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Polya distribution in a parton description of high-energy scattering
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%'e derive a multiplicity distribution law based on parton model ideas and asymptotic
Koba-Nielsen-Qlesen scaling. Specifically, the Polyh distribution is found to result if one
demands consistency among Feynman-Yang scaling, a linear fit to the Wroblewski plot, and

independent emission of secondaries. A comparison with data is presented.

I. INTRODUCTION

One of the more easily accessible pieces of ex-
perimental data in high-energy scattering is the
multiplicity distr ibution. Recently Koba, Nielsen,
and Olesen' have shown that if one accepted the
scaling ideas of Feynman and Yang, ' then such dis-
tributions themselves may scale. More specifical-
ly, if P(n, n) is the distribution function at an en-
ergy for which the average multiplicity is (n),
then, as s-~,

The quantity (n) grows as the energy increases,
and it is expected that the corrections to KNO
scaling become small at asymptotically high ener-
gies.

Slattery' has fitted Eq. (1.1}to the available data,
using for n the numbers of charged prongs, and
concluded that at present energies, the corrections
are very small. This result is not expected since
the original derivation breaks domn for nonasymp-
totic energies. Indeed, if one demands strict
validity of Eq. (1.1), at finite energies, one runs
into conflict with unitarity. ~

Lacking a good understanding of the basic pro-
cesses at work, the best way to examine such
precocious scaling behavior perhaps mill be mith-
in the context of models incorporating phenomeno-
logieal features. The par'ton picture furnishes
several models of thj.s kind. The simplest realiza-
tion of the short-range correlation feature basic
to many such models is the multiperipheral model.
The short-range correlation is explicit here; the
secondaries are emitted independently. However,
an examination of the resulting distribution shows
no asymptotic KNO sealing. ' This is of course not
to be taken to mean that KNO scaling is incompati-
ble with the parton picture. Rather, me may ask
if such scaling may be used to constrain the pic-
ture.

In this paper, we indicate the form that such
constraints may take, We shall abstract two sim-
ple properties of the parton picture: firstly, that
scattering amplitudes exhibit Feynman- Yang scal-
ing, and secondly, that secondaries are emitted
independently. We shall demand compatibility with
a linear fit to (n) of the dispersion ((n') —

&
n)')'~';

that is, me shall demand a good fit to the Wroblem-
ski plot. ' We are then able to derive that the
multiplicity follows a Polyi distribution' rather
than the naively expected Poisson distribution.
This distribution agrees well mith the data, con-
sidering the crudity of our picture. The demand
of consistency with the Wroblemski plot is made
initially in our study on the empirical ground that
it seems to fit the data very mell; homever, our
results have led us to a possible picture of the pro-
duction process, mhich we discuss in the conclusion.

In See. II we define our model and demonstrate
the relevance of the Polya distribution. We con-
fine our attention to neutral particles here. Sec.
III deals mith the generalization to describe
charged multiplicities. In line mith the general
spirit of the picture, we consider charge conser-
vation only on the average. The consequent final
state of the excited system, it turns out, is the
coherent state of a ghost-free relativistic oscilla-
tor. A comparison with data is then carried out.
We conclude with some remarks on possible im-
plications in Sec. IV.

II. THE POLYA DISTRIBUTION

In this section we derive the basic law of statis-
tics of multiparticle production in a parton picture
from the following three assumptions:

(1}Feynman-Yang scaling, i,e., all inclusive
cross sections are s-independent as s- ~, and are
functions only of x and p for each observed par-
ticle;

(2} independent emission of particles; more pre-
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cisely the multiparticle inclusive cross sections
are factorizable in the form given by Eq. (2.6}',

(3) asymptotically, a linear fit to the Wroblewski
plot holds.
The first assumption is very well justified experi-
mentally, at least for one-particle inclusive cross

sections, while the second assumption is on a less
firm basis experimentally. The third assumption
is totally motivated by the Wroblewski plot and the
Slattery analysis of the KNO scaling.

