,)',
u, =(p. —p)',

t=)P s

~, =(p~ p)'-
s,' =(p, + —,k ——,p —q), s„' =(p)) ——,k ——,p+q)

s„=(p, + pk+ pp- q), s„=(p, —pk+2p+q)

gRRR(t, m', m') = p(t). However, the values of t(„
a„and p, are not assumed to be related.

To simplify the calculation it is helpful to make
the usual multi-Regge kinematic approximations.
These are that the momentum transfers are trans-
verse, and that

t)'=( k+22p+q)')

t, =(-,k ——,p —q)',
t,' = (--,'k +-,'p —q)*,

t„-= ( ,'k —,'p+ q)',--— st - -Q) p s„= -Q„p
(As)

and the vertex functions are defined in the obvious
way.

In principle one could determine all the trajecto-
ry and vertex functions in Eq. (Al) by solving some
multi-Regge equation. " ' It is known, however,
that it is not possible to make a simple multi-
Regge equation give results consistent with exper-
iment. " It is therefore better to adopt the ap-
proach of Silverman and Tan and to assume rea-
sonable forms for these quantities. The trajecto-
ries are taken to be linear:

d q= —ds', ds„'d qi.2s

Letting

S =-XQ S =-XQ
1 1~ r r

one then readily finds

discs = (u(s, ) "—~ "p'(ki')y(p, ) k, ) )

where

(A6)

a(t) = a() + a' t

aR(t} apR aRt '
(A3)

The vertex functions are taken to be exponentials:

P(t)=tf e ~

gRRR(t t tP) = GPe'~ '~"P'e~',

FRR(t„ tp) =Fpe'p "''p
~

I
Pg

'o

—k + —p+qI I

2 2

'E
I I

qtP

——k+ -p-qI I

2 2

I I——k -—p+q2 2

P

Pb

Note that the t dependence of g»~ has been taken
to be the same as that of g, since presumably FIG. 14. The graph for a model of the vertex p(p~, k ~).
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2 Q )y(p„ki) =constxe' |'i s 'i'+' ~~ ' ~

1

dxdx d' e'{'&'+'& x ~~'~ '~a{'~ ~~ x
0

(A7)

The x, and z„ integrals are trivial. The remaining q~ integral can be simplified by ignoring the qi depend-
ence everywhere except in the exponential, as will be justified a posteriori. ' Then

y(p~, k~) =constxe i ~ s '1'& ~~i ' + [2(l —nz)+n'ki —2aa(P~'+k~ )]
I t

(A8)

where all of the P, ' and k~' dependence has been
'

approximated by exponentials. With o.,„=—,
' and

a=a, +a, +ms this formula gives Eq. (3.16). Be-
cause of the small value of (p, '), it also shows
that dropping the q~ dependence in Eq. (A7) every-
where except in the exponential was justified.

It should perhaps be noted that if one actually
solves the multi-Regge integral equation with a
kernel

A(f+ t-. t+ f-) 1 &a(t&++ t&+ tr + tr 1
l& 1& r& r 0 (Ae)

a form suggested by the above choice of F~R, one
finds that the k, falloff of y(P~, k, ) is slower than
the p, falloff. This occurs because the value of
&' obtained is very large, so that the quantity

[P, —a'/2(1 —a,„)]in Eq. (A8) is negative. The ex-
perimental value of ~' is of course small.
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