In the parton picture, the infinite energy limit of
the scattered state may be written as

dxl
4 = N '

I 0) + 32 —d 0 y, (x, k) I x, k)+ —d i'2, d I2' rp2(x, k, x', k ')
I x, k, x', k') + ~ ~ ~

x 2 x x' (2.i)

In Eq. (2.1) we have suppressed the label for the
leading particles so that

I 0) denotes the elastic
state, while I x, k) denotes the inelastic state with
an additional "radiated" pion with p, = xR', p~ =k.
If x is positive, then, by momentum conservation
the right-moving leading particle has its p,
=(1—x)W; x &0 implies that the pion is in the left-
moving system.

In Eq. (2.1) we have built in the Feynman-Yang
scaling limit by making the structure functions

y, (x, k), ip2(x, k, x', k'), . . . independent of W. How-

ever, in principle the s dependence of exclusive
cross sections is absorbed in the parameters ~„
A.„.. . , which may vanish with s-~.

' Now we make the ansatz for independent emis-
sion in the parton picture by assuming a factor-
izable rp (Ref. 8):

y„(x, k, x', k', . . . )=y(x, k)y(x', k') ~ ~ ~ . (2.2)

D =(n') —(n)'= —(n)', s-~; (2.7}

then it is easy to show that f must be given by

f =(1——
)

where

c =(n) + o. .

(2 8)

(2.9)

I A2 I' instead of g„etc.j
It should perhaps be emphasized again at this

point that independent emission does not imply that
the statistics are a Poisson distribution. How-

ever, by an additional assumption of "ignorance, "
one would be led to an f of the form e~"and the
correlation function f, =(n') —(n)' —(n) would

vanish, in direct contradiction with experiment.
Let us now insist on satisfying asymptotically

the linear fit to the Wroblewski plot, i.e.,

It then follows that we can treat independently the
right- and left-moving systems and derive rela-
tions among inclusive cross sections for the right
and left fragments independently.

If we introduce the generating function

(2.3)

Proof. By definition,

( )
dlnf
dF

d2f
(n') —(n) =—

dp2

(2. io)

(2.ii)

then

—'d2A ly(x, k) I',
0

(2 4)

Wroblewski's linear fit translates into the differ-
ential equation (calling dlnf/dF -=y)

(2.i2)

(A (x, k)A(x, k)) = ly(x, k) I' „
(A (x, k) At( y, k') A( y, k ') A(x, k))

(2.5)

d2
=

I y(x, k) I'
I y(x', k') I'-dP2, (2.6)

etc. A(x, k), At(x, k) are annihilation and creation
operators for the pion. In Eq. (2.3) the constants

gy g2 come from summing over the fragments
of the left-moving system and are related to the
parameters A.„A,„.. . in Eq. (2.1). [If in Eq. (2.1)
we "forgot" about the left fragments, then the
average expectation values in Eqs. (2.5) and (2.6)
would have everywhere IA., I' instead of g, and

whose solution is
1 F c
y Q Q

and Eq. (2.8) results upon performing one further
integration.

Equation (2.8) is the generating function of the
negative binomial statistics or the Polya distribu-
tion. In the limit as n -~ and c/o, is held fixed at
I/z, the Polya statistics approach those of Pois-
son: e ". An important feature to note here is the
fact that for all finite, positive n, the Polya sta-
tistics are broader than the Poisson statistics.

For convenience, we list here a few simple
mathematical properties of the negative binomial
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or Polya statistics'. distribution therefore is

(n) =1 a,

(2.14)

(2.15)

(2.16)

» (N+ a + a '- 1) !
Nl(a+a' 1-) I

'

Q.E.D.
Lastly, we remark that the Polya statistics can

be simply expressed as a compound Poisson dis-
tribution, ' viz. ,

(3)(a+1)(a+2)()33(a+1)&)p()

(a + 1)(a+2)(a + 3)n' =
3

n'
(2.1V) 0 &x &1. (2.21)

III. CHARGED-PARTICLE DISTRIBUTION

6
a+1)(o.+2)( )3 7a+1& )2 ( )

(2.18)

( ') = , ( )' + 10 , ( )'
n fo.' a la'

In general, for q a positive integer

(a+q —1) I
&n(n —1) ~ ~ ~ (n- q+1))=, , (n)'.ntn' '

(2.19)

(2.20)

where

y»= . „„(1-z) (1-z)
1 dA.

2Fi A.

(N+ a+ a'- 1) I

N!(a+ a '-1}I

The properly normalized combined statistical

An important result we shall use for Sec. III is
the composition law for two Polya statistics, which
we shall state in the form of a theorem. '

Theorem. Let P„,P„.be independent Polya dis-
tributions in n, n, respectively, with parameters
n, x and n', x, respectively. Then the combined
distribution law is again a Polya distribution para-
metr ized by + + a ', x.

Proof.

„(n+a —1) I (n'+ a ' —1) I

(a —1) InI (a'-1) in'I

In Sec. II we derived the law of multiparticle pro-
duction statistics in a parton picture and relied
heavily on the remarkable linear fit to the
Wroblewski plot. Charge and all other quantum
numbers were ignored in that derivation. For an
actual comparison with experiment, of course,
charge cannot be ignored, especially in view of the
recently available data on charged and neutral
multiplicity correlations. This problem of charge
and isospin conservation has received considerable
attention within the past year, resulting in several
classes of models depending on whether pions are
emitted independently (charge conservation on the

average} or in charged and neutral pairs (o, p, &u

models). ' From an experimental point of view,
the problem of distinguishing between these dif-
ferent but simple models of partition of charge
among the produced pions is complicated by the
fact that observed multiplicity correlations depend
also on the production probability of N (= n, + n
+ n, }pions.

There are two attitudes that one can take. One
is to look directly at experimental data and apply
the statistics test to n, say, and ask if the Polya
distribution in n fits the available multiplicity
data. The answer is yes, for lab energies greater
than 60 GeV, with the fit getting better at higher
energies. (This is in accord with the well-known
observation that multiplicity distributions become
broader than Poisson distributions as energy in-
creases, while for lower energies they are nar-
rower than those of Poisson. ') We shall return to
this later.

The other attitude would be to make further as-
sumptions about the production of mass clusters
and their subsequent "decay" into pions and to then
confront the resulting predictions with experiment.
Let us therefore go back to our parton picture of
the scattered state. In line with our remark about
independent emission, we shall focus our attention
on, say, the right-moving system and ask what the
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state vector looks like for an independent-emission
Polya distribution model. It is instructive to write
down the corresponding state vector for a Poisson
distribution model. It is simply the coherent
state

'Jf 'exp X(T+a —1)'~' —d'k q&(x, k)a (x, k) 10},
p X

(3.2)

where

—d k a "(x,k)a(x, k} (3.3)

is the number operator for the mesons. At this
point it should be remarked that this coherent

3f 'exp X —d'k y(x, k)a (x, k) ~0) . (3.1)
p X

[Energy-momentum conservation can be under-
stood in the sense described in Eq. (2.1) of Sec.
11.]

For a Polya model, the new coherent state is

state has in fact already been discovered by
Giovanini and Predazzi and by Fujiwara and
Kitazoe, '0 starting from totally different physical
grounds. It should also be remarked, and we
admit that the connection is at best tenuous at
present, that in a recent study of an infinite com-
ponent field of a relativistic oscillator model with
no ghosts" the resonance states in a unitary rep-
resentation of SU(3, 1) were found to occur in a
coherent state in the form given here, with the
interpretation, however, that n —1 is the mass
squared of the Regge intercept, which for baryons
would be equal to 1, i.e., a = 2 from the infinite-
component-field point of view. This rather tenuous
interpretation will be found to be in remarkable
agreement with the ratio D/(n} = —,

' in the Wroblew-
ski plot.

But we now come back to the point about charge
partition among the pions. Lacking detailed
knowledge and on the grounds of simplicity we gen-
eralize Eq. (3.2} to the case of charged pions by
simply writing

5f 'exp g(r+u —1)'~' —d'kgb(x, k)[at(x, k)+a (x, k)+ao(x, k)] ~0), (3.4)

P„(iv) = (1-z) x (3.5)

and the partition of charge among these right-
moving pions being given by

P(z~n„n, ~}=. . .(-.') .
Pl + PS SQ

(3.6)

where ~ is the number operator for the charged
and neutral mesons. Charge is conserved on the
average in this model.

The multiplicity statistics can be obtained from
Eq. (3.4) by noting that it is equivalent to the sta-
tistics of producing N pions (of whatever charge)
being in a Polya distribution

X
(s + n, + o. - 1) t

n I sol (a —1) i
(3.8)

Before we can confront these ideas with experi-
ment, for pp scattering, we must recall that our
discussion has been confined exclusively to the
right-moving system. For an experiment, n, n,
include those that come from both hemispheres.
By symmetry in pp scattering, the left-moving
system will have a Polya distribution of the same
parameters A. and n. By our theorem of Sec. II

Therefore,

P„(n, n, n ) = (1—A.) ( 3X)"' +"

X(n, +n +s, +o.—1) I

n, ln !n, f(a —1)! (3.7)

TABLE I. Comparison of the KNO moment coeffi-
cients between Slattery' s extrapolation from the data
and those of the Polya distribution. The value of 20. is
chosen to be the expected asymptotic value of 4. The
experimental values are taken from the curve and quoted
numbers of Ref. 17.

It is not a priori clear that this extremely crude
statistical assumption about charge partition can
be compatible with the recent CERN ISR data on
charged neutral multiplicity correlation. " Indeed,
if we used a Poisson distribution for P(N) instead
of Eq. (3.5), the resulting correlation (or rather
the lack of it) would disagree with experiment.

To calculate the correlation, let us first sum
over n+ in Eq. (3.7):

c, (Slattery)

1.24
1.81
2.97
5.36

10.4
21.6

c~ (I'olya)

1.25
1.80
2.52
4.00
7.20

14.4

c~ (expt. )

1.25+ 0.01
1.82 + 0.02
2.96+ 0.05
5.27 + 0.11

10.3 (from curve)
21 (from curve)
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FIG. 1. (a)-(d) Comparison between data at 303, 205, 102, and 69 GeV/c and Polya distribution of the parameters
given in Table II. The data points and errors are taken from the Slattery compilation, except for new data corrections
given by F. T. Dao et al. , phys. Lett. 45B, 399.(1973);G. Charlton et al. , paper submitted to the XVI Internal. ona] Con-
ference on Hfgh Energy physics, Chicago-Batavia, Ill. , 1972 (unpublished); V. V. Ammosov et aE. , Phys. Lett. 42B,
519 (1972}. See also Ref. 13.
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we find TABLE II. Fitted values of 20.' for a Polya distribu-
tion in n

X
(n +n, +2 n—1) i

n t n, l(2n —1) i
(3.9)

Now, for fixed s, Eq. (3.9) is again a Polya
distribution in n„with an effective "u"=n +2m,
so from Sec. II, we know

lab
(GeV/c)

303
205
102

69

5.75
9.0

11~ 50
44

22
13.4
4.8

16.9

(n, ) =3 2
(n +2n), (3.10)

a linear rise, which is indicated by the ISR experi-
ment. "

It is of course an obvious statement that our
model makes this linear correlation for the mul-
tiplicities from each jet separately, so that in
n p collisions, the multiplicities among the frag-
ments of p should obey this correlation, just as the
multiplicities among the fragments of n should
obey a similar charged-neutral correlation with,
however, different slopes and intercepts.

Lastly, we sum over n, and find the multiplicity
distribution for n, in pp experiments:

(3.1i)

p =-, ].)p )0. (3.12)

The parameters p and n are related to (n ) and
D„ in the following way:

(n )= 2n,1-p

(n -') —(n )'=—(n )'+(n ) (3.14)

As we remarked earlier, if n is related to the
intercept of the linear baryon Regge trajectory in
a way suggested by the ghostfree oscillator model,
then n =2. Therefore, in the Wroblewski plot,

(3.16)

D/(n ) -—,. However, until that connection is
spelled out in more physical detail, it remains
only a suggestion.

Koba, Nielsen, and Olesen' have suggested the
scaling hypothesis for s large:

(n ') =c,(n )' (3.16)

(n )P(n ) =y(n /(n )). (3.17)

and derived from this, assuming absence of lower
order terms in Eq. (3.16) the well-known universal
function

As has been shown by Chodos, Rubin, and Sugar, 4

Eq. (3.16) taken strictly violates the positivity of
the probability distr ibution.

In our approach, there are correction terms to
the asymptotic scaling which are not strictly zero,
and even though we find asymptotic KNO scaling
[see Eq. (2.20)] there is, strictly speaking, no
energy-independent universal function, although
it may well be true in some approximate sense.

Slattery' has analyzed the KNO scaling assumption
and found precocious KNO scaling in n,„experi-
mentally for all lab energies above 59 GeV. In
his analysis, he found asymptotic values of the co-
efficients c, from data. It is amusing that the
Polya distribution gives a prediction for those c,
which is not far from the quoted extrapolated
values of Slattery. (See Table 1.)

We have fitted the Polya distribution to available
multiplicity data and found a reasonable fit of Eq.
(3.11)to data (see Fig. 1). At 303 GeV, the best fit
is for 2e =5.75. Again, if o. -1 is read as the mass
squared of the lowest contributing resonance in an
infinite component field, this value of o. corres-
ponds to the lV*(1238) resonance. But this interpre-
tation fails for lower energies since the best fitted
value for n increases as energy decreases, in line
with the fact that multiplicity distributions in n

become narrower than Poisson at low energies.
The parameters o. that correspond to best fit at

each incident energy are given in Table II." The
general trend of larger values of n for lower en-
ergies is due to the well-known way in which the
Polya distributions approach the Poisson distribu-
tions. Because of this fact, the precise value of
n at lower energies is not to be taken seriously.
We remark at this point that the extrapolation of
the ideas of independent emission to lower ener-
gies involves the question of the choice of variable
n or n,h-2, etc. , which we have not fully inves-
tigated.

IV. CONCLUSION

Compared with other phenomenological fits to
the data, such as the Slattery analysis of pre-
cocious KNO scaling in n,h and other analyses in-
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volving truncated Gaussian distributions and com-
pound Poisson distributions, '4 we cannot truly say
our fit is better. We attribute this to the crudity
of our model since, firstly, charge conservation
has not been implemented except on the average
and, secondly, the assumption of independent
emission may not be justified until one gets to the
ISR energies. However, at energies of the NAL

range, the fit of our Polya distribution is as good
as other reported fits to the multiplicity, indicat-
ing that the lack of strict charge conservation may
not be an important factor. At lower energies, the
question of a "right" choice of variables for the
Polya distribution is an open one.

The independent-emission feature of our model
is motivated from a different point of view than
that in the multiperipheral model. In the simple
parton picture we are using, both right- and left-
moving systems, after initial collison, contain
partons in various excited states. The number of
levels in each system could be fairly large; in-
deed, we should allow the partons to interact after
the collision according to their own interaction

pot'ential. " In terms of diagrams, we allow par-
ticles from each multiperipheral chain to further
interact; we must, in the language of dualists,
sum over "fishnet" diagrams. '6

If the basic dynamical force holding the partons
together is that of a ghost-free relativistic oscilla-
tor, then in the corresponding bremsstrahlung
models the radiated partons will be in accordance
with the Polya distribution. If a multiperipheral
chain is to be thought of as a set of emission dia-
grams with no final-state interaction, then our
model is to be thought of as emission with final-
state (harmonic oscillator) interactions.
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